# Week 6: Linear Regression with Two Regressors

Brandon Stewart<sup>1</sup>

Princeton

October 17, 19, 2016

Stewart (Princeton)

<sup>&</sup>lt;sup>1</sup>These slides are heavily influenced by Matt Blackwell, Adam Glynn and Jens Hainmueller.

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - \* new mechanics

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - \* new mechanics
  - Wednesday:

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - \* omitted variable bias

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - ★ multicollinearity

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - multicollinearity
    - ★ interactions

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - ★ multicollinearity
    - ★ interactions
- Next Week

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - ★ multicollinearity
    - ★ interactions
- Next Week
  - multiple regression

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - ★ multicollinearity
    - \* interactions
- Next Week
  - multiple regression
- Long Run
  - probability  $\rightarrow$  inference  $\rightarrow$  regression

#### Questions?



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- Polynomials



12 Conclusion



#### Two Examples

- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- Omitted Variables
- 8 Multicollinearity
- Dummy Variables
- **O** Interaction Terms
- Delynomials
- 12 Conclusion
  - 3 Fun With Interactions

• Summarize more information for descriptive inference

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
- Control for confounding factors for causal inference

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
- Control for confounding factors for causal inference
- Model non-linearities (e.g.  $Y = \beta_0 + \beta_1 X + \beta_2 X^2$ )

- Summarize more information for descriptive inference
- Improve the fit and predictive power of our model
- Control for confounding factors for causal inference
- Model non-linearities (e.g.  $Y = \beta_0 + \beta_1 X + \beta_2 X^2$ )
- Model interactive effects (e.g.  $Y = \beta_0 + \beta_1 X + \beta_2 X_2 + \beta_3 X_1 X_2$ )



Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

• Y: Deaths per 1,000 Person-Years.

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

```
\widehat{\text{Death Rate}} = 17 - 4 Cigarette Smoker
```

What do we conclude?

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

What do we conclude?

• The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 - 4) for cigarette smokers.

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

When we "control" for age (in years) we find:

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

When we "control" for age (in years) we find:

 $\widehat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}$ 

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

When we "control" for age (in years) we find:

 $\widehat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}$ 

Why did the sign switch?

Stewart (Princeton)

Consider the following example from Cochran (1968). We have a random sample of 20,000 smokers and run a regression using:

- Y: Deaths per 1,000 Person-Years.
- $X_1$ : 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

 $\widehat{\text{Death Rate}} = 17 - 4$  Cigarette Smoker

What do we conclude?

- The average death rate is 17 deaths per 1,000 person-years for pipe smokers and 13 (17 4) for cigarette smokers.
- So cigarette smoking lowers the death rate by 4 deaths per 1,000 person years.

When we "control" for age (in years) we find:

 $\widehat{\text{Death Rate}} = 14 + 4 \text{ Cigarette Smoker} + 10 \text{ Age}$ 

Why did the sign switch? Which estimate is more useful?

Stewart (Princeton)

#### Example 2: Berkeley Graduate Admissions



#### • Graduate admissions data from Berkeley, 1973

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
  - ▶ Men: 8442 applicants, 44% admission rate

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
  - Men: 8442 applicants, 44% admission rate
  - Women: 4321 applicants, 35% admission rate

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
  - Men: 8442 applicants, 44% admission rate
  - ▶ Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
  - Men: 8442 applicants, 44% admission rate
  - ▶ Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
- This is a marginal relationship

- Graduate admissions data from Berkeley, 1973
- Acceptance rates:
  - Men: 8442 applicants, 44% admission rate
  - ▶ Women: 4321 applicants, 35% admission rate
- Evidence of discrimination toward women in admissions?
- This is a marginal relationship
- What about the conditional relationship within departments?

|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| Α    | 825     | 62%      | 108     | 82%      |

|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| A    | 825     | 62%      | 108     | 82%      |

|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| А    | 825     | 62%      | 108     | 82%      |
| В    | 560     | 63%      | 25      | 68%      |

|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| А    | 825     | 62%      | 108     | 82%      |
| В    | 560     | 63%      | 25      | 68%      |
| С    | 325     | 37%      | 593     | 34%      |

|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| A    | 825     | 62%      | 108     | 82%      |
| В    | 560     | 63%      | 25      | 68%      |
| С    | 325     | 37%      | 593     | 34%      |
| D    | 417     | 33%      | 375     | 35%      |
| Е    | 191     | 28%      | 393     | 24%      |
| F    | 373     | 6%       | 341     | 7%       |

• Within departments:

|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| A    | 825     | 62%      | 108     | 82%      |
| В    | 560     | 63%      | 25      | 68%      |
| С    | 325     | 37%      | 593     | 34%      |
| D    | 417     | 33%      | 375     | 35%      |
| Е    | 191     | 28%      | 393     | 24%      |
| F    | 373     | 6%       | 341     | 7%       |

• Within departments, women do somewhat better than men!

• Within departments:

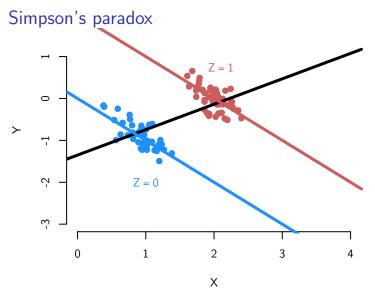
|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| А    | 825     | 62%      | 108     | 82%      |
| В    | 560     | 63%      | 25      | 68%      |
| С    | 325     | 37%      | 593     | 34%      |
| D    | 417     | 33%      | 375     | 35%      |
| Е    | 191     | 28%      | 393     | 24%      |
| F    | 373     | 6%       | 341     | 7%       |

• Within departments, women do somewhat better than men!

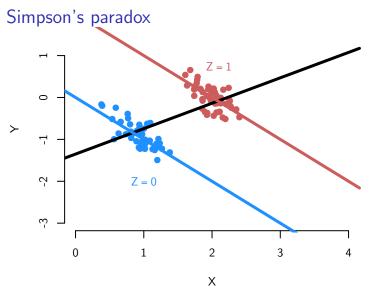
• How? Women apply to more challenging departments.

|      | Men     |          | Women   |          |
|------|---------|----------|---------|----------|
| Dept | Applied | Admitted | Applied | Admitted |
| A    | 825     | 62%      | 108     | 82%      |
| В    | 560     | 63%      | 25      | 68%      |
| С    | 325     | 37%      | 593     | 34%      |
| D    | 417     | 33%      | 375     | 35%      |
| Е    | 191     | 28%      | 393     | 24%      |
| F    | 373     | 6%       | 341     | 7%       |

- Within departments, women do somewhat better than men!
- How? Women apply to more challenging departments.
- Marginal relationships (admissions and gender)  $\neq$  conditional relationship given third variable (department)



• Overall a positive relationship between  $Y_i$  and  $X_i$  here



- Overall a positive relationship between  $Y_i$  and  $X_i$  here
- But within strata defined by  $Z_i$ , the opposite

Stewart (Princeton)

Week 6: Two Regressors

• Simpson's paradox arises in many contexts- particularly where there is selection on ability

- Simpson's paradox arises in many contexts- particularly where there is selection on ability
- It is a particular problem in medical or demographic contexts, e.g. kidney stones, low-birth weight paradox.

- Simpson's paradox arises in many contexts- particularly where there is selection on ability
- It is a particular problem in medical or demographic contexts, e.g. kidney stones, low-birth weight paradox.
- Cochran's 1968 study is also a case of Simpson's paradox, he originally sought to compare cigarette to cigar smoking, he found that cigar smokers had higher mortality rates than cigarette smokers, but at *any* age level, cigarette smokers had higher mortality than cigar smokers.

- Simpson's paradox arises in many contexts- particularly where there is selection on ability
- It is a particular problem in medical or demographic contexts, e.g. kidney stones, low-birth weight paradox.
- Cochran's 1968 study is also a case of Simpson's paradox, he originally sought to compare cigarette to cigar smoking, he found that cigar smokers had higher mortality rates than cigarette smokers, but at *any* age level, cigarette smokers had higher mortality than cigar smokers.

Instance of a more general problem called the ecological inference fallacy

• Old goal: estimate the mean of Y as a function of some independent variable, X:

 $\mathbb{E}[Y_i|X_i]$ 

• Old goal: estimate the mean of Y as a function of some independent variable, X:

 $\mathbb{E}[Y_i|X_i]$ 

• For continuous X's, we modeled the CEF/regression function with a line:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Old goal: estimate the mean of Y as a function of some independent variable, X:

 $\mathbb{E}[Y_i|X_i]$ 

• For continuous X's, we modeled the CEF/regression function with a line:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• New goal: estimate the relationship of two variables, Y<sub>i</sub> and X<sub>i</sub>, conditional on a third variable, Z<sub>i</sub>:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

• Old goal: estimate the mean of Y as a function of some independent variable, X:

 $\mathbb{E}[Y_i|X_i]$ 

• For continuous X's, we modeled the CEF/regression function with a line:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• New goal: estimate the relationship of two variables, Y<sub>i</sub> and X<sub>i</sub>, conditional on a third variable, Z<sub>i</sub>:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

•  $\beta$ 's are the population parameters we want to estimate

Descriptive

Descriptive

get a sense for the relationships in the data.

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest
- Predictive

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest
- Predictive
  - We can usually make better predictions about the dependent variable with more information on independent variables.

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest
- Predictive
  - We can usually make better predictions about the dependent variable with more information on independent variables.
- Causal

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest
- Predictive
  - We can usually make better predictions about the dependent variable with more information on independent variables.
- Causal
  - Block potential confounding, which is when X doesn't cause Y, but only appears to because a third variable Z causally affects both of them.

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest
- Predictive
  - We can usually make better predictions about the dependent variable with more information on independent variables.
- Causal
  - Block potential confounding, which is when X doesn't cause Y, but only appears to because a third variable Z causally affects both of them.
  - X<sub>i</sub>: ice cream sales on day i

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest
- Predictive
  - We can usually make better predictions about the dependent variable with more information on independent variables.
- Causal
  - Block potential confounding, which is when X doesn't cause Y, but only appears to because a third variable Z causally affects both of them.
  - ► X<sub>i</sub>: ice cream sales on day i
  - Y<sub>i</sub>: drowning deaths on day i

### Why control for another variable

- Descriptive
  - get a sense for the relationships in the data.
  - describe more precisely our quantity of interest
- Predictive
  - We can usually make better predictions about the dependent variable with more information on independent variables.
- Causal
  - Block potential confounding, which is when X doesn't cause Y, but only appears to because a third variable Z causally affects both of them.
  - X<sub>i</sub>: ice cream sales on day i
  - Y<sub>i</sub>: drowning deaths on day i
  - ► Z<sub>i</sub>: ??



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - 7 Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- 11 Polynomials



13 Fun With Interactions

#### Two Examples

- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- Omitted Variables
- 8 Multicollinearity
- Dummy Variables
- Interaction Terms
- Delynomials
- 12 Conclusion
  - Fun With Interactions

- Variables of interest:
  - ► Y: Level of democracy, measured as the 10-year average of Freedom House ratings

- Variables of interest:
  - ► Y: Level of democracy, measured as the 10-year average of Freedom House ratings
  - ► X<sub>1</sub>: Country income, measured as log(GDP per capita in \$1000s)

- Variables of interest:
  - ► Y: Level of democracy, measured as the 10-year average of Freedom House ratings
  - ► X<sub>1</sub>: Country income, measured as log(GDP per capita in \$1000s)
  - ► X<sub>2</sub>: Ethnic heterogeneity (continuous) or British colonial heritage (binary)

- Variables of interest:
  - ► Y: Level of democracy, measured as the 10-year average of Freedom House ratings
  - ► X<sub>1</sub>: Country income, measured as log(GDP per capita in \$1000s)
  - ► X<sub>2</sub>: Ethnic heterogeneity (continuous) or British colonial heritage (binary)
- With one predictor we ask: Does income (X<sub>1</sub>) predict or explain the level of democracy (Y)?

- Variables of interest:
  - ► Y: Level of democracy, measured as the 10-year average of Freedom House ratings
  - ► X<sub>1</sub>: Country income, measured as log(GDP per capita in \$1000s)
  - ► X<sub>2</sub>: Ethnic heterogeneity (continuous) or British colonial heritage (binary)
- With one predictor we ask: Does income (X<sub>1</sub>) predict or explain the level of democracy (Y)?

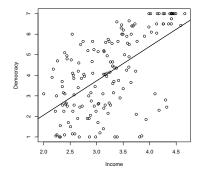
- Variables of interest:
  - ► Y: Level of democracy, measured as the 10-year average of Freedom House ratings
  - ► X<sub>1</sub>: Country income, measured as log(GDP per capita in \$1000s)
  - ► X<sub>2</sub>: Ethnic heterogeneity (continuous) or British colonial heritage (binary)
- With one predictor we ask: Does income (X<sub>1</sub>) predict or explain the level of democracy (Y)?
- With two predictors we ask questions like: Does income (X<sub>1</sub>) predict or explain the level of democracy (Y), once we "control" for ethnic heterogeneity or British colonial heritage (X<sub>2</sub>)?

- Variables of interest:
  - ► Y: Level of democracy, measured as the 10-year average of Freedom House ratings
  - ► X<sub>1</sub>: Country income, measured as log(GDP per capita in \$1000s)
  - ► X<sub>2</sub>: Ethnic heterogeneity (continuous) or British colonial heritage (binary)
- With one predictor we ask: Does income (X<sub>1</sub>) predict or explain the level of democracy (Y)?
- With two predictors we ask questions like: Does income (X<sub>1</sub>) predict or explain the level of democracy (Y), once we "control" for ethnic heterogeneity or British colonial heritage (X<sub>2</sub>)?
- The rest of this lecture is designed to explain what is meant by "controlling for another variable" with linear regression.

• Let's look at the bivariate regression of Democracy on Income:

 $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$ 

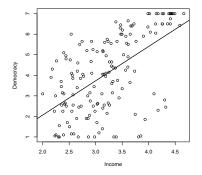
 $\widehat{Demo} = -1.26 + 1.6 \, Log(GDP)$ 



• Let's look at the bivariate regression of Democracy on Income:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

 $\widehat{Demo} = -1.26 + 1.6 \, Log(GDP)$ 

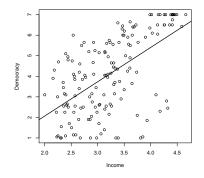


#### Interpretation:

• Let's look at the bivariate regression of Democracy on Income:

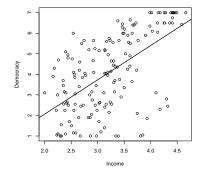
$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

 $\widehat{Demo} = -1.26 + 1.6 \, Log(GDP)$ 

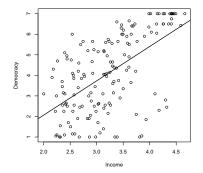


Interpretation: A one percent increase in GDP is associated with a .016 point increase in democracy.

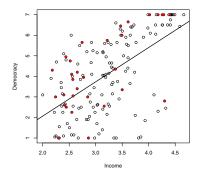
• But we can use more information in our prediction equation.



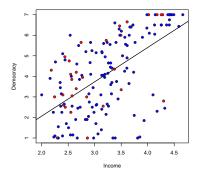
- But we can use more information in our prediction equation.
- For example, some countries were originally British colonies and others were not:



- But we can use more information in our prediction equation.
- For example, some countries were originally British colonies and others were not:
  - Former British colonies tend to have higher levels of democracy



- But we can use more information in our prediction equation.
- For example, some countries were originally British colonies and others were not:
  - Former British colonies tend to have higher levels of democracy
  - Non-colony countries tend to have lower levels of democracy



How do we do this? We can generalize the prediction equation:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i}$$

This implies that we want to predict y using the information we have about  $x_1$  and  $x_2$ , and we are assuming a linear functional form.

How do we do this? We can generalize the prediction equation:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i}$$

This implies that we want to predict y using the information we have about  $x_1$  and  $x_2$ , and we are assuming a linear functional form.

Notice that now we write  $X_{ii}$  where:

• j = 1, ..., k is the index for the explanatory variables

How do we do this? We can generalize the prediction equation:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i}$$

This implies that we want to predict y using the information we have about  $x_1$  and  $x_2$ , and we are assuming a linear functional form.

Notice that now we write  $X_{ii}$  where:

- j = 1, ..., k is the index for the explanatory variables
- i = 1, ..., n is the index for the observation

How do we do this? We can generalize the prediction equation:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i}$$

This implies that we want to predict y using the information we have about  $x_1$  and  $x_2$ , and we are assuming a linear functional form.

Notice that now we write  $X_{ii}$  where:

- j = 1, ..., k is the index for the explanatory variables
- i = 1, ..., n is the index for the observation
- we often omit *i* to avoid clutter

How do we do this? We can generalize the prediction equation:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i}$$

This implies that we want to predict y using the information we have about  $x_1$  and  $x_2$ , and we are assuming a linear functional form.

Notice that now we write  $X_{ii}$  where:

- j = 1, ..., k is the index for the explanatory variables
- i = 1, ..., n is the index for the observation
- we often omit *i* to avoid clutter

In words:

$$\widehat{Democracy} = \widehat{\beta}_0 + \widehat{\beta}_1 Log(GDP) + \widehat{\beta}_2 Colony$$

Assume  $X_{2i}$  indicates whether country *i* used to be a British colony.

When  $X_2 = 0$ , the model becomes:

Assume  $X_{2i}$  indicates whether country *i* used to be a British colony.

When  $X_2 = 0$ , the model becomes:

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 \, \mathbf{0}$$
$$= \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

Assume  $X_{2i}$  indicates whether country *i* used to be a British colony.

When  $X_2 = 0$ , the model becomes:

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 \, 0$$
$$= \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

When  $X_2 = 1$ , the model becomes:

Assume  $X_{2i}$  indicates whether country *i* used to be a British colony.

When  $X_2 = 0$ , the model becomes:

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 \, \mathbf{0}$$
$$= \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

When  $X_2 = 1$ , the model becomes:

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 \mathbf{1}$$
$$= (\widehat{\beta}_0 + \widehat{\beta}_2) + \widehat{\beta}_1 x_1$$

What does this mean?

Assume  $X_{2i}$  indicates whether country *i* used to be a British colony.

When  $X_2 = 0$ , the model becomes:

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 \, 0$$
$$= \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$

When  $X_2 = 1$ , the model becomes:

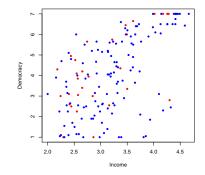
$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 \mathbf{1} \\ = (\widehat{\beta}_0 + \widehat{\beta}_2) + \widehat{\beta}_1 x_1$$

What does this mean? We are fitting two lines with the same slope but different intercepts.

