Week 7: Multiple Regression
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October 24, 26, 2016

!These slides are heavily influenced by Matt Blackwell, Adam Glynn, Jens
Hainmueller and Danny Hidalgo.
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Where We've Been and Where We're Going...

o Last Week
> regression with two variables
» omitted variables, multicollinearity, interactions
@ This Week
» Monday:
* matrix form of linear regression

» Wednesday:
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Where We've Been and Where We're Going...

o Last Week

> regression with two variables
» omitted variables, multicollinearity, interactions
@ This Week
» Monday:
* matrix form of linear regression
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* hypothesis tests
@ Next Week

» break!
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Where We've Been and Where We're Going...

o Last Week

> regression with two variables
» omitted variables, multicollinearity, interactions
@ This Week
» Monday:
* matrix form of linear regression
» Wednesday:
* hypothesis tests
@ Next Week

> break!
> then ... regression in social science

e Long Run
» probability — inference — regression

Questions?
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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@ Matrix Algebra Refresher
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Why Matrices and Vectors?
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Why Matrices and Vectors?

Here's one way to write the full multiple regression model:

yi = Bo + xi1f1 + X282 + - - - + Xik Bk + u;
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Why Matrices and Vectors?

Here's one way to write the full multiple regression model:

yi = Bo + xi1f1 + X282 + - - - + Xik Bk + u;

@ Notation is going to get needlessly messy as we add variables
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Why Matrices and Vectors?

Here's one way to write the full multiple regression model:

yi = Bo + xi1f1 + X282 + - - - + Xik Bk + u;

@ Notation is going to get needlessly messy as we add variables

@ Matrices are clean, but they are like a foreign language
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Why Matrices and Vectors?

Here's one way to write the full multiple regression model:

yi = Bo + xi1f1 + X282 + - - - + Xik Bk + u;

@ Notation is going to get needlessly messy as we add variables
@ Matrices are clean, but they are like a foreign language

@ You need to build intuitions over a long period of time (and they will
return in Soc504)
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Why Matrices and Vectors?

Here's one way to write the full multiple regression model:

yi = Bo + xi1f1 + X282 + - - - + Xik Bk + u;

@ Notation is going to get needlessly messy as we add variables
@ Matrices are clean, but they are like a foreign language

@ You need to build intuitions over a long period of time (and they will
return in Soc504)

@ Reminder of Parameter Interpretation:
(1 is the effect of a one-unit change in x;j; conditional on all other x.
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Why Matrices and Vectors?

Here's one way to write the full multiple regression model:

yi = Bo + xi1f1 + X282 + - - - + Xik Bk + u;

@ Notation is going to get needlessly messy as we add variables
@ Matrices are clean, but they are like a foreign language

@ You need to build intuitions over a long period of time (and they will
return in Soc504)

@ Reminder of Parameter Interpretation:
(1 is the effect of a one-unit change in x;j; conditional on all other x.

We are going to review the key points quite quickly just to refresh the
basics.
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Matrices and Vectors

@ A matrix is just a rectangular array of numbers.
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Matrices and Vectors

@ A matrix is just a rectangular array of numbers.

e We say that a matrix is n x K (“n by K") if it has n rows and K
columns.
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Matrices and Vectors

@ A matrix is just a rectangular array of numbers.

e We say that a matrix is n x K (“n by K") if it has n rows and K
columns.

@ Uppercase bold denotes a matrix:

411 d12 -+ a1k

a axp - axk
A =

dnl dn2 -  dpkK
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Matrices and Vectors

@ A matrix is just a rectangular array of numbers.

e We say that a matrix is n x K (“n by K") if it has n rows and K
columns.

@ Uppercase bold denotes a matrix:

411 d12 -+ a1k

a axp - axk
A =

dnl dn2 -  dpkK

@ Generic entry: aj, where this is the entry in row i/ and column k
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Design Matrix

Stewart (Princeton) Week 7: Multiple Regression



Design Matrix

One example of a matrix that we'll use a lot is the design matrix, which

has a column of ones, and then each of the subsequent columns is each
independent variable in the regression.
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Design Matrix

One example of a matrix that we'll use a lot is the design matrix, which

has a column of ones, and then each of the subsequent columns is each
independent variable in the regression.

1 exports; age; male;

X 1 exports, age, male;

1 exports, age, male,
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Vectors
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Vectors

@ A vector is just a matrix with only one row or one column.
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Vectors

@ A vector is just a matrix with only one row or one column.

@ A row vector is a vector with only one row, sometimes called a 1 x K
vector:
a:[al Qy 3 - OzK]

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 7 /145



Vectors

@ A vector is just a matrix with only one row or one column.

@ A row vector is a vector with only one row, sometimes called a 1 x K

vector:
a:[al Qy 3 - aK]

@ A column vector is a vector with one column and more than one row.

Here is a n x 1 vector:

Y1
Y2
Yn
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Vectors

@ A vector is just a matrix with only one row or one column.

@ A row vector is a vector with only one row, sometimes called a 1 x K
vector:
O(:[Oél Qy 3 - aK]

@ A column vector is a vector with one column and more than one row.
Here is a n x 1 vector:
y1

y2
y:

Yn

@ Convention: we'll assume that a vector is column vector and vectors
will be written with lowercase bold lettering (b)
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Vector Examples
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Vector Examples

One common vector that we will work with are individual variables, such
as the dependent variable, which we will represent as y:

Y1
¥2
y= .

Yn
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Transpose
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Transpose

@ There are many operations we'll do on vectors and matrices, but one
is very fundamental: the transpose.
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Transpose

@ There are many operations we'll do on vectors and matrices, but one
is very fundamental: the transpose.

@ The transpose of a matrix A is the matrix created by switching the
rows and columns of the data and is denoted A’. That is, the kth
column becomes the kth row.
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Transpose

@ There are many operations we'll do on vectors and matrices, but one
is very fundamental: the transpose.

@ The transpose of a matrix A is the matrix created by switching the
rows and columns of the data and is denoted A’. That is, the kth
column becomes the kth row.

qi1 gi2
Q= 1 oo Q = [ di1r g1 CI31]
qi2 422 Qg32
431 Q32

If Ais j x k, then A" will be k x j.
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Transposing Vectors
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Transposing Vectors

Transposing will turn a k x 1 column vector into a 1 X k row vector and
vice versa:

1
3
2
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Transposing Vectors

Transposing will turn a k x 1 column vector into a 1 X k row vector and
vice versa:

1
; W=[132 5]
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Addition and Subtraction

@ To perform addition/subtraction the matrices/vectors need to be
conformable, meaning that the dimensions have to be the same
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Addition and Subtraction

@ To perform addition/subtraction the matrices/vectors need to be
conformable, meaning that the dimensions have to be the same

@ Let A and B both be 2 x 2 matrices. Then, let C = A + B, where we
add each cell together:
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Addition and Subtraction

@ To perform addition/subtraction the matrices/vectors need to be
conformable, meaning that the dimensions have to be the same

@ Let A and B both be 2 x 2 matrices. Then, let C = A + B, where we
add each cell together:

A+B— [ au 312}+{b11 b12]
dz1 dar» b21 b22
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Addition and Subtraction

@ To perform addition/subtraction the matrices/vectors need to be
conformable, meaning that the dimensions have to be the same

@ Let A and B both be 2 x 2 matrices. Then, let C = A + B, where we
add each cell together:

A+B— [ au 812}+{b11 b12]
dz1 dar» b21 b22

_ | aunt+bu an+ b
acy + boy  ax + b
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Addition and Subtraction

@ To perform addition/subtraction the matrices/vectors need to be
conformable, meaning that the dimensions have to be the same

@ Let A and B both be 2 x 2 matrices. Then, let C = A + B, where we
add each cell together:

A+B— [ a1 an | +[b11 b12]
L dz1 dar» ] b21 b22

[ an+bin an+ b
| a1+ b axn+ bx

€11 Ci2
| €21 (22
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Addition and Subtraction

@ To perform addition/subtraction the matrices/vectors need to be
conformable, meaning that the dimensions have to be the same

@ Let A and B both be 2 x 2 matrices. Then, let C = A + B, where we
add each cell together:

A+B:-311 812-_1_ b1 b2
| a1 axn | bo1 b2
[ an+bin an+ b
| a1+ b axn+ bx

€11 Ci2
C1 2
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Scalar Multiplication
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Scalar Multiplication

@ A scalar is just a single number: you can think of it sort of like a 1 by
1 matrix.
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Scalar Multiplication

@ A scalar is just a single number: you can think of it sort of like a 1 by
1 matrix.

@ When we multiply a scalar by a matrix, we just multiply each
element/cell by that scalar:
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Scalar Multiplication

@ A scalar is just a single number: you can think of it sort of like a 1 by

1 matrix.

@ When we multiply a scalar by a matrix, we just multiply each
element/cell by that scalar:

a1l a1 @ X adix o Xap
aA =« =
as1 an» a X ay; « X ax
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The Linear Model with New Notation
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:

yi = Bo + xif1 + ziB2 + uj
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:

yi = Bo + xif1 + ziB2 + uj

@ Imagine we had an n of 4. We could write out each formula:
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:

yi = Bo + xif1 + ziB2 + uj

@ Imagine we had an n of 4. We could write out each formula:

vi=P0B0+x1P1+ z10+ 11 (unit 1)
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:

yi = Bo + xif1 + ziB2 + uj

@ Imagine we had an n of 4. We could write out each formula:

vi=P0B0+x1P1+ z10+ 11 (unit 1)
y2 = PBo+xf1+ 2202+ uz (unit 2)
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:

yi = Bo + xif1 + ziB2 + uj

@ Imagine we had an n of 4. We could write out each formula:

vi=P0B0+x1P1+z10+ 11 (unit 1)
y2 = PBo+xf1+ 2202+ uz (unit 2)
y3 = Bo+ x3f1 + z3f2 + uz  (unit 3)
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:

yi = Bo + xif1 + ziB2 + uj

@ Imagine we had an n of 4. We could write out each formula:

vi=po+xp1+zab+u ( )
y2 = PBo+xf1+ 2202+ uz (unit 2)
y3=Po+x3p1+zP2+u3 ( )
ya = Po+xaP1+zafa+us ( )
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The Linear Model with New Notation

@ Remember that we wrote the linear model as the following for all
iell,....n]:

yi = Bo + xif1 + ziB2 + uj

@ Imagine we had an n of 4. We could write out each formula:

vi=po+xp1+zab+u ( )
y2 = PBo+xf1+ 2202+ uz (unit 2)
y3=Po+x3p1+zP2+u3 ( )
ya = Po+xaP1+zafa+us ( )
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The Linear Model with New Notation

y1=Po+x1B1+z162+ v (unit 1)
y2 = Bo+xf1 + 2202 + w2 (unit 2)
y3 = Bo+x3B1 +z3f2 + uz (unit 3)
ya=Po+xaP1+zaf2 + us (unit 4)
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The Linear Model with New Notation

y1=Po+x1B1+z162+ v (unit 1)
y2 = Bo+xf1 + 2202 + w2 (unit 2)
y3 = Bo+x3B1 +z3f2 + uz (unit 3)
ya = fBo+xaf1 + zaB2 + us  (unit 4)

@ We can write this as:
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The Linear Model with New Notation

y1 =00+ x101+z102+ w1
y2 = Bo+x2f1 + 2252 + w2
y3 = Bo+x301 + z302 + u3
ya = Bo+ xaP1 + zaf2 + us

@ We can write this as:

1 1 X1 ¥4 uy
¥2 . 1 X2 V) u»
vl =1 Bo + s P+ 2 Bo + s
ya 1 X4 z4 Ug
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The Linear Model with New Notation

yi=DBo+xib1+z1f+u1 ( )
y2o=Bo+xb1+ 2fo+ux ( )
y3=Bo+x3p1+ 2362+ u3 (unit 3)
ya=PBo+xaP1+zaP2+ us ( )

@ We can write this as:

1 1 X1 ¥4 uy
¥2 . 1 X2 V) u»
vl =1 Bo + s P+ 2 Bo + s
ya 1 X4 z4 Ug

@ Outcome is a linear combination of the the x, z, and u vectors
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Grouping Things into Matrices
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Grouping Things into Matrices

@ Can we write this in a more compact form?
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Grouping Things into Matrices

@ Can we write this in a more compact form?
Yes! Let X and 3 be the following:
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Grouping Things into Matrices

@ Can we write this in a more compact form?
Yes! Let X and 3 be the following:

1 X1 Z1
. 1 X2 2o
(4x3) 1 x3 z3
1 X4 24
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Grouping Things into Matrices

@ Can we write this in a more compact form?
Yes! Let X and 3 be the following:

(4x3)

|
==

Stewart (Princeton)

X1
X2
X3
X4

Week 7: Multiple Regression
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2| 5|
23 (3x1)

Z P2
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Matrix multiplication by a vector
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Matrix multiplication by a vector

@ We can write this more compactly as a matrix (post-)multiplied by a
vector:
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Matrix multiplication by a vector

@ We can write this more compactly as a matrix (post-)multiplied by a
vector:

1 X1 4]

1 X2 ¥dp) _

1 Bo + s P+ 2 B2 = Xp3
1 X4 Z4
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Matrix multiplication by a vector

e We can write this more compactly as a matrix (post-)multiplied by a
vector:

1 X1 4]

1 X2 ¥dp) _

1 Bo + s P+ 2 B2 = Xp3
1 X4 Z4

@ Multiplication of a matrix by a vector is just the linear combination of
the columns of the matrix with the vector elements as
weights/coefficients.
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Matrix multiplication by a vector

e We can write this more compactly as a matrix (post-)multiplied by a
vector:

1 X1 z1

1 X2 ¥dp) _

1 Bo + s B+ 2 fo = XPB
1 X4 Z4

@ Multiplication of a matrix by a vector is just the linear combination of
the columns of the matrix with the vector elements as
weights/coefficients.

@ And the left-hand side here only uses scalars times vectors, which is
easy!
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General Matrix by Vector Multiplication

Stewart (Princeton) Week 7: Multiple Regression



General Matrix by Vector Multiplication

@ Ais a nx K matrix
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General Matrix by Vector Multiplication

@ Ais a nx K matrix

@ bisa K x1 column vector
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General Matrix by Vector Multiplication

@ Ais a n x K matrix
@ bisa K x1 column vector

@ Columns of A have to match rows of b
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General Matrix by Vector Multiplication

A is a n x K matrix
bisa K x 1 column vector

Columns of A have to match rows of b

Let a, be the kth column of A. Then we can write:
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General Matrix by Vector Multiplication

A is a n x K matrix
bisa K x 1 column vector

Columns of A have to match rows of b

Let a, be the kth column of A. Then we can write:

Ke = Ab = bja; + bpay + --- + byagk
(ix1)
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General Matrix by Vector Multiplication

A is a n x K matrix
bisa K x 1 column vector

Columns of A have to match rows of b

Let a, be the kth column of A. Then we can write:
Ke = Ab = bja; + bpay + --- + byagk
(ix1)

@ c is linear combination of the columns of A
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Back to Regression
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Back to Regression

e X is the n x (K 4 1) design matrix of independent variables
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Back to Regression

e X is the n x (K 4 1) design matrix of independent variables
@ 3 be the (K + 1) x 1 column vector of coefficients.

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 18 / 145



Back to Regression

e X is the n x (K 4 1) design matrix of independent variables
@ 3 be the (K + 1) x 1 column vector of coefficients.
o X3 will be n x 1:
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Back to Regression

e X is the n x (K 4 1) design matrix of independent variables
@ 3 be the (K + 1) x 1 column vector of coefficients.
o X3 will be n x 1:

XB = Bo + B1x1 + Boxa + - - - + Brxk
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Back to Regression

e X is the n x (K 4 1) design matrix of independent variables
@ 3 be the (K + 1) x 1 column vector of coefficients.
o X3 will be n x 1:

XB = Bo + B1x1 + Boxa + - - - + Brxk

@ We can compactly write the linear model as the following:

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 18 / 145



Back to Regression

e X is the n x (K 4 1) design matrix of independent variables
@ 3 be the (K + 1) x 1 column vector of coefficients.
o X3 will be n x 1:

XB = Po + Pix1 + PBoxo + -+ + Brxk
@ We can compactly write the linear model as the following:

y = X8+ u
(nx1)  (nx1) (nx1)
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Back to Regression

X is the n x (K + 1) design matrix of independent variables
B be the (K + 1) x 1 column vector of coefficients.
X3 will be n x 1:

XB = Bo + B1x1 + Boxa + - - - + Brxk

@ We can compactly write the linear model as the following:

y = X8+ u
(nx1)  (nx1) (nx1)

e We can also write this at the individual level, where X/ is the ith row
of X:

yi = xiB + uj
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Matrix Multiplication

@ What if, instead of a column vector b, we have a matrix B with
dimensions K x M.
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Matrix Multiplication

@ What if, instead of a column vector b, we have a matrix B with
dimensions K x M.

@ How do we do multiplication like so C = AB?
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Matrix Multiplication

@ What if, instead of a column vector b, we have a matrix B with
dimensions K x M.

@ How do we do multiplication like so C = AB?

@ Each column of the new matrix is just matrix by vector multiplication:

C:[Cl C2 CM] Ck:Abk
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Matrix Multiplication

@ What if, instead of a column vector b, we have a matrix B with
dimensions K x M.

@ How do we do multiplication like so C = AB?

@ Each column of the new matrix is just matrix by vector multiplication:
C:[Cl C2 CM] Ck:Abk

@ Thus, each column of C is a linear combination of the columns of A.
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Special Multiplications

@ The inner product of a two column vectors a and b (of equal
dimension, K x 1):

ab= aiby + arxby + - -+ 4+ ax bk
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Special Multiplications

@ The inner product of a two column vectors a and b (of equal
dimension, K x 1):

ab= aiby + arxby + - -+ 4+ ax bk

@ Special case of above: a’ is a matrix with K columns and just 1 row,
so the “columns” of a’ are just scalars.
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Sum of the Squared Residuals
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Sum of the Squared Residuals

@ Example: let's say that we have a vector of residuals, u, then the
inner product of the residuals is:
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Sum of the Squared Residuals

@ Example: let's say that we have a vector of residuals, u, then the
inner product of the residuals is:

o
o
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Sum of the Squared Residuals

@ Example: let's say that we have a vector of residuals, u, then the
inner product of the residuals is:
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Sum of the Squared Residuals

@ Example: let's say that we have a vector of residuals, u, then the
inner product of the residuals is:

uy
Wo=[0 0 i ]|
Un

n

/ A~ o~ ~2

00 = Gy0y + Gpllp + -+ + lplln = Y _ 0
i=1

@ It's just the sum of the squared residuals!
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Square Matrices and the Diagonal
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Square Matrices and the Diagonal

@ A square matrix has equal numbers of rows and columns.

