Week 9: What Can Go Wrong and How To Fix It, Diagnostics and Solutions

Brandon Stewart ${ }^{1}$

Princeton
November 14, 16 and 21, 2016

[^0]Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap
- After Thanksgiving
- causality with measured confounding

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap
- After Thanksgiving
- causality with measured confounding
- Long Run
- regression \rightarrow diagnostics \rightarrow causal inference

Questions?
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels
(11) Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
14 A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens

(1) Assumptions and Violations

(2) Non-normality
(3) Outliers

- Robusi Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
- Linear Basis Function Models

9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
12 Clustering
113 Optional: Serial Correlation
14 A Contrarian View of Robust Standard Errors
13 Fuin with Neighbors
16 Fun with Kittens

Argument for Next Three Classes

Residuals are important. Look at them.

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(3) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(3) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(3) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

- 1-4 give us unbiasedness/consistency

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(3) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

- 1-4 give us unbiasedness/consistency
- 1-5 are the Gauss-Markov, allow for large-sample inference

Review of the OLS assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(3) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

- 1-4 give us unbiasedness/consistency
- 1-5 are the Gauss-Markov, allow for large-sample inference
- 1-6 allow for small-sample inference

Review of the OLS Assumptions

Violations of the assumptions

(1) Nonlinearity

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample
- Result: no bias with appropriate alternative assumptions (structured dependence)

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample
- Result: no bias with appropriate alternative assumptions (structured dependence)
- Result (ii): violations imply heteroskedasticity

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample
- Result: no bias with appropriate alternative assumptions (structured dependence)
- Result (ii): violations imply heteroskedasticity
- Result (iii): outliers from different distributions can cause inefficiency/bias

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample
- Result: no bias with appropriate alternative assumptions (structured dependence)
- Result (ii): violations imply heteroskedasticity
- Result (iii): outliers from different distributions can cause inefficiency/bias
- Diagnose/Correct: various, this lecture and next week

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample
- Result: no bias with appropriate alternative assumptions (structured dependence)
- Result (ii): violations imply heteroskedasticity
- Result (iii): outliers from different distributions can cause inefficiency/bias
- Diagnose/Correct: various, this lecture and next week
(3) Perfect collinearity

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample
- Result: no bias with appropriate alternative assumptions (structured dependence)
- Result (ii): violations imply heteroskedasticity
- Result (iii): outliers from different distributions can cause inefficiency/bias
- Diagnose/Correct: various, this lecture and next week
(3) Perfect collinearity
- Result: can't run OLS

Violations of the assumptions

(1) Nonlinearity

- Result: biased/inconsistent estimates
- Diagnose: scatterplots, added variable plots, component-plus-residual plots
- Correct: transformations, polynomials, different model (next class)
(2) iid/random sample
- Result: no bias with appropriate alternative assumptions (structured dependence)
- Result (ii): violations imply heteroskedasticity
- Result (iii): outliers from different distributions can cause inefficiency/bias
- Diagnose/Correct: various, this lecture and next week
(3) Perfect collinearity
- Result: can't run OLS
- Diagnose/correct: drop one collinear term

Violations of the assumptions (ii)

(9) Zero conditional mean error

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables
(5) Heteroskedasticity

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables
(5) Heteroskedasticity
- Result: SEs are biased (usually downward)

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables
(5) Heteroskedasticity
- Result: SEs are biased (usually downward)
- Diagnose/correct: next week!

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables
(5) Heteroskedasticity
- Result: SEs are biased (usually downward)
- Diagnose/correct: next week!
(0) Non-Normality

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables
(5) Heteroskedasticity
- Result: SEs are biased (usually downward)
- Diagnose/correct: next week!
(6) Non-Normality
- Result: critical values for t and F tests wrong

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables
(5) Heteroskedasticity
- Result: SEs are biased (usually downward)
- Diagnose/correct: next week!
(6) Non-Normality
- Result: critical values for t and F tests wrong
- Diagnose: checking the (studentized) residuals, QQ-plots, etc

Violations of the assumptions (ii)

(9) Zero conditional mean error

- Result: biased/inconsistent estimates
- Diagnose: very difficult
- Correct: instrumental variables
(5) Heteroskedasticity
- Result: SEs are biased (usually downward)
- Diagnose/correct: next week!
(6) Non-Normality
- Result: critical values for t and F tests wrong
- Diagnose: checking the (studentized) residuals, QQ-plots, etc
- Correct: transformations, add variables to \mathbf{X}, different model

Example: Buchanan votes in Florida, 2000

Example: Buchanan votes in Florida, 2000

Wand et al. show that the ballot caused 2, 000 Democratic voters to vote by mistake for Buchanan, a number more than enough to have tipped the vote in FL from Bush to Gore, thus giving him FL's 25 electoral votes and the presidency.

FIGURE 1. The Palm Beach County Bufferfly Ballot

Example: Buchanan votes in Florida, 2000

Example: Buchanan votes in Florida, 2000

(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

(2) Non-normality

(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix

7 Detecting Nonlinearity
8 Linear Basis Function Models
ค. Generalized Additive Mode's
(10) Fun With Kernels

11 Heteroskedasticity
12 Clustering
13 Optional: Serial Correlation
14 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

Review of the Normality assumption

- In matrix notation:

$$
\mathbf{u} \mid \mathbf{X} \sim \mathcal{N}\left(0, \sigma_{u}^{2} \mathbf{I}\right)
$$

Review of the Normality assumption

- In matrix notation:

$$
\mathbf{u} \mid \mathbf{X} \sim \mathcal{N}\left(0, \sigma_{u}^{2} \mathbf{I}\right)
$$

- Equivalent to:

$$
u_{i} \mid \mathbf{x}_{i}^{\prime} \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right)
$$

Review of the Normality assumption

- In matrix notation:

$$
\mathbf{u} \mid \mathbf{X} \sim \mathcal{N}\left(0, \sigma_{u}^{2} \mathbf{I}\right)
$$

- Equivalent to:

$$
u_{i} \mid \mathbf{x}_{i}^{\prime} \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right)
$$

- Fix \mathbf{x}_{i}^{\prime} and the distribution of errors should be Normal

Consequences of non-Normal errors?

- In small samples:

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α
- $1-\alpha$ confidence interval will not have $1-\alpha$ coverage

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α
- $1-\alpha$ confidence interval will not have $1-\alpha$ coverage
- In large samples:

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α
- $1-\alpha$ confidence interval will not have $1-\alpha$ coverage
- In large samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}} \approx$ Normal by the CLT

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α
- $1-\alpha$ confidence interval will not have $1-\alpha$ coverage
- In large samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}} \approx$ Normal by the CLT
- Test statistics will be $\approx t$ or F by the CLT

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α
- $1-\alpha$ confidence interval will not have $1-\alpha$ coverage
- In large samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}} \approx$ Normal by the CLT
- Test statistics will be $\approx t$ or F by the CLT
- Probability of Type I error $\approx \alpha$

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α
- $1-\alpha$ confidence interval will not have $1-\alpha$ coverage
- In large samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}} \approx$ Normal by the CLT
- Test statistics will be $\approx t$ or F by the CLT
- Probability of Type I error $\approx \alpha$
- $1-\alpha$ confidence interval will have $\approx 1-\alpha$ coverage

Consequences of non-Normal errors?