From R, we obtain estimates  $\widehat{\beta}_0, \, \widehat{\beta}_1, \, \widehat{\beta}_2$ :

#### Coefficients:

|             | Estimate |
|-------------|----------|
| (Intercept) | -1.5060  |
| GDP90LGN    | 1.7059   |
| BRITCOL     | 0.5881   |



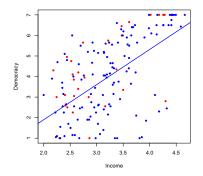
From R, we obtain estimates  $\widehat{\beta}_0, \, \widehat{\beta}_1, \, \widehat{\beta}_2$ :

#### Coefficients:

|             | Estimate |
|-------------|----------|
| (Intercept) | -1.5060  |
| GDP90LGN    | 1.7059   |
| BRITCOL     | 0.5881   |

Non-British colonies:

$$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$$
$$\widehat{y} = -1.5 + 1.7 x_1$$



From R, we obtain estimates  $\widehat{\beta}_0, \ \widehat{\beta}_1, \ \widehat{\beta}_2$ :

#### Coefficients:

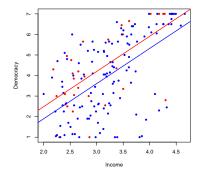
|             | Estimate |
|-------------|----------|
| (Intercept) | -1.5060  |
| GDP90LGN    | 1.7059   |
| BRITCOL     | 0.5881   |

Non-British colonies:

$$\begin{aligned} \widehat{y} &= \widehat{\beta}_0 + \widehat{\beta}_1 x_1 \\ \widehat{y} &= -1.5 + 1.7 \, x_1 \end{aligned}$$

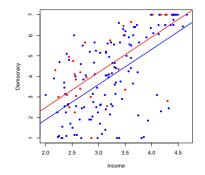
• Former British colonies:

$$\widehat{y} = (\widehat{\beta}_0 + \widehat{\beta}_2) + \widehat{\beta}_1 x_1$$
$$\widehat{y} = -.92 + 1.7 x_1$$



Our prediction equation is:  $\hat{y} = -1.5 + 1.7 x_1 + .58 x_2$ 

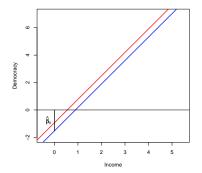
Where do these quantities appear on the graph?



Our prediction equation is:  $\hat{y} = -1.5 + 1.7 x_1 + .58 x_2$ 

Where do these quantities appear on the graph?

•  $\hat{\beta}_0 = -1.5$  is the intercept for the prediction line for non-British colonies.

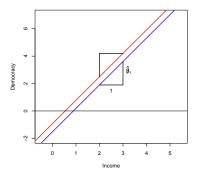


Our prediction equation is:  $\hat{y} = -1.5 + 1.7 x_1 + .58 x_2$ 

Where do these quantities appear on the graph?

•  $\hat{\beta}_0 = -1.5$  is the intercept for the prediction line for non-British colonies.

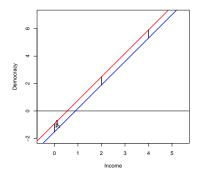
•  $\widehat{\beta}_1 = 1.7$  is the slope for both lines.



Our prediction equation is:  $\hat{y} = -1.5 + 1.7 x_1 + .58 x_2$ 

Where do these quantities appear on the graph?

- $\hat{\beta}_0 = -1.5$  is the intercept for the prediction line for non-British colonies.
- $\widehat{eta}_1=1.7$  is the slope for both lines.
- *β*<sub>2</sub> = .58 is the vertical distance between the two lines for Ex-British colonies and non-colonies respectively





- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - 7 Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- 11 Polynomials



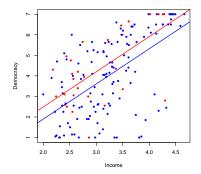
13 Fun With Interactions

#### Two Examples

- Adding a Binary Variable
- 3 Adding a Continuous Covariate
  - 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- Dummy Variables
- Interaction Terms
- Delynomials
- 12 Conclusion
  - Fun With Interactions

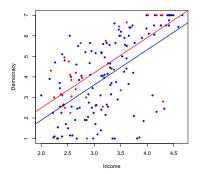
#### Fitting a regression plane

 We have considered an example of multiple regression with one continuous explanatory variable and one binary explanatory variable.

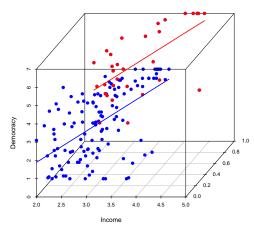


#### Fitting a regression plane

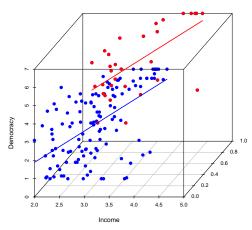
- We have considered an example of multiple regression with one continuous explanatory variable and one binary explanatory variable.
- This is easy to represent graphically in two dimensions because we can use colors to distinguish the two groups in the data.



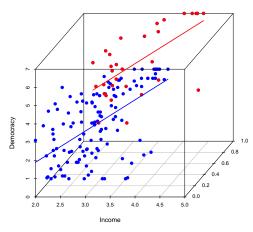
 These observations are actually located in a three-dimensional space.



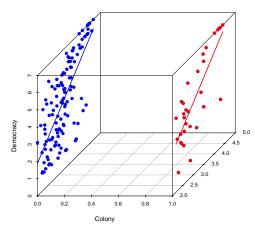
- These observations are actually located in a three-dimensional space.
- We can try to represent this using a 3D scatterplot.



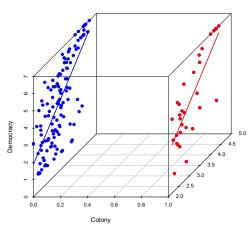
- These observations are actually located in a three-dimensional space.
- We can try to represent this using a 3D scatterplot.
- In this view, we are looking at the data from the Income side; the two regression lines are drawn in the appropriate locations.



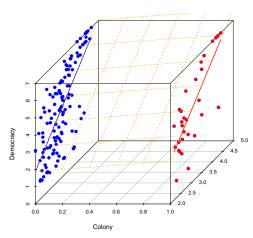
• We can also look at the 3D scatterplot from the British colony side.



- We can also look at the 3D scatterplot from the British colony side.
- While the British colonial status variable is either 0 or 1, there is nothing in the prediction equation that requires this to be the case.



- We can also look at the 3D scatterplot from the British colony side.
- While the British colonial status variable is either 0 or 1, there is nothing in the prediction equation that requires this to be the case.
- In fact, the prediction equation defines a regression plane that connects the lines when x<sub>2</sub> = 0 and x<sub>2</sub> = 1.



Regression with two continuous variables

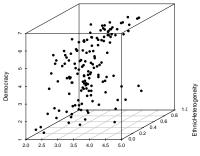
• Since we fit a regression plane to the data whenever we have two explanatory variables, it is easy to move to a case with two continuous explanatory variables.

Regression with two continuous variables

- Since we fit a regression plane to the data whenever we have two explanatory variables, it is easy to move to a case with two continuous explanatory variables.
- For example, we might want to use:
  - ► X<sub>1</sub> Income and X<sub>2</sub> Ethnic Heterogeneity
  - Y Democracy

 $\widehat{\text{Democracy}} = \hat{\beta}_0 + \hat{\beta}_1 \text{Income} + \hat{\beta}_2 \text{Ethnic Heterogeneity}$ 

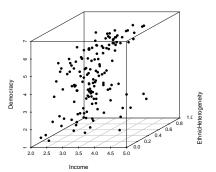
• We can plot the points in a 3D scatterplot.



Income

- We can plot the points in a 3D scatterplot.
- R returns:
  - $\widehat{\beta}_0 = -.71$
  - $\widehat{\beta}_1 = 1.6$  for Income
  - *β*<sub>2</sub> = −.6 for Ethnic
     Heterogeneity

How does this look graphically?

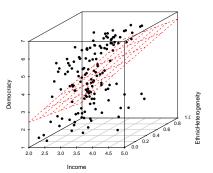


Stewart (Princeton)

- We can plot the points in a 3D scatterplot.
- R returns:
  - $\widehat{\beta}_0 = -.71$
  - $\widehat{\beta}_1 = 1.6$  for Income
  - β<sub>2</sub> = -.6 for Ethnic
     Heterogeneity

How does this look graphically?

• These estimates define a regression plane through the data.

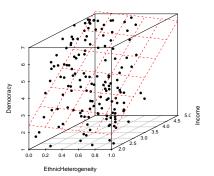


Stewart (Princeton)

- We can plot the points in a 3D scatterplot.
- R returns:
  - $\widehat{\beta}_0 = -.71$
  - $\widehat{\beta}_1 = 1.6$  for Income
  - β<sub>2</sub> = -.6 for Ethnic
     Heterogeneity

How does this look graphically?

• These estimates define a regression plane through the data.



• The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.

- The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.
- For example,  $\hat{\beta}_1 = 1.6$  represents our prediction of the difference in Democracy between two observations that differ by one unit of Income but have the same value of Ethnic Heterogeneity.

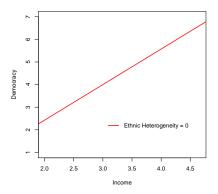
- The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.
- For example,  $\hat{\beta}_1 = 1.6$  represents our prediction of the difference in Democracy between two observations that differ by one unit of Income but have the same value of Ethnic Heterogeneity.
- The slope estimates have partial effect or ceteris paribus interpretations:

$$\frac{\partial(y=\beta_0+\beta_1X_1+\beta_2X_2)}{\partial X_1}=$$

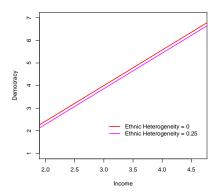
- The coefficient estimates have a similar interpretation in this case as they did in the Income-British Colony example.
- For example,  $\hat{\beta}_1 = 1.6$  represents our prediction of the difference in Democracy between two observations that differ by one unit of Income but have the same value of Ethnic Heterogeneity.
- The slope estimates have partial effect or ceteris paribus interpretations:

$$\frac{\partial(y = \beta_0 + \beta_1 X_1 + \beta_2 X_2)}{\partial X_1} = \beta_1$$

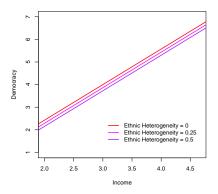
 Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.



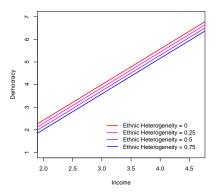
- Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.
- All of these lines are parallel since they have the slope  $\widehat{\beta}_1 = 1.6$



- Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.
- All of these lines are parallel since they have the slope  $\hat{\beta}_1 = 1.6$
- The lines shift up or down based on the value of Ethnic Heterogeneity.



- Again, we can think of this as defining a regression line for the relationship between Democracy and Income at every level of Ethnic Heterogeneity.
- All of these lines are parallel since they have the slope  $\hat{\beta}_1 = 1.6$
- The lines shift up or down based on the value of Ethnic Heterogeneity.



• We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.
- Consider our results for the regression of democracy on X<sub>1</sub> income and X<sub>2</sub> ethnic heterogeneity:

$$\widehat{\beta}_0 = -.71$$

$$\widehat{\beta}_1 = 1.6$$

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.
- Consider our results for the regression of democracy on X<sub>1</sub> income and X<sub>2</sub> ethnic heterogeneity:
  - $\widehat{\beta}_0 = -.71$
  - $\widehat{\beta}_1 = 1.6$
  - $\widehat{\beta}_2 = -.6$
- What is the predicted difference in democracy between
  - Chile with  $X_1 = 3.5$  and  $X_2 = .06$
  - China with  $X_1 = 2.5$  and  $X_2 = .5$ ?

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.
- Consider our results for the regression of democracy on X<sub>1</sub> income and X<sub>2</sub> ethnic heterogeneity:
  - $\widehat{\beta}_0 = -.71$
  - $\widehat{\beta}_1 = 1.6$
  - $\widehat{\beta}_2 = -.6$
- What is the predicted difference in democracy between
  - Chile with  $X_1 = 3.5$  and  $X_2 = .06$
  - China with  $X_1 = 2.5$  and  $X_2 = .5$ ?
- Predicted democracy is
  - $-.71 + 1.6 \cdot 3.5 .6 \cdot .06 = 4.8$  for Chile

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.
- Consider our results for the regression of democracy on X<sub>1</sub> income and X<sub>2</sub> ethnic heterogeneity:
  - $\widehat{\beta}_0 = -.71$
  - $\widehat{\beta}_1 = 1.6$
  - $\widehat{\beta}_2 = -.6$
- What is the predicted difference in democracy between
  - Chile with  $X_1 = 3.5$  and  $X_2 = .06$
  - China with  $X_1 = 2.5$  and  $X_2 = .5$ ?
- Predicted democracy is
  - $-.71 + 1.6 \cdot 3.5 .6 \cdot .06 = 4.8$  for Chile
  - $-.71 + 1.6 \cdot 2.5 .6 \cdot 0.5 = 3$  for China.

- We can also use the coefficient estimates for more complex predictions that involve changing multiple variables simultaneously.
- Consider our results for the regression of democracy on X<sub>1</sub> income and X<sub>2</sub> ethnic heterogeneity:
  - $\widehat{\beta}_0 = -.71$
  - $\widehat{\beta}_1 = 1.6$
  - $\widehat{\beta}_2 = -.6$
- What is the predicted difference in democracy between
  - Chile with  $X_1 = 3.5$  and  $X_2 = .06$
  - China with  $X_1 = 2.5$  and  $X_2 = .5$ ?
- Predicted democracy is
  - $-.71 + 1.6 \cdot 3.5 .6 \cdot .06 = 4.8$  for Chile
  - $-.71 + 1.6 \cdot 2.5 .6 \cdot 0.5 = 3$  for China.

Predicted difference is thus: 1.8 or  $(3.5 - 2.5)\widehat{\beta}_1 + (.06 - .5)\widehat{\beta}_2$ 



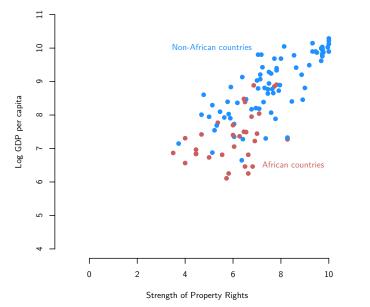
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - 7 Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- 11 Polynomials



13 Fun With Interactions

- 1 Two Examples
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- Dummy Variables
- **O** Interaction Terms
- Delynomials
- 12 Conclusion
  - 3 Fun With Interactions

# AJR Example



#### Basics

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

• Ye olde model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

•  $Z_i = 1$  to indicate that *i* is an African country

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $Z_i = 1$  to indicate that *i* is an African country
- $Z_i = 0$  to indicate that *i* is an non-African country

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $Z_i = 1$  to indicate that *i* is an African country
- $Z_i = 0$  to indicate that *i* is an non-African country
- Concern: AJR might be picking up an "African effect":

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $Z_i = 1$  to indicate that *i* is an African country
- $Z_i = 0$  to indicate that *i* is an non-African country
- Concern: AJR might be picking up an "African effect":
  - African countries have low incomes and weak property rights

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $Z_i = 1$  to indicate that *i* is an African country
- $Z_i = 0$  to indicate that *i* is an non-African country
- Concern: AJR might be picking up an "African effect":
  - African countries have low incomes and weak property rights
  - "Control for" country being in Africa or not to remove this

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $Z_i = 1$  to indicate that *i* is an African country
- $Z_i = 0$  to indicate that *i* is an non-African country
- Concern: AJR might be picking up an "African effect":
  - African countries have low incomes and weak property rights
  - "Control for" country being in Africa or not to remove this
  - ► Effects are now within Africa or within non-Africa, not between

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $Z_i = 1$  to indicate that *i* is an African country
- $Z_i = 0$  to indicate that *i* is an non-African country
- Concern: AJR might be picking up an "African effect":
  - African countries have low incomes and weak property rights
  - "Control for" country being in Africa or not to remove this
  - ► Effects are now within Africa or within non-Africa, not between
- New model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

# AJR model

## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 5.65556 0.31344 18.043 < 2e-16 \*\*\* ## avexpr 0.42416 0.03971 10.681 < 2e-16 \*\*\* ## africa -0.87844 0.14707 -5.973 3.03e-08 \*\*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.6253 on 108 degrees of freedom (52 observations deleted due to missingness) ## ## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7024 ## F-statistic: 130.8 on 2 and 108 DF, p-value: < 2.2e-16

• How can we interpret this model?