Stewart (Princeton) Week 7: Multiple Regression



Square Matrices and the Diagonal

@ A square matrix has equal numbers of rows and columns.

@ The diagonal of a square matrix are the values aj;:

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 22 /145



Square Matrices and the Diagonal
@ A square matrix has equal numbers of rows and columns.

@ The diagonal of a square matrix are the values aj;:

d11 412 ai3
A= | ax a»n ax
a31 432 4d33
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Square Matrices and the Diagonal
@ A square matrix has equal numbers of rows and columns.

@ The diagonal of a square matrix are the values aj;:

d11 412 ai3
A= | ax a»n ax
a31 432 4d33

@ The identity matrix, | is a square matrix, with 1s along the diagonal
and Os everywhere else.
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Square Matrices and the Diagonal

@ A square matrix has equal numbers of rows and columns.

@ The diagonal of a square matrix are the values aj;:

d11 412 ai3
A= | ax a»n ax
a31 432 4d33

@ The identity matrix, | is a square matrix, with 1s along the diagonal
and Os everywhere else.

Il
oo
o~ o
— o o
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Square Matrices and the Diagonal

@ A square matrix has equal numbers of rows and columns.

@ The diagonal of a square matrix are the values aj;:

d11 412 ai3
A= | ax a»n ax
a31 432 4d33

@ The identity matrix, | is a square matrix, with 1s along the diagonal
and Os everywhere else.

o = O
= O O

@ The identity matrix multiplied by any matrix returns the matrix:
Al =A.
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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© OLS in matrix form
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the
vector of fitted values:
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the
vector of fitted values:
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the
vector of fitted values:

2
p1

B
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the
vector of fitted values:

G
a- | y-xp
B
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the
vector of fitted values:

2
p1

B

@ It might be helpful to see this again more written out:
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the

vector of fitted values:

e
G- | y-xp
A

@ It might be helpful to see this again more written out:

<)
I
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the

vector of fitted values:

e
G- | y-xp
A

@ It might be helpful to see this again more written out:

»
Y2 -
Sl =xB=

<)
I

o~

Yn
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Multiple Linear Regression in Matrix Form

o Let B be the matrix of estimated regression coefficients and y be the

vector of fitted values:

e
G- | y-xp
A

@ It might be helpful to see this again more written out:

Y1 130 + X1151 + X12,32 + o+ xak B
~ y2 - 180 + x1B1 + X22,6’2 + -+ xox Bk
Yn 180 + xm 1 + Xn252 + o+ Xk B
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Residuals

Stewart (Princeton) Week 7: Multiple Regression



Residuals

@ We can easily write the residuals in matrix form:

i=y- X3
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Residuals

@ We can easily write the residuals in matrix form:

i=y- X3

@ Our goal as usual is to minimize the sum of the squared residuals,
which we saw earlier we can write:
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Residuals

@ We can easily write the residuals in matrix form:

i=y- X3

@ Our goal as usual is to minimize the sum of the squared residuals,
which we saw earlier we can write:
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OLS Estimator in Matrix Form
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OLS Estimator in Matrix Form

@ Goal: minimize the sum of the squared residuals
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OLS Estimator in Matrix Form

@ Goal: minimize the sum of the squared residuals

e Take (matrix) derivatives, set equal to 0
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OLS Estimator in Matrix Form

@ Goal: minimize the sum of the squared residuals
e Take (matrix) derivatives, set equal to 0

@ Resulting first order conditions:

X'(y - XB) =0
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OLS Estimator in Matrix Form

Goal: minimize the sum of the squared residuals

Take (matrix) derivatives, set equal to 0

Resulting first order conditions:

X'(y - XB) =0

@ Rearranging: R
X'XB = X'y
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OLS Estimator in Matrix Form

Goal: minimize the sum of the squared residuals

Take (matrix) derivatives, set equal to 0

Resulting first order conditions:

X'(y - XB) =0

@ Rearranging: R
X'XB = X'y

In order to isolate B’ we need to move the X’X term to the other side
of the equals sign.
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OLS Estimator in Matrix Form

Goal: minimize the sum of the squared residuals

Take (matrix) derivatives, set equal to 0

Resulting first order conditions:

X'(y - XB) =0

@ Rearranging: R
X'XB = X'y

In order to isolate B’ we need to move the X’X term to the other side
of the equals sign.

@ We've learned about matrix multiplication, but what about matrix
“division” ?
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Scalar Inverses

@ What is division in its simplest form? % is the value such that a% =1
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Scalar Inverses

@ What is division in its simplest form? % is the value such that a% =1
@ For some algebraic expression: au = b, let's solve for u:

1
—au

1
-b
a a
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Scalar Inverses

@ What is division in its simplest form? % is the value such that a% =1
@ For some algebraic expression: au = b, let's solve for u:

1
—au

1
-b
a a
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Scalar Inverses

@ What is division in its simplest form? % is the value such that a% =1

@ For some algebraic expression: au = b, let's solve for u:

1 1
—au=-b
a

[ Rl )
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Scalar Inverses

@ What is division in its simplest form? % is the value such that a% =1

@ For some algebraic expression: au = b, let's solve for u:
1

1
—au=-b
a

[ Rl )

@ Need a matrix version of this: %
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Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A1 is the matrix
such that A~1A = I.

@ We can use the inverse to solve (systems of) equations:

Au=Db
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Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A1 is the matrix
such that A~1A = I.

@ We can use the inverse to solve (systems of) equations:

Au=D>b
A lAu=A1p

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 28 / 145



Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A1 is the matrix
such that A~1A = I.

@ We can use the inverse to solve (systems of) equations:

Au=D>b
A lAu=A1p
lu=A"1b
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Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A1 is the matrix
such that A~1A = I.

@ We can use the inverse to solve (systems of) equations:

Au=b
AlAu=A""b
lu=A"'b
u=A"1b
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Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A1 is the matrix
such that A~1A = I.

@ We can use the inverse to solve (systems of) equations:

Au=b
AlAu=A"1b
lu=A"'b
u=A"1b

o If the inverse exists, we say that A is invertible or nonsingular.
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Matrix Inverses

Definition (Matrix Inverse)

If it exists, the inverse of square matrix A, denoted A1 is the matrix
such that A~1A = I.

@ We can use the inverse to solve (systems of) equations:

Au=b
A lAu=A"1b
lu=A"tb
u=A"1b

o If the inverse exists, we say that A is invertible or nonsingular.
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Back to OLS
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Back to OLS

o Let's assume, for now, that the inverse of X’'X exists
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Back to OLS

o Let's assume, for now, that the inverse of X’'X exists

@ Then we can write the OLS estimator as the following:

B = (X'X)"'Xy
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Back to OLS

o Let's assume, for now, that the inverse of X’'X exists

@ Then we can write the OLS estimator as the following:

B = (X'X)"'Xy

@ Memorize this: “ex prime ex inverse ex prime y"

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 29 / 145



Back to OLS

o Let's assume, for now, that the inverse of X’'X exists

@ Then we can write the OLS estimator as the following:

B = (X'X)"'Xy

@ Memorize this: “ex prime ex inverse ex prime y" sear it into your soul.
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Intuition for the OLS in Matrix Form

B = (X'X) Xy
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Intuition for the OLS in Matrix Form
B = (X'X) Xy

@ What's the intuition here?
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Intuition for the OLS in Matrix Form
B = (X'X)"'Xy

@ What's the intuition here?

@ “Numerator” X'y: is roughly composed of the covariances between
the columns of X and y
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Intuition for the OLS in Matrix Form
B = (X'X)"'Xy

@ What's the intuition here?

@ “Numerator” X'y: is roughly composed of the covariances between
the columns of X and y

e “Denominator” X’X is roughly composed of the sample variances and
covariances of variables within X
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Intuition for the OLS in Matrix Form
B = (X'X)"'Xy

@ What's the intuition here?

@ “Numerator” X'y: is roughly composed of the covariances between
the columns of X and y

e “Denominator” X’X is roughly composed of the sample variances and
covariances of variables within X

@ Thus, we have something like:

B~ (variance of X)™!(covariance of X & y)
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Intuition for the OLS in Matrix Form
B = (X'X)"'Xy

What's the intuition here?

“Numerator” X'y: is roughly composed of the covariances between
the columns of X and y

“Denominator” X’X is roughly composed of the sample variances and
covariances of variables within X

@ Thus, we have something like:

~

B ~ (variance of X)~!(covariance of X & y)

@ This is a rough sketch and isn't strictly true, but it can provide
intuition.
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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e OLS inference in matrix form
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General OLS Assumptions
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General OLS Assumptions

Q Linearity: y=X3+u
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General OLS Assumptions

Q Linearity: y=X3+u
@ Random/iid sample: (y;,x}) are a iid sample from the population.
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General OLS Assumptions

Q Linearity: y=X3+u
@ Random/iid sample: (y;,x}) are a iid sample from the population.
© No perfect collinearity: X is an n x (K + 1) matrix with rank K 41
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General OLS Assumptions

Q Linearity: y=X3+u

@ Random/iid sample: (y;,x}) are a iid sample from the population.
© No perfect collinearity: X is an n x (K + 1) matrix with rank K 41
Q Zero conditional mean: E[u|X] =0
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General OLS Assumptions

Q Linearity: y=X3+u

@ Random/iid sample: (y;,x}) are a iid sample from the population.
© No perfect collinearity: X is an n x (K + 1) matrix with rank K 41
Q Zero conditional mean: E[u|X] =0

@ Homoskedasticity: var(u|X) = o2,
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General OLS Assumptions

Q Linearity: y=X3+u

@ Random/iid sample: (y;,x}) are a iid sample from the population.
© No perfect collinearity: X is an n x (K + 1) matrix with rank K 41
Q Zero conditional mean: E[u|X] =0

@ Homoskedasticity: var(u|X) = o2,

@ Normality: u|X ~ N(0,021,)
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No Perfect Collinearity
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No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.
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No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.

@ In matrix form: X is an n x (K + 1) matrix with rank K + 1
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No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.

@ In matrix form: X is an n x (K + 1) matrix with rank K + 1
o If X has rank K + 1, then all of its columns are linearly independent
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No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.

@ In matrix form: X is an n x (K + 1) matrix with rank K + 1
o If X has rank K + 1, then all of its columns are linearly independent

@ ...and none of its columns are linearly dependent = no perfect
collinearity
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No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.

@ In matrix form: X is an n x (K + 1) matrix with rank K + 1
o If X has rank K + 1, then all of its columns are linearly independent

@ ...and none of its columns are linearly dependent = no perfect
collinearity

e X hasrank K+1 = (X'X) is invertible
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No Perfect Collinearity

Definition (Rank)
The rank of a matrix is the maximum number of linearly independent
columns.

e In matrix form: X is an n x (K + 1) matrix with rank K + 1

o If X has rank K + 1, then all of its columns are linearly independent
@ ...and none of its columns are linearly dependent = no perfect
collinearity

X has rank K +1 = (X'X) is invertible

Just like variation in X led us to be able to divide by the variance in
simple OLS
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Expected Values of Vectors
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Expected Values of Vectors

@ The expected value of the vector is just the expected value of its
entries.
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Expected Values of Vectors

@ The expected value of the vector is just the expected value of its
entries.

@ Using the zero mean conditional error assumptions:

E[u1|X] 0
T el I
E[u|X] 0
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OLS is Unbiased

Under matrix assumptions 1-4, OLS is unbiased for 3:

E[3] = 3
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Unbiasedness of ,@

Is E[3] = 37
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Unbiasedness of ,@

Is E[3] = 37

B = (X’X)"' Xy (linearity and no collinearity)
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Unbiasedness of B

Is E[3] = 37

(X’X) ' X'y (linearity and no collinearity)

B
B = (X'X)"' X' (X8 + u)
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Unbiasedness of B

Is E[3] = 37
(X’X) ' X'y (linearity and no collinearity)
(X'X) Tt X/(X3 + u)

(X'X) I X'XB + (X'X) " X'u

= wW W
(I
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Unbiasedness of B

Is E[3] = 37

Stewart (Princeton)

e W
I
/\/‘g/\

Xy (linearity and no collinearity)

X'(XB +u)
IXXB + (X'X)”
X'X) " X'u

-1

1
X'u

—~ — — ~—
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Unbiasedness of B

Is E[3] = B
B = (X’X)"' Xy (linearity and no collinearity)
B = (X'X)"' X' (X8 + u)
B=(XX)"'X'XB + (X'X) ' X'u
B=18+ (XX)" ' X'u
B =8+ (XX) " Xu
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Unbiasedness of B

Is E[3] = 37

B = (X’X)"' Xy (linearity and no collinearity)
B = (X'X)"' X' (X8 + u)
B =(X'X)"'X'X8 + (X'X) " X'u

A

B=18+ (XX)" ' X'u
B =8+ (XX) " Xu

EIBIX] = E[B|X] + E[(X'X) " X'u[X]

Stewart (Princeton)
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Unbiasedness of B

Is E[3] = B

(xx)"

(X'X) Tt X/(X3 + u)

(X'X) "' X'XB + (X'X) " X'u
B=18+ (XX)" ' X'u
B =8+ (XX) " Xu

E[BIX] = E[BX] + E[(X'X) ™" X'u[X]

E[BIX] = B+ (X'X) " X'E[ulX]

X'y (linearity and no collinearity)

= wW W
Il
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Unbiasedness of B

Is E[3] = 87
(x'x)"
(X'X) Tt X/(X3 + u)
(X'X) I X'XB + (X'X) " X'u
B=18+ (XX)" ' X'u
B =8+ (XX) " Xu
E[BIX] = E[BX] + E[(X'X) ™" X'u[X]
E[BIX] = B+ (X'X) " X'E[ulX]
E[B|X] = 3 (zero conditional mean)

X'y (linearity and no collinearity)

» @ W
I
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Unbiasedness of B

Is E[3] = 87

x'x) "t

(X'X)"

(X'X) Tt X/(X3 + u)

(X'X) "' X'XB + (X'X) " X'u
B=18+ (XX)" ' X'u

B =8+ (XX) " Xu

X'y (linearity and no collinearity)

» @ W
I

E[BIX] = E[BX] + E[(X'X) ™" X'u[X]
E[BIX] = B+ (X'X) " X'E[ulX]
E[B|X] = 3 (zero conditional mean)

So, yes!

Stewart (Princeton)
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A Much Shorter Proof of Unbiasedness of B

A shorter but perhaps less informative proof of unbiasedness,
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A Much Shorter Proof of Unbiasedness of B

A shorter but perhaps less informative proof of unbiasedness,

E[B] = E[(X’X)_:l X'y] (definition of the estimator)
= (X’X)_1 X'X3 (expectation of y)
=p
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Variance-Covariance Matrix
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Variance-Covariance Matrix

@ The homoskedasticity assumption is different: var(u|X) = 721,
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Variance-Covariance Matrix

@ The homoskedasticity assumption is different: var(u|X) = 721,

@ In order to investigate this, we need to know what the variance of a
vector is.
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Variance-Covariance Matrix

@ The homoskedasticity assumption is different: var(u|X) = 021,

@ In order to investigate this, we need to know what the variance of a
vector is.

@ The variance of a vector is actually a matrix:

var(up)  cov(ui,up) ... cov(ur,up)
cov(ug,u1)  var(up) ... cov(uz,up)
varjul = X, = :
cov(up,u1) cov(up,up) ...  var(up)
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Variance-Covariance Matrix

@ The homoskedasticity assumption is different: var(u|X) = 021,

@ In order to investigate this, we need to know what the variance of a
vector is.

@ The variance of a vector is actually a matrix:

var(up)  cov(ui,up) ... cov(ur,up)
cov(up,u1)  var(up) ... cov(uz,up)
varjul = X, = _
cov(up,u1) cov(up,up) ...  var(up)

@ This matrix is symmetric since cov(u;, u;) = cov(uj, u;)
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Matrix Version of Homoskedasticity
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Matrix Version of Homoskedasticity

e Once again: var(u|X) = o2l,
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Matrix Version of Homoskedasticity

e Once again: var(u|X) = o2l,

@ |, is the n x n identity matrix
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Matrix Version of Homoskedasticity

e Once again: var(u|X) = o2l,

@ |, is the n x n identity matrix

o Visually:
o2 0 0 0
) 0 02 0 0
varjul = ol =
0 0 O o2
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Matrix Version of Homoskedasticity

e Once again: var(u|X) = o2l,

@ |, is the n x n identity matrix

o Visually:
o2 0 0 0
0 02 0 0

2
varju] = oil, =

0 0 0 o2

@ In less matrix notation:
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Matrix Version of Homoskedasticity

e Once again: var(u|X) = o2l,

@ |, is the n x n identity matrix

o Visually:
03 0 O 0
0 02 0 0

2
varju] = oil, =

0 0 O 05

@ In less matrix notation:

» var(u;) = o2 for all i (constant variance)
1) — Yu
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Matrix Version of Homoskedasticity

e Once again: var(u|X) = o2l,

@ |, is the n x n identity matrix

o Visually:
o2 0 0 0
) 0 02 0 0
varjul = ol =
0 0 O o2

@ In less matrix notation:

» var(u;) = o2 for all i (constant variance)
» cov(uj,uj) =0 for all i # j (implied by iid)
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Sampling Variance for OLS Estimates
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Sampling Variance for OLS Estimates

@ Under assumptions 1-5, the sampling variance of the OLS estimator
can be written in matrix form as the following:

var[B] = o2(X'X) "
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Sampling Variance for OLS Estimates

@ Under assumptions 1-5, the sampling variance of the OLS estimator
can be written in matrix form as the following:

var[B] = o2(X'X) "

@ This matrix looks like this:
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Sampling Variance for OLS Estimates

@ Under assumptions 1-5, the sampling variance of the OLS estimator
can be written in matrix form as the following:

var[B] = o3(X'X) !

@ This matrix looks like this:

B\O B\l 32 c //B\K
éo Vaﬂﬁo/]\ cov[Bo/,\ﬁl] COV[,/B\o, ég] s cov[éo, @\K]
él COV[?\O, @\1] va[[ﬂll COV[,B;[/,\ﬂﬂ s cov[@\l, @\K]
B2 | cov[Bo, B2]  cov[Bi, Ba] var[ 3] - cov[Ba, Bk]
B | covlBo, B] cov[Bk,B] cov[Bk,Ba] -+ var[Bk]
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Sampling Distribution for BJ

Under the first four assumptions,

Bix ~ N (8, SE(5)?)

2
1 s

1 R? 320 — %)

where Rj2 is from the regression of x; on all other explanatory variables.