- In small samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}}$ will not be Normal
- Test statistics will not have t or F distributions
- Probability of Type I error will not be α
- $1-\alpha$ confidence interval will not have $1-\alpha$ coverage
- In large samples:
- Sampling distribution of $\widehat{\boldsymbol{\beta}} \approx$ Normal by the CLT
- Test statistics will be $\approx t$ or F by the CLT
- Probability of Type I error $\approx \alpha$
- $1-\alpha$ confidence interval will have $\approx 1-\alpha$ coverage
- The sample size (n) needed for approximation to hold depends on how far the errors are from Normal.

Marginal versus conditional

- Be careful with this assumption: distribution of the error $(u=y-X \beta)$, not the distribution of the outcome y is the key assumption

Marginal versus conditional

- Be careful with this assumption: distribution of the error $(u=y-X \beta)$, not the distribution of the outcome y is the key assumption
- The marginal distribution of y can be non-Normal even if the conditional distribution is Normal!

Marginal versus conditional

- Be careful with this assumption: distribution of the error $(u=y-X \beta)$, not the distribution of the outcome y is the key assumption
- The marginal distribution of y can be non-Normal even if the conditional distribution is Normal!
- The plausibility depends on the X chosen by the researcher.

Example: Is this a violation?

Example: Is this a violation?

$z=1$

How to diagnose?

- Assumption is about unobserved $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$

How to diagnose?

- Assumption is about unobserved $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$
- We can only observe residuals, $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$

How to diagnose?

- Assumption is about unobserved $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$
- We can only observe residuals, $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$
- If distribution of residuals \approx distribution of errors, we could check residuals

How to diagnose?

- Assumption is about unobserved $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$
- We can only observe residuals, $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$
- If distribution of residuals \approx distribution of errors, we could check residuals
- But this is actually not true-the distribution of the residuals is complicated

How to diagnose?

- Assumption is about unobserved $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$
- We can only observe residuals, $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$
- If distribution of residuals \approx distribution of errors, we could check residuals
- But this is actually not true-the distribution of the residuals is complicated

How to diagnose?

- Assumption is about unobserved $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$
- We can only observe residuals, $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$
- If distribution of residuals \approx distribution of errors, we could check residuals
- But this is actually not true-the distribution of the residuals is complicated

Solution: Carefully investigate the residuals numerically and graphically.

How to diagnose?

- Assumption is about unobserved $\mathbf{u}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}$
- We can only observe residuals, $\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$
- If distribution of residuals \approx distribution of errors, we could check residuals
- But this is actually not true-the distribution of the residuals is complicated

Solution: Carefully investigate the residuals numerically and graphically.
To understand the relationship between residuals and errors, we need to derive the distribution of the residuals.

Hat matrix

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$$
\widehat{\mathbf{u}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}
$$

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$$
\begin{aligned}
\widehat{\mathbf{u}} & =\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}} \\
& =\mathbf{y}-X\left(X^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
\end{aligned}
$$

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$$
\begin{aligned}
\widehat{\mathbf{u}} & =\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}} \\
& =\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& \equiv \mathbf{y}-\mathbf{H} \mathbf{y}
\end{aligned}
$$

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$$
\begin{aligned}
\widehat{\mathbf{u}} & =\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}} \\
& =\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& \equiv \mathbf{y}-\mathbf{H} \mathbf{y} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{y}
\end{aligned}
$$

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$$
\begin{aligned}
\widehat{\mathbf{u}} & =\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}} \\
& =\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& \equiv \mathbf{y}-\mathbf{H} \mathbf{y} \\
& =(I-H) \mathbf{y}
\end{aligned}
$$

- H is the hat matrix because it puts the "hat" on \mathbf{y} :

$$
\widehat{\mathbf{y}}=\mathbf{H y}
$$

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$$
\begin{aligned}
\widehat{\mathbf{u}} & =\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}} \\
& =\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& \equiv \mathbf{y}-\mathbf{H} \mathbf{y} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{y}
\end{aligned}
$$

- H is the hat matrix because it puts the "hat" on \mathbf{y} :

$$
\hat{y}=H y
$$

- \mathbf{H} is an $n \times n$ symmetric matrix

Hat matrix

- Define matrix $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$$
\begin{aligned}
\widehat{\mathbf{u}} & =\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}} \\
& =\mathbf{y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& \equiv \mathbf{y}-\mathbf{H} \mathbf{y} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{y}
\end{aligned}
$$

- H is the hat matrix because it puts the "hat" on \mathbf{y} :

$$
\hat{y}=\mathbf{H y}
$$

- \mathbf{H} is an $n \times n$ symmetric matrix
- \mathbf{H} is idempotent: $\mathbf{H} \mathbf{H}=\mathbf{H}$

Relating the residuals to the errors

$$
\widehat{\mathbf{u}}=(\mathbf{I}-\mathbf{H})(y)
$$

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(y) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u})
\end{aligned}
$$

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(\mathbf{y}) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u}
\end{aligned}
$$

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(y) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{I} \mathbf{\beta}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u}
\end{aligned}
$$

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(y) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{I} \mathbf{X}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{X} \boldsymbol{\beta}-\mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u}
\end{aligned}
$$

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(y) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{I} \mathbf{X} \boldsymbol{\beta}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{X} \boldsymbol{\beta}-\mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{u}
\end{aligned}
$$

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(y) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{I} \boldsymbol{X} \boldsymbol{\beta}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{X} \boldsymbol{\beta}-\mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{u}
\end{aligned}
$$

- Residuals $\widehat{\mathbf{u}}$ are a linear function of the errors, \mathbf{u}

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(y) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{I} \boldsymbol{X} \boldsymbol{\beta}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{X} \boldsymbol{\beta}-\mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{u}
\end{aligned}
$$

- Residuals $\widehat{\mathbf{u}}$ are a linear function of the errors, \mathbf{u}
- For instance,

$$
\widehat{u}_{1}=\left(1-h_{11}\right) u_{1}-\sum_{i=2}^{n} h_{1 i} u_{i}
$$

Relating the residuals to the errors

$$
\begin{aligned}
\widehat{\mathbf{u}} & =(\mathbf{I}-\mathbf{H})(y) \\
& =(\mathbf{I}-\mathbf{H})(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{I} \boldsymbol{X} \boldsymbol{\beta}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =\mathbf{X} \boldsymbol{\beta}-\mathbf{X} \boldsymbol{\beta}+(\mathbf{I}-\mathbf{H}) \mathbf{u} \\
& =(\mathbf{I}-\mathbf{H}) \mathbf{u}
\end{aligned}
$$