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :

$$\widehat{Y}_{i} = \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{i} + \widehat{\beta}_{2}Z_{i}$$
$$= \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{i} + \widehat{\beta}_{2} \times 0$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :

$$\begin{aligned} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i \end{aligned}$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :  $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$   $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0$  $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$
- When  $Z_i = 1$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :  $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$   $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0$  $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$
- When  $Z_i = 1$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :  $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$   $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0$  $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$

• When  $Z_i = 1$ :

$$\begin{aligned} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 1 \end{aligned}$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :  $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$   $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0$  $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$

• When  $Z_i = 1$ :

$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 1 \\ &= (\widehat{\beta}_0 + \widehat{\beta}_2) + \widehat{\beta}_1 X_i \end{split}$$

- How can we interpret this model?
- Plug in two possible values for  $Z_i$  and rearrange
- When  $Z_i = 0$ :  $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$   $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0$  $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$

• When  $Z_i = 1$ :  $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$   $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 1$  $= (\widehat{\beta}_0 + \widehat{\beta}_2) + \widehat{\beta}_1 X_i$ 

• Two different intercepts, same slope

• Let's review what we've seen so far:

|                                 | Intercept for $X_i$                         | Slope for $X_i$     |
|---------------------------------|---------------------------------------------|---------------------|
| Non-African country $(Z_i = 0)$ |                                             | $\widehat{\beta}_1$ |
| African country $(Z_i=1)$       | $\widehat{\beta}_{0} + \widehat{\beta}_{2}$ | $\widehat{eta}_1$   |

• Let's review what we've seen so far:

Intercept for  $X_i$ Slope for  $X_i$ Non-African country  $(Z_i = 0)$  $\widehat{\beta}_0$  $\widehat{\beta}_1$ African country  $(Z_i = 1)$  $\widehat{\beta}_0 + \widehat{\beta}_2$  $\widehat{\beta}_1$ 

$$\widehat{Y}_i = 5.656 + 0.424 imes X_i - 0.878 imes Z_i$$

• Let's review what we've seen so far:

Intercept for  $X_i$ Slope for  $X_i$ Non-African country  $(Z_i = 0)$  $\widehat{\beta}_0$  $\widehat{\beta}_1$ African country  $(Z_i = 1)$  $\widehat{\beta}_0 + \widehat{\beta}_2$  $\widehat{\beta}_1$ 

• In this example, we have:

$$\widehat{Y}_i = 5.656 + 0.424 imes X_i - 0.878 imes Z_i$$

• We can read these as:

• Let's review what we've seen so far:

Intercept for  $X_i$ Slope for  $X_i$ Non-African country  $(Z_i = 0)$  $\widehat{\beta}_0$  $\widehat{\beta}_1$ African country  $(Z_i = 1)$  $\widehat{\beta}_0 + \widehat{\beta}_2$  $\widehat{\beta}_1$ 

$$\widehat{Y}_i = \mathbf{5.656} + 0.424 imes X_i - 0.878 imes Z_i$$

- We can read these as:
  - ▶  $\hat{\beta}_0$ : average log income for non-African country ( $Z_i = 0$ ) with property rights measured at 0 is 5.656

• Let's review what we've seen so far:

Intercept for  $X_i$ Slope for  $X_i$ Non-African country  $(Z_i = 0)$  $\widehat{\beta}_0$  $\widehat{\beta}_1$ African country  $(Z_i = 1)$  $\widehat{\beta}_0 + \widehat{\beta}_2$  $\widehat{\beta}_1$ 

$$\widehat{Y}_i = 5.656 + rac{0.424}{0.424} imes X_i - 0.878 imes Z_i$$

- We can read these as:
  - ▶  $\hat{\beta}_0$ : average log income for non-African country ( $Z_i = 0$ ) with property rights measured at 0 is 5.656
  - ▶ β<sub>1</sub>: A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)

• Let's review what we've seen so far:

Intercept for  $X_i$ Slope for  $X_i$ Non-African country  $(Z_i = 0)$  $\widehat{\beta}_0$  $\widehat{\beta}_1$ African country  $(Z_i = 1)$  $\widehat{\beta}_0 + \widehat{\beta}_2$  $\widehat{\beta}_1$ 

$$\widehat{Y}_i = 5.656 + 0.424 imes X_i - \mathbf{0.878} imes Z_i$$

- We can read these as:
  - ▶  $\hat{\beta}_0$ : average log income for non-African country ( $Z_i = 0$ ) with property rights measured at 0 is 5.656
  - $\hat{\beta}_1$ : A one-unit increase in property rights is associated with a 0.424 increase in average log incomes for two African countries (or for two non-African countries)
  - ▶ β<sub>2</sub>: there is a -0.878 average difference in log income per capita between African and non-African counties **conditional on** property rights

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

•  $\widehat{\beta}_0$ : average value of  $Y_i$  when both  $X_i$  and  $Z_i$  are equal to 0

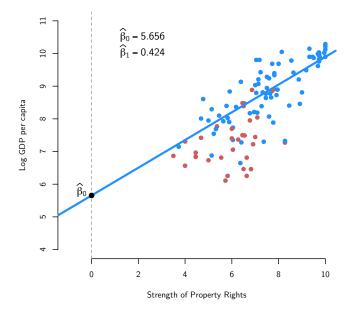
$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

β<sub>0</sub>: average value of Y<sub>i</sub> when both X<sub>i</sub> and Z<sub>i</sub> are equal to 0
β<sub>1</sub>: A one-unit change in X<sub>i</sub> is associated with a β<sub>1</sub>-unit change in Y<sub>i</sub> conditional on Z<sub>i</sub>

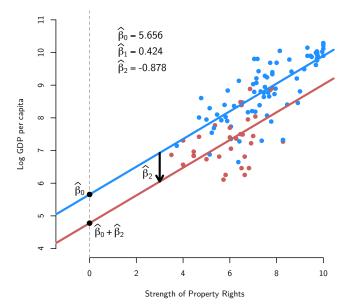
$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- $\widehat{\beta}_0$ : average value of  $Y_i$  when both  $X_i$  and  $Z_i$  are equal to 0
- *β*<sub>1</sub>: A one-unit change in X<sub>i</sub> is associated with a *β*<sub>1</sub>-unit change in Y<sub>i</sub> conditional on Z<sub>i</sub>
- β
  <sub>2</sub>: average difference in Y<sub>i</sub> between Z<sub>i</sub> = 1 group and Z<sub>i</sub> = 0 group conditional on X<sub>i</sub>

# Adding a binary variable, visually



# Adding a binary variable, visually



$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

• Ye olde model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

• Z<sub>i</sub>: mean temperature in country i (continuous)

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- Z<sub>i</sub>: mean temperature in country i (continuous)
- Concern: geography is confounding the effect

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- Z<sub>i</sub>: mean temperature in country i (continuous)
- Concern: geography is confounding the effect
  - geography might affect political institutions

# Adding a continuous variable

Ye olde model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- Z<sub>i</sub>: mean temperature in country *i* (continuous)
- Concern: geography is confounding the effect
  - geography might affect political institutions
  - geography might affect average incomes (through diseases like malaria)

# Adding a continuous variable

Ye olde model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- Z<sub>i</sub>: mean temperature in country *i* (continuous)
- Concern: geography is confounding the effect
  - geography might affect political institutions
  - geography might affect average incomes (through diseases like malaria)
- New model:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

# AJR model, revisited

## **##** Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 6.80627 0.75184 9.053 1.27e-12 \*\*\* ## avexpr 0.40568 0.06397 6.342 3.94e-08 \*\*\* ## meantemp -0.06025 0.01940 -3.105 0.00296 \*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.6435 on 57 degrees of freedom (103 observations deleted due to missingness) ## ## Multiple R-squared: 0.6155, Adjusted R-squared: 0.602 ## F-statistic: 45.62 on 2 and 57 DF, p-value: 1.481e-12

|                     | Intercept for $X_i$   | Slope for $X_i$   |
|---------------------|-----------------------|-------------------|
| $Z_i = 0^{\circ} C$ | $\widehat{\beta}_{0}$ | $\widehat{eta}_1$ |

|                             | Intercept for $X_i$                               | Slope for $X_i$     |
|-----------------------------|---------------------------------------------------|---------------------|
| $Z_i = 0$ °C                | $\widehat{eta}_{0}$                               | $\widehat{\beta}_1$ |
| $Z_i = 21 ^{\circ}\text{C}$ | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 21$ | $\widehat{eta}_1$   |

|                             | Intercept for $X_i$                                                            | Slope for $X_i$     |
|-----------------------------|--------------------------------------------------------------------------------|---------------------|
| $Z_i = 0$ °C                | $\widehat{eta}_{0}$                                                            | $\widehat{\beta}_1$ |
| $Z_i = 21 ^{\circ}\text{C}$ | $ \widehat{\beta}_{0} \\ \widehat{\beta}_{0} + \widehat{\beta}_{2} \times 21 $ | $\widehat{eta}_1$   |
| $Z_i = 24 ^{\circ}\text{C}$ | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 24$                              | $\widehat{eta}_1$   |

|                               | Intercept for $X_i$                                                      | Slope for $X_i$   |
|-------------------------------|--------------------------------------------------------------------------|-------------------|
| $Z_i = 0$ °C                  | $\widehat{\beta}_{0}$                                                    | $\widehat{eta}_1$ |
| $Z_i = 21 ^{\circ}\text{C}$   | $ \widehat{\beta}_0 \\ \widehat{\beta}_0 + \widehat{\beta}_2 \times 21 $ | $\widehat{eta}_1$ |
| $Z_i = 24 ^{\circ}\text{C}$   | $\widehat{eta}_0 + \widehat{eta}_2 	imes 24$                             | $\widehat{eta}_1$ |
| $Z_i = 26 ^{\circ}\mathrm{C}$ | $\widehat{eta}_0 + \widehat{eta}_2 	imes 26$                             | $\widehat{eta}_1$ |

|                               | Intercept for $X_i$                                                      | Slope for $X_i$   |
|-------------------------------|--------------------------------------------------------------------------|-------------------|
| $Z_i = 0$ °C                  | $\widehat{\beta}_{0}$                                                    | $\widehat{eta}_1$ |
| $Z_i = 21 ^{\circ}\text{C}$   | $ \widehat{\beta}_0 \\ \widehat{\beta}_0 + \widehat{\beta}_2 \times 21 $ | $\widehat{eta}_1$ |
| $Z_i = 24 ^{\circ}\text{C}$   | $\widehat{eta}_0 + \widehat{eta}_2 	imes 24$                             | $\widehat{eta}_1$ |
| $Z_i = 26 ^{\circ}\mathrm{C}$ | $\widehat{eta}_0 + \widehat{eta}_2 	imes 26$                             | $\widehat{eta}_1$ |

|                                | Intercept for $X_i$                                                                                                                                                                                                       | Slope for $X_i$   |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| $Z_i = 0 ^{\circ} C$           | $\widehat{\beta}_{0}$                                                                                                                                                                                                     | $\widehat{eta}_1$ |
| $Z_i = 21 ^{\circ} \text{C}$   | $\widehat{eta}_0 + \widehat{eta}_2 	imes 21$                                                                                                                                                                              | $\widehat{eta}_1$ |
| $Z_i = 24 ^{\circ} \mathrm{C}$ | $\widehat{eta}_0 + \widehat{eta}_2 	imes 24$                                                                                                                                                                              | $\widehat{eta}_1$ |
| $Z_i = 26 ^{\circ}\mathrm{C}$  | $ \begin{array}{c} \widehat{\beta}_{0} \\ \widehat{\beta}_{0} + \widehat{\beta}_{2} \times 21 \\ \widehat{\beta}_{0} + \widehat{\beta}_{2} \times 24 \\ \widehat{\beta}_{0} + \widehat{\beta}_{2} \times 26 \end{array} $ | $\widehat{eta}_1$ |

• In this example we have:

$$\widehat{Y}_i = 6.806 + 0.406 \times X_i + -0.06 \times Z_i$$

|                                | Intercept for $X_i$                                                                                  | Slope for $X_i$   |
|--------------------------------|------------------------------------------------------------------------------------------------------|-------------------|
| $Z_i = 0 ^{\circ} C$           | $\widehat{\beta}_{0}$                                                                                | $\widehat{eta}_1$ |
| $Z_i = 21 ^{\circ}\text{C}$    | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 21$                                                    | $\widehat{eta}_1$ |
| $Z_i = 24 ^{\circ} \mathrm{C}$ | $ \widehat{\beta}_0 + \widehat{\beta}_2 \times 24  \widehat{\beta}_0 + \widehat{\beta}_2 \times 26 $ | $\widehat{eta}_1$ |
| $Z_i = 26 ^{\circ}\text{C}$    | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 26$                                                    | $\widehat{eta}_1$ |

• In this example we have:

$$\widehat{Y}_i = 6.806 + 0.406 \times X_i + -0.06 \times Z_i$$

•  $\hat{\beta}_0$ : average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806

|                                | Intercept for $X_i$                                                                                         | Slope for $X_i$     |
|--------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|
| $Z_i = 0^{\circ}C$             | $\widehat{\beta}_{0}$                                                                                       | $\widehat{\beta}_1$ |
| $Z_i = 21 ^{\circ}\text{C}$    | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 21$                                                           | $\widehat{eta}_1$   |
| $Z_i = 24 ^{\circ} \mathrm{C}$ | $\widehat{\beta}_{0} + \widehat{\beta}_{2} \times 24$ $\widehat{\beta}_{0} + \widehat{\beta}_{2} \times 26$ | $\widehat{eta}_1$   |
| $Z_i = 26 ^{\circ}\mathrm{C}$  | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 26$                                                           | $\widehat{eta}_1$   |

• In this example we have:

$$\widehat{Y}_i = 6.806 + 0.406 \times X_i + -0.06 \times Z_i$$

- $\hat{\beta}_0$ : average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806
- $\hat{\beta}_1$ : A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature

|                                | Intercept for $X_i$                               | Slope for $X_i$     |
|--------------------------------|---------------------------------------------------|---------------------|
| $Z_i = 0^{\circ}C$             | $\widehat{\beta}_{0}$                             | $\widehat{\beta}_1$ |
| $Z_i = 21 ^{\circ}\text{C}$    | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 21$ | $\widehat{eta}_1$   |
| $Z_i = 24 ^{\circ} \mathrm{C}$ | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 24$ | $\widehat{eta}_1$   |
| $Z_i = 26 ^{\circ}\mathrm{C}$  | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 26$ | $\widehat{eta}_1$   |

• In this example we have:

 $\widehat{Y}_i = 6.806 + 0.406 \times X_i + -0.06 \times Z_i$ 

- $\hat{\beta}_0$ : average log income for a country with property rights measured at 0 and a mean temperature of 0 is 6.806
- $\hat{\beta}_1$ : A one-unit change in property rights is associated with a 0.406 change in average log incomes conditional on a country's mean temperature
- β<sub>2</sub>: A one-degree increase in mean temperature is associated with a -0.06 change in average log incomes conditional on strength of property rights

Stewart (Princeton)

#### General interpretation

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

The coefficient β<sub>1</sub> measures how the predicted outcome varies in X<sub>i</sub> for a fixed value of Z<sub>i</sub>.

#### General interpretation

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- The coefficient β<sub>1</sub> measures how the predicted outcome varies in X<sub>i</sub> for a fixed value of Z<sub>i</sub>.
- The coefficient  $\hat{\beta}_2$  measures how the predicted outcome varies in  $Z_i$  for a fixed value of  $X_i$ .



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- Polynomials





- Two Examples
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- Dummy Variables
- Interaction Terms
- Delynomials
- 12 Conclusion
  - 3 Fun With Interactions

• Where do we get our hats?

• Where do we get our hats?

• Where do we get our hats?  $\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2$ 

- Where do we get our hats?  $\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2$
- To answer this, we first need to redefine some terms from simple linear regression.

- Where do we get our hats?  $\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2$
- To answer this, we first need to redefine some terms from simple linear regression.
- Fitted values for  $i = 1, \ldots, n$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

- Where do we get our hats?  $\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2$
- To answer this, we first need to redefine some terms from simple linear regression.
- Fitted values for  $i = 1, \ldots, n$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

• Residuals for 
$$i = 1, \ldots, n$$
:

$$\widehat{u}_i = Y_i - \widehat{Y}_i$$

• How do we estimate  $\widehat{\beta}_0$ ,  $\widehat{\beta}_1$ , and  $\widehat{\beta}_2$ ?

- How do we estimate  $\widehat{\beta}_0$ ,  $\widehat{\beta}_1$ , and  $\widehat{\beta}_2$ ?
- Minimize the sum of the squared residuals, just like before:

$$(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) = \operatorname*{arg\,min}_{b_0, b_1, b_2} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

- How do we estimate  $\widehat{\beta}_0$ ,  $\widehat{\beta}_1$ , and  $\widehat{\beta}_2$ ?
- Minimize the sum of the squared residuals, just like before:

$$(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) = \operatorname*{arg\,min}_{b_0, b_1, b_2} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

 The calculus is the same as last week, with 3 partial derivatives instead of 2

- How do we estimate  $\widehat{\beta}_0$ ,  $\widehat{\beta}_1$ , and  $\widehat{\beta}_2$ ?
- Minimize the sum of the squared residuals, just like before:

$$(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) = \operatorname*{arg\,min}_{b_0, b_1, b_2} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i - b_2 Z_i)^2$$

- The calculus is the same as last week, with 3 partial derivatives instead of 2
- Let's start with a simple recipe and then rigorously show that it holds

• "Partialling out" OLS recipe:

• "Partialling out" OLS recipe:

**1** Run regression of  $X_i$  on  $Z_i$ :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

• "Partialling out" OLS recipe:

**1** Run regression of  $X_i$  on  $Z_i$ :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

② Calculate residuals from this regression:

$$\widehat{r}_{xz,i} = X_i - \widehat{X}_i$$

• "Partialling out" OLS recipe:

**1** Run regression of  $X_i$  on  $Z_i$ :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

2 Calculate residuals from this regression:

$$\widehat{r}_{xz,i} = X_i - \widehat{X}_i$$

**③** Run a simple regression of  $Y_i$  on residuals,  $\hat{r}_{xz,i}$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \widehat{r}_{xz,i}$$

• "Partialling out" OLS recipe:

**1** Run regression of  $X_i$  on  $Z_i$ :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

2 Calculate residuals from this regression:

$$\widehat{r}_{xz,i} = X_i - \widehat{X}_i$$

**3** Run a simple regression of  $Y_i$  on residuals,  $\hat{r}_{xz,i}$ :

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \widehat{r}_{xz,i}$$

• Estimate of  $\widehat{\beta}_1$  will be the same as running:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i$$

Regression property rights on mean temperature

## **##** Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 9.95678 0.82015 12.140 < 2e-16 \*\*\* ## meantemp -0.14900 0.03469 -4.295 6.73e-05 \*\*\* ## \_\_\_ Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## ## Residual standard error: 1.321 on 58 degrees of freedom (103 observations deleted due to missingness) ## ## Multiple R-squared: 0.2413, Adjusted R-squared: 0.2282 ## F-statistic: 18.45 on 1 and 58 DF, p-value: 6.733e-05

Regression of log income on the residuals

- ## (Intercept) avexpr.res
  ## 8.0542783 0.4056757
- ## (Intercept) avexpr meantemp
- ## 6.80627375 0.40567575 -0.06024937

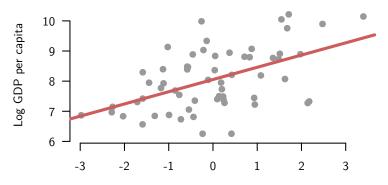
# Residual/partial regression plot

# Residual/partial regression plot

Useful for plotting the conditional relationship between property rights and income given temperature:

# Residual/partial regression plot

Useful for plotting the conditional relationship between property rights and income given temperature:



Residuals(Property Right ~ Mean Temperature)

In simple regression, we chose (β
<sub>0</sub>, β
<sub>1</sub>) to minimize the sum of the squared residuals

- In simple regression, we chose  $(\hat{\beta}_0, \hat{\beta}_1)$  to minimize the sum of the squared residuals
- We use the same principle for picking (β
  <sub>0</sub>, β
  <sub>1</sub>, β
  <sub>2</sub>) for regression with two regressors (x<sub>i</sub> and z<sub>i</sub>):

$$\begin{aligned} (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) &= \operatorname{argmin}_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^n \widehat{u}_i^2 &= \operatorname{argmin}_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \\ &= \operatorname{argmin}_{\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2} \sum_{i=1}^n (y_i - \tilde{\beta}_0 - x_i \tilde{\beta}_1 - z_i \tilde{\beta}_2)^2 \end{aligned}$$

- In simple regression, we chose  $(\hat{\beta}_0, \hat{\beta}_1)$  to minimize the sum of the squared residuals
- We use the same principle for picking (β
  <sub>0</sub>, β
  <sub>1</sub>, β
  <sub>2</sub>) for regression with two regressors (x<sub>i</sub> and z<sub>i</sub>):

$$egin{aligned} & (\hat{eta}_0, \hat{eta}_1, \hat{eta}_2) &= rgmin_{ ilde{eta}_0, ilde{eta}_1, ilde{eta}_2} \sum_{i=1}^n \widehat{u}_i^2 &= rgmin_{ ilde{eta}_0, ilde{eta}_1, ilde{eta}_2} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \ &= rgmin_{ ilde{eta}_0, ilde{eta}_1, ilde{eta}_2} \sum_{i=1}^n (y_i - ilde{eta}_0 - x_i ilde{eta}_1 - z_i ilde{eta}_2)^2 \end{aligned}$$

• (The same works more generally for *k* regressors, but this is done more easily with matrices as we will see next week)

We want to minimize the following quantitity with respect to  $(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)$ :

$$S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^n (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2$$

Plan is conceptually the same as before

We want to minimize the following quantitity with respect to  $(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)$ :

$$S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^n (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2$$

Plan is conceptually the same as before

**(**) Take the partial derivatives of *S* with respect to  $\tilde{\beta}_0, \tilde{\beta}_1$  and  $\tilde{\beta}_2$ .

We want to minimize the following quantitity with respect to  $(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)$ :

$$S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^n (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2$$

Plan is conceptually the same as before

- **1** Take the partial derivatives of S with respect to  $\tilde{\beta}_0, \tilde{\beta}_1$  and  $\tilde{\beta}_2$ .
- Set each of the partial derivatives to 0 to obtain the first order conditions.