SE(B))* =
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Inference in the General Setting
@ Under assumption 1-5 in large samples:
Br — B

k Pk N0, 1
SE[Bx] @
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Inference in the General Setting
@ Under assumption 1-5 in large samples:
Br — B
SE[B«]
@ In small samples, under assumptions 1-6,
Bk — Br
SE[Bx]

~ N(0,1)

~ th—(K+1)
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Inference in the General Setting

@ Under assumption 1-5 in large samples:
B — B

SE[Bk]

@ In small samples, under assumptions 1-6,
Br — B

SE[Bk]

@ Thus, under the null of Hy : Bx = 0, we know that

Br
SE[Bk]

~ N(0,1)

~ th—(K+1)

~ th_(K+1)
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Inference in the General Setting
@ Under assumption 1-5 in large samples:
Bk — Br
SE[fx]
@ In small samples, under assumptions 1-6,
Br — B
SE[B«]
@ Thus, under the null of Hy : Bx = 0, we know that
B
SE[Bx]
@ Here, the estimated SEs come from:
var[B] = 53 (X'X) !
o
52 _ u'u
Y on—(k+1)

~ N(0,1)

~ th—(K+1)

~ th_(K+1)
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Properties of the OLS Estimator: Summary
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Properties of the OLS Estimator: Summary
Theorem
Under Assumptions 1-6, the (k + 1) x 1 vector of OLS estimators 3, conditional

on X, follows a multivariate normal distribution with mean 3 and
. . . —i
variance-covariance matrix o (X'X) ™" :

BIX ~ N (ﬁ, e (x’X)‘l)

V.
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Properties of the OLS Estimator: Summary
Theorem
Under Assumptions 1-6, the (k + 1) x 1 vector of OLS estimators 3, conditional

on X, follows a multivariate normal distribution with mean 3 and
. . . —i
variance-covariance matrix o (X'X) ™" :

BIX ~ N (ﬁ, e (x’X)‘1>

@ Each element of 3 (i.e. Bo, -~-,ﬁk+1 ) is normally distributed, and B is an
unbiased estimator of 3 as E[3] = 3

V.
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Properties of the OLS Estimator: Summary
Theorem
Under Assumptions 1-6, the (k + 1) x 1 vector of OLS estimators 3, conditional

on X, follows a multivariate normal distribution with mean 3 and
. . . —i
variance-covariance matrix o (X'X) ™" :

BIX ~ A (8,07 (X'X) ")
@ Each element of 3 (i.e. Bo, ... Bk+1) is normally distributed, and B is an

unbiased estimator of 3 as E [,C:]] =0

@ Variances and covariances are given by V[B|X] = o2 (X'X) "

V.
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Properties of the OLS Estimator: Summary

Theorem

Under Assumptions 1-6, the (k + 1) x 1 vector of OLS estimators 3, conditional
on X, follows a multivariate normal distribution with mean 3 and
variance-covariance matrix o2 (X'X) ™!

BIX ~ N (ﬁ, e (x’X)‘l)

@ Each element of 3 (i.e. o, ...,ABkH) is normally distributed, and 3 is an
unbiased estimator of 3 as E[3] = 3

@ Variances and covariances are given by V[B|X] = o2 (X'X) "
@ An unbiased estimator for the error variance o is given by

L i’

on—(k+1)

V.
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Properties of the OLS Estimator: Summary

Theorem

Under Assumptions 1-6, the (k + 1) x 1 vector of OLS estimators 3, conditional
on X, follows a multivariate normal distribution with mean 3 and
variance-covariance matrix o2 (X'X) ™!

BIX ~ N (ﬁ, e (X’X)_l)

@ Each element of 3 (i.e. Bo, ...,ABk+1) is normally distributed, and 3 is an
unbiased estimator of 3 as E[3] = 3

@ Variances and covariances are given by V[B|X] = o2 (X'X) "

@ An unbiased estimator for the error variance o is given by

L i’

on—(k+1)

@ With a large sample, ,@ approximately follows the same distribution under
Assumptions 1-5 only, i.e., without assuming the normality of u.

v
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Implications of the Variance-Covariance Matrix
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Implications of the Variance-Covariance Matrix

o Note that the sampling distribution of 3 has covariance terms
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Implications of the Variance-Covariance Matrix

o Note that the sampling distribution of 3 has covariance terms

@ In a practical sense, this means that our uncertainty about
coefficients is correlated across variables.
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Implications of the Variance-Covariance Matrix

o Note that the sampling distribution of 3 has covariance terms

@ In a practical sense, this means that our uncertainty about
coefficients is correlated across variables.

@ Let’s go to the board and discuss!
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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o Inference via the Bootstrap
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Motivation for the Bootstrap

Sometimes it is hard to calculate the sampling distribution.
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Motivation for the Bootstrap

Sometimes it is hard to calculate the sampling distribution.

Bootstrapping provides an alternative way to calculate the sampling
distribution of a function of a sample when that function is smooth.
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Motivation for the Bootstrap

Sometimes it is hard to calculate the sampling distribution.

Bootstrapping provides an alternative way to calculate the sampling
distribution of a function of a sample when that function is smooth.

Let's work through an example.
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Sample

Suppose that a week before the 2012 election, you contacted a sample of
n = 625 potential Florida voters, randomly selected (with replacement)

from the population of N = 11,900,000 on the public voters register, to
ask whether they planned to vote.

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 47 / 145



Sample

Suppose that a week before the 2012 election, you contacted a sample of

n = 625 potential Florida voters, randomly selected (with replacement)

from the population of N = 11,900,000 on the public voters register, to
ask whether they planned to vote.

Suppose also,
@ voters register is completely up to date

@ all potential voters can be contacted, will respond honestly to your
questions, and will not change their minds about voting
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Sample

Suppose that a week before the 2012 election, you contacted a sample of

n = 625 potential Florida voters, randomly selected (with replacement)

from the population of N = 11,900,000 on the public voters register, to
ask whether they planned to vote.

Suppose also,
@ voters register is completely up to date

@ all potential voters can be contacted, will respond honestly to your
questions, and will not change their minds about voting

Table: Sample
i1 2 3 4 ... 625 Veos
yvill 1 0 1 ... 0| .68
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Sample versus Population

Table: Sample
i1 2 3 4 ... 625 Vs
yvill 1 0 1 ... 0| .68
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Sample versus Population

Table: Sample
i1l 2 3 4 ... 625 Veos
yvill 1 0 1 ... 0| .68

After election day, we found that in fact 71% of the registered voters
turned out to vote.

Table: Population

j 1 2 3 4 11.9 mil }_/11_9,-,,,'/
yilo 10 1 1 71
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Sampling Distribution

Table: Sampling Distribution of Yps

i 1 2 625

s VT 41 b Y Je2s  Yeos 7

1 | 9562350 1 8763351 1 1294801 0 .68

2 | 5331704 0 4533839 1 3342359 1 .70

3 | 5129936 0 | 10981600 0 4096184 1 .75

4 803605 0 7036389 1 803605 0 .73

5 148567 0 3833847 1 4769869 1 .69

1 mil | 4163458 0 8384613 1 377981 1 74
' . ' . ' : — B (675, 7T)

f Be(.71) Be(.71) Be(.71) | 2271
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The Sampling Distribution in R

# Resample the number of voters 1,000,000
# times and store these 1,000,000
# numbers in a vector.

sumY_vec <- rbinom(1000000, size=625, prob=.71)
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The Sampling Distribution in R

# Resample the number of voters 1,000,000
# times and store these 1,000,000
# numbers in a vector.

sumY_vec <- rbinom(1000000, size=625, prob=.71)

# Divide all of these numbers
# by the sample size.

Ybar_vec <- sumY_vec/625
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The Sampling Distribution in R

# Resample the number of voters 1,000,000
# times and store these 1,000,000
# numbers in a vector.

sumY_vec <- rbinom(1000000, size=625, prob=.71)

# Divide all of these numbers
# by the sample size.

Ybar_vec <- sumY_vec/625

# Plot a histogram

hist(Ybar_vec)
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Sampling Distribution of Ygps

—— Population Proportion
—— Sample Proportion

(VGZS)

Yozs!

f

0.005 0.01 0.015 0.02 0.025 0.03 0.035
|

0
L

Middle]95%

I T T T 1
0.60 0.65 0.70 0.75 0.80

Yes
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Bootstrapping

At the time of our sample, we don't observe the population or population
proportion (.71), so we cannot construct the sampling distribution.
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Bootstrapping

At the time of our sample, we don't observe the population or population
proportion (.71), so we cannot construct the sampling distribution.

However, we can take repeated random samples with replacement of size
625 from the sample of size 625.

Table: Sample
i1 2 3 4 ... 625 Veos
yvill 1 0 1 ... 0| .68
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Bootstrapping

At the time of our sample, we don't observe the population or population

proportion (.71), so we cannot construct the sampling distribution.

However, we can take repeated random samples with replacement of size

625 from the sample of size 625.

Table: Sample
i1 2 3 4 ... 625 Veos
yvill 1 0 1 ... 0| .68

The is equivalent to replacing .71 with .68 in the R code.

sumY_vec <- rbinom(1000000, size=625, prob=.68)
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Estimated Sampling Distribution of Y5

n
3 1 Sample Proportion
o
s g
» o
o
T T T T T T 1
0.55 0.60 0.65 0.70 0.75 0.80 0.85
Ye2s
Sampling Distribution of Ygps
n
3 —— Population Proportion
© 3 —— Sample Proportion
s g
> o
o
onfidence Tnterval
T T T T T T 1
0.55 0.60 0.65 0.70 0.75 0.80 0.85
Ye2s
Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016

53 / 145



Example 2: Linear Regression

This works with regression too!
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.

It turns out that 52 ~ X%—(K—i—l)'
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.

It turns out that 52 ~ X%—(K—i—l)'
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.

It tu.rns out that 52 ~ X%—(K—f-l)'
But instead we'll use Bootstrap:
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.

It tu.rns out that 52 ~ X%—(K—f-l)'
But instead we'll use Bootstrap:

1) Sample from data set, with replacement n times, X
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.

It tu.rns out that 52 ~ X121—(K+1)'
But instead we'll use Bootstrap:

1) Sample from data set, with replacement n times, X
2) Calculate £(X) (in this case a regression)
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.

It tu.rns out that 52 ~ X121—(K+1)'
But instead we'll use Bootstrap:

1) Sample from data set, with replacement n times, X
2) Calculate £(X) (in this case a regression)

3) Repeat M times, form distribution of statistics
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Example 2: Linear Regression

This works with regression too!

We skimmed over the sampling distribution of the variance parameter
earlier.
2

It turns out that 52 ~ Xn—(K+1)°
But instead we'll use Bootstrap:
1) Sample from data set, with replacement n times, X
2) Calculate £(X) (in this case a regression)
3) Repeat M times, form distribution of statistics
)

4) Calculate confidence interval by identifying «/2 and 1 — /2 value of
statistic. (percentile method)
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Confidence Intervals, via Bootstrap
Suppose we draw 20 realizations of

Xi ~ Normal(1,10)
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Confidence Intervals, via Bootstrap
Suppose we draw 20 realizations of

Xi ~ Normal(1,10)

Bootstrapped 95% confidence interval for o2:
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Confidence Intervals, via Bootstrap
Suppose we draw 20 realizations of

Xi ~ Normal(1,10)

Bootstrapped 95% confidence interval for o2:
[5.00,20.11] (with mean 12.05)
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Confidence Intervals, via Bootstrap
Suppose we draw 20 realizations of
Xi ~ Normal(1,10)

Bootstrapped 95% confidence interval for o2:
[5.00,20.11] (with mean 12.05)

Density
0.06 0.08 0.10
| | |

0.04
1

0.02
1

0.00
1

T T T T T T
0 5 10 15 20 25
S"2
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The Bootstrap More Formally
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The Bootstrap More Formally

@ What we are discussing is the nonparametric bootstrap

@ yi,...,Y, are the outcomes of independent and identically distributed
random variables Y1,..., Y, whose PDF and CDF are denoted by f
and F.
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The Bootstrap More Formally

@ What we are discussing is the nonparametric bootstrap

@ yi,...,Y, are the outcomes of independent and identically distributed
random variables Y1,..., Y, whose PDF and CDF are denoted by f
and F.

@ The sample is used to make inferences about an estimand, denoted by
0 using a statistic T whose value in the sample is t.
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The Bootstrap More Formally

@ What we are discussing is the nonparametric bootstrap

@ yi,...,Y, are the outcomes of independent and identically distributed
random variables Y1,..., Y, whose PDF and CDF are denoted by f
and F.

@ The sample is used to make inferences about an estimand, denoted by
0 using a statistic T whose value in the sample is t.

o If we observed F, statistical inference would be very easy, but instead
we observe F, which is the empirical distribution that put equal
probabilities ™! at each sample value y;.
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The Bootstrap More Formally

@ What we are discussing is the nonparametric bootstrap

@ yi,...,Y, are the outcomes of independent and identically distributed
random variables Y1,..., Y, whose PDF and CDF are denoted by f
and F.

@ The sample is used to make inferences about an estimand, denoted by
0 using a statistic T whose value in the sample is t.

o If we observed F, statistical inference would be very easy, but instead
we observe F, which is the empirical distribution that put equal
probabilities ™! at each sample value y;.

» Estimates are constructed by the plug—in priAncipIe, which says that the
parameter § = t(F) is estimated by 6 = t(F). (i.e. we plug in the
ECDF for the CDF)
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The Bootstrap More Formally

@ What we are discussing is the nonparametric bootstrap

@ yi,...,Y, are the outcomes of independent and identically distributed
random variables Y1,..., Y, whose PDF and CDF are denoted by f
and F.

@ The sample is used to make inferences about an estimand, denoted by
0 using a statistic T whose value in the sample is t.

o If we observed F, statistical inference would be very easy, but instead
we observe F, which is the empirical distribution that put equal
probabilities ™! at each sample value y;.

» Estimates are constructed by the plug-in principle, which says that the
parameter § = t(F) is estimated by § = t(F). (i.e. we plug in the
ECDF for the CDF)

» Why does this work? Sampling distribution entirely determined by the
CDF and n, WLLN says the ECDF will look more and more like the
CDF as n gets large.
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When Does the Bootstrap Fail?

Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:
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When Does the Bootstrap Fail?

Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:
@ Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).
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When Does the Bootstrap Fail?

Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:
@ Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).
@ Dependent data: nonparametric bootstrap assumes data so
independent so will not work with time series data or other dependent

structures.
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When Does the Bootstrap Fail?

Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:

@ Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).

@ Dependent data: nonparametric bootstrap assumes data so
independent so will not work with time series data or other dependent
structures.

» For clustered data, standard bootstrap will not work, but the block

bootstrap will work. In the block bootstrap, clusters are resampled (not
necessarily units) with replacement.

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 57 / 145



When Does the Bootstrap Fail?

Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:

@ Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).

@ Dependent data: nonparametric bootstrap assumes data so
independent so will not work with time series data or other dependent
structures.

» For clustered data, standard bootstrap will not work, but the block
bootstrap will work. In the block bootstrap, clusters are resampled (not
necessarily units) with replacement.

» More on this later.
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When Does the Bootstrap Fail?

Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:

@ Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).

@ Dependent data: nonparametric bootstrap assumes data so
independent so will not work with time series data or other dependent
structures.

» For clustered data, standard bootstrap will not work, but the block
bootstrap will work. In the block bootstrap, clusters are resampled (not
necessarily units) with replacement.

» More on this later.

@ Many other variants that may be right for certain situations:
studentized intervals, jackknife, parametric bootstrap, bag of little
bootstraps, bootstrapping for complex survey designs, etc.
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When Does the Bootstrap Fail?

Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:

@ Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).

@ Dependent data: nonparametric bootstrap assumes data so
independent so will not work with time series data or other dependent
structures.

» For clustered data, standard bootstrap will not work, but the block
bootstrap will work. In the block bootstrap, clusters are resampled (not
necessarily units) with replacement.

» More on this later.

@ Many other variants that may be right for certain situations:
studentized intervals, jackknife, parametric bootstrap, bag of little
bootstraps, bootstrapping for complex survey designs, etc.

Fox Chapter 21 has a nice section on the bootstrap, Aronow and Miller
(2016) covers the theory well.
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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© Some Technical Details
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@ You won't be tested on this material but its necessary for the proofs
in the appendix

@ It will also come back in Soc504 where you will need to know this
stuff, so its worth thinking about now (but | will reintroduce it next
semester).
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This Section

@ The next few slides have some technical details of vector/matrix
calculus

@ You won't be tested on this material but its necessary for the proofs
in the appendix

@ It will also come back in Soc504 where you will need to know this
stuff, so its worth thinking about now (but | will reintroduce it next
semester).

@ We will just preview this stuff now, but I'm happy to answer questions
for those who want to engage it more.
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Gradient

Let v = v(u) be a scalar-valued function R, — R; where u is a (n x 1) column

vector.
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Let v = v(u) be a scalar-valued function R, — R; where u is a (n x 1) column

0 up
vector. For example: v(u) =cuwherec=| 1 | andu=| w
3 us
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Gradient

Let v = v(u) be a scalar-valued function R, — R; where u is a (n x 1) column

0 up
vector. For example: v(u) =cuwherec=| 1 | andu=| w
3 us

Definition (Gradient)

We can define the column vector of partial derivatives

ov/ou

dv(u) Ov/0uy
ou :

ov/duy

This vector of partial derivatives is called the gradient.
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Vector Derivative Rule | (linear functions)
Theorem (differentiation of linear functions)

Given a linear function v(u) = c’u of an (n x 1) vector u, the derivative of v(u)
w.r.t. u is given by
ov
% =cC
This also works when c is a matrix and therefore v is a vector-valued function.
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Vector Derivative Rule | (linear functions)

Theorem (differentiation of linear functions)
Given a linear function v(u) = c’u of an (n x 1) vector u, the derivative of v(u)
w.r.t. u is given by
ov
o=
This also works when c is a matrix and therefore v is a vector-valued function.

Cc

0 ux
For example, let v(u) =cuwherec= | 1 | andu= | w
3 us
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Vector Derivative Rule | (linear functions)

Theorem (differentiation of linear functions)
Given a linear function v(u) = c’u of an (n x 1) vector u, the derivative of v(u)
w.r.t. u is given by
ov
o=
This also works when c is a matrix and therefore v is a vector-valued function.

Cc

0 ux
For example, let v(u) =cuwherec= | 1 | andu= | w |, then
3 us

v=cu=0-ny+1 - w+3-us
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Vector Derivative Rule | (linear functions)

Theorem (differentiation of linear functions)

Given a linear function v(u) = c’u of an (n x 1) vector u, the derivative of v(u)

w.r.t. u is given by
0
ov _
Ju

This also works when c is a matrix and therefore v is a vector-valued function.