- Residuals $\widehat{\mathbf{u}}$ are a linear function of the errors, \mathbf{u}
- For instance,

$$
\widehat{u}_{1}=\left(1-h_{11}\right) u_{1}-\sum_{i=2}^{n} h_{1 i} u_{i}
$$

- Note that the residual is a function of all of the errors

Distribution of the residuals

Distribution of the residuals

$$
\begin{gathered}
\mathbb{E}[\widehat{\mathbf{u}}]=(\mathbf{I}-\mathbf{H}) \mathbb{E}[\mathbf{u}]=\mathbf{0} \\
\operatorname{Var}[\hat{\mathbf{u}}]=\sigma_{u}^{2}(\mathbf{I}-\mathbf{H})
\end{gathered}
$$

Distribution of the residuals

$$
\begin{gathered}
\mathbb{E}[\widehat{\mathbf{u}}]=(\mathbf{I}-\mathbf{H}) \mathbb{E}[\mathbf{u}]=\mathbf{0} \\
\operatorname{Var}[\hat{\mathbf{u}}]=\sigma_{u}^{2}(\mathbf{I}-\mathbf{H})
\end{gathered}
$$

The variance of the i th residual \hat{u}_{i} is $V\left[\hat{u}_{i}\right]=\sigma^{2}\left(1-h_{i i}\right)$, where $h_{i i}$ is the i th diagonal element of the matrix \mathbf{H} (called the hat value).

Distribution of the Residuals

Distribution of the Residuals

Notice in contrast to the unobserved errors, the estimated residuals

Distribution of the Residuals

Notice in contrast to the unobserved errors, the estimated residuals
(1) are not independent (because they must satisfy the two constraints

$$
\left.\sum_{i=1}^{n} \widehat{u}_{i}=0 \text { and } \sum_{i=1}^{n} \widehat{u}_{i} x_{i}=0\right)
$$

Distribution of the Residuals

Notice in contrast to the unobserved errors, the estimated residuals
(1) are not independent (because they must satisfy the two constraints $\sum_{i=1}^{n} \widehat{u}_{i}=0$ and $\left.\sum_{i=1}^{n} \widehat{u}_{i} x_{i}=0\right)$
(2) do not have the same variance. The variance of the residuals varies across data points $V\left[\hat{u}_{i}\right]=\sigma^{2}\left(1-h_{i i}\right)$, even though the unobserved errors all have the same variance σ^{2}

Distribution of the Residuals

Notice in contrast to the unobserved errors, the estimated residuals
(1) are not independent (because they must satisfy the two constraints $\sum_{i=1}^{n} \widehat{u}_{i}=0$ and $\left.\sum_{i=1}^{n} \widehat{u}_{i} x_{i}=0\right)$
(2) do not have the same variance. The variance of the residuals varies across data points $V\left[\hat{u}_{i}\right]=\sigma^{2}\left(1-h_{i i}\right)$, even though the unobserved errors all have the same variance σ^{2}
These properties can obscure the true patterns in the error distribution, and thus are inconvenient for our diagnostics.

Standardized Residuals

Standardized Residuals

Let's address the second problem (unequal variances) by standardizing \hat{u}_{i}, i.e., dividing by their estimated standard deviations.

Standardized Residuals

Let's address the second problem (unequal variances) by standardizing \hat{u}_{i}, i.e., dividing by their estimated standard deviations.

This produces standardized (or "internally studentized") residuals:

$$
\hat{u}_{i}^{\prime}=\frac{\hat{u}_{i}}{\hat{\sigma} \sqrt{1-h_{i i}}}
$$

where $\hat{\sigma}^{2}$ is our usual estimate of the error variance.

Standardized Residuals

Let's address the second problem (unequal variances) by standardizing \hat{u}_{i}, i.e., dividing by their estimated standard deviations.

This produces standardized (or "internally studentized") residuals:

$$
\hat{u}_{i}^{\prime}=\frac{\hat{u}_{i}}{\hat{\sigma} \sqrt{1-h_{i i}}}
$$

where $\hat{\sigma}^{2}$ is our usual estimate of the error variance.
The standardized residuals are still not ideal, since the numerator and denominator of \hat{u}_{i}^{\prime} are not independent. This makes the distribution of \hat{u}_{i}^{\prime} nonstandard.

Studentized residuals

Studentized residuals

If we remove observation i from the estimation of σ, then we can eliminate the dependence and the result will have a standard distribution.

Studentized residuals

If we remove observation i from the estimation of σ, then we can eliminate the dependence and the result will have a standard distribution.

- estimate residual variance without residual i :

$$
\widehat{\sigma}_{-i}^{2}=\frac{\mathbf{u}^{\prime} \mathbf{u}-u_{i}^{2} /\left(1-h_{i i}\right)}{n-k-2}
$$

Studentized residuals

If we remove observation i from the estimation of σ, then we can eliminate the dependence and the result will have a standard distribution.

- estimate residual variance without residual i :

$$
\widehat{\sigma}_{-i}^{2}=\frac{\mathbf{u}^{\prime} \mathbf{u}-u_{i}^{2} /\left(1-h_{i i}\right)}{n-k-2}
$$

- Use this i-free estimate to standardize, which creates the studentized residuals:

$$
\widehat{u}_{i}^{*}=\frac{\widehat{u}_{i}}{\widehat{\sigma}_{-i} \sqrt{1-h_{i i}}}
$$

Studentized residuals

If we remove observation i from the estimation of σ, then we can eliminate the dependence and the result will have a standard distribution.

- estimate residual variance without residual i :

$$
\widehat{\sigma}_{-i}^{2}=\frac{\mathbf{u}^{\prime} \mathbf{u}-u_{i}^{2} /\left(1-h_{i i}\right)}{n-k-2}
$$

- Use this i-free estimate to standardize, which creates the studentized residuals:

$$
\widehat{u}_{i}^{*}=\frac{\widehat{u}_{i}}{\widehat{\sigma}_{-i} \sqrt{1-h_{i i}}}
$$

- If the errors are Normal, the studentized residuals follow a t distribution with $(n-k-2)$ degrees of freedom.

Studentized residuals

If we remove observation i from the estimation of σ, then we can eliminate the dependence and the result will have a standard distribution.

- estimate residual variance without residual i :

$$
\widehat{\sigma}_{-i}^{2}=\frac{\mathbf{u}^{\prime} \mathbf{u}-u_{i}^{2} /\left(1-h_{i i}\right)}{n-k-2}
$$

- Use this i-free estimate to standardize, which creates the studentized residuals:

$$
\widehat{u}_{i}^{*}=\frac{\widehat{u}_{i}}{\widehat{\sigma}_{-i} \sqrt{1-h_{i i}}}
$$

- If the errors are Normal, the studentized residuals follow a t distribution with $(n-k-2)$ degrees of freedom.
- Deviations from $t \Longrightarrow$ violation of Normality

Example: Buchanan Votes in Florida

Example: Buchanan Votes in Florida

- Now that our studentized residuals follow a known standard distribution, we can proceed with diagnostic analysis for the nonnormal errors.

Example: Buchanan Votes in Florida

- Now that our studentized residuals follow a known standard distribution, we can proceed with diagnostic analysis for the nonnormal errors.
- We examine data from the 2000 presidential election in Florida used in Wand et al. (2001).