We want to minimize the following quantitity with respect to  $(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2)$ :

$$S(\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2) = \sum_{i=1}^n (y_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i - \tilde{\beta}_2 z_i)^2$$

Plan is conceptually the same as before

- **①** Take the partial derivatives of S with respect to  $\tilde{\beta}_0, \tilde{\beta}_1$  and  $\tilde{\beta}_2$ .
- Set each of the partial derivatives to 0 to obtain the first order conditions.
- Substitute  $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$  for  $\tilde{\beta}_0, \tilde{\beta}_1, \tilde{\beta}_2$  and solve for  $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$  to obtain the OLS estimator.

## First Order Conditions

Setting the partial derivatives equal to zero leads to a system of 3 linear equations in 3 unknowns:  $\hat{\beta}_0, \hat{\beta}_1$  and  $\hat{\beta}_2$ 

$$\frac{\partial S}{\partial \tilde{\beta}_0} = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$
  
$$\frac{\partial S}{\partial \tilde{\beta}_1} = \sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$
  
$$\frac{\partial S}{\partial \tilde{\beta}_2} = \sum_{i=1}^n z_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$

When will this linear system have a unique solution?

# First Order Conditions

Setting the partial derivatives equal to zero leads to a system of 3 linear equations in 3 unknowns:  $\hat{\beta}_0, \hat{\beta}_1$  and  $\hat{\beta}_2$ 

$$\frac{\partial S}{\partial \tilde{\beta}_0} = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$
  
$$\frac{\partial S}{\partial \tilde{\beta}_1} = \sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$
  
$$\frac{\partial S}{\partial \tilde{\beta}_2} = \sum_{i=1}^n z_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 z_i) = 0$$

When will this linear system have a unique solution?

- More observations than predictors (i.e. n > 2)
- x and z are linearly independent, i.e.,
  - neither x nor z is a constant
  - x is not a linear function of z (or vice versa)
- Wooldridge calls this assumption no perfect collinearity

The OLS estimator for  $(\hat{eta}_0,\hat{eta}_1,\hat{eta}_2)$  can be written as

The OLS estimator for  $(\hat{\beta}_0,\hat{\beta}_1,\hat{\beta}_2)$  can be written as

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} - \hat{\beta}_2 \bar{z}$$

$$\hat{\beta}_1 = \frac{Cov(x, y)Var(z) - Cov(z, y)Cov(x, z)}{Var(x)Var(z) - Cov(x, z)^2}$$

$$\hat{\beta}_2 = \frac{Cov(z, y)Var(x) - Cov(x, y)Cov(z, x)}{Var(x)Var(z) - Cov(x, z)^2}$$

For  $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$  to be well-defined we need:

$$Var(x)Var(z) \neq Cov(x,z)^2$$

Condition fails if:

The OLS estimator for  $(\hat{\beta}_0,\hat{\beta}_1,\hat{\beta}_2)$  can be written as

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} - \hat{\beta}_2 \bar{z}$$

$$\hat{\beta}_1 = \frac{Cov(x, y)Var(z) - Cov(z, y)Cov(x, z)}{Var(x)Var(z) - Cov(x, z)^2}$$

$$\hat{\beta}_2 = \frac{Cov(z, y)Var(x) - Cov(x, y)Cov(z, x)}{Var(x)Var(z) - Cov(x, z)^2}$$

For  $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$  to be well-defined we need:

$$Var(x)Var(z) \neq Cov(x,z)^2$$

Condition fails if:

If x or z is a constant 
$$(\Rightarrow Var(x)Var(z) = Cov(x, z) = 0)$$

The OLS estimator for  $(\hat{eta}_0,\hat{eta}_1,\hat{eta}_2)$  can be written as

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} - \hat{\beta}_2 \bar{z}$$

$$\hat{\beta}_1 = \frac{Cov(x, y)Var(z) - Cov(z, y)Cov(x, z)}{Var(x)Var(z) - Cov(x, z)^2}$$

$$\hat{\beta}_2 = \frac{Cov(z, y)Var(x) - Cov(x, y)Cov(z, x)}{Var(x)Var(z) - Cov(x, z)^2}$$

For  $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$  to be well-defined we need:

$$Var(x)Var(z) \neq Cov(x,z)^2$$

Condition fails if:

- If x or z is a constant  $(\Rightarrow Var(x)Var(z) = Cov(x, z) = 0)$
- One explanatory variable is an exact linear function of another  $(\Rightarrow Cor(x, z) = 1 \Rightarrow Var(x)Var(z) = Cov(x, z)^2)$

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta}_1$ :

$$y = \hat{\gamma_0} + \hat{\beta_1} \hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1} x + \hat{\beta_2} z$ 

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta_1}$ :

$$y = \hat{\gamma_0} + \hat{\beta_1}\hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1}x + \hat{\beta_2}z$ 

•  $\delta$  is correlation between X and Z.

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta_1}$ :

$$y = \hat{\gamma_0} + \hat{\beta_1} \hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1} x + \hat{\beta_2} z$ 

•  $\delta$  is correlation between X and Z. What is our estimator  $\hat{\beta}_1$  if  $\delta = 0$ ?

$$r_{xz} = x - \hat{\lambda} = x_i - \bar{x}$$
 so  $\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2} =$ 

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta_1}$ :

$$y = \hat{\gamma_0} + \hat{\beta_1}\hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1}x + \hat{\beta_2}z$ 

•  $\delta$  is correlation between X and Z. What is our estimator  $\hat{\beta}_1$  if  $\delta = 0$ ?

$$r_{xz} = x - \hat{\lambda} = x_i - \bar{x}$$
 so  $\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} y_i}{\sum_i^n \hat{r}_{xz,i}^2} = \frac{\sum_i^n (x_i - \bar{x}) y_i}{\sum_i^n (x_i - \bar{x})^2}$ 

• That is, same as the simple regresson of Y on X alone.

Stewart (Princeton)

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta}_1$ :

$$y = \hat{\gamma_0} + \hat{\beta_1} \hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1} x + \hat{\beta_2} z$ 

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta}_1$ :

$$y = \hat{\gamma_0} + \hat{\beta_1} \hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1} x + \hat{\beta_2} z$ 

•  $\delta$  measures the correlation between X and Z.

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta}_1$ :

$$y = \hat{\gamma_0} + \hat{\beta_1} \hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1} x + \hat{\beta_2} z$ 

•  $\delta$  measures the correlation between X and Z.

• Residuals  $\hat{r}_{xz}$  are the part of X that is uncorrelated with Z. Put differently,  $\hat{r}_{xz}$  is X, after the effect of Z on X has been partialled out or netted out.

Assume  $Y = \beta_0 + \beta_1 X + \beta_2 Z + u$ . Another way to write the OLS estimator is:

$$\hat{\beta}_1 = \frac{\sum_i^n \hat{r}_{xz,i} \, y_i}{\sum_i^n \hat{r}_{xz,i}^2}$$

where  $\hat{r}_{xz,i}$  are the residuals from the regression of X on Z:

$$X = \lambda + \delta Z + r_{xz}$$

In other words, both of these regressions yield identical estimates  $\hat{\beta}_1$ :

$$y = \hat{\gamma_0} + \hat{\beta_1} \hat{r}_{xz}$$
 and  $y = \hat{\beta_0} + \hat{\beta_1} x + \hat{\beta_2} z$ 

- $\delta$  measures the correlation between X and Z.
- Residuals  $\hat{r}_{xz}$  are the part of X that is uncorrelated with Z. Put differently,  $\hat{r}_{xz}$  is X, after the effect of Z on X has been partialled out or netted out.
- Can use same equation with k explanatory variables;  $\hat{r}_{xz}$  will then come from a regression of X on all the other explanatory variables.

Stewart (Princeton)

Week 6: Two Regressors

• When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:
- Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:
- Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

2 Random/iid sample

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:
- Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2 Random/iid sample
- No perfect collinearity

- When we have more than one independent variable, we need the following assumptions in order for OLS to be unbiased:
- Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2 Random/iid sample
- No perfect collinearity
- Zero conditional mean error

$$\mathbb{E}[u_i|X_i,Z_i]=0$$

#### Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

Two components

#### Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

Two components

**1** Both  $X_i$  and  $Z_i$  have to vary.

#### Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
  - Both X<sub>i</sub> and Z<sub>i</sub> have to vary.
  - 2  $Z_i$  cannot be a deterministic, linear function of  $X_i$ .

#### Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
  - **1** Both  $X_i$  and  $Z_i$  have to vary.
  - 2  $Z_i$  cannot be a deterministic, linear function of  $X_i$ .
- Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$

#### Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
  - Both X<sub>i</sub> and Z<sub>i</sub> have to vary.
  - 2  $Z_i$  cannot be a deterministic, linear function of  $X_i$ .
- Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$

• Notice how this is linear (equation of a line) and there is no error, so it is deterministic.

#### Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no exactly linear relationships among the explanatory variables.

- Two components
  - Both X<sub>i</sub> and Z<sub>i</sub> have to vary.
  - 2  $Z_i$  cannot be a deterministic, linear function of  $X_i$ .
- Part 2 rules out anything of the form:

$$Z_i = a + bX_i$$

- Notice how this is linear (equation of a line) and there is no error, so it is deterministic.
- What's the correlation between  $Z_i$  and  $X_i$ ? 1!

# Perfect collinearity example (I)

• Simple example:

# Perfect collinearity example (I)

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

• These two variables are perfectly collinear.

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:

• 
$$Z_i = X_i^2$$

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:

$$\blacktriangleright Z_i = X_i^2$$

• Do we have to worry about collinearity here?

- Simple example:
  - $X_i = 1$  if a country is **not** in Africa and 0 otherwise.
  - $Z_i = 1$  if a country is in Africa and 0 otherwise.
- But, clearly we have the following:

$$Z_i = 1 - X_i$$

- These two variables are perfectly collinear.
- What about the following:

$$\blacktriangleright Z_i = X_i^2$$

- Do we have to worry about collinearity here?
- No! Because while Z<sub>i</sub> is a deterministic function of X<sub>i</sub>, it is not a linear function of X<sub>i</sub>.

#### R and perfect collinearity

• R, and all other packages, will drop one of the variables if there is perfect collinearity:

#### R and perfect collinearity

• R, and all other packages, will drop one of the variables if there is perfect collinearity:

#### R and perfect collinearity

• R, and all other packages, will drop one of the variables if there is perfect collinearity:

```
##
## Coefficients: (1 not defined because of singularities)
##
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) 8.71638 0.08991 96.941 < 2e-16 ***
##
## africa -1.36119 0.16306 -8.348 4.87e-14 ***
## nonafrica
                    NΑ
                               NA
                                      ΝA
                                               NΑ
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9125 on 146 degrees of freedom
    (15 observations deleted due to missingness)
##
## Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184
## F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14
```

• Another example:

- Another example:
  - $X_i$  = mean temperature in Celsius

- Another example:
  - $X_i$  = mean temperature in Celsius
  - $Z_i = 1.8X_i + 32$  (mean temperature in Fahrenheit)

- Another example:
  - $X_i$  = mean temperature in Celsius
  - $Z_i = 1.8X_i + 32$  (mean temperature in Fahrenheit)

- Another example:
  - $X_i$  = mean temperature in Celsius
  - $Z_i = 1.8X_i + 32$  (mean temperature in Fahrenheit)

| ## | (Intercept) | meantemp   | meantemp.f |
|----|-------------|------------|------------|
| ## | 10.8454999  | -0.1206948 | NA         |

For large-sample inference and calculating SEs, we need the two-variable version of the Gauss-Markov assumptions:

For large-sample inference and calculating SEs, we need the two-variable version of the Gauss-Markov assumptions:

Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2 Random/iid sample
- O perfect collinearity
- Zero conditional mean error

 $\mathbb{E}[u_i|X_i,Z_i]=0$ 

For large-sample inference and calculating SEs, we need the two-variable version of the Gauss-Markov assumptions:

Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2 Random/iid sample
- O No perfect collinearity
- Zero conditional mean error

$$\mathbb{E}[u_i|X_i,Z_i]=0$$

Interpretended in the second state of the s

$$\operatorname{var}[u_i|X_i, Z_i] = \sigma_u^2$$

• We have our OLS estimate  $\widehat{\beta}_1$ 

- We have our OLS estimate  $\widehat{eta}_1$
- We have an estimate of the standard error for that coefficient,  $\widehat{SE}[\widehat{\beta}_1]$ .

- We have our OLS estimate  $\widehat{eta}_1$
- We have an estimate of the standard error for that coefficient,  $\widehat{SE}[\widehat{\beta}_1]$ .
- Under assumption 1-5, in large samples, we'll have the following:

$$rac{\widehat{eta}_1-eta_1}{\widehat{SE}[\widehat{eta}_1]}\sim {\it N}(0,1)$$

- We have our OLS estimate  $\widehat{eta}_1$
- We have an estimate of the standard error for that coefficient,  $\widehat{SE}[\widehat{\beta}_1]$ .
- Under assumption 1-5, in large samples, we'll have the following:

$$rac{\widehat{eta}_1 - eta_1}{\widehat{SE}[\widehat{eta}_1]} \sim N(0,1)$$

• The same holds for the other coefficient:

$$rac{\widehat{eta}_2 - eta_2}{\widehat{SE}[\widehat{eta}_2]} \sim N(0, 1)$$

- We have our OLS estimate  $\widehat{\beta}_1$
- We have an estimate of the standard error for that coefficient,  $\widehat{SE}[\widehat{\beta}_1]$ .
- Under assumption 1-5, in large samples, we'll have the following:

$$rac{\widehat{eta}_1 - eta_1}{\widehat{SE}[\widehat{eta}_1]} \sim N(0,1)$$

• The same holds for the other coefficient:

$$rac{\widehat{eta}_2 - eta_2}{\widehat{SE}[\widehat{eta}_2]} \sim N(0, 1)$$

Inference is exactly the same in large samples!

- We have our OLS estimate  $\widehat{\beta}_1$
- We have an estimate of the standard error for that coefficient,  $\widehat{SE}[\widehat{\beta}_1]$ .
- Under assumption 1-5, in large samples, we'll have the following:

$$rac{\widehat{eta}_1 - eta_1}{\widehat{SE}[\widehat{eta}_1]} \sim N(0,1)$$

• The same holds for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim N(0, 1)$$

- Inference is exactly the same in large samples!
- Hypothesis tests and CIs are good to go

- We have our OLS estimate  $\widehat{\beta}_1$
- We have an estimate of the standard error for that coefficient,  $\widehat{SE}[\widehat{\beta}_1]$ .
- Under assumption 1-5, in large samples, we'll have the following:

$$rac{\widehat{eta}_1 - eta_1}{\widehat{SE}[\widehat{eta}_1]} \sim N(0,1)$$

• The same holds for the other coefficient:

$$rac{\widehat{eta}_2 - eta_2}{\widehat{SE}[\widehat{eta}_2]} \sim N(0, 1)$$

- Inference is exactly the same in large samples!
- Hypothesis tests and CIs are good to go
- The SE's will change, though

For small-sample inference, we need the Gauss-Markov plus Normal errors:

For small-sample inference, we need the Gauss-Markov plus Normal errors:

Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2 Random/iid sample
- In the second second
- Zero conditional mean error

$$\mathbb{E}[u_i|X_i,Z_i]=0$$

Interpretended in the second secon

$$\operatorname{var}[u_i|X_i, Z_i] = \sigma_u^2$$

For small-sample inference, we need the Gauss-Markov plus Normal errors:

Linearity

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- 2 Random/iid sample
- In a perfect collinearity
- Zero conditional mean error

$$\mathbb{E}[u_i|X_i,Z_i]=0$$

6 Homoskedasticity

$$\operatorname{var}[u_i|X_i, Z_i] = \sigma_u^2$$

Normal conditional errors

$$u_i \sim N(0, \sigma_u^2)$$

• Under assumptions 1-6, we have the following small change to our small-*n* sampling distribution:

$$rac{\widehat{eta}_1 - eta_1}{\widehat{SE}[\widehat{eta}_1]} \sim t_{n-3}$$

• Under assumptions 1-6, we have the following small change to our small-*n* sampling distribution:

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim t_{n-3}$$

• The same is true for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim t_{n-3}$$

• Under assumptions 1-6, we have the following small change to our small-*n* sampling distribution:

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim t_{n-3}$$

• The same is true for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim t_{n-3}$$

● Why *n* − 3?