0 ux
For example, let v(u) =cuwherec= | 1 | andu= | w |, then
3 us

v=cu=0-ny+1 - w+3-us

and oy Av/Ouy
Y ov/Oup | =
u 6v/8U3
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Vector Derivative Rule | (linear functions)

Theorem (differentiation of linear functions)

Given a linear function v(u) = c’u of an (n x 1) vector u, the derivative of v(u)

w.r.t. u is given by
0
ov _
Ju

This also works when c is a matrix and therefore v is a vector-valued function.

0 ux
For example, let v(u) =cuwherec= | 1 | andu= | w |, then
3 us

v=cu=0-ny+1 - w+3-us

and oy Av/Ouy 0
= ovfOu, | = | 1| =c
u ov/0us 3
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Vector Derivative Rule | (linear functions)

Theorem (differentiation of linear functions)

Given a linear function v(u) = c’u of an (n x 1) vector u, the derivative of v(u)

w.r.t. u is given by

ov
— =C
Ou
This also works when c is a matrix and therefore v is a vector-valued function.
0 ux
For example, let v(u) =cuwherec= | 1 | andu= | w |, then
3 us

v=cu=0-ny+1 - w+3-us

and oy Av/Ouy 0
= ovfOu, | = | 1| =c
u ov/0us 3
Hence, v
u_ ¢
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Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

@ = A’u + Au = 2Au
Ou
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Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

@ = A’u + Au = 2Au
Ou

131 | w
Forexample,letA—[1 5} andu—[uz],
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Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

v = A'u + Au = 2Au
OJu
31 u / .
For example, let A = 1 s and u = J .Then v(u) = u’Au is equal to
2
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Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

v = A'u + Au = 2Au
OJu
31 u ’ .
For example, let A = 15 and u = u .Then v(u) = u’Au is equal to
2

P . . U1
v=[3-um+u, uy+5 Uz]{l&}
= 3u? 4 2uyup + 5u3
and

@ { v /0wy } B [ 6u; + 2un ] _ { 3u; + 1up
u B -

- v /Ouy 2u; + 10w, lu; 4+ 5up ] = 2Au



Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

@:A’u—i-Au:ZAu
Ou

For example, let A = [ i’ é } and u = [ Zl ].Then v(u) = u’Au is equal to
2

v=1[3u+ u, u1+5~uz][52}

= 3u? 4 2uyup + 503
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Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

@:A’u—i-Au:ZAu
Ou

uy

31
For example, let A = [ 1 5} and u = [ 0

].Then v(u) = u’Au is equal to

= . . UI
V—[3 U1+ up, U1 +5 U2]|:u2:|
= 3u? 4 2uyup + 503

and

ov

=
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Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

v = A'u + Au = 2Au
OJu
31 u / .
For example, let A = 1 s and u = J .Then v(u) = u’Au is equal to
2

e . . U1
V—[3 U1+ up, U1 +5 U2]|:u2:|
= 3u? 4 2uyup + 503
and

ov ov/ou |
ou B

- ov/dup
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Vector Derivative Rule Il (quadratic form)

Theorem (quadratic form)

Given a (n x n) symmetric matrix A and a scalar-valued function v(u) = u’Au of
(n x 1) vector u, we have

v = A'u + Au = 2Au
OJu
31 u / .
For example, let A = 1 s and u = J .Then v(u) = u’Au is equal to
2

e . . U1
V—[3 U1+ up, U1 +5 U2]|:u2:|
= 3u? 4 2uyup + 503
and

@ [ dv/Ouy } B [ 6ur +2us ] _ [ 3u; + 1w
ou N -

- ov/dup 2u; + 10w, lu; 4+ 5up ] = 2Au
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Hessian

Suppose v is a scalar-valued function v = f(u) of a (k+ 1) x 1 column
vector u = [ iy up - Ukl ]/
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Hessian

Suppose v is a scalar-valued function v = f(u) of a (k+ 1) x 1 column

/
vector u = [ u up --- uk+1]

Definition (Hessian)

The (k + 1) x (k + 1) matrix of second-order partial derivatives of
v = f(u) is called the Hessian matrix and denoted

ov? R Vi
6 2 8”18”1 6u18uk+1
14
/ = . . .
Oudu
_ov: o
6Uk+18ll]_ 8uk+16uk+1 )
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Hessian

Suppose v is a scalar-valued function v = f(u) of a (k+ 1) x 1 column

/!
vector u = [ up up - Ukl ]
Definition (Hessian)

The (k + 1) x (k + 1) matrix of second-order partial derivatives of
v = f(u) is called the Hessian matrix and denoted

ov? . av?
6V2 8”18”1 6u18uk+1
uou’ : ' :
6Uk+18ll]_ 8uk+16uk+1 )

Note: The Hessian is symmetric.
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Hessian

Suppose v is a scalar-valued function v = f(u) of a (k + 1) x 1 column
vectoru=[ uy uy - Uky1 }/
Definition (Hessian)

The (k + 1) x (k + 1) matrix of second-order partial derivatives of
v = f(u) is called the Hessian matrix and denoted

v? ce. 0
8V2 8u18u1 8u18uk+1
Ouy+10u1 Oug 410Uk 41

Note: The Hessian is symmetric.

The above rules are used to derive the optimal estimators in the appendix
slides.
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Conclusion

@ Multiple regression is much like the regression formulations we have
already seen
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covariance matrix
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Conclusion
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@ We showed how to estimate the coefficients and get the variance
covariance matrix

@ We discussed the bootstrap as an alternative strategy for estimating
the sampling distribution
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Conclusion

@ Multiple regression is much like the regression formulations we have
already seen

@ We showed how to estimate the coefficients and get the variance
covariance matrix

@ We discussed the bootstrap as an alternative strategy for estimating
the sampling distribution
@ Appendix contains numerous additional topics worth knowing:

Systems of Equations

Details on the variance/covariance interpretation of estimator
Derivation for the estimator

Proof of consistency

vV vyVvyy
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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Fun With Weights

Aronow, Peter M., and Cyrus Samii. "Does Regression Produce

Representative Estimates of Causal Effects?.” American Journal of
Political Science (2015).2

2I'm grateful to Peter Aronow for sharing his slides, several of which are used here.
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Fun With Weights

Aronow, Peter M., and Cyrus Samii. "Does Regression Produce

Representative Estimates of Causal Effects?.” American Journal of
Political Science (2015).2

@ Imagine we care about the possibly heterogeneous causal effect of a
treatment D and we control for some covariates X?

2I'm grateful to Peter Aronow for sharing his slides, several of which are used here.
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Political Science (2015).2

@ Imagine we care about the possibly heterogeneous causal effect of a
treatment D and we control for some covariates X?

@ We can express the regression as a weighting over individual
observation treatment effects where the weight depends only on X.

2I'm grateful to Peter Aronow for sharing his slides, several of which are used here.
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Fun With Weights

Aronow, Peter M., and Cyrus Samii. "Does Regression Produce
Representative Estimates of Causal Effects?.” American Journal of
Political Science (2015).2

@ Imagine we care about the possibly heterogeneous causal effect of a
treatment D and we control for some covariates X?

@ We can express the regression as a weighting over individual
observation treatment effects where the weight depends only on X.

@ Useful technology for understanding what our models are identifying
off of by showing us our effective sample.

2I'm grateful to Peter Aronow for sharing his slides, several of which are used here.
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How this works

We start by asking what the estimate of the average causal effect of
interest converges to in a large sample:
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How this works

We start by asking what the estimate of the average causal effect of
interest converges to in a large sample:

so that f3 converges to a reweighted causal effect. As

E[w;| X;] = Var[D;| X;], we obtain an average causal effect reweighted by
conditional variance of the treatment.
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Estimation

A simple, consistent plug-in estimator of w; is available: w; = D,-2 where

D; is the residualized treatment. (the proof is connected to the partialing
out strategy we showed last week)
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Estimation

A simple, consistent plug-in estimator of w; is available: w; = D,-z where
D; is the residualized treatment. (the proof is connected to the partialing
out strategy we showed last week)

Easily implemented in R:

wts <- (d - predict(1lm(d"x)))"2
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Implications

@ Unpacking the black box of regression gives us substantive insight
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Implications

@ Unpacking the black box of regression gives us substantive insight

@ When some observations have no weight, this means that the
covariates completely explain their treatment condition.
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Implications

@ Unpacking the black box of regression gives us substantive insight

@ When some observations have no weight, this means that the
covariates completely explain their treatment condition.

@ This is a feature, not a bug, of regression: it can automatically handle
issues of common support.
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covariates completely explain their treatment condition.
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issues of common support.
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Application

Jensen (2003), “Democratic Governance and Multinational Corporations:
Political Regimes and Inflows of Foreign Direct Investment.”
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Application

Jensen (2003), “Democratic Governance and Multinational Corporations:
Political Regimes and Inflows of Foreign Direct Investment.”

Jensen presents a large-N TSCS-analysis of the causal effects of

governance (as measured by the Polity Il score) on Foreign Direct
Investment (FDI).
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governance (as measured by the Polity Il score) on Foreign Direct
Investment (FDI).
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Application

Jensen (2003), “Democratic Governance and Multinational Corporations:
Political Regimes and Inflows of Foreign Direct Investment.”

Jensen presents a large-N TSCS-analysis of the causal effects of
governance (as measured by the Polity Il score) on Foreign Direct
Investment (FDI).

The nominal sample: 114 countries from 1970 to 1997.

Jensen estimates that a 1 unit increase in polity score corresponds to a
0.020 increase in net FDI inflows as a percentage of GDP (p < 0.001).
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Nominal and Effective Samples

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 71/ 145



Nominal and Effective Samples
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Nominal and Effective Samples

Over 50% of the weight goes to just 12 (out of 114) countries.
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Broader Implications

When causal effects are heterogeneous, we can draw a distinction between
“internally valid” and “externally valid” estimates of an Average Causal
Effect (ACE). (See, e.g., Cook and Campbell 1979)
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Broader Implications

When causal effects are heterogeneous, we can draw a distinction between
“internally valid” and “externally valid” estimates of an Average Causal
Effect (ACE). (See, e.g., Cook and Campbell 1979)

@ ‘“Internally valid”: reliable estimates of ACEs, but perhaps not for the
population you care about

» randomized (lab, field, survey) experiments, instrumental variables,
regression discontinuity designs, other natural experiments
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Broader Implications

When causal effects are heterogeneous, we can draw a distinction between
“internally valid” and “externally valid” estimates of an Average Causal
Effect (ACE). (See, e.g., Cook and Campbell 1979)

@ ‘“Internally valid”: reliable estimates of ACEs, but perhaps not for the
population you care about

» randomized (lab, field, survey) experiments, instrumental variables,
regression discontinuity designs, other natural experiments

@ “Externally valid”": perhaps unreliable estimates of ACEs, but for the
population of interest

> large-N analyses, representative surveys
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Broader Implications

Aronow and Samii argue that analyses which use regression, even with a

representative sample, have no greater claim to external validity than do
[natural] experiments.
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Broader Implications

Aronow and Samii argue that analyses which use regression, even with a

representative sample, have no greater claim to external validity than do
[natural] experiments.

@ When a treatment is “as-if’ randomly assigned conditional on

covariates, regression distorts the sample by implicitly applying
weights.
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@ The effective sample (upon which causal effects are estimated) may
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Broader Implications

Aronow and Samii argue that analyses which use regression, even with a
representative sample, have no greater claim to external validity than do
[natural] experiments.

@ When a treatment is “as-if’ randomly assigned conditional on
covariates, regression distorts the sample by implicitly applying
weights.

@ The effective sample (upon which causal effects are estimated) may
have radically different properties than the nominal sample.
@ When there is an underlying natural experiment in the data, a

properly specified regression model may reproduce the internally valid
estimate associated with the natural experiment.
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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e Appendix
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Solving Systems of Equations Using Matrices
Matrices are very useful to solve linear systems of equations, such as the
first order conditions for our least squares estimates.

Here is an example with three equations and three unknowns:

X+2y+z = 3
3x —y—3z
2x4+3y+z = 4

I
|
=

How would one go about solving this?
There are various techniques, including substitution, and multiplying
equations by constants and adding them to get single variables to cancel.
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Solving Systems of Equations Using Matrices

An easier way is to use matrix algebra. Note that the system of equations

x+2y+z = 3
3x—y—3z = -1
2x+3y+z = 4
can be written as follows:
1 2 1 X 3
3 -1 -3 y|=|-1 < Au=b
2 3 1 z 4
X
How do we solve this foru= | y |7 Let's look again at the scalar case first.
z
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Solving Equations with Inverses (scalar case)

Let’s go back to the scalar world of 8th grade algebra. How would you solve the
following for u?
au=>b

We multiply both sides of by the reciprocal 1/a (the inverse of a) and get:

1
—au=-b
a a

b

u=—

a

(Note that this technique only works if a # 0. If a =0, then there are either an
infinite number of solutions for u (when b = 0), or no solutions for u (when

b#0))
So to solve our multiple equation problem in the matrix case we need a matrix

equivalent of the inverse. This equivalent is the inverse matrix. The inverse of A
is written as A™L,
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Inverse of a Matrix

The inverse A~1 of A has the property that A=A = AA~! = | where | is the
identity matrix.

@ The inverse A~1 exists only if A is invertible or nonsingular (more on this
soon)

@ The inverse is unique if it exists and then the linear system has a unique
solution.

@ There are various methods for finding/computing the inverse of a matrix

The inverse matrix allows us to solve linear systems of equations.

Au=>L
A'Au=A"1
lu=A"1b
u=A"1b
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Given A we find that A~ 1 is:

1 2 1 8
A=[3 -1 3 |;Al=] -9
2 3 1 11

We can now solve our system of equations:
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Given A we find that A~ 1 is:

1 2 1 8
A=[3 -1 3 |;Al=] -9
2 3 1 11

We can now solve our system of equations:

8 1 -5 3
u=A"lb=| -9 -1 6 -1
11 1 -7 4
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Given A we find that A1 is:

1 2 1 8 1 -5
A=|3 -1 -3 |:A1=|] -9 -1 6
2 3 1 11 1 -7

We can now solve our system of equations:

8 1 -5 3 3
u=Allb=| -9 -1 6 -1 | =1 -2
11 1 -7 4 4

So the solution vector is x = 3, y = —2, and z = 4. Verifying:

xX+2y+z =3+4+2--244 =3
3x—-y—3z =3-3—--2-3-4 =-1
2x+3y+z =2-34+3--24+4 =4

Computationally, this method is very convenient. We "just” compute the inverse,
and perform a single matrix multiplication.
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Singularity of a Matrix

If the inverse of A exists, then the linear system has a unique (non-trivial)
solution. If it exists, we say that A is nonsingular or invertible (these statements
are equivalent).

A must be square to be invertible, but not all square matrices are invertible. More
precisely, a square matrix A is invertible iff its column vectors (or equivalently its
row vectors) are linearly independent.

The column rank of a matrix A is the largest number of linearly independent
columns of A. If the rank of A equals the number of columns of A, then we say
that A has full column rank. This implies that all its column vectors are linearly
independent.

If a column of A is a linear combination of the other columns, there are either no

solutions to the system of equations or infinitely many solutions to the system of
equations. The system is said to be underdetermined.

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 80 / 145



Geometric Example in 2D

/

(-1,0)

@ 0)\

Unique Solution

Stewart (Princeton)
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Why do we care about invertibility?

We have seen that OLS regression is defined by a system of linear equations

1 1@0 + X115:1 + X12@2 +oo 4 X1k@k
R V2 N 150 + x2181 + x2282 + - - - + xok Bk
iz 180 + X1 P+ Xn2 B2 + -+ 4 xok Bk
with our data matrix
1 X11 X120 ... X1k
1 X1 Xo2 ... Xok
X =
1 Xn1 Xp2 ... Xnk
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Why do we care about invertibility?

We have seen that OLS regression is defined by a system of linear equations

71 1@0 + X115:1 + X12@2 +oo 4 X1k@k
R V2 N 150 + x2181 + x2282 + - - - + xok Bk
iz 180 + X1 P+ Xn2 B2 + -+ 4 xok Bk
with our data matrix
1 X11 X120 ... X1k
1 X1 Xo2 ... Xok
X =
1 X1 X2 ... Xnk

We have also learned that B is obtained by solving normal equations, a linear
system of equations.
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Why do we care about invertibility?

We have seen that OLS regression is defined by a system of linear equations

71 1@0 + X115:1 + X12@2 +o 4 Xlk@k
R 72 N 180 + x0181 + X222 + - - + xok Bk
Vn 180 + X1 P+ Xn2 B2 + -+ 4 xok Bk
with our data matrix
1 X11 X120 ... X1k
1 X1 Xo2 ... X2k
X P
1 X1 X2 ... Xnk

We have also learned that B is obtained by solving normal equations, a linear
system of equations.

It turns out that to solve for 3, we need to invert X'X, a (k + 1) x (k + 1)
matrix.
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Some Non-invertible Explanatory Data Matrices

X'X is invertible iff X is full column rank (see Wooldridge D.4), so the collection
of predictors need to be linearly independent (no perfect collinearity).

Some example of X that are not full column rank:

2 -2
3 -3
4 -4
5 -5

= o =

54 54,000
37 37,000
89 89,000
72 72,000

[ G T G W

1

X

I
e et i
O~ = O
= O o
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Covariance/variance interpretation of matrix OLS

Yi ny
—
n | yixi cov(yi, xi1)
, Py
X'y=>"| yixz2 | ~ | covlyix)
i=1 : ;
_
| YiXik | | cov(yi, Xik) |
1 Xi1 Xio - Xik ] n nxi nx2
2 — —~ —~
L oxn X XppXin o XiXiK nX1 var(xi)  cov(xi, Xi2)
X'X — Xi2 XX Xp o o XpXik | N | nXa  Cov(Xia, Xi1) var(xp2)
i=1
Xik XXk XXk v XiKXiK nXk cov(xik,xi1) Cov(xik,Xi2)
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Derivatives with respect to B

S(B,X,y) = (y — XB)'(y — XB)
—y'y —2y'XB + BX'Xp

9S(B,X,y)
B

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 85 / 145



Derivatives with respect to B

S(B,X,y) = (y — XB)'(y — XB)
—y'y —2y'XB + BX'Xp

55(E,~X, y)

= —2X'y + 2X'XA
0B y B8

@ The first term does not contain 3
@ The second term is an example of rule | from the derivative section

@ The third term is an example of rule Il from the derivative section
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Derivatives with respect to B

S(B,X,y) = (y — XB)'(y — XB)
—y'y —2y'XB + BX'Xp

aS(B,NX,y) - _ 2x/y + 2X/XB
B

@ The first term does not contain 3
@ The second term is an example of rule | from the derivative section
@ The third term is an example of rule Il from the derivative section

And while we are at it the Hessian is:

02S5(B, X,y
(N 7~I’ ) — 2xlx
19)610J6)
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Solving for 3

8S(B?~X’ y) — _2xly + 2x/xB
B

Setting the vector of partial derivatives equal to zero and substituting B
for 3 , we can solve for the OLS estimator.
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Solving for 3

8S(B?~X’ y) — _2xly + 2x/xB
B

Setting the vector of partial derivatives equal to zero and substituting B

for 3 , we can solve for the OLS estimator.
0= —2X'y 4+ 2X'Xj3
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Solving for 3

8S(B?~X’ y) — _2xly + 2x/xB
B

Setting the vector of partial derivatives equal to zero and substituting B
for 3 , we can solve for the OLS estimator.