Example: Buchanan Votes in Florida

- Now that our studentized residuals follow a known standard distribution, we can proceed with diagnostic analysis for the nonnormal errors.
- We examine data from the 2000 presidential election in Florida used in Wand et al. (2001).
- Our analysis takes place at the county level and we will regress the number of Buchanan votes in each county on the total number of votes in each county.

Buchanan Votes and Total Votes

R Code

```
> mod1 <- lm(buchanan00~TotalVotes00,data=dta)
> summary(mod1)
Residuals:
    Min 1Q Median 3Q Max
-947.05 -41.74 -19.47 20.20 2350.54
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lllll}\text { (Intercept) } & 5.423 \mathrm{e}+01 & 4.914 \mathrm{e}+01 & 1.104 & 0.274\end{array}$
TotalVotes00 2.323e-03 3.104e-04 $7.4832 .42 \mathrm{e}-10$ ***

Residual standard error: 332.7 on 65 degrees of freedom Multiple R-squared: 0.4628, Adjusted R-squared: 0.4545
F-statistic: 56 on 1 and 65 DF, p-value: $2.417 \mathrm{e}-10$
> residuals
<- resid(mod1)
> standardized_residuals <- rstandard(mod1)
> studentized_residuals <- rstudent(mod1)
> dotchart(residuals,dta\$name, cex=.7,xlab="Residuals")

Plotting the residuals

Plotting the residuals

Histogram of resids

Histogram of stand.resids

Histogram of student.resids

Plotting the residuals

Quantile-Quantile plots

- Quantile-quantile plot or QQ-plot is useful for comparing distributions

Quantile-Quantile plots

- Quantile-quantile plot or QQ-plot is useful for comparing distributions
- Plots the quantiles of one distribution against those of another distribution

Quantile-Quantile plots

- Quantile-quantile plot or QQ-plot is useful for comparing distributions
- Plots the quantiles of one distribution against those of another distribution
- For example, one point is the (m_{x}, m_{y}) where m_{x} is the median of the x distribution and m_{y} is the median for the y distribution

Quantile-Quantile plots

- Quantile-quantile plot or QQ-plot is useful for comparing distributions
- Plots the quantiles of one distribution against those of another distribution
- For example, one point is the (m_{x}, m_{y}) where m_{x} is the median of the x distribution and m_{y} is the median for the y distribution
- If distributions are equal $\Longrightarrow 45$ degree line

Good QQ-plot

Buchanan QQ-plot

How can we deal with nonnormal errors?

How can we deal with nonnormal errors?

- Drop or change problematic observations (could be a bad idea unless you have some reason to believe the data are wrong or corrupted)

How can we deal with nonnormal errors?

- Drop or change problematic observations (could be a bad idea unless you have some reason to believe the data are wrong or corrupted)
- Add variables to \mathbf{X} (remember that the errors are defined in terms of explanatory variables)

How can we deal with nonnormal errors?

- Drop or change problematic observations (could be a bad idea unless you have some reason to believe the data are wrong or corrupted)
- Add variables to \mathbf{X} (remember that the errors are defined in terms of explanatory variables)
- Use transformations (this may work, but a transformation affects all the assumptions of the model)

How can we deal with nonnormal errors?

- Drop or change problematic observations (could be a bad idea unless you have some reason to believe the data are wrong or corrupted)
- Add variables to \mathbf{X} (remember that the errors are defined in terms of explanatory variables)
- Use transformations (this may work, but a transformation affects all the assumptions of the model)
- Use estimators other than OLS that are robust to nonnormality (later this class)

How can we deal with nonnormal errors?

- Drop or change problematic observations (could be a bad idea unless you have some reason to believe the data are wrong or corrupted)
- Add variables to \mathbf{X} (remember that the errors are defined in terms of explanatory variables)
- Use transformations (this may work, but a transformation affects all the assumptions of the model)
- Use estimators other than OLS that are robust to nonnormality (later this class)
- Consider other causes (next two classes)

Buchanan revisited

Let's delete Palm Beach and also use log transformations for both variables