• Under assumptions 1-6, we have the following small change to our small-*n* sampling distribution:

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim t_{n-3}$$

• The same is true for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim t_{n-3}$$

● Why *n* − 3?

 We've estimated another parameter, so we need to take off another degree of freedom.

• Under assumptions 1-6, we have the following small change to our small-*n* sampling distribution:

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim t_{n-3}$$

• The same is true for the other coefficient:

$$\frac{\widehat{\beta}_2 - \beta_2}{\widehat{SE}[\widehat{\beta}_2]} \sim t_{n-3}$$

● Why *n* − 3?

- We've estimated another parameter, so we need to take off another degree of freedom.
- ~> small adjustments to the critical values and the t-values for our hypothesis tests and confidence intervals.



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- Polynomials



- 12 Conclusion
- 13 Fun With Interactions

- Two Examples
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - 7 Omitted Variables
  - 8 Multicollinearity
  - Dummy Variables
  - Interaction Terms
  - 11 Polynomials
- 12 Conclusion
  - 3 Fun With Interactions

### Red State Blue State



### Red and Blue States



Stewart (Princeton)

October 17, 19, 2016 67 / 132

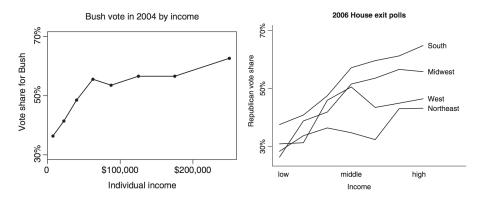
## Rich States are More Democratic

UT 20% WY ID NE OK KS TX Vote share for George Bush ŇD AK SD IN MS ξĶ WV LA AR GA AZ VA MO CO 50% NV NM IA NH PA DE WA ILCA OR NJ н ME СТ MD NY VT RI MA 30% \$20,000 \$30,000

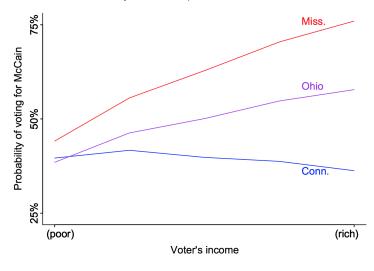
Republican vote by state in 2004



### But Rich People are More Republican

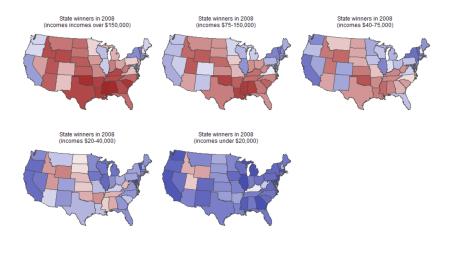


## Paradox Resolved

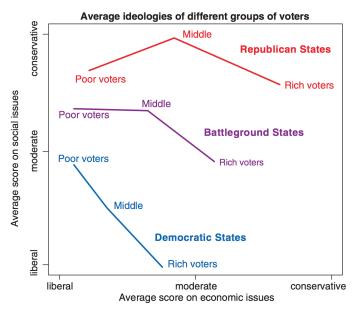


McCain vote by income in a poor, middle-income, and rich state

## If Only Rich People Voted, it Would Be a Landslide



## A Possible Explanation



#### References

Acemoglu, Daron, Simon Johnson, and James A. Robinson. "The colonial origins of comparative development: An empirical investigation." *American Economic Review*. 91(5). 2001: 1369-1401.

Fish, M. Steven. "Islam and authoritarianism." *World politics* 55(01). 2002: 4-37.

Gelman, Andrew. *Red state, blue state, rich state, poor state: why Americans vote the way they do.* Princeton University Press, 2009.

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - \* new mechanics

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - \* new mechanics
  - Wednesday:

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - \* omitted variable bias

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - ★ multicollinearity

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - multicollinearity
    - ★ interactions

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - multicollinearity
    - ★ interactions
- Next Week

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - ★ multicollinearity
    - ★ interactions
- Next Week
  - multiple regression

- Last Week
  - mechanics of OLS with one variable
  - properties of OLS
- This Week
  - Monday:
    - ★ adding a second variable
    - new mechanics
  - Wednesday:
    - ★ omitted variable bias
    - ★ multicollinearity
    - \* interactions
- Next Week
  - multiple regression
- Long Run
  - probability  $\rightarrow$  inference  $\rightarrow$  regression

#### Questions?



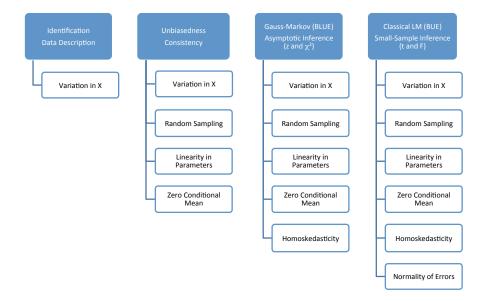
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - 7 Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- 11 Polynomials



13 Fun With Interactions

- Two Examples
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- 9 Dummy Variables
- Interaction Terms
- Delynomials
- 12 Conclusion
  - 3 Fun With Interactions

# Remember This?



• True model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

• True model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

 $\bullet$  Assumptions 1-4  $\Rightarrow$  we get unbiased estimates of the coefficients

• True model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- Assumptions 1-4  $\Rightarrow$  we get unbiased estimates of the coefficients
- What happens if we ignore the Z<sub>i</sub> and just run the simple linear regression with just X<sub>i</sub>?

• True model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- Assumptions 1-4  $\Rightarrow$  we get unbiased estimates of the coefficients
- What happens if we ignore the Z<sub>i</sub> and just run the simple linear regression with just X<sub>i</sub>?
- Misspecified model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i^* \qquad u_i^* = \beta_2 Z_i + u_i$$

• True model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i$$

- Assumptions 1-4  $\Rightarrow$  we get unbiased estimates of the coefficients
- What happens if we ignore the Z<sub>i</sub> and just run the simple linear regression with just X<sub>i</sub>?
- Misspecified model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i^* \qquad u_i^* = \beta_2 Z_i + u_i$$

• OLS estimates from the misspecified model:

$$\widehat{Y}_i = \widetilde{\beta}_0 + \widetilde{\beta}_1 X_i$$

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

Underspecified Model that we use:

Voted Republican =  $\tilde{\beta}_0 + \tilde{\beta}_1$ Watch Fox News

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

Underspecified Model that we use:

Voted Republican =  $\tilde{\beta}_0 + \tilde{\beta}_1$ Watch Fox News

Q: Which statement is correct?

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

Underspecified Model that we use:

Voted Republican =  $\tilde{\beta}_0 + \tilde{\beta}_1$ Watch Fox News

Q: Which statement is correct?  $\beta_1 > \tilde{\beta}_1$ 

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

Underspecified Model that we use:

Voted Republican =  $\tilde{\beta}_0 + \tilde{\beta}_1$ Watch Fox News

Q: Which statement is correct?

 $\begin{array}{l} \bullet \quad \beta_1 > \tilde{\beta}_1 \\ \bullet \quad \beta_1 < \tilde{\beta}_1 \end{array}$ 

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

Underspecified Model that we use:

Voted Republican =  $\tilde{\beta}_0 + \tilde{\beta}_1$ Watch Fox News

Q: Which statement is correct?

 $\begin{array}{l} \bullet \quad \beta_1 > \tilde{\beta}_1 \\ \bullet \quad \beta_1 < \tilde{\beta}_1 \\ \bullet \quad \beta_1 = \tilde{\beta}_1 \end{array}$ 

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

Underspecified Model that we use:

Voted Republican =  $\tilde{\beta}_0 + \tilde{\beta}_1$ Watch Fox News

Q: Which statement is correct?

- $\begin{array}{l} \bullet \quad \beta_1 > \tilde{\beta}_1 \\ \bullet \quad \beta_1 < \tilde{\beta}_1 \end{array}$
- $\ \, \beta_1 = \tilde{\beta}_1$
- Can't tell

#### True Population Model:

Voted Republican =  $\beta_0 + \beta_1$ Watch Fox News +  $\beta_2$ Strong Republican + u

Underspecified Model that we use:

Voted Republican =  $\tilde{\beta}_0 + \tilde{\beta}_1$ Watch Fox News

Q: Which statement is correct?

- $1 \beta_1 > \tilde{\beta}_1$
- $\ 2 \ \beta_1 < \tilde{\beta}_1$
- $\mathbf{3} \ \beta_1 = \tilde{\beta}_1$
- ④ Can't tell

Answer:  $\tilde{\beta}_1$  is upward biased since being a strong republican is positively correlated with both watching fox news and voting republican. We have  $\beta_1 < \tilde{\beta}_1$ .

True Population Model:

 $Survival = \beta_0 + \beta_1 Hospitalized + \beta_2 Health + u$ 

Survival =  $\beta_0 + \beta_1$ Hospitalized +  $\beta_2$ Health + u

Under-specified Model that we use:

 $\mathsf{Survival} = \tilde{\beta}_0 + \tilde{\beta}_1 \mathsf{Hospitalized}$ 

Survival =  $\beta_0 + \beta_1$ Hospitalized +  $\beta_2$ Health + u

Under-specified Model that we use:

$$\mathsf{Survival} = ilde{eta}_0 + ilde{eta}_1 \mathsf{Hospitalized}$$

Q: Which statement is correct?

$$\begin{array}{c} \bullet & \beta_1 > \tilde{\beta}_1 \\ \bullet & \beta_1 < \tilde{\beta}_1 \\ \end{array}$$

$$\ \, \beta_1 = \tilde{\beta}_1$$

 $\mathsf{Survival} = \beta_0 + \beta_1 \mathsf{Hospitalized} + \beta_2 \mathsf{Health} + u$ 

Under-specified Model that we use:

$$\mathsf{Survival} = ilde{eta}_0 + ilde{eta}_1 \mathsf{Hospitalized}$$

Q: Which statement is correct?

$$1 \beta_1 > \tilde{\beta}_1$$

$$2 \beta_1 < \tilde{\beta}_1$$

$$\ \, \beta_1 = \tilde{\beta}_1$$

Can't tell

Answer: The negative coefficient  $\tilde{\beta}_1$  is downward biased compared to the true  $\beta_1$  so  $\beta_1 > \tilde{\beta}_1$ . Being hospitalized is negatively correlated with health, and health is positively correlated with survival.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Underspecified Model that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Underspecified Model that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

We can show that the relationship between  $\tilde{\beta}_1$  and  $\hat{\beta}_1$  is:

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta}$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Underspecified Model that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

We can show that the relationship between  $\tilde{\beta}_1$  and  $\hat{\beta}_1$  is:

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta}$$

where:

•  $\tilde{\delta}$  is the slope of a regression of  $x_2$  on  $x_1$ . If  $\tilde{\delta} > 0$  then  $cor(x_1, x_2) > 0$  and if  $\tilde{\delta} < 0$  then  $cor(x_1, x_2) < 0$ .

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Underspecified Model that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

We can show that the relationship between  $\tilde{\beta}_1$  and  $\hat{\beta}_1$  is:

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta}$$

- $\tilde{\delta}$  is the slope of a regression of  $x_2$  on  $x_1$ . If  $\tilde{\delta} > 0$  then  $cor(x_1, x_2) > 0$  and if  $\tilde{\delta} < 0$  then  $cor(x_1, x_2) < 0$ .
- $\hat{\beta}_2$  is from the true regression and measures the relationship between  $x_2$  and y, conditional on  $x_1$ .

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Underspecified Model that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

We can show that the relationship between  $\tilde{\beta}_1$  and  $\hat{\beta}_1$  is:

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta}$$

- $\tilde{\delta}$  is the slope of a regression of  $x_2$  on  $x_1$ . If  $\tilde{\delta} > 0$  then  $cor(x_1, x_2) > 0$  and if  $\tilde{\delta} < 0$  then  $cor(x_1, x_2) < 0$ .
- $\hat{\beta}_2$  is from the true regression and measures the relationship between  $x_2$  and y, conditional on  $x_1$ .
- Q. When will  $\tilde{\beta}_1 = \hat{\beta}_1$ ?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Underspecified Model that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$

We can show that the relationship between  $\tilde{\beta}_1$  and  $\hat{\beta}_1$  is:

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta}$$

- $\tilde{\delta}$  is the slope of a regression of  $x_2$  on  $x_1$ . If  $\tilde{\delta} > 0$  then  $cor(x_1, x_2) > 0$  and if  $\tilde{\delta} < 0$  then  $cor(x_1, x_2) < 0$ .
- $\hat{\beta}_2$  is from the true regression and measures the relationship between  $x_2$  and y, conditional on  $x_1$ .
- Q. When will  $\tilde{\beta}_1 = \hat{\beta}_1$ ? A. If  $\tilde{\delta} = 0$  or  $\hat{\beta}_2 = 0$ .

$$\begin{split} \tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\ E[\tilde{\beta}_1 \mid X] &= \end{split}$$

$$\begin{aligned} \tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\ E[\tilde{\beta}_1 \mid X] &= E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] \\ &= \end{aligned}$$

$$\begin{split} \tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\ E[\tilde{\beta}_1 \mid X] &= E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] \\ &= E[\hat{\beta}_1 \mid X] + E[\hat{\beta}_2 \mid X] \cdot \tilde{\delta} \ (\tilde{\delta} \text{ nonrandom given } x) \\ &= \end{split}$$

$$\begin{split} \tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\ E[\tilde{\beta}_1 \mid X] &= E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] \\ &= E[\hat{\beta}_1 \mid X] + E[\hat{\beta}_2 \mid X] \cdot \tilde{\delta} \; (\tilde{\delta} \text{ nonrandom given } x) \\ &= \beta_1 + \beta_2 \cdot \tilde{\delta} \; (\text{given assumptions 1-4}) \end{split}$$

We take expectations to see what the bias will be:

$$\begin{split} \tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\ E[\tilde{\beta}_1 \mid X] &= E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] \\ &= E[\hat{\beta}_1 \mid X] + E[\hat{\beta}_2 \mid X] \cdot \tilde{\delta} \; (\tilde{\delta} \text{ nonrandom given } x) \\ &= \beta_1 + \beta_2 \cdot \tilde{\delta} \; (\text{given assumptions 1-4}) \end{split}$$

So

$$\mathsf{Bias}[ ilde{eta}_1 \mid X] = \mathsf{E}[ ilde{eta}_1 \mid X] - eta_1 = eta_2 \cdot ilde{\delta}$$

We take expectations to see what the bias will be:

$$\begin{split} \tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\ E[\tilde{\beta}_1 \mid X] &= E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] \\ &= E[\hat{\beta}_1 \mid X] + E[\hat{\beta}_2 \mid X] \cdot \tilde{\delta} \; (\tilde{\delta} \text{ nonrandom given } x) \\ &= \beta_1 + \beta_2 \cdot \tilde{\delta} \; (\text{given assumptions 1-4}) \end{split}$$

So

$$\mathsf{Bias}[ ilde{eta}_1 \mid X] = E[ ilde{eta}_1 \mid X] - eta_1 = eta_2 \cdot ilde{\delta}$$

So the bias depends on the relationship between  $x_2$  and  $x_1$ , our  $\tilde{\delta}$ , and the relationship between  $x_2$  and y, our  $\beta_2$ .

We take expectations to see what the bias will be:

$$\begin{split} \tilde{\beta}_1 &= \hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \\ E[\tilde{\beta}_1 \mid X] &= E[\hat{\beta}_1 + \hat{\beta}_2 \cdot \tilde{\delta} \mid X] \\ &= E[\hat{\beta}_1 \mid X] + E[\hat{\beta}_2 \mid X] \cdot \tilde{\delta} \; (\tilde{\delta} \text{ nonrandom given } x) \\ &= \beta_1 + \beta_2 \cdot \tilde{\delta} \; (\text{given assumptions 1-4}) \end{split}$$

So

$$\mathsf{Bias}[\tilde{\beta}_1 \mid X] = E[\tilde{\beta}_1 \mid X] - \beta_1 = \beta_2 \cdot \tilde{\delta}$$

So the bias depends on the relationship between  $x_2$  and  $x_1$ , our  $\tilde{\delta}$ , and the relationship between  $x_2$  and y, our  $\beta_2$ .

Any variable that is correlated with an included X and the outcome Y is called a confounder.

Direction of the bias of  $\tilde{\beta}_1$  compared to  $\beta_1$  is given by:

|               | $\operatorname{cov}(X_1,X_2)>0$ | $\operatorname{cov}(X_1,X_2) < 0$ | $\operatorname{cov}(X_1,X_2)=0$ |
|---------------|---------------------------------|-----------------------------------|---------------------------------|
| $\beta_2 > 0$ | Positive bias                   | Negative Bias                     | No bias                         |
| $\beta_2 < 0$ | Negative bias                   | Positive Bias                     | No bias                         |
| $\beta_2 = 0$ | No bias                         | No bias                           | No bias                         |

Direction of the bias of  $\tilde{\beta}_1$  compared to  $\beta_1$  is given by:

|               | $\operatorname{cov}(X_1,X_2)>0$ | $\operatorname{cov}(X_1,X_2)<0$ | $\operatorname{cov}(X_1,X_2)=0$ |
|---------------|---------------------------------|---------------------------------|---------------------------------|
| $\beta_2 > 0$ | Positive bias                   | Negative Bias                   | No bias                         |
| $\beta_2 < 0$ | Negative bias                   | Positive Bias                   | No bias                         |
| $\beta_2 = 0$ | No bias                         | No bias                         | No bias                         |

Further points:

• Magnitude of the bias matters too

Direction of the bias of  $\tilde{\beta}_1$  compared to  $\beta_1$  is given by:

|               | $\operatorname{cov}(X_1,X_2)>0$ | $\operatorname{cov}(X_1,X_2) < 0$ | $\operatorname{cov}(X_1,X_2)=0$ |
|---------------|---------------------------------|-----------------------------------|---------------------------------|
| $\beta_2 > 0$ | Positive bias                   | Negative Bias                     | No bias                         |
| $\beta_2 < 0$ | Negative bias                   | Positive Bias                     | No bias                         |
| $\beta_2 = 0$ | No bias                         | No bias                           | No bias                         |

Further points:

- Magnitude of the bias matters too
- If you miss an important confounder, your estimates are biased and inconsistent.