0= —2X'y 4+ 2X'Xj3
—2X'X3 = —2X'y
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Solving for 3

aS(B?NX’ y) — _2xly + 2x/xB
B

Setting the vector of partial derivatives equal to zero and substituting 3
for 3 , we can solve for the OLS estimator.

0= —2X'y 4+ 2X'Xj3
—2X'X3 = —2X'y
X'X3 = X'y
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Solving for 3

aS(B?NX’ y) — _2xly + 2x/xB
B

Setting the vector of partial derivatives equal to zero and substituting @
for 3 , we can solve for the OLS estimator.

0= —2X'y 4+ 2X'Xj3
—2X'X3 = —2X'y
X'X3 = X'y

(X'X) T X'XB = (X'x)

X'y
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Solving for 3

aS(B?NX’ y) — _2xly + 2x/xB
B

Setting the vector of partial derivatives equal to zero and substituting @
for 3 , we can solve for the OLS estimator.

0= —2X'y 4+ 2X'Xj3
—2X'X3 = —2X'y

X'X3 = X'y
(X'X) T X'XB = (X'X) ! Xy
13 = (X'X) "' Xy
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Solving for 3

35(B,X,y) / Iy 7
— " = 22Xy +2X'X
Y y B

Setting the vector of partial derivatives equal to zero and substituting @
for 3, we can solve for the OLS estimator.

0 = —2X'y + 2X'XJ3
—2X'X3 = —2X'y
X'X3 = X'y
(X'X) T X'XB = (X'X) ! Xy
13 = (X'X) "' Xy
B=(X'X)""Xy

-1
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Solving for 3

aS(B,XaY) / Iy 7
— " = 22Xy +2X'X
Y y B

Setting the vector of partial derivatives equal to zero and substituting @

for 3, we can solve for the OLS estimator.
0 = —2X'y + 2X'XJ3
—2X'X3 = —2X'y
X'X3 = X'y
(X'X) T X'XB = (X'X) ! Xy
13 = (X'X) "' Xy
B=(X'X)""Xy

-1

Note that we implicitly assumed that X’X is invertible.
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Variance-Covariance Matrix of Random Vectors

Let's unpack the homoskedasticity assumption V[u|X] = o

Definition (variance-covariance matrix)

For a (n x 1) random vector u = [ u1 w2

Un

2],

]I, its

variance-covariance matrix, denoted V/[u] or also ¥, is defined as:

2 2
01 01
0’%1 0’%
Vliul =%, = ]
2 2
O On2

where af = V[uj] and 03- = Cov|u;, uj].

2
O2n

Notice that this matrix is always symmetric.

Stewart (Princeton) Week 7: Multiple Regression

October 24, 26, 2016

87 / 145



Homoskedasticity in Matrix Notation

If V[uj] = 02 for all i = 1,...,n and the units are independent then
Vu] = o2l,.
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Homoskedasticity in Matrix Notation

If V[uj] = 02 for all i = 1,...,n and the units are independent then
Vu] = o2l,.

More visually:

a2 0 0 0
) 0 o2 0 . 0

Viu| =071, =
0 0 0 o2
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Homoskedasticity in Matrix Notation

If V[u;] =02 forall i =1,...,n and the units are independent then
Vu] = o?l,.
More visually:

o2 0 0 ... O
) 0 020 ... 0

Viu| =071, =
0 0 0 ... o2

So homoskedasticity V[u|X] = o2, implies that:
@ V[u;|X] = o2 for all i (the variance of the errors u; does not depend
on X and is constant across observations)

@ Cov[uj, uj|X] = 0 for all i # j (the errors are uncorrelated across
observations). This holds under our random sampling assumption.
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Estimation of the Error Variance

Given our vector of regression error terms u, what is E[uu’]?

Efuu'] =

Stewart (Princeton) Week 7: Multiple Regression



Estimation of the Error Variance

Given our vector of regression error terms u, what is E[uu’]?

EE (2] El:Lul 1212] e E [urun]
Efu’] — [u:gul] [u2] .. [u:zun] _
E[unn] E[umn] ... E[?]
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Estimation of the Error Variance

Given our vector of regression error terms u, what is E[uu’]?

Ef[uf]] EE[lflgf] E{ulun% %2 02
E[uu'] _ 2 1 . > . 2 n -

Elunu] E[ugtn] ... E[u] 0 0

Recall E[u;] = 0 for all i. So V[u;] = E[u?] — (E[ui])? = E[u?] and by
independence E[ujuj] = E[u;] - E[uj] =0

2 0 0 ... 0
, ) 0 02 0 ... 0
Var(u) = EJud’] = ol =
0 0 O o?
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Variance of Linear Function of Random Vector

Definition (Variance of Linear Transformation of Random Vector)

Recall that for a linear transformation of a random variable X we have
V[aX + b] = a®V[X] with constants a and b.

There is an analogous rule for linear functions of random vectors. Let
v(u) = Au + B be a linear transformation of a random vector u with non-random
vectors or matrices A and B. Then the variance of the transformation is given by:

V[v(u)] = V[Au + B] = AV[u]A’ = AT A’
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Conditional Variance of 3
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:
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Conditional Variance of 3
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:

VIBIX] = VIBIX]+ V[(X'X) " X'u|X]
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Conditional Variance of B

B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:

VIBIX] = VIBIX]+ V[(X'X) " X'u|X]
= V[(X'X)"" X'u[X]
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Conditional Variance of 3
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:

VIBIX] = VIBIX]+ V[(X'X) " X'u[X]
= V[(X'X)"" X'u[X]
= (X'X)' X V]uX]((X'X)"" X’) (X is nonrandom given X)
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Conditional Variance of B
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:
VIBIX] = VIBIX]+ V[(X'X) " X'u[X]
= V[(X'X)"" X'u[X]
= (X'X)' X V]uX]((X'X)"" X’) (X is nonrandom given X)
= (X'X)"'X V]uX]X (X'X) "
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Conditional Variance of B
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:
VIBX] = VIBIX]+ V[(X'X)"" X'u|X]
VI(X'X) "' X'u|X]
= (X'X)_1 X'V[u|X]((X'X)_1 X’)" (X is nonrandom given X)
= (X'X)"'X V]uX]X (X'X) "
= (X'X)"' XX (X'’X)"" (by homoskedasticity)
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Conditional Variance of B
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:
VIBIX] = VIBIX]+ V[(X'X) " X'u[X]
= V[(X'X)" X'ulX]
= (X'X)_1 X'V[u|X]((X'X)_1 X’)" (X is nonrandom given X)
= (X'X)"'X V]uX]X (X'X) "
= (X'X)"' XX (X'’X)"" (by homoskedasticity)
= AIXX) XX (XX)
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Conditional Variance of B
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:
VIBIX] = VIBIX]+ V[(X'X) " X'u|X]
= V[(X'X)"' X'u|X]
= (X'X)' X V]uX]((X'X)"" X’) (X is nonrandom given X)
= (X'X) X V[ulX]X (X'X) "
= (X'X)'X0%IX (X'X) ™" (by homoskedasticity)
= AIXX) XX (XX)
= 2(X'X)"
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Conditional Variance of B
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:
VIBIX] = VI[BIX]+ V[(X'X)"" X'u[X]
= V[(X'X)"' X'u|X]
= (X'X)' X V]uX]((X'X)"" X’) (X is nonrandom given X)
= (X'X) X V[ulX]X (X'X) "
= (X'X)'X0%IX (X'X) ™" (by homoskedasticity)
= AIXX) XX (XX)
o (X'X) ™

This gives the (k + 1) x (k 4 1) variance-covariance matrix of 3.
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Conditional Variance of B
B =P8+ (X'X)"'X'uand E[B|X] = 8+ E[(X’X) " X'u|X] = 8 so the OLS
estimator is a linear function of the errors. Thus:
VIBIX] = VIBIX]+ V[(X'X) " X'u|X]
= V[(X'X)"' X'u|X]
= (X'X)' X V]uX]((X'X)"" X’) (X is nonrandom given X)
= (X'X) X V[ulX]X (X'X) "
= (X'X)'X0%IX (X'X) ™" (by homoskedasticity)
= AIXX) XX (XX)
= 2 (X'X)"

This gives the (k + 1) x (k 4 1) variance-covariance matrix of 3.

To estimate V[3|X], we replace o2 with its unbiased estimator 62, which is now
written using matrix notation as:

5 SSR i’
g

on—(k+1)  n—(k+1)
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Variance-covariance matrix of 3

The variance-covariance matrix of the OLS estimators is given by:

VIBIX] = 0% (X'X) " =

Bo B B Bi
Bo V[Bo]  Covlfo,P1] Cov[fo,B2] -+ Cov[Bo, Bi]
A COV[ﬁo,ﬁl] V[Bl] Cov[f1,62] - COV[/Bl 5k]
B2 | Cov[Bo, Bal COV[BL Bo] V[B2] - Cov[Ba, Bi]
By | CovlBo, Bl Cov[Ek,EI] Cov[Br, Bl -+ VIBi
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Consistency of B

To show consistency, we rewrite the OLS estimator in terms of sample means so
that we can apply LLN.
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Consistency of B

To show consistency, we rewrite the OLS estimator in terms of sample means so
that we can apply LLN.

First, note that a matrix cross product can be written as a sum of vector products
n n
X'X = fox,- and X'y = Z X:y;
i=1 i=1

where x; is the 1 x (k + 1) row vector of predictor values for unit i.
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Consistency of B

To show consistency, we rewrite the OLS estimator in terms of sample means so
that we can apply LLN.

First, note that a matrix cross product can be written as a sum of vector products:
n n
X'X = fox,- and X'y = Z Xty
i=1 i=1

where x; is the 1 x (k + 1) row vector of predictor values for unit /.

Now we can rewrite the OLS estimator as,

A= (X x) ()
= (zj 1X§x:‘)71 (227  Xi(xiB + u’))
=5+ (X, xm) (12 )
— B+ <n 27:1 xf-x,-) <i Z’ le-u,')
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Consistency of B

Now let's apply the LLN to the sample means:
1 n
(E fo-x,-) £, E[xxi], a (k+1) x (k 4 1) nonsingular matrix.
i=1

1 ¢ .
(— E xf-u,-) £ E[xiu] = 0, by the zero cond. mean assumption.
n
i=1
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Consistency of 3
Now let's apply the LLN to the sample means:
1 n
(E fo-x,-) £, E[xxi], a (k+1) x (k 4 1) nonsingular matrix.
i=1

1 ¢ .
(— E xf-u,-) £ E[xiu] = 0, by the zero cond. mean assumption.
n
i=1

Therefore, we have

plim(8) = B+ (Exx])"' -0
= B.
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Consistency of 3
Now let's apply the LLN to the sample means:
1 n
(; fo-x,-) £, E[xxi], a (k+1) x (k 4 1) nonsingular matrix.
i=1

1 ¢ .
(— E xf-u,-) £ E[xiu] = 0, by the zero cond. mean assumption.
n
i=1

Therefore, we have

plim(8) = B+ (Exx])"' -0
= B.

We can also show the asymptotic normality of ,@ using a similar argument but
with the CLT.
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Where We've Been and Where We're Going...
o Last Week

> regression with two variables
» omitted variables, multicollinearity, interactions

o This Week
» Monday:

* a brief review of matrix algebra
* matrix form of linear regression
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* hypothesis tests

o Next Week
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Where We've Been and Where We're Going...
o Last Week

> regression with two variables
» omitted variables, multicollinearity, interactions

o This Week
» Monday:

* a brief review of matrix algebra
* matrix form of linear regression

» Wednesday:
* hypothesis tests

o Next Week

> break!
> then ... regression in social science

e Long Run
» probability — inference — regression

Questions?
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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e Testing Hypotheses about Individual Coefficients
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Running Example: Chilean Referendum on Pinochet

@ The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.
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Running Example: Chilean Referendum on Pinochet

@ The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.

@ Data: national survey conducted in April and May of 1988 by
FLACSO in Chile.
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Running Example: Chilean Referendum on Pinochet

@ The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.

@ Data: national survey conducted in April and May of 1988 by
FLACSO in Chile.

@ Outcome: 1 if respondent intends to vote for Pinochet, 0 otherwise.
We can interpret the 3 slopes as marginal “effects” on the probability
that respondent votes for Pinochet.
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@ The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.

@ Data: national survey conducted in April and May of 1988 by
FLACSO in Chile.

@ Outcome: 1 if respondent intends to vote for Pinochet, 0 otherwise.
We can interpret the 3 slopes as marginal “effects” on the probability
that respondent votes for Pinochet.

@ Plebiscite was held on October 5, 1988. The No side won with 56%
of the vote, with 44% voting Yes.
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Running Example: Chilean Referendum on Pinochet

@ The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.

@ Data: national survey conducted in April and May of 1988 by
FLACSO in Chile.

@ Outcome: 1 if respondent intends to vote for Pinochet, 0 otherwise.
We can interpret the 3 slopes as marginal “effects” on the probability
that respondent votes for Pinochet.

@ Plebiscite was held on October 5, 1988. The No side won with 56%
of the vote, with 44% voting Yes.

@ We model the intended Pinochet vote as a linear function of gender,
education, and age of respondents.
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Hypothesis Testing in R

R Code

> fit <- Im(votel ~ fem + educ + age, data = d)
> summary (fit)
Coefficients:
Estimate Std. Error t value Pr(>[t])
(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 **x

fem 0.1360034 0.0237132 5.735 1.15e-08 **x*
educ -0.0607604 0.0138649 -4.382 1.25e-05 **x*
age 0.0037786 0.0008315  4.544 5.90e-06 **x*

Signif. codes: O *** 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4875 on 1699 degrees of freedom
Multiple R-squared: 0.05112, Adjusted R-squared: 0.04945
F-statistic: 30.51 on 3 and 1699 DF, p-value: < 2.2e-16
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The t-Value for Multiple Linear Regression

@ Consider testing a hypothesis about a single regression coefficient j;:

Ho:ﬂj:C
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The t-Value for Multiple Linear Regression

@ Consider testing a hypothesis about a single regression coefficient 3;:
Ho : ﬂj = C

@ In the simple linear regression we used the t-value to test this kind of
hypothesis.
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The t-Value for Multiple Linear Regression
@ Consider testing a hypothesis about a single regression coefficient 3;:

Ho:ﬂj:C

@ In the simple linear regression we used the t-value to test this kind of
hypothesis.

@ We can consider the same t-value about §; for the multiple regression:
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The t-Value for Multiple Linear Regression

@ Consider testing a hypothesis about a single regression coefficient 3;:
Ho : ﬂj = C

@ In the simple linear regression we used the t-value to test this kind of
hypothesis.

@ We can consider the same t-value about §; for the multiple regression:

7o bizc
SE(5))
@ How do we compute SE(f3;)?
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The t-Value for Multiple Linear Regression
@ Consider testing a hypothesis about a single regression coefficient 3;:
Ho : ﬂj = C

@ In the simple linear regression we used the t-value to test this kind of
hypothesis.

@ We can consider the same t-value about §; for the multiple regression:

@ How do we compute SAE(BAJ-)?

SE(B) = \/\7(31') = \/‘7(3)0,1) = /X X) )

where A(; jy is the (j,j) element of matrix A.
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The t-Value for Multiple Linear Regression

@ Consider testing a hypothesis about a single regression coefficient 3;:
Ho . ﬂj = C

@ In the simple linear regression we used the t-value to test this kind of
hypothesis.

@ We can consider the same t-value about §; for the multiple regression:

7= Biz¢
SE(5;)

@ How do we compute SE(53;)?

SEG) = VVB) = VB = 52(X'X) ;)

where A(; jy is the (j,j) element of matrix A.

That is, take the variance-covariance matrix of B and square root the
diagonal element corresponding to j.
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Hypothesis Testing in R

R Code
> fit <- 1m(votel ~ fem + educ + age, data = d)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 **x*

fem 0.1360034 0.0237132 5.735 1.15e-08 *x*x*
educ -0.0607604 0.0138649 -4.382 1.25e-05 *x*x*
age 0.0037786  0.0008315 4.544 5.90e-06 *x*x

We can pull out the variance-covariance matrix 52(X’X)™" in R from the 1m() object:
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Hypothesis Testing in R

R Code

> summary(fit)

> fit <- 1m(votel ~ fem + educ + age, data =

d)

7.864 6.57e-15
5.735 1.15e-08
-4.382 1.25e-05
4.544 5.90e-06

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.4042284 0.0514034
fem 0.1360034 0.0237132
educ -0.0607604 0.0138649
age 0.0037786 0.0008315

*%k
*okk
*%k
*okk

> V <- vcov(fit)

>V

(Intercept)
(Intercept) 2.642311e-03
fem -3.455498e-04
educ -5.270913e-04
age -3.357119e-05

> sqrt(diag(V))
(Intercept) fem
0.0514034097 0.0237132251

Code

fem

2.249973e-05

educ

We can pull out the variance-covariance 1:r{natrix F2(X’X)™" in R from the 1Im() object:

educ
-3.455498e-04 -5.270913e-04
5.623170e-04 2.249973e-05
1.922354e-04
8.285291e-07 3.411049e-06

age

0.0138648980 0.0008315105

age
-3.357119e-05
8.285291e-07
3.411049e-06
6.914098e-07
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Sampling Distribution of the t-Value
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Sampling Distribution of the t-Value

The t-values in multiple regressions essentially have the same statistical properties
as the simple regression case. That is,
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Sampling Distribution of the t-Value

The t-values in multiple regressions essentially have the same statistical properties
as the simple regression case. That is,

Theorem (Small-Sample Distribution of the t-Value)

Under Assumptions 1-6, for any sample size n the t-value has the t distribution with
(n— k — 1) degrees of freedom:

r-fBoc
SE[B)]

~

th—k—1
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Sampling Distribution of the t-Value

The t-values in multiple regressions essentially have the same statistical properties
as the simple regression case. That is,

Theorem (Small-Sample Distribution of the t-Value)

Under Assumptions 1-6, for any sample size n the t-value has the t distribution with
(n— k — 1) degrees of freedom:

_ Bi-
— 1 th—k—1

SE [ﬂJ]

Theorem (Large-Sample Distribution of the t-Value)

Under Assumptions 1-5, as n — oo the distribution of the t-value approaches the
standard normal distribution:

-~

= Bi[ 3] A N(0,1) as n— oo
j
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Sampling Distribution of the t-Value

The t-values in multiple regressions essentially have the same statistical properties
as the simple regression case. That is,

Theorem (Small-Sample Distribution of the t-Value)

Under Assumptions 1-6, for any sample size n the t-value has the t distribution with
(n— k — 1) degrees of freedom:

_ Bi-
— 1 th—k—1

SE [ﬂJ]

Theorem (Large-Sample Distribution of the t-Value)

Under Assumptions 1-5, as n — oo the distribution of the t-value approaches the
standard normal distribution:

-~

= Bi[ 3] A N(0,1) as n— oo
j

@ t,_x—1 = N(0,1) as n — oo, so the difference disappears when n large.
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Sampling Distribution of the t-Value

The t-values in multiple regressions essentially have the same statistical properties
as the simple regression case. That is,

Theorem (Small-Sample Distribution of the t-Value)

Under Assumptions 1-6, for any sample size n the t-value has the t distribution with
(n— k — 1) degrees of freedom:
Bi-c

= ~ A~ ~ th—k—1

SE[B)]

Theorem (Large-Sample Distribution of the t-Value)

Under Assumptions 1-5, as n — oo the distribution of the t-value approaches the
standard normal distribution:

-~

T i
[ﬁJ]

A N(0,1) as n— oo

@ t,_x—1 = N(0,1) as n — oo, so the difference disappears when n large.