```
##
## Coefficients:
## (Intercept) 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4362 on 64 degrees of freedom
## Multiple R-squared: 0.8549, Adjusted R-squared: 0.8526
## F-statistic: }377\mathrm{ on 1 and 64 DF, p-value: < 2.2e-16
```


Buchanan revisited

Histogram of resids.nopb

Histogram of stand.resids.nopb

Histogram of student.resids.nopb

Buchanan revisited

A Note of Caution About Log Transformations

- Log transformations are a standard approach in the literature and intro regression classes

A Note of Caution About Log Transformations

- Log transformations are a standard approach in the literature and intro regression classes
- They are extremely helpful for data that is skewed (e.g. a few very large positive values)

A Note of Caution About Log Transformations

- Log transformations are a standard approach in the literature and intro regression classes
- They are extremely helpful for data that is skewed (e.g. a few very large positive values)
- Generally you want to convert these findings back to the original scale for interpretation

A Note of Caution About Log Transformations

- Log transformations are a standard approach in the literature and intro regression classes
- They are extremely helpful for data that is skewed (e.g. a few very large positive values)
- Generally you want to convert these findings back to the original scale for interpretation
- You should know though that estimates of marginal effects in the untransformed states are not necessarily unbiased.

A Note of Caution About Log Transformations

- Log transformations are a standard approach in the literature and intro regression classes
- They are extremely helpful for data that is skewed (e.g. a few very large positive values)
- Generally you want to convert these findings back to the original scale for interpretation
- You should know though that estimates of marginal effects in the untransformed states are not necessarily unbiased.
- Jensen's inequality gives us information on this relation: $f(E[X]) \leq E[f(X)]$ for any convex function $f()$

A Note of Caution About Log Transformations

- Log transformations are a standard approach in the literature and intro regression classes
- They are extremely helpful for data that is skewed (e.g. a few very large positive values)
- Generally you want to convert these findings back to the original scale for interpretation
- You should know though that estimates of marginal effects in the untransformed states are not necessarily unbiased.
- Jensen's inequality gives us information on this relation: $f(E[X]) \leq E[f(X)]$ for any convex function $f()$
- The results will in general be consistent which ensures that the bias decreases in sample size.
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations
2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
B. Linear Basis Function Models
9) Generalized Additive Models

40 Fun With Kernels
(11) Heteroskedasticity
(10) Clustering

13 Optional: Serial Correlation
11 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

The trouble with Norway

The trouble with Norway

- Lange and Garrett (1985): organizational and political power of labor interact to improve economic growth

The trouble with Norway

- Lange and Garrett (1985): organizational and political power of labor interact to improve economic growth
- Jackman (1987): relationship just due to North Sea Oil?

The trouble with Norway

- Lange and Garrett (1985): organizational and political power of labor interact to improve economic growth
- Jackman (1987): relationship just due to North Sea Oil?
- Table guide:
- $x_{1}=$ organizational power of labor
- $x_{2}=$ political power of labor
- Parentheses contain t-statistics

The trouble with Norway

- Lange and Garrett (1985): organizational and political power of labor interact to improve economic growth
- Jackman (1987): relationship just due to North Sea Oil?
- Table guide:
- $x_{1}=$ organizational power of labor
- $x_{2}=$ political power of labor
- Parentheses contain t-statistics

	Constant	x_{1}	x_{2}	$x_{1} \cdot x_{2}$
Norway Obs Included	.814	-.192	-.278	.137
	(4.7)	(2.0)	(2.4)	(2.9)
Norway Obs Excluded	.641	-.068	-.138	.054
	(4.8)	(0.9)	(1.5)	(1.3)

Creative curve fitting with Norway

Creative curve fitting with Norway

Corporate Taxes and Revenue, 2004
Left scale represents tax revenues as a percentage of GDP. Bottom scale represents central government corporate tax rates.

Sources: OECD Revenue Statistics, Kevin Hassett, American Enterprise Institute

The Most Important Lesson: Check Your Data

The Most Important Lesson: Check Your Data

"Do not attempt to build a model on a set of poor data! In human surveys, one often finds 14 -inch men, 1000-pound women, students with 'no' lungs, and so on. In manufacturing data, one can find 10,000 pounds of material in a 100 pound capacity barrel, and similar obvious errors.

All the planning, and training in the world will not eliminate these sorts of problems. In our decades of experience with 'messy data,' we have yet to find a large data set completely free of such quality problems."

Draper and Smith (1981, p. 418)

The Most Important Lesson: Check Your Data

"Do not attempt to build a model on a set of poor data! In human surveys, one often finds 14 -inch men, 1000-pound women, students with 'no' lungs, and so on. In manufacturing data, one can find 10,000 pounds of material in a 100 pound capacity barrel, and similar obvious errors.

All the planning, and training in the world will not eliminate these sorts of problems. In our decades of experience with 'messy data,' we have yet to find a large data set completely free of such quality problems."

Draper and Smith (1981, p. 418)

Always Carefully Examine the Data First!!

(1) Examine summary statistics: summary (data)
(2) Scatterplot matrix for densities and bivariate relationships:
E.g. scatterplotMatrix(data) from car library.
(3) Further conditional plots for multivariate data:
E.g. use the lattice library or ggplot2

Three types of extreme values

Three types of extreme values

(1) Outlier: extreme in the y direction

Three types of extreme values

(1) Outlier: extreme in the y direction
(2) Leverage point: extreme in one x direction

Three types of extreme values

(1) Outlier: extreme in the y direction
(2) Leverage point: extreme in one x direction
(3) Influence point: extreme in both directions

Three types of extreme values

(1) Outlier: extreme in the y direction
(2) Leverage point: extreme in one x direction
(3) Influence point: extreme in both directions

- Not all of these are problematic

Three types of extreme values

(1) Outlier: extreme in the y direction
(2) Leverage point: extreme in one x direction
(3) Influence point: extreme in both directions

- Not all of these are problematic
- If the data are truly "contaminated" (come from a different distribution), can cause inefficiency and possibly bias

Three types of extreme values

(1) Outlier: extreme in the y direction
(2) Leverage point: extreme in one x direction
(3) Influence point: extreme in both directions

- Not all of these are problematic
- If the data are truly "contaminated" (come from a different distribution), can cause inefficiency and possibly bias
- Can be a violation of iid (not identically distributed)

Outlier definition

Outlier

- An outlier is a data point with very large regression errors, u_{i}

Outlier definition

Outlier

- An outlier is a data point with very large regression errors, u_{i}
- Very distant from the rest of the data in the y-dimension

Outlier definition

Outlier

- An outlier is a data point with very large regression errors, u_{i}
- Very distant from the rest of the data in the y-dimension
- Increases standard errors (by increasing $\widehat{\sigma}^{2}$)

Outlier definition

Outlier

- An outlier is a data point with very large regression errors, u_{i}
- Very distant from the rest of the data in the y-dimension
- Increases standard errors (by increasing $\widehat{\sigma}^{2}$)
- No bias if typical in the x 's

Detecting outliers

- Look at standardized residuals, \widehat{u}_{i}^{\prime} ?

Detecting outliers

- Look at standardized residuals, \widehat{u}_{i}^{\prime} ?
- but $\widehat{\sigma}^{2}$ could be biased upwards by the large residual from the outlier

Detecting outliers

- Look at standardized residuals, \widehat{u}_{i}^{\prime} ?
- but $\widehat{\sigma}^{2}$ could be biased upwards by the large residual from the outlier
- Makes detecting residuals harder

Detecting outliers

- Look at standardized residuals, \widehat{u}_{i}^{\prime} ?
- but $\widehat{\sigma}^{2}$ could be biased upwards by the large residual from the outlier
- Makes detecting residuals harder
- Possible solution: use studentized residuals

$$
\widehat{u}_{i}^{*}=\frac{\widehat{u}_{i}}{\hat{\sigma}_{-i} \sqrt{1-h_{i}}}
$$

Detecting outliers

- Look at standardized residuals, \widehat{u}_{i}^{\prime} ?
- but $\widehat{\sigma}^{2}$ could be biased upwards by the large residual from the outlier
- Makes detecting residuals harder
- Possible solution: use studentized residuals

$$
\widehat{u}_{i}^{*}=\frac{\widehat{u}_{i}}{\widehat{\sigma}_{-i} \sqrt{1-h_{i}}}
$$

- $\widehat{\sigma}>\widehat{\sigma}_{-i}$ because we drop the large residual from the outlier, and so $\widehat{u}_{i}^{\prime}<\widehat{u}_{i}^{*}$

Cutoff rules for outliers

- The studentized residuals follow a t distribution, $u_{i}^{*} \sim t_{n-k-2}$, when $u_{i} \sim N\left(0, \sigma^{2}\right)$

Cutoff rules for outliers

- The studentized residuals follow a t distribution, $u_{i}^{*} \sim t_{n-k-2}$, when $u_{i} \sim N\left(0, \sigma^{2}\right)$
- Rule of thumb: $\left|\widehat{u}_{i}^{*}\right|>2$ will be relatively rare

Cutoff rules for outliers

- The studentized residuals follow a t distribution, $u_{i}^{*} \sim t_{n-k-2}$, when $u_{i} \sim N\left(0, \sigma^{2}\right)$
- Rule of thumb: $\left|\widehat{u}_{i}^{*}\right|>2$ will be relatively rare
- Extreme outliers, $\left|\widehat{u}_{i}^{*}\right|>4-5$ are much less likely

Cutoff rules for outliers

- The studentized residuals follow a t distribution, $u_{i}^{*} \sim t_{n-k-2}$, when $u_{i} \sim N\left(0, \sigma^{2}\right)$
- Rule of thumb: $\left|\widehat{u}_{i}^{*}\right|>2$ will be relatively rare
- Extreme outliers, $\left|\widehat{u}_{i}^{*}\right|>4-5$ are much less likely
- People usually adjust cutoff for multiple testing

Buchanan outliers

What to do about outliers

- Is the data corrupted?

What to do about outliers

- Is the data corrupted?
- Fix the observation (obvious data entry errors)

What to do about outliers

- Is the data corrupted?
- Fix the observation (obvious data entry errors)
- Remove the observation

What to do about outliers

- Is the data corrupted?
- Fix the observation (obvious data entry errors)
- Remove the observation
- Be transparent either way

What to do about outliers

- Is the data corrupted?
- Fix the observation (obvious data entry errors)
- Remove the observation
- Be transparent either way
- Is the outlier part of the data generating process?

What to do about outliers

- Is the data corrupted?
- Fix the observation (obvious data entry errors)