Direction of the bias of  $\tilde{\beta}_1$  compared to  $\beta_1$  is given by:

|               | $\operatorname{cov}(X_1,X_2)>0$ | $\operatorname{cov}(X_1,X_2) < 0$ | $\operatorname{cov}(X_1,X_2)=0$ |
|---------------|---------------------------------|-----------------------------------|---------------------------------|
| $\beta_2 > 0$ | Positive bias                   | Negative Bias                     | No bias                         |
| $\beta_2 < 0$ | Negative bias                   | Positive Bias                     | No bias                         |
| $\beta_2 = 0$ | No bias                         | No bias                           | No bias                         |

Further points:

- Magnitude of the bias matters too
- If you miss an important confounder, your estimates are biased and inconsistent.
- In the more general case with more than two covariates the bias is more difficult to discern. It depends on all the pairwise correlations.

True Population Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 where  $\beta_2 = 0$ 

and Assumptions I-IV hold.

True Population Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 where  $\beta_2 = 0$ 

and Assumptions I-IV hold.

**Overspecified Model** that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2$$

True Population Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 where  $\beta_2 = 0$ 

and Assumptions I-IV hold.

Overspecified Model that we use:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2$$

Q: Which statement is correct?

$$1 \beta_1 > \tilde{\beta}_1$$

$$2 \beta_1 < \beta_1$$

$$\ \, \beta_1 = \tilde{\beta}_1$$

#### Can't tell

Recall: Given Assumptions I-IV, we have:

$$E[\hat{\beta}_j] = \beta_j$$

Recall: Given Assumptions I-IV, we have:

$$E[\hat{\beta}_j] = \beta_j$$

for all values of  $\beta_j$ . So, if  $\beta_2 = 0$ , we get

$$E[\hat{\beta}_0] = \beta_0, E[\hat{\beta}_1] = \beta_1, E[\hat{\beta}_2] = 0$$

Recall: Given Assumptions I-IV, we have:

$$E[\hat{\beta}_j] = \beta_j$$

for all values of  $\beta_j$ . So, if  $\beta_2 = 0$ , we get

$$E[\hat{\beta}_0] = \beta_0, \ E[\hat{\beta}_1] = \beta_1, \ E[\hat{\beta}_2] = 0$$

and thus including the irrelevant variable does not generally affect the unbiasedness. The sampling distribution of  $\hat{\beta}_2$  will be centered about zero.



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - 7 Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- 11 Polynomials



13 Fun With Interactions

- Two Examples
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
  - Dummy Variables
  - Interaction Terms
- Delynomials
- 12 Conclusion
  - Fun With Interactions

Sampling variance for simple linear regression

• Under simple linear regression, we found that the distribution of the slope was the following:

$$\mathsf{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Sampling variance for simple linear regression

• Under simple linear regression, we found that the distribution of the slope was the following:

$$\operatorname{var}(\widehat{\beta}_1) = rac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

• Factors affecting the standard errors (the square root of these sampling variances):

Sampling variance for simple linear regression

• Under simple linear regression, we found that the distribution of the slope was the following:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

- Factors affecting the standard errors (the square root of these sampling variances):
  - The error variance  $\sigma_u^2$  (higher conditional variance of  $Y_i$  leads to bigger SEs)

Sampling variance for simple linear regression

• Under simple linear regression, we found that the distribution of the slope was the following:

$$\mathsf{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

- Factors affecting the standard errors (the square root of these sampling variances):
  - The error variance σ<sup>2</sup><sub>u</sub> (higher conditional variance of Y<sub>i</sub> leads to bigger SEs)
  - The total variation in  $X_i$ :  $\sum_{i=1}^{n} (X_i \overline{X})^2$  (lower variation in  $X_i$  leads to bigger SEs)

• Regression with an additional independent variable:

$$\mathsf{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

• Regression with an additional independent variable:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

• Regression with an additional independent variable:

$$\mathsf{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

• Here,  $R_1^2$  is the  $R^2$  from the regression of  $X_i$  on  $Z_i$ :

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

• Factors now affecting the standard errors:

• Regression with an additional independent variable:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

- Factors now affecting the standard errors:
  - ► The error variance (higher conditional variance of Y<sub>i</sub> leads to bigger SEs)

• Regression with an additional independent variable:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

- Factors now affecting the standard errors:
  - The error variance (higher conditional variance of Y<sub>i</sub> leads to bigger SEs)
  - ► The total variation of X<sub>i</sub> (lower variation in X<sub>i</sub> leads to bigger SEs)

• Regression with an additional independent variable:

$$\mathsf{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

- Factors now affecting the standard errors:
  - The error variance (higher conditional variance of Y<sub>i</sub> leads to bigger SEs)
  - ▶ The total variation of X<sub>i</sub> (lower variation in X<sub>i</sub> leads to bigger SEs)
  - ► The strength of the relationship between X<sub>i</sub> and Z<sub>i</sub> (stronger relationships mean higher R<sub>1</sub><sup>2</sup> and thus bigger SEs)

• Regression with an additional independent variable:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\widehat{X}_i = \widehat{\delta}_0 + \widehat{\delta}_1 Z_i$$

- Factors now affecting the standard errors:
  - ► The error variance (higher conditional variance of Y<sub>i</sub> leads to bigger SEs)
  - ▶ The total variation of X<sub>i</sub> (lower variation in X<sub>i</sub> leads to bigger SEs)
  - ► The strength of the relationship between X<sub>i</sub> and Z<sub>i</sub> (stronger relationships mean higher R<sub>1</sub><sup>2</sup> and thus bigger SEs)
- What happens with perfect collinearity?  $R_1^2 = 1$  and the variances are infinite.

#### Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

#### Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

• With multicollinearity, we'll have  $R_1^2 \approx 1$ , but not exactly.

#### Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

- With multicollinearity, we'll have  $R_1^2 pprox 1$ , but not exactly.
- The stronger the relationship between X<sub>i</sub> and Z<sub>i</sub>, the closer the R<sub>1</sub><sup>2</sup> will be to 1, and the higher the SEs will be:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

#### Definition

Multicollinearity is defined to be high, but not perfect, correlation between two independent variables in a regression.

- With multicollinearity, we'll have  $R_1^2 pprox 1$ , but not exactly.
- The stronger the relationship between X<sub>i</sub> and Z<sub>i</sub>, the closer the R<sub>1</sub><sup>2</sup> will be to 1, and the higher the SEs will be:

$$\operatorname{var}(\widehat{\beta}_1) = \frac{\sigma_u^2}{(1 - R_1^2) \sum_{i=1}^n (X_i - \overline{X})^2}$$

• Given the symmetry, it will also increase  $var(\widehat{\beta}_2)$  as well.

• Remember the OLS recipe:

- Remember the OLS recipe:
  - $\hat{\beta}_1$  from regression of  $Y_i$  on  $\hat{r}_{xz,i}$

- Remember the OLS recipe:
  - $\hat{\beta}_1$  from regression of  $Y_i$  on  $\hat{r}_{xz,i}$
  - $\hat{r}_{xz,i}$  are the residuals from the regression of  $X_i$  on  $Z_i$

- Remember the OLS recipe:
  - $\hat{\beta}_1$  from regression of  $Y_i$  on  $\hat{r}_{xz,i}$
  - $\hat{r}_{xz,i}$  are the residuals from the regression of  $X_i$  on  $Z_i$
- Estimated coefficient:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \widehat{r}_{xz,i} Y_i}{\sum_{i=1}^n \widehat{r}_{xz,i}^2}$$

- Remember the OLS recipe:
  - $\hat{\beta}_1$  from regression of  $Y_i$  on  $\hat{r}_{xz,i}$
  - $\hat{r}_{xz,i}$  are the residuals from the regression of  $X_i$  on  $Z_i$
- Estimated coefficient:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \widehat{r}_{xz,i} Y_i}{\sum_{i=1}^n \widehat{r}_{xz,i}^2}$$

• When Z<sub>i</sub> and X<sub>i</sub> have a strong relationship, then the residuals will have low variation

- Remember the OLS recipe:
  - $\hat{\beta}_1$  from regression of  $Y_i$  on  $\hat{r}_{xz,i}$
  - $\hat{r}_{xz,i}$  are the residuals from the regression of  $X_i$  on  $Z_i$
- Estimated coefficient:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \widehat{r}_{xz,i} Y_i}{\sum_{i=1}^n \widehat{r}_{xz,i}^2}$$

- When Z<sub>i</sub> and X<sub>i</sub> have a strong relationship, then the residuals will have low variation
- We explain away a lot of the variation in  $X_i$  through  $Z_i$ .

- Remember the OLS recipe:
  - $\hat{\beta}_1$  from regression of  $Y_i$  on  $\hat{r}_{xz,i}$
  - $\hat{r}_{xz,i}$  are the residuals from the regression of  $X_i$  on  $Z_i$
- Estimated coefficient:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \widehat{r}_{xz,i} Y_i}{\sum_{i=1}^n \widehat{r}_{xz,i}^2}$$

- When Z<sub>i</sub> and X<sub>i</sub> have a strong relationship, then the residuals will have low variation
- We explain away a lot of the variation in  $X_i$  through  $Z_i$ .
- Low variation in an independent variable (here,  $\hat{r}_{xz,i}$ )  $\rightsquigarrow$  high SEs

- Remember the OLS recipe:
  - $\hat{\beta}_1$  from regression of  $Y_i$  on  $\hat{r}_{xz,i}$
  - $\hat{r}_{xz,i}$  are the residuals from the regression of  $X_i$  on  $Z_i$
- Estimated coefficient:

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n \widehat{r}_{xz,i} Y_i}{\sum_{i=1}^n \widehat{r}_{xz,i}^2}$$

- When Z<sub>i</sub> and X<sub>i</sub> have a strong relationship, then the residuals will have low variation
- We explain away a lot of the variation in  $X_i$  through  $Z_i$ .
- Low variation in an independent variable (here,  $\hat{r}_{xz,i}$ )  $\rightsquigarrow$  high SEs
- Basically, there is less residual variation left in X<sub>i</sub> after "partialling out" the effect of Z<sub>i</sub>

• No effect on the bias of OLS.

- No effect on the bias of OLS.
- Only increases the standard errors.

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
  - ▶ If X<sub>i</sub> and Z<sub>i</sub> are extremely highly correlated, you're going to need a much bigger sample to accurately differentiate between their effects.

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
  - ▶ If X<sub>i</sub> and Z<sub>i</sub> are extremely highly correlated, you're going to need a much bigger sample to accurately differentiate between their effects.

- No effect on the bias of OLS.
- Only increases the standard errors.
- Really just a sample size problem:
  - ▶ If X<sub>i</sub> and Z<sub>i</sub> are extremely highly correlated, you're going to need a much bigger sample to accurately differentiate between their effects.



• The best practice is to directly compute Cor(X<sub>1</sub>, X<sub>2</sub>) before running your regression.

- The best practice is to directly compute Cor(X<sub>1</sub>, X<sub>2</sub>) before running your regression.
- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:

- The best practice is to directly compute Cor(X<sub>1</sub>, X<sub>2</sub>) before running your regression.
- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
  - Large changes in the estimated regression coefficients when a predictor variable is added or deleted

- The best practice is to directly compute Cor(X<sub>1</sub>, X<sub>2</sub>) before running your regression.
- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
  - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
  - Lack of statistical significance despite high R<sup>2</sup>

- The best practice is to directly compute Cor(X<sub>1</sub>, X<sub>2</sub>) before running your regression.
- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
  - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
  - Lack of statistical significance despite high R<sup>2</sup>
  - Estimated regression coefficients have an opposite sign from predicted

- The best practice is to directly compute Cor(X<sub>1</sub>, X<sub>2</sub>) before running your regression.
- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
  - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
  - Lack of statistical significance despite high R<sup>2</sup>
  - Estimated regression coefficients have an opposite sign from predicted
- A more formal indicator is the variance inflation factor (VIF):

$$VIF(eta_j) = rac{1}{1-R_j^2}$$

which measures how much  $V[\hat{\beta}_j | X]$  is inflated compared to a (hypothetical) uncorrelated data. (where  $R_j^2$  is the coefficient of determination from the partialing out equation)

- The best practice is to directly compute Cor(X<sub>1</sub>, X<sub>2</sub>) before running your regression.
- But you might (and probably will) forget to do so. Even then, you can detect multicollinearity from your regression result:
  - Large changes in the estimated regression coefficients when a predictor variable is added or deleted
  - Lack of statistical significance despite high R<sup>2</sup>
  - Estimated regression coefficients have an opposite sign from predicted
- A more formal indicator is the variance inflation factor (VIF):

$$VIF(eta_j) = rac{1}{1-R_j^2}$$

which measures how much  $V[\hat{\beta}_j | X]$  is inflated compared to a (hypothetical) uncorrelated data. (where  $R_j^2$  is the coefficient of determination from the partialing out equation) In R, vif() in the car package.

Stewart (Princeton)

# So How Should I Think about Multicollinearity?

• Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.

## So How Should I Think about Multicollinearity?

- Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.
- Multicollinearity should in fact be seen as a problem of micronumerosity, or "too little data." You can't ask the OLS estimator to distinguish the partial effects of X<sub>1</sub> and X<sub>2</sub> if they are essentially the same.

## So How Should I Think about Multicollinearity?

- Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.
- Multicollinearity should in fact be seen as a problem of micronumerosity, or "too little data." You can't ask the OLS estimator to distinguish the partial effects of X<sub>1</sub> and X<sub>2</sub> if they are essentially the same.
- If X<sub>1</sub> and X<sub>2</sub> are almost the same, why would you want a unique β<sub>1</sub> and a unique β<sub>2</sub>? Think about how you would interpret that?

## So How Should I Think about Multicollinearity?

- Multicollinearity does NOT lead to bias; estimates will be unbiased and consistent.
- Multicollinearity should in fact be seen as a problem of micronumerosity, or "too little data." You can't ask the OLS estimator to distinguish the partial effects of X<sub>1</sub> and X<sub>2</sub> if they are essentially the same.
- If X<sub>1</sub> and X<sub>2</sub> are almost the same, why would you want a unique β<sub>1</sub> and a unique β<sub>2</sub>? Think about how you would interpret that?
- Relax, you got way more important things to worry about!
- If possible, get more data
- Drop one of the variables, or combine them
- Or maybe linear regression is not the right tool



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - 7 Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- 11 Polynomials



13 Fun With Interactions

- Two Examples
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- Oummy Variables
  - Interaction Terms
- Polynomials
- 12 Conclusion
  - 3 Fun With Interactions

• A dummy variable (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.

- A dummy variable (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.
- We use dummy variables in regression to represent qualitative information through categorical variables such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)

- A dummy variable (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.
- We use dummy variables in regression to represent qualitative information through categorical variables such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)
- By including dummy variables into our regression function, we can easily obtain the conditional mean of the outcome variable for each category.

- A dummy variable (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.
- We use dummy variables in regression to represent qualitative information through categorical variables such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)
- By including dummy variables into our regression function, we can easily obtain the conditional mean of the outcome variable for each category.
  - E.g. does average income vary by region? Are Republicans smarter than Democrats?

- A dummy variable (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.
- We use dummy variables in regression to represent qualitative information through categorical variables such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)
- By including dummy variables into our regression function, we can easily obtain the conditional mean of the outcome variable for each category.
  - E.g. does average income vary by region? Are Republicans smarter than Democrats?
- Dummy variables are also used to examine conditional hypothesis via interaction terms

- A dummy variable (a.k.a. indicator variable, binary variable, etc.) is a variable that is coded 1 or 0 only.
- We use dummy variables in regression to represent qualitative information through categorical variables such as different subgroups of the sample (e.g. regions, old and young respondents, etc.)
- By including dummy variables into our regression function, we can easily obtain the conditional mean of the outcome variable for each category.
  - E.g. does average income vary by region? Are Republicans smarter than Democrats?
- Dummy variables are also used to examine conditional hypothesis via interaction terms
  - E.g. does the effect of education differ by gender?

• Consider the easiest case with two categories. The type of electoral system of country *i* is given by:

 $X_i \in \{Proportional, Majoritarian\}$ 

• Consider the easiest case with two categories. The type of electoral system of country *i* is given by:

 $X_i \in \{Proportional, Majoritarian\}$ 

• For this we use a single dummy variable which is coded like:

$$D_i = \begin{cases} 1 & \text{if country } i \text{ has a Majoritarian Electoral System} \\ 0 & \text{if country } i \text{ has a Proportional Electoral System} \end{cases}$$

- Consider the easiest case with two categories. The type of electoral system of country *i* is given by:
   X<sub>i</sub> ∈ {*Proportional*, *Majoritarian*}
- For this we use a single dummy variable which is coded like:

 $D_i = \begin{cases} 1 & \text{if country } i \text{ has a Majoritarian Electoral System} \\ 0 & \text{if country } i \text{ has a Proportional Electoral System} \end{cases}$ 

• Hint: Informative variable names help (e.g. call it MAJORITARIAN)

- Consider the easiest case with two categories. The type of electoral system of country *i* is given by:
   X<sub>i</sub> ∈ {Proportional, Majoritarian}
- For this we use a single dummy variable which is coded like:

 $D_i = \begin{cases} 1 & \text{if country } i \text{ has a Majoritarian Electoral System} \\ 0 & \text{if country } i \text{ has a Proportional Electoral System} \end{cases}$ 

- Hint: Informative variable names help (e.g. call it MAJORITARIAN)
- Let's regress GDP on this dummy variable and a constant:  $Y = \beta_0 + \beta_1 D + u$

#### Example: GDP per capita on Electoral System \_\_\_\_\_ R. Code \_\_\_\_\_ > summary(lm(REALGDPCAP ~ MAJORITARIAN, data = D)) Call: lm(formula = REALGDPCAP ~ MAJORITARIAN, data = D) Residuals Min 1Q Median 3Q Max -5982 -4592 -2112 4293 13685 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7097.7 763.2 9.30 1.64e-14 \*\*\* MAJORITARIAN -1053.8 1224.9 -0.86 0.392 \_\_\_ Signif. codes: 0 \*\*\* 0.001 \*\* 0.01 \* 0.05 . 0.1 1 Residual standard error: 5504 on 83 degrees of freedom Multiple R-squared: 0.008838, Adjusted R-squared: -0.003104 F-statistic: 0.7401 on 1 and 83 DF, p-value: 0.3921

#### Example: GDP per capita on Electoral System

|              |          |            | R Code _ |          |     |  |
|--------------|----------|------------|----------|----------|-----|--|
| Coefficients | :        |            |          |          |     |  |
|              | Estimate | Std. Error | t value  | Pr(> t ) |     |  |
| (Intercept)  | 7097.7   | 763.2      | 9.30     | 1.64e-14 | *** |  |
| MAJORITARIAN | -1053.8  | 1224.9     | -0.86    | 0.392    | 2   |  |
|              |          |            |          |          |     |  |

|   | R Code                                           |            |          |           |           |         |  |  |  |  |
|---|--------------------------------------------------|------------|----------|-----------|-----------|---------|--|--|--|--|
| > | > gdp.pro <- D\$REALGDPCAP[D\$MAJORITARIAN == 0] |            |          |           |           |         |  |  |  |  |
| > | > summary(gdp.pro)                               |            |          |           |           |         |  |  |  |  |
|   | Min.                                             | 1st Qu.    | Median   | Mean      | 3rd Qu.   | Max.    |  |  |  |  |
|   | 1116                                             | 2709       | 5102     | 7098      | 10670     | 20780   |  |  |  |  |
|   |                                                  |            |          |           |           |         |  |  |  |  |
| > | gdp.ma                                           | aj <- D\$R | EALGDPCA | P[D\$MAJ( | DRITARIAN | I == 1] |  |  |  |  |
| > | > summary(gdp.maj)                               |            |          |           |           |         |  |  |  |  |
|   | Min.                                             | 1st Qu.    | Median   | Mean      | 3rd Qu.   | Max.    |  |  |  |  |
|   | 530.2                                            | 1431.0     | 3404.0   | 6044.0    | 11770.0   | 18840.0 |  |  |  |  |
|   |                                                  |            |          |           |           |         |  |  |  |  |

So this is just like a difference in means two sample t-test!