@ In practice people often just use t,_x_1 to be on the conservative side.
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Using the t-Value as a Test Statistic
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Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (5; = c) is identical to the simple
regression case, except that our reference distribution is t,_,_1 instead of t, ».
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Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (5; = c) is identical to the simple
regression case, except that our reference distribution is t,_,_1 instead of t, ».

@ Compute the t-value as T = (3; — ¢)/SE[3]
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Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (5; = c) is identical to the simple
regression case, except that our reference distribution is t,_,_1 instead of t, ».

@ Compute the t-value as T = (3; — ¢)/SE[3]

@ Compare the value to the critical value t,, for the a level test, which under
the null hypothesis satisfies

P(—tap <T<typ)=1-a
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Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (5; = c) is identical to the simple
regression case, except that our reference distribution is t,_,_1 instead of t, ».

@ Compute the t-value as T = (3; — ¢)/SE[3]

@ Compare the value to the critical value t,, for the a level test, which under
the null hypothesis satisfies

P(—tap <T<typ)=1-a

© Decide whether the realized value of T in our data is unusual given the
known distribution of the test statistic.
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Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (5; = c) is identical to the simple
regression case, except that our reference distribution is t,_,_1 instead of t, ».

@ Compute the t-value as T = (3; — ¢)/SE[3]

@ Compare the value to the critical value t,, for the a level test, which under
the null hypothesis satisfies

P(—tap <T<typ)=1-a

© Decide whether the realized value of T in our data is unusual given the
known distribution of the test statistic.

© Finally, either declare that we reject Hy or not, or report the p-value.
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Confidence Intervals

To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use t,_x—_1 instead of t,—»
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Confidence Intervals

To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use t,_x—_1 instead of t,—»

Since we know the sampling distribution for our t-value:

r_Be

~

SE)
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Confidence Intervals

To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use t,_x—_1 instead of t,—»

Since we know the sampling distribution for our t-value:

T = /BZ_AC ~ th—k—1
SE[B]]

So we also know the probability that the value of our test statistics falls into a given
interval:
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Confidence Intervals

To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use t,_x—_1 instead of t,—»

Since we know the sampling distribution for our t-value:

T = /BZ_AC ~ th—k—1
SE[B]]

So we also know the probability that the value of our test statistics falls into a given
interval:

P _ta/2 S IBJA—AIBJ S ta/Z =1—-«
SE[]

(5 = tar2SEIBY, B + ta2SELB]

We rearrange:
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Confidence Intervals

To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use t,_x—_1 instead of t,—»

Since we know the sampling distribution for our t-value:

T = /BZ_AC ~ th—k—1
SE[B]]

So we also know the probability that the value of our test statistics falls into a given
interval:

P _ta/2 S IBJA—AIBJ S ta/Z =1—-«
SE[]

[BJ — ta2SE[B], B + ta/zsAE[ﬁAj]]

and thus can construct the confidence intervals as usual using:

We rearrange:

Bj +tay2- SAE[BJ]
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Confidence Intervals in R

R Code
> fit <- Im(votel ~ fem + educ + age, data = d)
> summary (fit)

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 **x

fem 0.1360034 0.0237132 5.735 1.15e-08 *xx*
educ -0.0607604 0.0138649 -4.382 1.25e-05 *x*x*
age 0.0037786 0.0008315 4.544 5.90e-06 *xx*
R Code
> confint(fit)
2.5 % 97.5 %
(Intercept) 0.303407780 0.50504909
fem 0.089493169 0.18251357
educ -0.087954435 -0.03356629
age 0.002147755 0.00540954
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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@ Testing Linear Hypotheses: A Simple Case
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Testing Hypothesis About a Linear Combination of f;
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Testing Hypothesis About a Linear Combination of j3;

R Code

> fit <- 1m(REALGDPCAP ~ Region, data = D)
> summary (fit)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4452.7 783.4 5.684 2.07e-07 **x*
RegionAfrica -2552.8 1204.5 -2.119 0.0372 *
RegionAsia 148.9 1149.8 0.129 0.8973
RegionLatAmerica  -271.3 1007.0 -0.269 0.7883
RegionOecd 9671.3 1007.0 9.604 5.74e-15 **x
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Testing Hypothesis About a Linear Combination of j3;

R Code

> fit <- 1m(REALGDPCAP ~ Region, data = D)
> summary (fit)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4452.7 783.4 5.684 2.07e-07 **x*
RegionAfrica -2552.8 1204.5 -2.119 0.0372 *
RegionAsia 148.9 1149.8 0.129 0.8973
RegionLatAmerica  -271.3 1007.0 -0.269 0.7883
RegionOecd 9671.3 1007.0 9.604 5.74e-15 **x

) BAs;a and ﬁALAm are close. So we may want to test the null hypothesis:

HO : BLAm = BAsia <~ BLAm - /BAsia =0
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Testing Hypothesis About a Linear Combination of j3;

R Code

> fit <- 1m(REALGDPCAP ~ Region, data = D)
> summary (fit)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4452.7 783.4 5.684 2.07e-07 **x*
RegionAfrica -2552.8 1204.5 -2.119 0.0372 *
RegionAsia 148.9 1149.8 0.129 0.8973
RegionLatAmerica  -271.3 1007.0 -0.269 0.7883
RegionOecd 9671.3 1007.0 9.604 5.74e-15 **x

) BAs;a and ﬁALAm are close. So we may want to test the null hypothesis:
HO : BLAm = BAsia <~ BLAm - /BAsia =0

against the alternative of

Hi: Biam # Basia < Bram — Basia # 0
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Testing Hypothesis About a Linear Combination of j3;

R Code

> fit <- 1m(REALGDPCAP ~ Region, data = D)
> summary (fit)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4452.7 783.4 5.684 2.07e-07 **x*
RegionAfrica -2552.8 1204.5 -2.119 0.0372 *
RegionAsia 148.9 1149.8 0.129 0.8973
RegionLatAmerica  -271.3 1007.0 -0.269 0.7883
RegionOecd 9671.3 1007.0 9.604 5.74e-15 **x

) BAS,-a and ﬁALAm are close. So we may want to test the null hypothesis:
HO : BLAm = BAsia <~ BLAm - /BAsia =0

against the alternative of

Hi: Biam # Basia < Bram — Basia # 0

@ What would be an appropriate test statistic for this hypothesis?
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Testing Hypothesis About a Linear Combination of j3;

R Code

> fit <- 1m(REALGDPCAP ~ Region, data = D)
> summary(fit)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4452.7 783.4 5.684 2.07e-07 *xx*
RegionAfrica -2552.8 1204.5 -2.119 0.0372 *
RegionAsia 148.9 1149.8 0.129 0.8973
RegionLatAmerica -271.3 1007.0 -0.269 0.7883
RegionOecd 9671.3 1007.0 9.604 5.74e-15 *xx

@ Let's consider a t-value: R R
_ _ Biam = Basia
SE(ﬂLAm - ﬁAsia)
We will reject Ho if T is sufficiently different from zero.
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Testing Hypothesis About a Linear Combination of j3;

R Code

> summary(fit)
Coefficients:
(Intercept) 4452.
RegionAfrica -2552.
RegionAsia 148.
RegionLatAmerica  -271.
RegionOecd 9671.

> fit <- 1m(REALGDPCAP ~ Region, data = D)

Estimate Std. Error t value Pr(>|t])

7

w w0 o

783.4 5.684 2.07e-07 **¥x
1204.5 -2.119 0.0372 *
1149.8 0.129 0.8973
1007.0 -0.269 0.7883
1007.0 9.604 5.74e-15 **¥x

@ Let's consider a t-value:

Bram — Basia

B SAE(B\LAm - BAsia)

We will reject Ho if T is sufficiently different from zero.

@ Note that unlike the test of a single hypothesis, both Bram and Basia are random
variables, hence the denominator.

Stewart (Princeton)

Week 7: Multiple Regression October 24, 26, 2016 108 / 145



Testing Hypothesis About A Linear Combination of j;
@ Our test statistic:
B\LAm - B\Asia

a Sl\E(B\LAm - BAsia)

~ thok-1
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Testing Hypothesis About A Linear Combination of j;
@ Our test statistic:
BLAm - B\Asia

a 5AE(BLAm - BAsia)

~ thok-1

@ How do you find SE(Bram — Basia)?
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Testing Hypothesis About A Linear Combination of j;
@ Our test statistic:
BLAm - B\Asia

a 5AE(BLAm - BAsia)

~ thok-1

@ How do you find SE(Bram — Basia)?
o Isit SAE(BLAm) — SAE(BAsia)?
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Testing Hypothesis About A Linear Combination of j;
@ Our test statistic:
BLAm - B\Asia

a 5AE(BLAm - BAsia)

~ thok-1

@ How do you find SE(Bram — Basia)?
@ Isit SAE(BLA,,,) — SAE(BAS,"—,)? Nol!
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Testing Hypothesis About A Linear Combination of j;
@ Our test statistic:
B\LAm - B\Asia

a SAE(BLAm - BAsia)

~ thok-1
@ How do you find SE(Bram — Basia)?

@ Isit SAE(BLA,,,) — SAE(BAS,'a)? Nol!
o Is it SE(Bram) + SE(Basia)?
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Testing Hypothesis About A Linear Combination of j;
@ Our test statistic:
B\LAm - B\Asia

a SAE(BLAm - BAsia)

~ thok-1
@ How do you find SE(Bram — Basia)?

@ Isit SAE(BLA,,,) — SAE(BAS,'a)? Nol!
@ Isit SAE(BLA,,,) + S’E(BAsia)? Nol!
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Testing Hypothesis About A Linear Combination of j;
@ Our test statistic:
BLAm - BAsia

a SAE(BLAm - BAsia)

~ thok-1

How do you find SE(Bam — Basia)?

Is it SE(BLam) — SE(Basia)? No!

Is it SE(BLam) + SE(Basia)? No!

Recall the following property of the variance:

VIX£Y) = V(X)+ V(Y)=£2Cov(X,Y)
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Testing Hypothesis About A Linear Combination of 3;
@ Our test statistic:
BLAm - BAsia

a SAE(B\LAm - BAsia)

~ thk—1

How do you find SE(BLam — Basia)?

Is it SE(BLam) — SE(Basia)? No!

Is it SE(BLam) + SE(Basia)? No!

Recall the following property of the variance:

VIX£Y) = V(X)+ V(Y)=£2Cov(X,Y)

Therefore, the standard error for a linear combination of coefficients is:
SE(BL = 5) = \/\7(31) + V(Ba) + 2Cov[B1, 2]

which we can calculate from the estimated covariance matrix of 3.
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Testing Hypothesis About A Linear Combination of 3;
@ Our test statistic:
BLAm - B\Asia

- SAE(/é\LAm - BAsia)

~ thk—1

How do you find SE(Bam — Basia)?

Is it SE(BLam) — SE(Basia)? No!

Is it SE(BLam) + SE(Basia)? No!

Recall the following property of the variance:

VIX£Y) = V(X)+ V(Y)=£2Cov(X,Y)

Therefore, the standard error for a linear combination of coefficients is:
SEB: + B) = \/ V(B + V(B2) + 2Cov(By, il

which we can calculate from the estimated covariance matrix of 3.

@ Since the estimates of the coefficients are correlated, we need the covariance
term.
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Joint Normality: Simulation
Y = Bo + f1X1 + u with u~ N(0,02 = 4) and 8o = 5, 1 = —1, and n = 100:

Sampling distribution of Regression Lines Joint sampling distribution
o
o 4
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£
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” °
! T T T T T
4.0 45 5.0 55 6.0
x1 beta_0 hat
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Marginal Sampling Distribution
Y = Bo + f1X1 + u with u~ N(0,02 = 4) and 8o = 5, 1 = —1, and n = 100:

Sampling Distribution beta_0 hat Sampling Distribution beta_1 hat
=) S -
3 — 2 —
o
S 4
3
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©
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2 2
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beta_0 hat beta_1 hat
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Joint Sampling Distribution

beta_1 hat

The variance-covariance matrix of the estimators is:

Stewart (Princeton)

Joint sampling distribution

o o,
0 Boo@e 0

4.0 45 5.0 55 6.0

beta_0 hat

f(beta_0 hat, beta_1 hat)

Joint Sampling Distribution

beta_1 hat
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Example: GDP per capita on Regions
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Example: GDP per capita on Regions

R Code

> fit <- 1m(REALGDPCAP ~ Region, data = D)
> V <- vcov(fit)
>V

(Intercept) RegionAfrica RegionAsia RegionLatAmerica
(Intercept) 613769.9 -613769.9 -613769.9 -613769.9
RegionAfrica -613769.9 1450728.8 613769.9 613769.9
RegionAsia -613769.9 613769.9 1321965.9 613769.9
RegionLatAmerica  -613769.9 613769.9  613769.9 1014054.6
RegionOecd -613769.9 613769.9  613769.9 613769.9

RegionOecd
(Intercept) -613769.9
RegionAfrica 613769.9
RegionAsia 613769.9
RegionLatAmerica  613769.9
RegionOecd 1014054.6
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Example: GDP per capita on Regions

We can then compute the test statistic for the hypothesis of interest:
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Example: GDP per capita on Regions

We can then compute the test statistic fgr éhg hypothesis of interest:
ode

> se <- sqrt(V[4,4] + V[3,3] - 2xV[3,4])
> se
[1] 1052.844
>
> tstat <- (coef(fit)[4] - coef(fit)[3])/se
> tstat
RegionLatAmerica
-0.3990977

/BLArn _ BAsia

B SAE(BLAm - BAsfa)
SAE(B\LAm - BAsia) = \/\7(BLAm) + V(B\Asia) - 26;/[B\LAm7 BAsia]

Plugging in we get t ~ —0.40. So what do we conclude?

where
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Example: GDP per capita on Regions

We can then compute the test statistic fgr éhg hypothesis of interest:
ode

> se <- sqrt(V[4,4] + V[3,3] - 2xV[3,4])
> se
[1] 1052.844
>
> tstat <- (coef(fit)[4] - coef(fit)[3])/se
> tstat
RegionLatAmerica
-0.3990977

— BLAm - BAsia
SAE(BLAm - B\Asfa)
SAE(B\LAm - BAsia) = \/v(BLAm) + V(B\Asia) - 26;/[B\LAm7 BAsia]

Plugging in we get t ~ —0.40. So what do we conclude?
We cannot reject the null that the difference in average GDP resulted from chance.

where
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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@ Testing Joint Significance
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F Test for Joint Significance of Coefficients
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F Test for Joint Significance of Coefficients

@ In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. f1 = B2 = 3 =0)
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F Test for Joint Significance of Coefficients

@ In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. f1 = B2 = 3 =0)

@ Suppose our regression model is:
Voted = o + v1 FEMALE + 51 EDUCATION+
Y2( FEMALE - EDUCATION) + B2AGE + ~3(FEMALE - AGE) + u

and we want to test
Ho: m=7=v=0.
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F Test for Joint Significance of Coefficients

@ In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. f1 = B2 = 3 =0)
@ Suppose our regression model is:

Voted = o + 1 FEMALE + 5, EDUCATION+

v2(FEMALE - EDUCATION) + B, AGE + ~v3(FEMALE - AGE) + u

and we want to test
Ho: m=7=v=0.

@ Substantively, what question are we asking?
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F Test for Joint Significance of Coefficients
@ In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. f1 = B2 = 3 =0)

@ Suppose our regression model is:
Voted = o + 1 FEMALE + 31 EDUCATION+
Y2( FEMALE - EDUCATION) + B2AGE + ~3(FEMALE - AGE) + u

and we want to test
Ho: ’}/1:’)/22’}/3:0.
@ Substantively, what question are we asking?

— Do females and males vote systematically differently from each other?
(Under the null, there is no difference in either the intercept or slopes between
females and males).

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 116 / 145



F Test for Joint Significance of Coefficients

@ In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. /1 = B2 = B3 =0)

@ Suppose our regression model is:
Voted = o + 1 FEMALE + 31 EDUCATION+

Y2(FEMALE - EDUCATION) + B.AGE + v3(FEMALE - AGE) + u
and we want to test
Ho: ’}/1:’)/2:’}/3:0.
@ Substantively, what question are we asking?
— Do females and males vote systematically differently from each other?
(Under the null, there is no difference in either the intercept or slopes between
females and males).
@ This is an example of a joint hypothesis test involving three restrictions: 1 = 0,
2 =0, and y3 = 0.
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F Test for Joint Significance of Coefficients

@ In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. /1 = B2 = B3 =0)

@ Suppose our regression model is:
Voted = o + 1 FEMALE + 31 EDUCATION+

Y2(FEMALE - EDUCATION) + B.AGE + v3(FEMALE - AGE) + u
and we want to test
Ho: ’}/1:’)/2:’}/3:0.

@ Substantively, what question are we asking?
— Do females and males vote systematically differently from each other?
(Under the null, there is no difference in either the intercept or slopes between
females and males).

@ This is an example of a joint hypothesis test involving three restrictions: 1 = 0,
2 =0, and y3 = 0.

@ If all the interaction terms and the group lower order term are close to zero, then
we fail to reject the null hypothesis of no gender difference.
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F Test for Joint Significance of Coefficients

@ In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. /1 = B2 = B3 =0)

@ Suppose our regression model is:
Voted = o + 1 FEMALE + 31 EDUCATION+

Y2(FEMALE - EDUCATION) + B.AGE + v3(FEMALE - AGE) + u
and we want to test
Ho: ’}/1:’)/2:’}/3:0.
@ Substantively, what question are we asking?