- Remove the observation
- Be transparent either way
- Is the outlier part of the data generating process?
- Transform the dependent variable $(\log (y))$

What to do about outliers

- Is the data corrupted?
- Fix the observation (obvious data entry errors)
- Remove the observation
- Be transparent either way
- Is the outlier part of the data generating process?
- Transform the dependent variable $(\log (y))$
- Use a method that is robust to outliers (robust regression)

A Cautionary Tale: The "Discovery" of the Ozone Hole

A Cautionary Tale: The "Discovery" of the Ozone Hole

- In the late 70s, NASA used an automated data processing program on satellite measurements of atmospheric data to track changes in atmospheric variables such as ozone.

A Cautionary Tale: The "Discovery" of the Ozone Hole

- In the late 70s, NASA used an automated data processing program on satellite measurements of atmospheric data to track changes in atmospheric variables such as ozone.
- This data "quality control" algorithm rejected abnormally low readings of ozone over the Antarctic as unreasonable.

A Cautionary Tale: The "Discovery" of the Ozone Hole

- In the late 70s, NASA used an automated data processing program on satellite measurements of atmospheric data to track changes in atmospheric variables such as ozone.
- This data "quality control" algorithm rejected abnormally low readings of ozone over the Antarctic as unreasonable.
- This delayed the detection of the ozone hole by several years until British Antarctic Survey scientists discovered it based on analysis of their own observations (Nature, May 1985).

A Cautionary Tale: The "Discovery" of the Ozone Hole

- In the late 70s, NASA used an automated data processing program on satellite measurements of atmospheric data to track changes in atmospheric variables such as ozone.
- This data "quality control" algorithm rejected abnormally low readings of ozone over the Antarctic as unreasonable.
- This delayed the detection of the ozone hole by several years until British Antarctic Survey scientists discovered it based on analysis of their own observations (Nature, May 1985).
- The ozone hole was detected in satellite data only when the raw data was reprocessed. When the software was rerun without the pre-processing flags, the ozone hole was seen as far back as 1976.

Leverage point definition

- Values that are extreme in the x direction

Leverage point definition

- Values that are extreme in the x direction
- That is, values far from the center of the covariate distribution

Leverage point definition

- Values that are extreme in the x direction
- That is, values far from the center of the covariate distribution
- Decrease SEs (more X variation)

Leverage point definition

- Values that are extreme in the x direction
- That is, values far from the center of the covariate distribution
- Decrease SEs (more X variation)
- No bias if typical in y dimension

Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix \mathbf{H} :

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{H} \mathbf{y}
$$

\mathbf{H} is $n \times n$, symmetric, and idempotent. It generates fitted values as follows:

$$
\hat{y}_{i}=\mathbf{h}_{i}^{\prime} \mathbf{y}=\left[\begin{array}{llll}
h_{i, 1} & h_{i, 2} & \cdots & h_{i, n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{j=1}^{n} h_{i, j} y_{j}
$$

Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H :

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{H} \mathbf{y}
$$

\mathbf{H} is $n \times n$, symmetric, and idempotent. It generates fitted values as follows:

$$
\hat{y}_{i}=\mathbf{h}_{i}^{\prime} \mathbf{y}=\left[\begin{array}{llll}
h_{i, 1} & h_{i, 2} & \cdots & h_{i, n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{j=1}^{n} h_{i, j} y_{j}
$$

Therefore,

- $h_{i j}$ dictates how important y_{j} is for the fitted value \hat{y}_{i} (regardless of the actual value of y_{j}, since \mathbf{H} depends only on \mathbf{X})

Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix \mathbf{H} :

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{H} \mathbf{y}
$$

\mathbf{H} is $n \times n$, symmetric, and idempotent. It generates fitted values as follows:

$$
\hat{y}_{i}=\mathbf{h}_{i}^{\prime} \mathbf{y}=\left[\begin{array}{llll}
h_{i, 1} & h_{i, 2} & \cdots & h_{i, n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{j=1}^{n} h_{i, j} y_{j}
$$

Therefore,

- $h_{i j}$ dictates how important y_{j} is for the fitted value \hat{y}_{i} (regardless of the actual value of y_{j}, since \mathbf{H} depends only on \mathbf{X})
- The diagonal entries $h_{i i}=\sum_{j=1}^{n} h_{i j}^{2}$, so they summarize how important y_{i} is for all the fitted values. We call them the hat values or leverages and a single subscript notation is used: $h_{i}=h_{i i}$

Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix \mathbf{H} :

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{H} \mathbf{y}
$$

\mathbf{H} is $n \times n$, symmetric, and idempotent. It generates fitted values as follows:

$$
\hat{y}_{i}=\mathbf{h}_{i}^{\prime} \mathbf{y}=\left[\begin{array}{llll}
h_{i, 1} & h_{i, 2} & \cdots & h_{i, n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{j=1}^{n} h_{i, j} y_{j}
$$

Therefore,

- $h_{i j}$ dictates how important y_{j} is for the fitted value \hat{y}_{i} (regardless of the actual value of y_{j}, since \mathbf{H} depends only on \mathbf{X})
- The diagonal entries $h_{i i}=\sum_{j=1}^{n} h_{i j}^{2}$, so they summarize how important y_{i} is for all the fitted values. We call them the hat values or leverages and a single subscript notation is used: $h_{i}=h_{i i}$
- Intuitively, the hat values measure how far a unit's vector of characteristics \mathbf{x}_{i} is from the vector of means of \mathbf{X}

Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H :

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{H} \mathbf{y}
$$

\mathbf{H} is $n \times n$, symmetric, and idempotent. It generates fitted values as follows:

$$
\hat{y}_{i}=\mathbf{h}_{i}^{\prime} \mathbf{y}=\left[\begin{array}{llll}
h_{i, 1} & h_{i, 2} & \cdots & h_{i, n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{j=1}^{n} h_{i, j} y_{j}
$$

Therefore,

- $h_{i j}$ dictates how important y_{j} is for the fitted value \hat{y}_{i} (regardless of the actual value of y_{j}, since \mathbf{H} depends only on \mathbf{X})
- The diagonal entries $h_{i i}=\sum_{j=1}^{n} h_{i j}^{2}$, so they summarize how important y_{i} is for all the fitted values. We call them the hat values or leverages and a single subscript notation is used: $h_{i}=h_{i i}$
- Intuitively, the hat values measure how far a unit's vector of characteristics \mathbf{x}_{i} is from the vector of means of \mathbf{X}
- Rule of thumb: examine hat values greater than $2(k+1) / n$

Buchanan hats

Influence points

Influence points

Influence points

- An influence point is one that is both an outlier (extreme in X) and a leverage point (extreme in Y).

Influence points

- An influence point is one that is both an outlier (extreme in X) and a leverage point (extreme in Y).
- Causes the regression line to move toward it (bias?)

Detecting Influence Points/Bad Leverage Points

- Influence Points:

Influence on coefficients $=$ Leverage \times Outlyingness

Detecting Influence Points/Bad Leverage Points

- Influence Points:

Influence on coefficients $=$ Leverage \times Outlyingness

- More formally: Measure the change that occurs in the slope estimates when an observation is removed from the data set. Let

$$
D_{i j}=\hat{\beta}_{j}-\hat{\beta}_{j(-i)}, \quad i=1, \ldots, n, \quad j=0, \ldots, k
$$

where $\hat{\beta}_{j(-i)}$ is the estimate of the j th coefficient from the same regression once observation i has been removed from the data set.

Detecting Influence Points/Bad Leverage Points

- Influence Points:

Influence on coefficients $=$ Leverage \times Outlyingness

- More formally: Measure the change that occurs in the slope estimates when an observation is removed from the data set. Let

$$
D_{i j}=\hat{\beta}_{j}-\hat{\beta}_{j(-i)}, \quad i=1, \ldots, n, \quad j=0, \ldots, k
$$

where $\hat{\beta}_{j(-i)}$ is the estimate of the j th coefficient from the same regression once observation i has been removed from the data set.

- $D_{i j}$ is called the DFbeta, which measures the influence of observation i on the estimated coefficient for the j th explanatory variable.

Standardized Influence

To make comparisons across coefficients, it is helpful to scale $D_{i j}$ by the estimated standard error of the coefficients:

$$
D_{i j}^{*}=\frac{\hat{\beta}_{j}-\hat{\beta}_{j(-i)}}{\hat{S E_{-i}\left(\hat{\beta}_{j}\right)}}
$$

where $D_{i j}^{*}$ is called DFbetaS.

Standardized Influence

To make comparisons across coefficients, it is helpful to scale $D_{i j}$ by the estimated standard error of the coefficients:

$$
D_{i j}^{*}=\frac{\hat{\beta}_{j}-\hat{\beta}_{j(-i)}}{\hat{S E}_{-i}\left(\hat{\beta}_{j}\right)}
$$

where $D_{i j}^{*}$ is called DFbetaS.

- $D_{i j}^{*}>0$ implies that removing observation i decreases the estimate of $\beta_{j} \rightarrow$ obs i has a positive influence on β_{j}.

Standardized Influence

To make comparisons across coefficients, it is helpful to scale $D_{i j}$ by the estimated standard error of the coefficients:

$$
D_{i j}^{*}=\frac{\hat{\beta}_{j}-\hat{\beta}_{j(-i)}}{\hat{S E}_{-i}\left(\hat{\beta}_{j}\right)}
$$

where $D_{i j}^{*}$ is called DFbetaS.

- $D_{i j}^{*}>0$ implies that removing observation i decreases the estimate of $\beta_{j} \rightarrow$ obs i has a positive influence on β_{j}.
- $D_{i j}^{*}<0$ implies that removing observation i increases the estimate of $\beta_{j} \rightarrow$ obs i has a negative influence on β_{j}.

Standardized Influence

To make comparisons across coefficients, it is helpful to scale $D_{i j}$ by the estimated standard error of the coefficients:

$$
D_{i j}^{*}=\frac{\hat{\beta}_{j}-\hat{\beta}_{j(-i)}}{\hat{S E}_{-i}\left(\hat{\beta}_{j}\right)}
$$

where $D_{i j}^{*}$ is called DFbetaS.

- $D_{i j}^{*}>0$ implies that removing observation i decreases the estimate of $\beta_{j} \rightarrow$ obs i has a positive influence on β_{j}.
- $D_{i j}^{*}<0$ implies that removing observation i increases the estimate of $\beta_{j} \rightarrow$ obs i has a negative influence on β_{j}.
- Values of $\left|D_{i j}^{*}\right|>2 / \sqrt{n}$ are an indication of high influence.

Standardized Influence

To make comparisons across coefficients, it is helpful to scale $D_{i j}$ by the estimated standard error of the coefficients:

$$
D_{i j}^{*}=\frac{\hat{\beta}_{j}-\hat{\beta}_{j(-i)}}{\hat{S E}_{-i}\left(\hat{\beta}_{j}\right)}
$$

where $D_{i j}^{*}$ is called DFbetaS.

- $D_{i j}^{*}>0$ implies that removing observation i decreases the estimate of $\beta_{j} \rightarrow$ obs i has a positive influence on β_{j}.
- $D_{i j}^{*}<0$ implies that removing observation i increases the estimate of $\beta_{j} \rightarrow$ obs i has a negative influence on β_{j}.
- Values of $\left|D_{i j}^{*}\right|>2 / \sqrt{n}$ are an indication of high influence.
- In R: dfbetas (model)

Buchanan influence