#### Example: GDP per capita on Electoral System

| [            |          |            | R Code _ |          |     |
|--------------|----------|------------|----------|----------|-----|
| Coefficients | :        |            |          |          |     |
|              | Estimate | Std. Error | t value  | Pr(> t ) |     |
| (Intercept)  | 7097.7   | 763.2      | 9.30     | 1.64e-14 | *** |
| MAJORITARIAN | -1053.8  | 1224.9     | -0.86    | 0.392    |     |
|              |          |            |          |          |     |

|   |                                                  |         |        |        | R Code  |         |  |  |  |  |
|---|--------------------------------------------------|---------|--------|--------|---------|---------|--|--|--|--|
| > | > gdp.pro <- D\$REALGDPCAP[D\$MAJORITARIAN == 0] |         |        |        |         |         |  |  |  |  |
| > | <pre>summary(gdp.pro)</pre>                      |         |        |        |         |         |  |  |  |  |
|   | Min.                                             | 1st Qu. | Median | Mean   | 3rd Qu. | Max.    |  |  |  |  |
|   | 1116                                             | 2709    | 5102   | 7098   | 10670   | 20780   |  |  |  |  |
| > | > gdp.maj <- D\$REALGDPCAP[D\$MAJORITARIAN == 1] |         |        |        |         |         |  |  |  |  |
| > | > summary(gdp.maj)                               |         |        |        |         |         |  |  |  |  |
|   | Min.                                             | 1st Qu. | Median | Mean   | 3rd Qu. | Max.    |  |  |  |  |
|   | 530.2                                            | 1431.0  | 3404.0 | 6044.0 | 11770.0 | 18840.0 |  |  |  |  |

So this is just like a difference in means two sample t-test!

Stewart (Princeton)

Week 6: Two Regressors

#### Example: GDP per capita on Electoral System

| R Code       |          |            |         |          |     |  |  |  |  |
|--------------|----------|------------|---------|----------|-----|--|--|--|--|
| Coefficients | :        |            |         |          |     |  |  |  |  |
|              | Estimate | Std. Error | t value | Pr(> t ) |     |  |  |  |  |
| (Intercept)  | 7097.7   | 763.2      | 9.30    | 1.64e-14 | *** |  |  |  |  |
| MAJORITARIAN | -1053.8  | 1224.9     | -0.86   | 0.392    |     |  |  |  |  |
|              |          |            |         |          |     |  |  |  |  |

| _ | R Code                                           |            |          |           |           |         |  |  |  |  |
|---|--------------------------------------------------|------------|----------|-----------|-----------|---------|--|--|--|--|
| > | > gdp.pro <- D\$REALGDPCAP[D\$MAJORITARIAN == 0] |            |          |           |           |         |  |  |  |  |
| > | > summary(gdp.pro)                               |            |          |           |           |         |  |  |  |  |
|   | Min.                                             | 1st Qu.    | Median   | Mean      | 3rd Qu.   | Max.    |  |  |  |  |
|   | 1116                                             | 2709       | 5102     | 7098      | 10670     | 20780   |  |  |  |  |
|   |                                                  |            |          |           |           |         |  |  |  |  |
| > | gdp.ma                                           | aj <- D\$R | EALGDPCA | P[D\$MAJ( | DRITARIAN | J == 1] |  |  |  |  |
| > | > summary(gdp.maj)                               |            |          |           |           |         |  |  |  |  |
|   | Min.                                             | 1st Qu.    | Median   | Mean      | 3rd Qu.   | Max.    |  |  |  |  |
|   | 530.2                                            | 1431.0     | 3404.0   | 6044.0    | 11770.0   | 18840.0 |  |  |  |  |
|   | 530.2                                            | 1431.0     | 3404.0   | 6044.0    | 11770.0   | 18840.0 |  |  |  |  |

So this is just like a difference in means two sample t-test!

- More generally, let's say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
  - $X_i \in \{Proportional, Majoritarian\}$  so m = 2
  - $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$  so m = 5

- More generally, let's say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
  - $X_i \in \{Proportional, Majoritarian\}$  so m = 2
  - ▶  $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$  so m = 5
- To incorporate this information into our regression function we usually create m 1 dummy variables, one for each of the m 1 categories.

- More generally, let's say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
  - $X_i \in \{Proportional, Majoritarian\}$  so m = 2
  - ▶  $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$  so m = 5
- To incorporate this information into our regression function we usually create m 1 dummy variables, one for each of the m 1 categories.
- Why not all m?

- More generally, let's say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
  - $X_i \in \{Proportional, Majoritarian\}$  so m = 2
  - $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$  so m = 5
- To incorporate this information into our regression function we usually create m-1 dummy variables, one for each of the m-1 categories.
- Why not all *m*? Including all *m* category indicators as dummies would violate the no perfect collinearity assumption:

$$D_m=1-(D_1+\cdots+D_{m-1})$$

- More generally, let's say X measures which of m categories each unit i belongs to. E.g. the type of electoral system or region of country i is given by:
  - $X_i \in \{Proportional, Majoritarian\}$  so m = 2
  - $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$  so m = 5
- To incorporate this information into our regression function we usually create m-1 dummy variables, one for each of the m-1 categories.
- Why not all *m*? Including all *m* category indicators as dummies would violate the no perfect collinearity assumption:

$$D_m=1-(D_1+\cdots+D_{m-1})$$

• The omitted category is our baseline case (also called a reference category) against which we compare the conditional means of Y for the other m - 1 categories.

Stewart (Princeton)

## Example: Regions of the World

• Consider the case of our "polytomous" variable world region with m = 5:

 $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$ 

## Example: Regions of the World

• Consider the case of our "polytomous" variable world region with m = 5:

 $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$ 

• This five-category classification can be represented in the regression equation by introducing m - 1 = 4 dummy regressors:

| Category     | $D_1$ | $D_2$ | $D_3$ | $D_4$ |
|--------------|-------|-------|-------|-------|
| Asia         | 1     | 0     | 0     | 0     |
| Africa       | 0     | 1     | 0     | 0     |
| LatinAmerica | 0     | 0     | 1     | 0     |
| OECD         | 0     | 0     | 0     | 1     |
| Transition   | 0     | 0     | 0     | 0     |

# Example: Regions of the World

• Consider the case of our "polytomous" variable world region with m = 5:

 $X_i \in \{Asia, Africa, LatinAmerica, OECD, Transition\}$ 

• This five-category classification can be represented in the regression equation by introducing m - 1 = 4 dummy regressors:

| Category     | $D_1$ | $D_2$ | $D_3$ | $D_4$ |
|--------------|-------|-------|-------|-------|
| Asia         | 1     | 0     | 0     | 0     |
| Africa       | 0     | 1     | 0     | 0     |
| LatinAmerica | 0     | 0     | 1     | 0     |
| OECD         | 0     | 0     | 0     | 1     |
| Transition   | 0     | 0     | 0     | 0     |

Our regression equation is:

$$Y = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \beta_3 D_3 + \beta_4 D_4 + u$$



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- Polynomials



12 Conclusion



#### Two Examples

- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- Dummy Variables
- 10 Interaction Terms
  - Polynomials
- 12 Conclusion
  - 3 Fun With Interactions

• Interaction terms will allow you to let the slope on one variable vary as a function of another variable

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable
- Interaction terms are central in regression analysis to:
  - Model and test conditional hypothesis (do the returns to education vary by gender?)

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable
- Interaction terms are central in regression analysis to:
  - Model and test conditional hypothesis (do the returns to education vary by gender?)
  - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable
- Interaction terms are central in regression analysis to:
  - Model and test conditional hypothesis (do the returns to education vary by gender?)
  - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups
- We can interact:
  - two or more dummy variables

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable
- Interaction terms are central in regression analysis to:
  - Model and test conditional hypothesis (do the returns to education vary by gender?)
  - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups
- We can interact:
  - two or more dummy variables
  - dummy variables and continuous variables

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable
- Interaction terms are central in regression analysis to:
  - Model and test conditional hypothesis (do the returns to education vary by gender?)
  - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups
- We can interact:
  - two or more dummy variables
  - dummy variables and continuous variables
  - two or more continuous variables

- Interaction terms will allow you to let the slope on one variable vary as a function of another variable
- Interaction terms are central in regression analysis to:
  - Model and test conditional hypothesis (do the returns to education vary by gender?)
  - Make model of the conditional expectation function more realistic by letting coefficients vary across subgroups
- We can interact:
  - two or more dummy variables
  - dummy variables and continuous variables
  - two or more continuous variables
- Interactions often confuses researchers and mistakes in use and interpretation occur frequently (even in top journals)

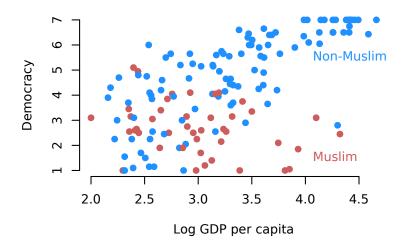
• Data comes from Fish (2002), "Islam and Authoritarianism."

- Data comes from Fish (2002), "Islam and Authoritarianism."
- Basic relationship: does more economic development lead to more democracy?

- Data comes from Fish (2002), "Islam and Authoritarianism."
- Basic relationship: does more economic development lead to more democracy?
- We measure economic development with log GDP per capita

- Data comes from Fish (2002), "Islam and Authoritarianism."
- Basic relationship: does more economic development lead to more democracy?
- We measure economic development with log GDP per capita
- We measure democracy with a Freedom House score, 1 (less free) to 7 (more free)

### Let's see the data

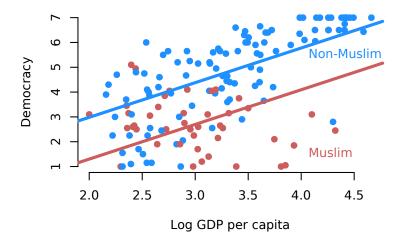


Fish argues that Muslim countries are less likely to be democratic no matter their economic development

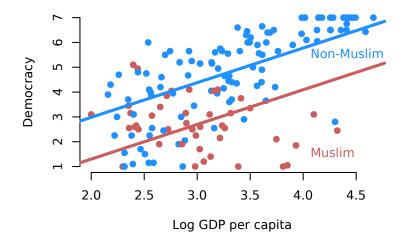
Stewart (Princeton)

Week 6: Two Regressors

# Controlling for Religion Additively

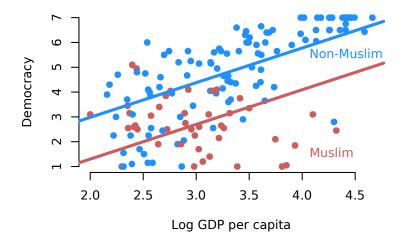


# Controlling for Religion Additively



But the regression is a poor fit for Muslim countries

# Controlling for Religion Additively



But the regression is a poor fit for Muslim countries

Can we allow for different slopes for each group?

Stewart (Princeton)

Week 6: Two Regressor

• Let  $Z_i$  be binary

- Let  $Z_i$  be binary
- In this case,  $Z_i = 1$  for the country being Muslim

- Let Z<sub>i</sub> be binary
- In this case,  $Z_i = 1$  for the country being Muslim
- We can add another covariate to the baseline model that allows the effect of income to vary by Muslim status.

- Let Z<sub>i</sub> be binary
- In this case,  $Z_i = 1$  for the country being Muslim
- We can add another covariate to the baseline model that allows the effect of income to vary by Muslim status.
- This covariate is called an interaction term and it is the product of the two marginal variables of interest: *income*<sub>i</sub> × *muslim*<sub>i</sub>

- Let  $Z_i$  be binary
- In this case,  $Z_i = 1$  for the country being Muslim
- We can add another covariate to the baseline model that allows the effect of income to vary by Muslim status.
- This covariate is called an interaction term and it is the product of the two marginal variables of interest: *income*<sub>i</sub> × *muslim*<sub>i</sub>
- Here is the model with the interaction term:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

• How can we interpret this model?

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$ 

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$ 

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_i \times 0$ 

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_i \times 0$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$ 

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_i \times 0$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$ 

• When 
$$Z_i=1$$
:  
 $\widehat{Y}_i=\widehat{eta}_0+\widehat{eta}_1X_i+\widehat{eta}_2Z_i+\widehat{eta}_3X_iZ_i$ 

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_i \times 0$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$ 

• When 
$$Z_i=1$$
:  
 $\widehat{Y}_i=\widehat{eta}_0+\widehat{eta}_1X_i+\widehat{eta}_2Z_i+\widehat{eta}_3X_iZ_i$ 

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_i \times 0$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$ 

• When 
$$Z_i = 1$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 1 + \widehat{\beta}_3 X_i \times 1$ 

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

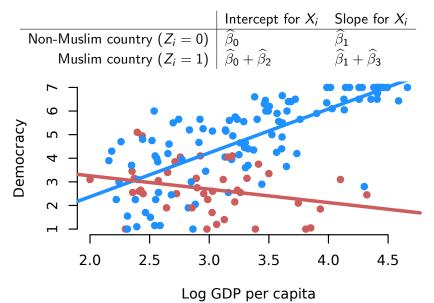
- How can we interpret this model?
- We can plug in the two possible values of  $Z_i$

• When 
$$Z_i = 0$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_i \times 0$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i$ 

• When 
$$Z_i = 1$$
:  
 $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$   
 $= \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 \times 1 + \widehat{\beta}_3 X_i \times 1$   
 $= (\widehat{\beta}_0 + \widehat{\beta}_2) + (\widehat{\beta}_1 + \widehat{\beta}_3) X_i$ 

Example interpretation of the coefficients

## Example interpretation of the coefficients



•  $\widehat{\beta}_0$ : average value of  $Y_i$  when both  $X_i$  and  $Z_i$  are equal to 0

- $\widehat{\beta}_0$ : average value of  $Y_i$  when both  $X_i$  and  $Z_i$  are equal to 0
- β
  <sub>1</sub>: a one-unit change in X<sub>i</sub> is associated with a β
  <sub>1</sub>-unit change in Y<sub>i</sub> when Z<sub>i</sub> = 0

- $\widehat{\beta}_0$ : average value of  $Y_i$  when both  $X_i$  and  $Z_i$  are equal to 0
- β
  <sub>1</sub>: a one-unit change in X<sub>i</sub> is associated with a β
  <sub>1</sub>-unit change in Y<sub>i</sub> when Z<sub>i</sub> = 0
- β
  <sub>2</sub>: average difference in Y<sub>i</sub> between Z<sub>i</sub> = 1 group and Z<sub>i</sub> = 0 group when X<sub>i</sub> = 0

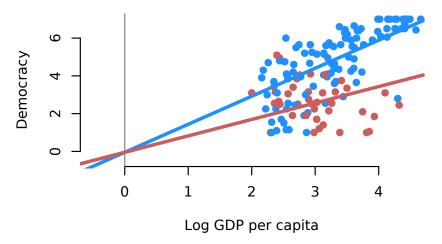
- $\widehat{\beta}_0$ : average value of  $Y_i$  when both  $X_i$  and  $Z_i$  are equal to 0
- $\hat{\beta}_1$ : a one-unit change in  $X_i$  is associated with a  $\hat{\beta}_1$ -unit change in  $Y_i$  when  $Z_i = 0$
- β
  <sub>2</sub>: average difference in Y<sub>i</sub> between Z<sub>i</sub> = 1 group and Z<sub>i</sub> = 0 group when X<sub>i</sub> = 0
- $\widehat{\beta}_3$ : change in the effect of  $X_i$  on  $Y_i$  between  $Z_i = 1$  group and  $Z_i = 0$

• Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)

- Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)
- Imagine we omitted the lower order term for muslim:

- Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)
- Imagine we omitted the lower order term for muslim:

- Principle of Marginality: Always include the marginal effects (sometimes called the lower order terms)
- Imagine we omitted the lower order term for muslim:



 $\widehat{}$ 

~ ^

$$\begin{split} \widehat{Y}_{i} &= \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{i} + 0 \times Z_{i} + \widehat{\beta}_{3}X_{i}Z_{i} \\ \hline & \\ \hline & \\ \hline \text{Non-Muslim country } (Z_{i} = 0) & \widehat{\beta}_{0} & \widehat{\beta}_{1} \\ \hline & \\ \text{Muslim country } (Z_{i} = 1) & \widehat{\beta}_{0} + 0 & \widehat{\beta}_{1} + \widehat{\beta}_{3} \end{split}$$

• Implication: no difference between Muslims and non-Muslims when income is 0

- Implication: no difference between Muslims and non-Muslims when income is 0
- Distorts slope estimates.