— Do females and males vote systematically differently from each other?
(Under the null, there is no difference in either the intercept or slopes between
females and males).

@ This is an example of a joint hypothesis test involving three restrictions: 1 = 0,
2 =0, and y3 = 0.

@ If all the interaction terms and the group lower order term are close to zero, then
we fail to reject the null hypothesis of no gender difference.

@ F tests allows us to to test joint hypothesis
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The 2 Distribution
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The 2 Distribution

@ To test more than one hypothesis jointly we need to introduce some new
probability distributions.
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The 2 Distribution

@ To test more than one hypothesis jointly we need to introduce some new
probability distributions.

@ Suppose Zi, ..., Z, are ni.i.d. random variables following N(O, 1).
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The 2 Distribution

@ To test more than one hypothesis jointly we need to introduce some new
probability distributions.

@ Suppose Zi, ..., Z, are ni.i.d. random variables following N(O, 1).

@ Then, the sum of their squares, X = 3"/, Z?, is distributed according to the >
distribution with n degrees of freedom, X ~ x2.
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The 2 Distribution

@ To test more than one hypothesis jointly we need to introduce some new
probability distributions.

@ Suppose Z, ..., Z, are n i.i.d. random variables following N(0,1).

@ Then, the sum of their squares, X = 3"/, Z?, is distributed according to the >
distribution with n degrees of freedom, X ~ x2.

© ]
(=}
< | chisquare 1
°© —— chisquare 4
—— chisquare 15
)
z o 7
@
c
o
[SIE
IS
<
IS
o |
o

T T T T T
0 10 20 30 40

X
Properties: X > 0, E[X] = n and V[X] = 2n. In R: dchisq(), pchisq(), rchisq()
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The F distribution
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The F distribution

The F distribution arises as a ratio of two independent chi-squared distributed random
variables:

_ Xi/dh
T Xo/dh

where Xi ~ Xs,{l, Xo ~ Xf,@, and Xi 1L X>.

~ Fdf,df
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The F distribution

The F distribution arises as a ratio of two independent chi-squared distributed random
variables:

_ Xi/dh F
= X dh dfy df>

where X; ~ Xs,{l, Xo ~ X?,@, and X; 1L X>.

dfi and df; are called the numerator degrees of freedom and the denominator degrees of
freedom.
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The F distribution

The F distribution arises as a ratio of two independent chi-squared distributed random
variables:

Xi/dfy
Xa/df

where X; ~ X¢21f1: Xo ~ X?,&, and X; 1L X>.

~ Fdf,df

dfi and df; are called the numerator degrees of freedom and the denominator degrees of
freedom.

F12
— F55
— F30,20
—— F 500, 200

Density

InR: dfQ), p£ (), rf )
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F Test against Hy: 71 =y =3 =0.
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F Test against Hy: 71 =y =3 =0.

The F statistic can be calculated by the following procedure:
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F Test against Hy : 71 =7 =3 =0.
The F statistic can be calculated by the following procedure:
@ Fit the Unrestricted Model (UR) which does not impose Hg:

Vote = Sy +~1 FEM + 81 EDUC +~2( FEM s EDUC) + B2 AGE + ~3(FEM « AGE) + u
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F Test against Hy : 71 =7 =3 =0.
The F statistic can be calculated by the following procedure:
@ Fit the Unrestricted Model (UR) which does not impose Hg:

Vote = Sy +~1 FEM + 81 EDUC +~2( FEM s EDUC) + B2 AGE + ~3(FEM « AGE) + u

@ Fit the Restricted Model (R) which does impose Ho:
Vote = By + BLEDUC + B,AGE + u
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F Test against Hy : 71 =7 =3 =0.
The F statistic can be calculated by the following procedure:

@ Fit the Unrestricted Model (UR) which does not impose Hg:
Vote = Sy +~1 FEM + 81 EDUC +~2( FEM s EDUC) + B2 AGE + ~3(FEM « AGE) + u

@ Fit the Restricted Model (R) which does impose Ho:
Vote = By + BLEDUC + B,AGE + u

© From the two results, compute the F Statistic:
_ (SSR. — SSR./)/q
SSRu/(n— k —1)
where SSR=sum of squared residuals, g=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Fo
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F Test against Hy : 71 =7 =3 =0.
The F statistic can be calculated by the following procedure:
@ Fit the Unrestricted Model (UR) which does not impose Hg:
Vote = Sy +~1 FEM + 81 EDUC +~2( FEM s EDUC) + B2 AGE + ~3(FEM « AGE) + u
@ Fit the Restricted Model (R) which does impose Ho:
Vote = o + B1EDUC + 5, AGE + u
© From the two results, compute the F Statistic:

_ (SSR. — SSR./)/q

"~ SSR.,/(n—k—1)

where SSR=sum of squared residuals, g=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Fo

Intuition:

increase in prediction error

original prediction error
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F Test against Hy : 71 =7 =3 =0.
The F statistic can be calculated by the following procedure:

@ Fit the Unrestricted Model (UR) which does not impose Hg:
Vote = Bo +~1FEM + 31 EDUC +~2( FEM % EDUC) + B AGE +~3(FEM % AGE) + u
@ Fit the Restricted Model (R) which does impose Ho:
Vote = Bo + B1EDUC + BAGE + u

© From the two results, compute the F Statistic:
Fy — (SSR. — SSR..)/q
SSRur/(n— k —1)
where SSR=sum of squared residuals, g=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Intuition:
increase in prediction error

original prediction error

The F statistics have the following sampling distributions:
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F Test against Hy : 71 =7 =3 =0.
The F statistic can be calculated by the following procedure:

@ Fit the Unrestricted Model (UR) which does not impose Hg:
Vote = Bo +~1FEM + 31 EDUC +~2( FEM % EDUC) + B AGE +~3(FEM % AGE) + u
@ Fit the Restricted Model (R) which does impose Ho:
Vote = Bo + B1EDUC + BAGE + u

© From the two results, compute the F Statistic:
Fy — (SSR. — SSR..)/q
SSRur/(n— k —1)
where SSR=sum of squared residuals, g=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Intuition:
increase in prediction error

original prediction error

The F statistics have the following sampling distributions:
@ Under Assumptions 1-6, Fo ~ F4 »—k—1 regardless of the sample size.
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F Test against Hy : 71 =7 =3 =0.
The F statistic can be calculated by the following procedure:

@ Fit the Unrestricted Model (UR) which does not impose Hg:
Vote = Bo +~1FEM + 31 EDUC +~2( FEM % EDUC) + B AGE +~3(FEM % AGE) + u
@ Fit the Restricted Model (R) which does impose Ho:
Vote = Bo + B1EDUC + BAGE + u

© From the two results, compute the F Statistic:
Fy — (SSR. — SSR..)/q
SSRur/(n— k —1)
where SSR=sum of squared residuals, g=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Intuition:
increase in prediction error

original prediction error

The F statistics have the following sampling distributions:
@ Under Assumptions 1-6, Fo ~ F4 »—k—1 regardless of the sample size.
@ Under Assumptions 1-5, gFo ~ x2 as n — oo (see next section).
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Unrestricted Model (UR)

Signif. codes:

F-statistic:

Coefficients:
Estimate Std.
(Intercept) 0.293130

fem 0.368975
educ -0.038571
age 0.005482
fem:age -0.003779
fem:educ -0.044484

O O O O OO

R Code
> fit.UR <- Im(votel ~ fem + educ + age + fem:age
> summary(fit.UR)

Error t value

.069242
.098883
.019578
.001114
.001673
.027697

19.57 on 5 and 1697 DF,

.233
.731
.970
.921
.259
.606

Pr(>ltl)

0 **x* 0.001 *x 0.01 * 0.05 .

2.42e-05
0.000197
0.048988
9.
0
0

44e-07

.024010
.108431

+ fem:educ, data

*kk
*okk

*kk

Residual standard error: 0.487 on 1697 degrees of freedom
Multiple R-squared: 0.05451,

Adjusted R-squared: 0.05172
p-value: < 2.2e-16

= Chile
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Restricted Model (R)

R Code

> fit.R <- 1lm(votel ~ educ + age, data = Chile)
> summary(fit.R)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.4878039 0.0497550 9.804 < 2e-16 *x*x
educ -0.0662022 0.0139615 -4.742 2.30e-06 x**x*
age 0.0035783 0.0008385 4.267 2.09e-05 *x*x

Signif. codes: O *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4921 on 1700 degrees of freedom
Multiple R-squared: 0.03275, Adjusted R-squared: 0.03161
F-statistic: 28.78 on 2 and 1700 DF, p-value: 5.097e-13
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F Test in R

R Code

> SSR.UR <- sum(resid(fit.UR)"2) # = 402
> SSR.R <- sum(resid(fit.R)"2) # = 411
> DFdenom <- df.residual(fit.UR) # = 1703

> DFnum <- 3

> F <- ((SSR.R - SSR.UR)/DFnum) / (SSR.UR/DFdenom)
>F
[1] 13.01581

> qf(0.99, DFnum, DFdenom)
[1] 3.793171

Given above, what do we conclude?
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F Test in R

R Code

> SSR.UR <- sum(resid(fit.UR)"2) # = 402
> SSR.R <- sum(resid(fit.R)"2) # = 411
> DFdenom <- df.residual(fit.UR) # = 1703

\

DFnum <- 3

> F <- ((SSR.R - SSR.UR)/DFnum) / (SSR.UR/DFdenom)
>F
[1] 13.01581

> qf(0.99, DFnum, DFdenom)
[1] 3.793171

Given above, what do we conclude?
Fo = 13 is greater than the critical value for a .01 level test. So we reject
the null hypothesis.
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Null Distribution, Critical Value, and Test Statistic

Note that the F statistic is always positive, so we only look at the right tail of the
reference F (or x? in a large sample) distribution.

0.4

density of F(3,1703-5-1)

0.2
1

0.0

value
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F Test Examples |
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F Test Examples |

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions.
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F Test Examples |

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y =Bo+ B Xi+ BoXo+ B3 Xz + ... + B X +u
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F Test Examples |

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y =Bo+ B Xi+ BoXo+ B3 Xz + ... + B X +u

We may want to test:

0

Ho:B1=02=...= B«
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F Test Examples |

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y =Bo+ B Xi+ BoXo+ B3 Xz + ... + B X +u

We may want to test:

0

Ho:B1=02=...= B«

@ What question are we asking?
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F Test Examples |

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = 5o+ 51Xy + 52Xo 4+ B3 Xs + ..+ Bu X +u

We may want to test:

Ho:B1=02=...= B«

0

@ What question are we asking?

— Does any of the X variables help to predict Y?
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F Test Examples |

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = 5o+ 51Xy + 52Xo 4+ B3 Xs + ..+ Bu X +u

We may want to test:

Ho:p1=82=..=Bk=0

@ What question are we asking?

— Does any of the X variables help to predict Y?

@ This is called the omnibus test and is routinely reported by statistical
software.
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Omnibus Test in R

Signif. codes:

F-statistic:

> summary(fit.UR)
Coefficients:

Estimate Std.
(Intercept) 0.293130

fem 0.368975
educ -0.038571
age 0.005482
fem:age -0.003779
fem:educ -0.044484

O O O O O O

R Code

Error t value

.069242
.098883
.019578
.001114
.001673
.027697

.233
.731
.970
.921
.259
.606

Pr(>|tl)

0 *%x 0.001 *x 0.01 * 0.05 .

2.42e-05
0.000197
0.048988
9.
0
0

44e-07

.024010
.108431

k%%
* %k

k%%

Residual standard error: 0.487 on 1697 degrees of freedom
Multiple R-squared: 0.05451,
19.57 on 5 and 1697 DF,

Adjusted R-squared: 0.05172

p-value: < 2.2e-16
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F Test Examples Il

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = Bo+ B X1+ BoXo 4 B3 Xz + ... + B Xk +u
Next, let's consider:

Ho:B1=052= P53
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F Test Examples Il

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = Bo+ B X1+ BoXo 4 B3 Xz + ... + B Xk +u
Next, let's consider:

Ho:B1=052= P53

@ What question are we asking?
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F Test Examples Il

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = Bo+ B X1+ BoXo 4 B3 Xz + ... + B Xk +u
Next, let's consider:
Ho:B1=052= P53

@ What question are we asking?

— Are the effects of X, X5 and X3 different from each other?
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F Test Examples Il

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = Bo+ B X1+ BoXo 4 B3 Xz + ... + B Xk +u
Next, let's consider:

Ho: B1=B2= 33
@ What question are we asking?
— Are the effects of X, X5 and X3 different from each other?

@ How many restrictions?
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F Test Examples Il

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = B0+ Xt + o Xo+ B3 X3+ ...+ Bk X +u
Next, let's consider:
Ho: 1= 052=fs
@ What question are we asking?
— Are the effects of X, X5 and X3 different from each other?
@ How many restrictions?
— Two (1 — f2 =0and B, — B3 =0)
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F Test Examples Il

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = B0+ Xt + o Xo+ B3 X3+ ...+ Bk X +u
Next, let's consider:
Ho: 1= 052=fs
@ What question are we asking?
— Are the effects of X, X5 and X3 different from each other?
@ How many restrictions?
— Two (1 — f2 =0and B, — B3 =0)

@ How do we fit the restricted model?
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F Test Examples Il

The F test can be used to test various joint hypotheses which involve multiple

linear restrictions. Consider the regression model:

Y =80+ 51 Xs + 5o Xo+ B3 Xs+ ... + B X + u
Next, let's consider:
Ho: 1= 052=fs
@ What question are we asking?
— Are the effects of X, X5 and X3 different from each other?
@ How many restrictions?
—)TWO(ﬂl—ﬂzzoandﬂz—ﬂ3:0)
@ How do we fit the restricted model?
— The null hypothesis implies that the model can be written as:
Y =00+ B1(X1+Xo+X3)+ ...+ Bk Xc +u
So we create a new variable X* = X; + X5 + X3 and fit:
Y =Bo+ B X"+ .+ B Xe +u
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Testing Equality of Coefficients in R
R Code

> summary(fit.UR2)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1899.9 914.9 2.077 0.0410 *
Asia 2701.7 1243.0 2.173 0.0327 *
LatAmerica 2281.5 1112.3 2.051 0.0435 *
Transit 2552.8 1204.5 2.119 0.0372 *
Oecd 12224.2 1112.3 10.990 <2e-16 ***

Signif. codes: O *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3034 on 80 degrees of freedom
Multiple R-squared: 0.7096, Adjusted R-squared: 0.6951
F-statistic: 48.88 on 4 and 80 DF, p-value: < 2.2e-16

> fit.UR2 <- 1m(REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd, data =|D)

Are the coefficients on Asia, LatAmerica and Transit statistically
significantly different?
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Testing Equality of Coefficients in R

R Code
> D$Xstar <- D$Asia + D$LatAmerica + D$Transit
> fit.R2 <- 1m(REALGDPCAP ~ Xstar + Oecd, data = D)

\4

SSR.UR2 <- sum(resid(fit.UR2)"2)
SSR.R2 <- sum(resid(fit.R2)°2)

\4

> DFdenom <- df.residual(fit.UR2)

> F <- ((SSR.R2 - SSR.UR2)/2) / (SSR.UR2/DFdenom)
> F
[1] 0.08786129

> pf(F, 2, DFdenom, lower.tail = F)
[1] 0.9159762

So, what do we conclude?
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Testing Equality of Coefficients in R

R Code
> D$Xstar <- D$Asia + D$LatAmerica + D$Transit
> fit.R2 <- 1m(REALGDPCAP ~ Xstar + Oecd, data = D)

\4

SSR.UR2 <- sum(resid(fit.UR2)"2)
SSR.R2 <- sum(resid(fit.R2)"2)

\4

> DFdenom <- df.residual(fit.UR2)

> F <- ((SSR.R2 - SSR.UR2)/2) / (SSR.UR2/DFdenom)
> F
[1] 0.08786129

> pf(F, 2, DFdenom, lower.tail = F)
[1] 0.9159762

So, what do we conclude?
The three coefficients are statistically indistinguishable from each other,
with the p-value of 0.916.
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t Test vs. F Test

Consider the hypothesis test of

Ho: =02 vs. Hi: BL# B

What ways have we learned to conduct this test?
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t Test vs. F Test

Consider the hypothesis test of

Ho: Bi=p2 vs. Hi: p1# B
What ways have we learned to conduct this test?

@ Option 1: Compute T = (Bl — BQ)/SAE(B]_ - Bz) and do the t test.
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t Test vs. F Test
Consider the hypothesis test of
Ho: Bi=p2 vs. Hi: p1# B
What ways have we learned to conduct this test?
@ Option 1: Compute T = (Bl — Bg)/SAE(ﬂAl - 32) and do the t test.

@ Option 2: Create X* = X; + Xy, fit the restricted model, compute
F = (SSRg — SSRur)/(SSRr/(n — k — 1)) and do the F test.
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t Test vs. F Test
Consider the hypothesis test of
Ho: Bi=p2 vs. Hi: p1# B
What ways have we learned to conduct this test?
@ Option 1: Compute T = (Bl — Bg)/SAE(ﬂAl - Bz) and do the t test.

@ Option 2: Create X* = X; + Xy, fit the restricted model, compute
F = (SSRg — SSRur)/(SSRr/(n — k — 1)) and do the F test.

It turns out these two tests give identical results. This is because

2
X ~ thok1 = X° ~ Finp_k-1
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t Test vs. F Test

Consider the hypothesis test of

Hoi ﬁlZ,BZ VS. Hli ﬁl#ﬂg
What ways have we learned to conduct this test?
@ Option 1: Compute T = (Bl — 32)/5AE(51 - 32) and do the t test.

@ Option 2: Create X* = X; + Xy, fit the restricted model, compute
F = (SSRg — SSRur)/(SSRr/(n — k — 1)) and do the F test.

It turns out these two tests give identical results. This is because

2
X ~ thkr = X°~ Finaka

@ So, for testing a single hypothesis it does not matter whether one does a t
test or an F test.
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t Test vs. F Test

Consider the hypothesis test of
Hoi 61:,82 VS. Hli ﬁl#ﬂg
What ways have we learned to conduct this test?

@ Option 1: Compute T = (Bl — 32)/5AE(51 - 32) and do the t test.
@ Option 2: Create X* = X; + Xy, fit the restricted model, compute
F = (SSRg — SSRur)/(SSRr/(n — k — 1)) and do the F test.

It turns out these two tests give identical results. This is because

2
X ~ thkr = X°~ Finaka

@ So, for testing a single hypothesis it does not matter whether one does a t
test or an F test.