```
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & Estimate & Std. Error & t value \(\operatorname{Pr}(>|t|)\) \\
\#\# (Intercept) & \(-2.935 \mathrm{e}+01\) & \(5.520 \mathrm{e}+01\) & -0.532 & 0.59686 \\
\#\# edaytotal & \(1.100 \mathrm{e}-03\) & \(4.797 \mathrm{e}-04\) & 2.293 & \(0.02529 *\) \\
\#\# absnbuchanan & \(6.895 \mathrm{e}+00\) & \(2.129 \mathrm{e}+00\) & 3.238 & \(0.00195 * *\)
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' }
##
## Residual standard error: 317.2 on 61 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.5361, Adjusted R-squared: 0.5209
## F-statistic: 35.24 on 2 and 61 DF, p-value: 6.711e-11
```


Buchanan influence

\#\#	(Intercept)	edaytotal	absnbuchanan
\#\#	1	0.3454475146	0.4050504921

Buchanan influence

- Palm Beach county moves each of the coefficients by more than 3 standard errors!

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.
- A number of summary measures exist for influence of data points across all coefficients, all involving both leverage and outlyingness.

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.
- A number of summary measures exist for influence of data points across all coefficients, all involving both leverage and outlyingness.
- A popular measure is Cook's distance:

$$
D_{i}=\frac{\hat{u}_{i}^{\prime 2}}{k+1} \times \frac{h_{i}}{1-h_{i}}
$$

where \hat{u}_{i}^{\prime} is the standardized residual and h_{i} is the hat value.

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.
- A number of summary measures exist for influence of data points across all coefficients, all involving both leverage and outlyingness.
- A popular measure is Cook's distance:

$$
D_{i}=\frac{\hat{u}_{i}^{\prime 2}}{k+1} \times \frac{h_{i}}{1-h_{i}}
$$

where \hat{u}_{i}^{\prime} is the standardized residual and h_{i} is the hat value.

- It can be shown that D_{i} is a weighted sum of $k+1$ DFbetaS's for observation i

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.
- A number of summary measures exist for influence of data points across all coefficients, all involving both leverage and outlyingness.
- A popular measure is Cook's distance:

$$
D_{i}=\frac{\hat{u}_{i}^{\prime 2}}{k+1} \times \frac{h_{i}}{1-h_{i}}
$$

where \hat{u}_{i}^{\prime} is the standardized residual and h_{i} is the hat value.

- It can be shown that D_{i} is a weighted sum of $k+1$ DFbetaS's for observation i
- In R, cooks.distance(model)

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.
- A number of summary measures exist for influence of data points across all coefficients, all involving both leverage and outlyingness.
- A popular measure is Cook's distance:

$$
D_{i}=\frac{\hat{u}_{i}^{\prime 2}}{k+1} \times \frac{h_{i}}{1-h_{i}}
$$

where \hat{u}_{i}^{\prime} is the standardized residual and h_{i} is the hat value.

- It can be shown that D_{i} is a weighted sum of $k+1$ DFbetaS's for observation i
- In R, cooks.distance(model)
- $D>4 /(n-k-1)$ is commonly considered large

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.
- A number of summary measures exist for influence of data points across all coefficients, all involving both leverage and outlyingness.
- A popular measure is Cook's distance:

$$
D_{i}=\frac{\hat{u}_{i}^{\prime 2}}{k+1} \times \frac{h_{i}}{1-h_{i}}
$$

where \hat{u}_{i}^{\prime} is the standardized residual and h_{i} is the hat value.

- It can be shown that D_{i} is a weighted sum of $k+1$ DFbetaS's for observation i
- In R, cooks.distance(model)
- $D>4 /(n-k-1)$ is commonly considered large
- The influence plot: the studentized residuals plotted against the hat values, size of points proportional to Cook's distance.

Summarizing Influence across All Coefficients

- Leverage tells us how much one data point affects a single coefficient.
- A number of summary measures exist for influence of data points across all coefficients, all involving both leverage and outlyingness.
- A popular measure is Cook's distance:

$$
D_{i}=\frac{\hat{u}_{i}^{\prime 2}}{k+1} \times \frac{h_{i}}{1-h_{i}}
$$

where \hat{u}_{i}^{\prime} is the standardized residual and h_{i} is the hat value.

- It can be shown that D_{i} is a weighted sum of $k+1$ DFbetaS's for observation i
- In R, cooks.distance(model)
- $D>4 /(n-k-1)$ is commonly considered large
- The influence plot: the studentized residuals plotted against the hat values, size of points proportional to Cook's distance.

Influence Plot Buchanan

Code for Influence Plot