Ν

.

$$\begin{split} \widehat{Y}_{i} &= \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{i} + 0 \times Z_{i} + \widehat{\beta}_{3}X_{i}Z_{i} \\ \hline & & \text{Intercept for } X_{i} \quad \text{Slope for } X_{i} \\ \hline \text{Non-Muslim country } (Z_{i} = 0) \quad \widehat{\beta}_{0} \qquad \qquad \widehat{\beta}_{1} \\ \text{Muslim country } (Z_{i} = 1) \quad \widehat{\beta}_{0} + 0 \qquad \qquad \widehat{\beta}_{1} + \widehat{\beta}_{3} \end{split}$$

- Implication: no difference between Muslims and non-Muslims when income is 0
- Distorts slope estimates.
- Very rarely justified.

$$\begin{split} \widehat{Y}_{i} &= \widehat{\beta}_{0} + \widehat{\beta}_{1}X_{i} + 0 \times Z_{i} + \widehat{\beta}_{3}X_{i}Z_{i} \\ \hline & \\ \hline & \\ \hline & \\ \hline \text{Non-Muslim country } (Z_{i} = 0) & \widehat{\beta}_{0} & \widehat{\beta}_{1} \\ \hline & \\ \text{Muslim country } (Z_{i} = 1) & \widehat{\beta}_{0} + 0 & \widehat{\beta}_{1} + \widehat{\beta}_{3} \end{split}$$

- Implication: no difference between Muslims and non-Muslims when income is 0
- Distorts slope estimates.
- Very rarely justified.
- Yet for some reason people keep doing it.

• Now let  $Z_i$  be continuous

- Now let  $Z_i$  be continuous
- $Z_i$  is the percent growth in GDP per capita from 1975 to 1998

- Now let  $Z_i$  be continuous
- $Z_i$  is the percent growth in GDP per capita from 1975 to 1998
- Is the effect of economic development for rapidly developing countries higher or lower than for stagnant economies?

- Now let  $Z_i$  be continuous
- $Z_i$  is the percent growth in GDP per capita from 1975 to 1998
- Is the effect of economic development for rapidly developing countries higher or lower than for stagnant economies?
- We can still define the interaction:

 $income_i \times growth_i$ 

- Now let  $Z_i$  be continuous
- $Z_i$  is the percent growth in GDP per capita from 1975 to 1998
- Is the effect of economic development for rapidly developing countries higher or lower than for stagnant economies?
- We can still define the interaction:

 $income_i \times growth_i$ 

• And include it in the regression:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

|           | Intercept for $X_i$   | Slope for $X_i$     |
|-----------|-----------------------|---------------------|
| $Z_i = 0$ | $\widehat{\beta}_{0}$ | $\widehat{\beta}_1$ |

|           | Intercept for $X_i$   | Slope for $X_i$     |
|-----------|-----------------------|---------------------|
| $Z_i = 0$ | $\widehat{\beta}_{0}$ | $\widehat{\beta}_1$ |

|             | Intercept for $X_i$                                                       | Slope for $X_i$                               |
|-------------|---------------------------------------------------------------------------|-----------------------------------------------|
| $Z_i = 0$   | $\widehat{\beta}_{0}$                                                     | $\widehat{\beta}_1$                           |
| $Z_i = 0.5$ | $ \widehat{\beta}_0 \\ \widehat{\beta}_0 + \widehat{\beta}_2 \times 0.5 $ | $\widehat{eta}_1 + \widehat{eta}_3 	imes 0.5$ |

|             | Intercept for $X_i$                               | Slope for $X_i$                                  |
|-------------|---------------------------------------------------|--------------------------------------------------|
| $Z_i = 0$   | $\widehat{eta}_{0}$                               | $\widehat{\beta}_1$                              |
| $Z_i = 0.5$ | $\widehat{\beta}_0 + \widehat{\beta}_2 	imes 0.5$ | $\widehat{eta}_1 + \widehat{eta}_3 	imes 0.5$    |
| $Z_i = 1$   | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 1$  | $\widehat{\beta}_1 + \widehat{\beta}_3 \times 1$ |

|             | Intercept for $X_i$                              | Slope for $X_i$                               |
|-------------|--------------------------------------------------|-----------------------------------------------|
| $Z_i = 0$   | $\widehat{eta}_{0}$                              | $\widehat{eta}_1$                             |
| $Z_i = 0.5$ | $\widehat{eta}_0 + \widehat{eta}_2 	imes 0.5$    | $\widehat{eta}_1 + \widehat{eta}_3 	imes 0.5$ |
| $Z_i = 1$   | $\widehat{eta}_0 + \widehat{eta}_2 	imes 1$      | $\widehat{eta}_1 + \widehat{eta}_3 	imes 1$   |
| $Z_i = 5$   | $\widehat{\beta}_0 + \widehat{\beta}_2 \times 5$ | $\widehat{eta}_1 + \widehat{eta}_3 	imes 5$   |

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

The coefficient β<sub>1</sub> measures how the predicted outcome varies in X<sub>i</sub> when Z<sub>i</sub> = 0.

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- The coefficient β<sub>1</sub> measures how the predicted outcome varies in X<sub>i</sub> when Z<sub>i</sub> = 0.
- The coefficient  $\hat{\beta}_2$  measures how the predicted outcome varies in  $Z_i$  when  $X_i = 0$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- The coefficient β<sub>1</sub> measures how the predicted outcome varies in X<sub>i</sub> when Z<sub>i</sub> = 0.
- The coefficient  $\hat{\beta}_2$  measures how the predicted outcome varies in  $Z_i$  when  $X_i = 0$
- The coefficient β<sub>3</sub> is the change in the effect of X<sub>i</sub> given a one-unit change in Z<sub>i</sub>:

$$\frac{\partial E[Y_i|X_i, Z_i]}{\partial X_i} = \beta_1 + \beta_3 Z_i$$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i + \widehat{\beta}_2 Z_i + \widehat{\beta}_3 X_i Z_i$$

- The coefficient β<sub>1</sub> measures how the predicted outcome varies in X<sub>i</sub> when Z<sub>i</sub> = 0.
- The coefficient  $\hat{\beta}_2$  measures how the predicted outcome varies in  $Z_i$  when  $X_i = 0$
- The coefficient β<sub>3</sub> is the change in the effect of X<sub>i</sub> given a one-unit change in Z<sub>i</sub>:

$$\frac{\partial E[Y_i|X_i, Z_i]}{\partial X_i} = \beta_1 + \beta_3 Z_i$$

The coefficient β<sub>3</sub> is the change in the effect of Z<sub>i</sub> given a one-unit change in X<sub>i</sub>:

$$\frac{\partial E[Y_i|X_i, Z_i]}{\partial Z_i} = \beta_2 + \beta_3 X_i$$

## Additional Assumptions

Linearity of the interaction effect

- Linearity of the interaction effect
- **2** Common support (variation in X throughout the range of Z)

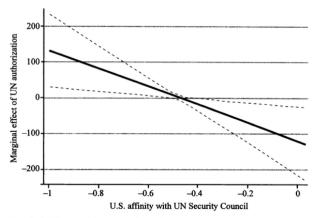
- Linearity of the interaction effect
- **②** Common support (variation in X throughout the range of Z)

We will talk about checking these assumptions in a few weeks.

# Example: Common Support

Chapman 2009 analysis

example and reanalysis from Hainmueller, Mummolo, Xu 2016



Note: Dashed lines give 95 percent confidence interval.

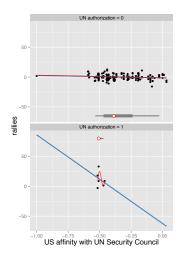
Stewart (Princeton)

Week 6: Two Regressors

# Example: Common Support

Chapman 2009 analysis

example and reanalysis from Hainmueller, Mummolo, Xu 2016



• Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.
- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero)

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.
- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero)
- Produce tables or figures that summarize the conditional marginal effects of the variable of interest at plausible different levels of the other variable; use correct formula to compute variance for these conditional effects (sum of coefficients)

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.
- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero)
- Produce tables or figures that summarize the conditional marginal effects of the variable of interest at plausible different levels of the other variable; use correct formula to compute variance for these conditional effects (sum of coefficients)
- In simple cases the p-value on the interaction term can be used as a test against the null of no interaction, but significant tests for the lower order terms rarely make sense.

- Do not omit lower order terms (unless you have a strong theory that tells you so) because this usually imposes unrealistic restrictions.
- Do not interpret the coefficients on the lower terms as marginal effects (they give the marginal effect only for the case where the other variable is equal to zero)
- Produce tables or figures that summarize the conditional marginal effects of the variable of interest at plausible different levels of the other variable; use correct formula to compute variance for these conditional effects (sum of coefficients)
- In simple cases the p-value on the interaction term can be used as a test against the null of no interaction, but significant tests for the lower order terms rarely make sense.

Further Reading: Brambor, Clark, and Golder. 2006. Understanding Interaction Models: Improving Empirical Analyses. *Political Analysis* 14 (1): 63-82.

Hainmueller, Mummolo, Xu. 2016. How Much Should We Trust Estimates from Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice. *Working Paper* 



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- Polynomials



12 Conclusion



#### Two Examples

- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- Dummy Variables
  - Interaction Terms
- 11 Polynomials
  - 2 Conclusion
    - Fun With Interactions

## Polynomial terms

# Polynomial terms

• Polynomial terms are a special case of the continuous variable interactions.

# Polynomial terms

- Polynomial terms are a special case of the continuous variable interactions.
- For example, when  $X_1 = X_2$  in the previous interaction model, we get a quadratic:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + u$$
  

$$Y = \beta_0 + (\beta_1 + \beta_2) X_1 + \beta_3 X_1 X_1 + u$$
  

$$Y = \beta_0 + \tilde{\beta}_1 X_1 + \tilde{\beta}_2 X_1^2 + u$$

• This is called a second order polynomial in X<sub>1</sub>

# Polynomial terms

- Polynomial terms are a special case of the continuous variable interactions.
- For example, when  $X_1 = X_2$  in the previous interaction model, we get a quadratic:

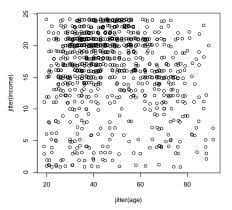
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + u$$
  

$$Y = \beta_0 + (\beta_1 + \beta_2) X_1 + \beta_3 X_1 X_1 + u$$
  

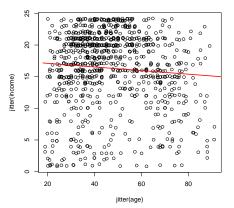
$$Y = \beta_0 + \tilde{\beta}_1 X_1 + \tilde{\beta}_2 X_1^2 + u$$

- This is called a second order polynomial in  $X_1$
- A third order polynomial is given by:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_1^3 + u$

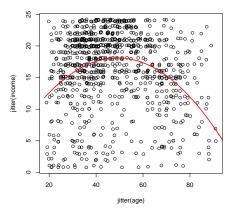
 Let's look at data from the U.S. and examine the relationship between Y: income and X: age



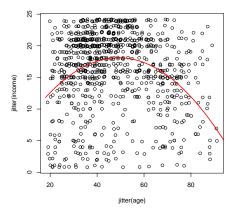
- Let's look at data from the U.S. and examine the relationship between Y: income and X: age
- We see that a simple linear specification does not fit the data very well:
   Y = β<sub>0</sub> + β<sub>1</sub>X<sub>1</sub> + u



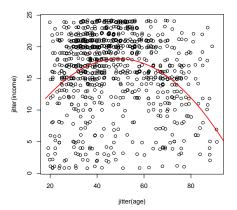
- Let's look at data from the U.S. and examine the relationship between Y: income and X: age
- We see that a simple linear specification does not fit the data very well:
   Y = β<sub>0</sub> + β<sub>1</sub>X<sub>1</sub> + u
- A second order polynomial in age fits the data a lot better:
   Y = β<sub>0</sub> + β<sub>1</sub>X<sub>1</sub> + β<sub>2</sub>X<sub>1</sub><sup>2</sup> + u



•  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u$ 

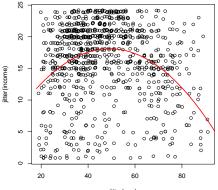


- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u$
- Is β<sub>1</sub> the marginal effect of age on income?



• 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u$$

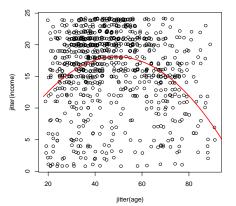
- Is β<sub>1</sub> the marginal effect of age on income?
- No! The marginal effect of age depends on the level of age: <sup>*DY*</sup>/<sub>*∂X*1</sub> = *β*<sub>1</sub> + 2 *β*<sub>2</sub> *X*<sub>1</sub> Here the effect of age changes monotonically from positive to negative with income.



jitter(age)

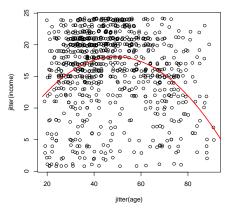
• 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u$$

- Is β<sub>1</sub> the marginal effect of age on income?
- If β<sub>2</sub> > 0 we get a U-shape, and if β<sub>2</sub> < 0 we get an inverted U-shape.



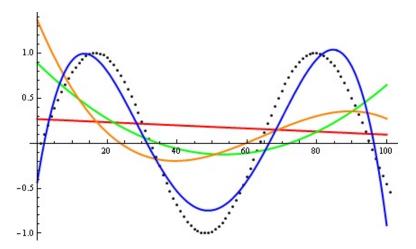
• 
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + u$$

- Is β<sub>1</sub> the marginal effect of age on income?
- No! The marginal effect of age depends on the level of age: <sup>*DY*</sup>/<sub>*∂X*1</sub> = *β*<sub>1</sub> + 2 *β*<sub>2</sub> *X*<sub>1</sub> Here the effect of age changes monotonically from positive to negative with income.
- If β<sub>2</sub> > 0 we get a U-shape, and if β<sub>2</sub> < 0 we get an inverted U-shape.
- Maximum/Minimum occurs at  $|\frac{\beta_1}{2\beta_2}|$ . Here turning point is at  $X_1 = 50$ .



122 / 132

Higher Order Polynomials



Approximating data generated with a sine function. Red line is a first degree polynomial, green line is second degree, orange line is third degree and blue is fourth degree

Stewart (Princeton)

Week 6: Two Regressors

In this brave new world with 2 independent variables:

**(**)  $\beta$ 's have slightly different interpretations

- $\ \, {\bf 0} \ \, \beta' {\rm s} \ \, {\rm have \ \, slightly \ \, different \ \, interpretations }$
- OLS still minimizing the sum of the squared residuals

- $\ \, {\bf 0} \ \ \, \beta's \ \, {\rm have \ slightly \ \, different \ interpretations}$
- OLS still minimizing the sum of the squared residuals
- Small adjustments to OLS assumptions and inference

- **(**)  $\beta$ 's have slightly different interpretations
- OLS still minimizing the sum of the squared residuals
- Small adjustments to OLS assumptions and inference
- Adding or omitting variables in a regression can affect the bias and the variance of OLS

- **(**)  $\beta$ 's have slightly different interpretations
- OLS still minimizing the sum of the squared residuals
- Small adjustments to OLS assumptions and inference
- Adding or omitting variables in a regression can affect the bias and the variance of OLS
- We can optionally consider interactions, but must take care to interpret them correctly

## Next Week

## Next Week

• OLS in its full glory

## Next Week

- OLS in its full glory
- Reading:
  - Practice up on matrices
  - ► Fox Chapter 9.1-9.4 (skip 9.1.1-9.1.2) Linear Models in Matrix Form
  - Aronow and Miller 4.1.2-4.1.4 Regression with Matrix Algebra
  - Optional: Fox Chapter 10 Geometry of Regression
  - Optional: Imai Chapter 4.3-4.3.3
  - Optional: Angrist and Pischke Chapter 3.1 Regression Fundamentals



- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- Once More With Feeling
- OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
  - Omitted Variables
- 8 Multicollinearity
- Oummy Variables
- 10 Interaction Terms
- Polynomials





- Two Examples
- 2 Adding a Binary Variable
- 3 Adding a Continuous Covariate
- 4 Once More With Feeling
- 5 OLS Mechanics and Partialing Out
- 6 Fun With Red and Blue
- 7 Omitted Variables
- 8 Multicollinearity
- Dummy Variables
- Interaction Terms
- D Polynomials
- 12 Conclusion
- 13 Fun With Interactions

## Fun With Interactions

# Fun With Interactions

Remember that time I mentioned people doing strange things with interactions?

Remember that time I mentioned people doing strange things with interactions?

Brooks and Manza (2006). "Social Policy Responsiveness in Developed Democracies." *American Sociological Review*.

Remember that time I mentioned people doing strange things with interactions?

Brooks and Manza (2006). "Social Policy Responsiveness in Developed Democracies." *American Sociological Review*.

Breznau (2015) "The Missing Main Effect of Welfare State Regimes: A Replication of 'Social Policy Responsiveness in Developed Democracies."' *Sociological Science*.

• Public preferences shape welfare state trajectories over the long term

- Public preferences shape welfare state trajectories over the long term
- Democracy empowers the masses, and that empowerment helps define social outcomes

- Public preferences shape welfare state trajectories over the long term
- Democracy empowers the masses, and that empowerment helps define social outcomes
- Key model is interaction between liberal/non-liberal and public preferences on social spending

- Public preferences shape welfare state trajectories over the long term
- Democracy empowers the masses, and that empowerment helps define social outcomes
- Key model is interaction between liberal/non-liberal and public preferences on social spending
- but...they leave out a main effect.

# **Omitted Term**

• They omit the marginal term for liberal/non-liberal

# **Omitted Term**

- They omit the marginal term for liberal/non-liberal
- This forces the two regression lines to intersect at public preferences = 0.

# **Omitted Term**

- They omit the marginal term for liberal/non-liberal
- This forces the two regression lines to intersect at public preferences = 0.
- They mean center so the 0 represents the average over the entire sample

# What Happens?

# What Happens?

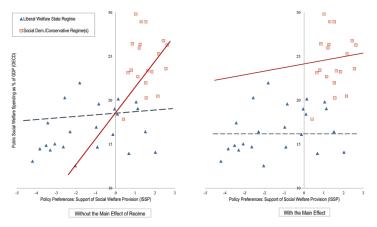


Figure 1: Predicted Regression Lines for the Effect of Policy Preferences on Social Welfare Spending, without and with the Main Effect of Regime

# Seriously

# Seriously, don't

## Seriously, don't omit

## Seriously, don't omit lower order terms.

# Seriously, don't omit lower order terms.

<drops mic>

#### References

Acemoglu, Daron, Simon Johnson, and James A. Robinson. "The colonial origins of comparative development: An empirical investigation." *American Economic Review*. 91(5). 2001: 1369-1401.

Fish, M. Steven. "Islam and authoritarianism." *World politics* 55(01). 2002: 4-37.

Gelman, Andrew. *Red state, blue state, rich state, poor state: why Americans vote the way they do.* Princeton University Press, 2009.