@ Usually, the t test is used for single hypotheses and the F test is used for
joint hypotheses.
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Some More Notes on F Tests

@ The F-value can also be calculated from R2:

. (Rh R
(1= Reg)/(n— k—1)

Stewart (Princeton) Week 7: Multiple Regression



Some More Notes on F Tests

@ The F-value can also be calculated from R2:

r (R R/
(L= R3e)/(n— k— 1)

@ F tests only work for testing nested models, i.e. the restricted model must
be a special case of the unrestricted model.

For example F tests cannot be used to test
Y = B+ 6/iXa + B3X3 +u

against
Y = Bo+ B X1+ B Xo + +u
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Some More Notes on F Tests

@ Joint significance does not necessarily imply the significance of individual
coefficients, or vice versa:

B>
level 1-a
,,,,,,,,,,,,,,,,,,,,,,,,, confidence
region
level
l-a
conf. by L]
interval
for 8,
Bi
0

level 1-o confidence
interval for 3,

Figure 1.5: t- versus F-Tests
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e Matrix Algebra Refresher

© OLS in matrix form

e OLS inference in matrix form

6 Inference via the Bootstrap

© Some Technical Details

@ Fun With Weights

ﬂ Appendix

e Testing Hypotheses about Individual Coefficients
e Testing Linear Hypotheses: A Simple Case
@ Testing Joint Significance

@ Testing Linear Hypotheses: The General Case
@ Fun With(out) Weights
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@ Testing Linear Hypotheses: The General Case
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Limitation of the F Formula

Consider the following null hypothesis:
Ho: B1=p2=p3=3

or
Ho : ,31 = 252 = 0.5,83 +1
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Limitation of the F Formula

Consider the following null hypothesis:

Ho: pr=p52=p33=3
or
Ho: ,31:252:0.5,834-1

Can we test them using the F test?
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Limitation of the F Formula

Consider the following null hypothesis:

Ho: B1=p2=p3=3
or
Hy : ,31 = 2ﬁ2 = 0.5,33 +1
Can we test them using the F test?

To compute the F value, we need to fit the restricted model. How?
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Limitation of the F Formula

Consider the following null hypothesis:

Ho: pr=p52=p33=3
or
Ho: ,31:2ﬂ2:0.5,33+1

Can we test them using the F test?
To compute the F value, we need to fit the restricted model. How?

@ Some restrictions are difficult to impose when fitting the model.
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Limitation of the F Formula

Consider the following null hypothesis:

Ho: B1=P2=833=3
or
Ho: ,31:262:0.5,834-1

Can we test them using the F test?
To compute the F value, we need to fit the restricted model. How?

@ Some restrictions are difficult to impose when fitting the model.

@ Even when we can, the procedure will be ad hoc and require some
creativity.
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Limitation of the F Formula

Consider the following null hypothesis:

Ho: B1=P2=833=3
or
Ho: ,31:262:0.5,834-1

Can we test them using the F test?
To compute the F value, we need to fit the restricted model. How?

@ Some restrictions are difficult to impose when fitting the model.

@ Even when we can, the procedure will be ad hoc and require some
creativity.

@ Is there a general solution?
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General Procedure for Testing Linear Hypotheses
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General Procedure for Testing Linear Hypotheses

@ Notice that any set of g linear hypotheses can be written as
RB =r

where
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General Procedure for Testing Linear Hypotheses
@ Notice that any set of g linear hypotheses can be written as
RB =r

where

» Risa g x (k+ 1) matrix of prespecified coefficients on 3 (hypothesis
matrix)
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General Procedure for Testing Linear Hypotheses

@ Notice that any set of g linear hypotheses can be written as
RB =r
where

» Risa g x (k+ 1) matrix of prespecified coefficients on 3 (hypothesis
matrix)

» B=1[Fof1 - Bkl
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General Procedure for Testing Linear Hypotheses

@ Notice that any set of g linear hypotheses can be written as
RB =r
where

» Risa g x (k+ 1) matrix of prespecified coefficients on 3 (hypothesis
matrix)

» B=1[Fof1 - Bkl

» risa g x 1 vector of prespecified constants
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General Procedure for Testing Linear Hypotheses

@ Notice that any set of g linear hypotheses can be written as
RB =r
where

» Risa g x (k+ 1) matrix of prespecified coefficients on 3 (hypothesis
matrix)

» B=1[Fof1 - Bkl

» risa g x 1 vector of prespecified constants

@ Examples:
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General Procedure for Testing Linear Hypotheses

@ Notice that any set of g linear hypotheses can be written as
RB =r
where

» Risa g x (k+ 1) matrix of prespecified coefficients on 3 (hypothesis
matrix)

» B=1[Fof1 - Bkl

» risa g x 1 vector of prespecified constants

@ Examples:
B 3 01 0 0 g" 3
Bi=P=p=3« | /o |=|3|« |0 0 1 0]|- /31 =3
B3 3 0 0 0 1 52 3
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General Procedure for Testing Linear Hypotheses

@ Notice that any set of g linear hypotheses can be written as

RB =r
where
» Risa g x (k+ 1) matrix of prespecified coefficients on 3 (hypothesis
matrix)

» B=1[Fof1 - Bkl

» risa g x 1 vector of prespecified constants

@ Examples:
B 3 01 00 g" 3
bi=P=p=3< | B |=|3|« |0 0 1 0 /31 =3
B3 3 0 0 0 1 2 3
B3
Bo
o B1 — 28 Jo 01 -2 0 | _[o
Bl_%_o'SBﬁl@[611—0.553}_[1]@’[0 1 0 —0.5} o —[1}
B3
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.

Stewart (Princeton) Week 7: Multiple Regression



Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.

@ If Hy is true, RB — r should be zero except for sampling variability.
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.
@ If Hy is true, RB — r should be zero except for sampling variability.

@ To formally evaluate the statistical significance of the deviation from zero,
we must transform RG —r to a statistic that can be compared to a reference
distribution.
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.
@ If Hy is true, RB — r should be zero except for sampling variability.

@ To formally evaluate the statistical significance of the deviation from zero,
we must transform RG —r to a statistic that can be compared to a reference
distribution.

@ It turns out that the following Wald statistic can be used:

w - (R3- r)' [FPRXX)IR] T (RB )
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.
@ If Hy is true, R@ — r should be zero except for sampling variability.

@ To formally evaluate the statistical significance of the deviation from zero,
we must transform R3 — r to a statistic that can be compared to a reference
distribution.

@ It turns out that the following Wald statistic can be used:
A ! — ~
w = (R3-r) - [*ROXX)'R] "+ (RB )

@ Looks complicated? Let's figure out why this makes sense:
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.
@ If Hy is true, RB — r should be zero except for sampling variability.

@ To formally evaluate the statistical significance of the deviation from zero,
we must transform R3 — r to a statistic that can be compared to a reference
distribution.

@ It turns out that the following Wald statistic can be used:
A / p— A
w = (R3-r) - [°ROXX)'R] "+ (RB—r)

@ Looks complicated? Let's figure out why this makes sense:

» The first and last components give the sum of squares of the
components of RG — r. This summarizes its deviation from zero.
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.
@ If Hy is true, RB — r should be zero except for sampling variability.

@ To formally evaluate the statistical significance of the deviation from zero,
we must transform RG —r to a statistic that can be compared to a reference
distribution.

@ It turns out that the following Wald statistic can be used:
A ! — ~
w = (R3-r) - [°ROXX)'R] "+ (RB )

@ Looks complicated? Let's figure out why this makes sense:

» The first and last components give the sum of squares of the
components of RG — r. This summarizes its deviation from zero.

» The middle component is the variance of R3 — r. This standardizes the
sum of squares to have variance one.
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.
@ If Hy is true, RB — r should be zero except for sampling variability.

@ To formally evaluate the statistical significance of the deviation from zero,
we must transform RG —r to a statistic that can be compared to a reference
distribution.

@ It turns out that the following Wald statistic can be used:
A ! — ~
w = (R3-r) - [*ROXX)'R] "+ (RB )

@ Looks complicated? Let's figure out why this makes sense:

» The first and last components give the sum of squares of the
components of RG — r. This summarizes its deviation from zero.

» The middle component is the variance of R3 — r. This standardizes the
sum of squares to have variance one.

@ We know 3 is approximately normal = RA3 — r should also be normal
= W should therefore be ...
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Wald Statistic

@ Let's consider testing Hy : R3 =r, a set of g linear restrictions.
@ If Hy is true, RB — r should be zero except for sampling variability.

@ To formally evaluate the statistical significance of the deviation from zero,
we must transform RG —r to a statistic that can be compared to a reference
distribution.

@ It turns out that the following Wald statistic can be used:
A ! — ~
w = (R3-r) - [*ROXX)'R] "+ (RB )

@ Looks complicated? Let's figure out why this makes sense:

» The first and last components give the sum of squares of the
components of RG — r. This summarizes its deviation from zero.

» The middle component is the variance of R3 — r. This standardizes the
sum of squares to have variance one.

@ We know 3 is approximately normal = RA3 — r should also be normal
— W should therefore be ... \? distributed!
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Sampling Distribution of the Wald Statistic
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Sampling Distribution of the Wald Statistic

Theorem (Large-Sample Distribution of the Wald Statistic)

Under Assumptions 1-5, as n — oo the distribution of the Wald statistic approaches the
chi square distribution with q degrees of freedom:

d
W—>xf7 as n— oo
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Sampling Distribution of the Wald Statistic

Theorem (Large-Sample Distribution of the Wald Statistic)

Under Assumptions 1-5, as n — oo the distribution of the Wald statistic approaches the
chi square distribution with q degrees of freedom:

d
W—>x§ as n— oo

Theorem (Small-Sample Distribution of the Wald Statistic)

Under Assumptions 1-6, for any sample size n the Wald statistic divided by q has the F
distribution with (q,n — k — 1) degrees of freedom:

W/q ~ Fogn—k-1
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Sampling Distribution of the Wald Statistic

Theorem (Large-Sample Distribution of the Wald Statistic)

Under Assumptions 1-5, as n — oo the distribution of the Wald statistic approaches the
chi square distribution with q degrees of freedom:

d
W—>)&, as n— oo

Theorem (Small-Sample Distribution of the Wald Statistic)

Under Assumptions 1-6, for any sample size n the Wald statistic divided by q has the F
distribution with (q, n — k — 1) degrees of freedom:

W/q ~ Fogn—k-1

d . .
@ qFqn—k—1— X% as n — 0o, so the difference disappears when n large.
> pf(3.1, 2, 500,lower.tail=F) [1] 0.04591619

> pchisq(2+3.1, 2,lower.tail=F) [1] 0.0450492

> pf(3.1, 2, 50000,lower.tail=F) [1] 0.04505786
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Testing General Linear Hypotheses in R

In R, the 1inearHypothesis() function in the car package does the Wald test
for general linear hypotheses.

R Code
> fit.UR2 <- 1m(REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd, data =|D)
> R <- matrix(c(0,1,-1,0,0, 0,1,0,-1,0), nrow = 2, byrow = T)
> r <- ¢(0,0)

> linearHypothesis(fit.UR2, R, r)

Linear hypothesis test

Hypothesis:
Asia - LatAmerica = 0
Asia - Transit = 0

Model 1: restricted model
Model 2: REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd

Res.Df RSS Df Sum of Sq F Pr(>F)
1 82 738141635
2 80 736523836 2 1617798 0.0879 0.916
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Next Week (of Classes)
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Next Week (of Classes)

@ Linear Regression in the Social Sciences
@ Reading:
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Next Week (of Classes)

@ Linear Regression in the Social Sciences

@ Reading:

>

Healy and Moody (2014) " Data Visualization in Sociology” Annual
Review of Sociology

Morgan and Winship (2015) Chapter 1: Causality and Empirical
Research in the Social Sciences

Morgan and Winship (2015) Chapter 13.1: Objections to Adoption of
the Counterfactual Approach

Optional: Morgan and Winship (2015) Chapter 2-3 (Potential
Outcomes and Causal Graphs)

Optional: Herndn and Robins (2016) Chapter 1: A definition of a
causal effect.
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Fun Without Weights

The Robust Beauty of Improper Linear Models
in Decision Making

ROBYN M. DAWES

ABSTRACT: Proper linear models are those in which
predictor wvariables aré given weights in suck a way
that the resulting linear composite optimally predicts
some criterion of interest; examples of proper lmear

University of Oregon

A proper linear model is one in which the
weights given to the predictor variables are chosen
in such a way as to optimize the relationship be-
tween the prediction and the criterion. Simple

models are standard regression analysis, di

function analysis, and ridge regression anmalysis. Re-
search summarized in Paul Meehl's book on clinical
wversus statistical prediction—and o plethora of re-
search stimulated in part by that book—all indicates
that when a numerical criterion variable (e.g., graduate
grade point average) is to be predicted from numerical
predictor variables, proper linear models outperform
clinical intuition. Improper linear models are those in
which the weights of the predictor variables are ob-
tained by some nonoptimal method; for example, they
may be obtained on the basis of intuition, derived
from simulating o clinical judge’s predictions, or set to
be equal. This article presents evidence that even
such improper linear models are superior to clinical in-
tuition when predicting a numerical criterion from
numerical predictors. In fact, unit (i.e., equal) weight-
ing is quite robust for making such predictions. The
article discusses, in some detail, the application of unit
weights to decide what bullet the Denver Police De-
partmmt slmuld use. Fmally, the article camders

02i hi
Week 7 Multlple Regression

gression analysis is the most common example
of a proper linear model; the predictor variables
are weighted in such a way as to maximize the
correlation between the subsequent weighted com-
posite and the actual criterion. Discriminant
function analysis is another example of a proper
linear model; weights are given to the predictor
variables in such a way that the resulting linear

posites maximize the discrep between two
or more groups. Ridge regression analysis, an-
other example (Darlington, 1978; Marquardt &
Snee, 1975), attempts to assign weights in such
a way that the linear composites correlate maxi-
mally with the criterion of interest in a new set
of data.

Thus, there are many types of proper linear
models and they have been used in a variety of
contexts. One example (Dawes, 1971) was pre-
sented in this Journal; it involved the prediction

" October 24, 26, 2016
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Improper Linear Models

@ Proper linear model is one where predictor variables are given
optimized weights in some way (for example through regression)
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Improper Linear Models

@ Proper linear model is one where predictor variables are given
optimized weights in some way (for example through regression)

o Meehl (1954) Clinical Versus Statistical Prediction: A Theoretical
Analysis and Review of the Evidence argued that proper linear models
outperform clinical intuition in many areas.

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 140 / 145



Improper Linear Models

@ Proper linear model is one where predictor variables are given
optimized weights in some way (for example through regression)

o Meehl (1954) Clinical Versus Statistical Prediction: A Theoretical
Analysis and Review of the Evidence argued that proper linear models
outperform clinical intuition in many areas.

@ Dawes argues that even improper linear models (those where weights
are set by hand or set to be equal), outperform clinical intuition.
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Improper Linear Models

Proper linear model is one where predictor variables are given
optimized weights in some way (for example through regression)

Meehl (1954) Clinical Versus Statistical Prediction: A Theoretical
Analysis and Review of the Evidence argued that proper linear models
outperform clinical intuition in many areas.

Dawes argues that even improper linear models (those where weights
are set by hand or set to be equal), outperform clinical intuition.

Equal weight models are argued to be quite robust for these
predictions

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 140 / 145



Example: Graduate Admissions

o Faculty rated all students in the psych department at University of
Oregon
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Example: Graduate Admissions

o Faculty rated all students in the psych department at University of
Oregon

@ Ratings predicted from a proper linear model of student GRE scores,
undergrad GPA and selectivity of student’s undergraduate institution.
Cross-validated correlation was .38
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Example: Graduate Admissions

o Faculty rated all students in the psych department at University of
Oregon

@ Ratings predicted from a proper linear model of student GRE scores,
undergrad GPA and selectivity of student’s undergraduate institution.
Cross-validated correlation was .38

o Correlation of faculty ratings with average rating of admissions
committee was .19

Stewart (Princeton) Week 7: Multiple Regression October 24, 26, 2016 141 / 145



Example: Graduate Admissions

o Faculty rated all students in the psych department at University of
Oregon
@ Ratings predicted from a proper linear model of student GRE scores,

undergrad GPA and selectivity of student’s undergraduate institution.
Cross-validated correlation was .38
o Correlation of faculty ratings with average rating of admissions
committee was .19
Standardized and equally weighted improper linear model, correlated
at .48
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Other Examples
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Other Examples

@ Self-assessed measures of marital happiness: modeled with improper
linear model of (rate of lovemaking - rate of arguments):
correlation of .40
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Other Examples

@ Self-assessed measures of marital happiness: modeled with improper
linear model of (rate of lovemaking - rate of arguments):
correlation of .40

e Einhorn (1972) study of doctors coding biopsies of patients with
Hodgkin's disease and then rated severity. Their rating of severity was
essentially uncorrelated with survival times, but the variables they
coded predicted outcomes using a regression model.
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Other Examples

TABLE 1

Correlations Between Predictions and Criterion Values

Average Average Validity Cross- Validity

Average validity validity of equal validity of  of optimal
validity of judge of random weighting regression linear
Example of judge model model model analysis model
Prediction of neurosis vs. psychosis 28 31 .30 34 46 46
Illinois students’ predictions of GPA .33 .50 .51 .60 .57 .69
Oregon students’ predictions of GPA .37 43 .51 .60 .57 .69
Prediction of later faculty ratings at Oregon .19 25 39 48 .38 54
Yntema & Torgerson’s (1961) experiment .84 .89 .84 97 — 97

Note. GPA = grade point average.

Column descriptions:
C1) average of human judges
C2) model based on human judges
C3) randomly chosen weights preserving signs
C4) equal weighting
C5) cross-validated weights

C6) unattainable optimal linear model
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The Argument

@ “People — especially the experts in a field — are much better at
selecting and coding information than they are at integrating it."
(573)
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“People — especially the experts in a field — are much better at
selecting and coding information than they are at integrating it.”
(573)

The choice of variables is extremely important for prediction!

This parallels a piece of folk wisdom in the machine learning literature
that a better predictor will beat a better model every time.

People are good at picking out relevant information, but terrible at
integrating it.

The difficulty arises in part because people in general lack a strong
reference to the distribution of the predictors.

@ Linear models are robust to deviations from the optimal weights (see
also Waller 2008 on “Fungible Weights in Multiple Regression™)
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My Thoughts on the Argument

@ Particularly in prediction, looking for the true or right model can be
quixotic

@ The broader research project suggests that a big part of what
quantitative models are doing predictively, is focusing human talent in
the right place.

@ This all applies because predictors well chosen and the sample size is
small (so the weight optimization isn't great)

@ It is a fascinating paper!
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