```
mod3 <- lm(edaybuchanan ~ edaytotal + absnbuchanan, data = flvote)
symbols(y = rstudent(mod3), x = hatvalues(mod3),
    circles = sqrt(cooks.distance(mod3)),
    ylab = "Studentized Residuals",
    xlab = "Hat Values", xlim = c(-0.05, 1),
    ylim = c(-10, 50), las = 1, bty = "n")
cutoffstud <- 2
cutoffhat <- 2 * (3)/nrow(flvote)
abline(v = cutoffhat, col = "indianred")
abline(h = cutoffstud, col = "dodgerblue")
filter <- rstudent(mod3) > cutoffstud | hatvalues(mod3) > cutoffhat
text(y = rstudent(mod3)[filter],
    x = hatvalues(mod3) [filter],
    flvote$county[filter], pos = 1)
```


A Quick Function for Standard Diagnostic Plots

$>\operatorname{par}(m f r o w=c(2,2))$
$>\operatorname{plot}(\bmod 1)$

The Improved Model

R Code

$>\operatorname{par}(m f r o w=c(2,2))$
> plot(mod2)

(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix

7 Detecting Nonlinearity
8 Linear Basis Function Models

- Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
12 Clustering
(13) Optional: Serial Correlation

14 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

Limitations of the standard tools

Limitations of the standard tools

- What happens when there are two influence points?
- Red line drops the red influence point
- Blue line drops the blue influence point

Limitations of the standard tools

- What happens when there are two influence points?
- Red line drops the red influence point
- Blue line drops the blue influence point
- Neither of the "leave-one-out" approaches helps recover the line

The Idea of Robustness

- We will cover a few ideas in robust statistics over the next few days (much of which is due directly or indirectly to Peter Huber)

The Idea of Robustness

- We will cover a few ideas in robust statistics over the next few days (much of which is due directly or indirectly to Peter Huber)
- Robust methods are procedures that are designed to continue to provide 'reasonable' answers in the presence of violation of some assumptions.

The Idea of Robustness

- We will cover a few ideas in robust statistics over the next few days (much of which is due directly or indirectly to Peter Huber)
- Robust methods are procedures that are designed to continue to provide 'reasonable' answers in the presence of violation of some assumptions.
- A lot of social scientists use robust standard errors (we will discuss next week) but far fewer use robust regression tools.

The Idea of Robustness

- We will cover a few ideas in robust statistics over the next few days (much of which is due directly or indirectly to Peter Huber)
- Robust methods are procedures that are designed to continue to provide 'reasonable' answers in the presence of violation of some assumptions.
- A lot of social scientists use robust standard errors (we will discuss next week) but far fewer use robust regression tools.
- These methods used to be computationally prohibitive but haven't been for the last 10-15 years

The Idea of Robustness

- We will cover a few ideas in robust statistics over the next few days (much of which is due directly or indirectly to Peter Huber)
- Robust methods are procedures that are designed to continue to provide 'reasonable' answers in the presence of violation of some assumptions.
- A lot of social scientists use robust standard errors (we will discuss next week) but far fewer use robust regression tools.
- These methods used to be computationally prohibitive but haven't been for the last 10-15 years

But What About Gauss-Markov and BLUE?

- One argument here is that even without normality, we know that Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

But What About Gauss-Markov and BLUE?

- One argument here is that even without normality, we know that Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)
- How comforting should this be?

But What About Gauss-Markov and BLUE?

- One argument here is that even without normality, we know that Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)
- How comforting should this be? Not very.

But What About Gauss-Markov and BLUE?

- One argument here is that even without normality, we know that Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)
- How comforting should this be? Not very.
- The Linear point is an artificial restriction. It means the estimator has to be of the form $\hat{\beta}=\mathbf{W} y$ but why only use those?

But What About Gauss-Markov and BLUE?

- One argument here is that even without normality, we know that Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)
- How comforting should this be? Not very.
- The Linear point is an artificial restriction. It means the estimator has to be of the form $\hat{\beta}=\mathbf{W} y$ but why only use those?
- With normality assumption we get Best Unbiased Estimator (BUE) which is quite comforting when $n \gg p$ (number of observations much larger than number of variables).

This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.
"[Even without normally distributed errors] OLS coefficient estimators remain unbiased and efficient." - Berry (1993)

Quotes from Rainey and Baissa (2015) presentation

This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.
"[The Gauss-Markov theorem] justifies the use of the OLS method rather than using a variety of competing estimators" - Wooldridge (2013)

Quotes from Rainey and Baissa (2015) presentation

This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.
"We need not look for another linear unbiased estimator, for we will not find such an estimator whose variance is smaller than the OLS estimator"

- Gujarati (2004)

Quotes from Rainey and Baissa (2015) presentation

This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.
"The Gauss-Markov theorem allows us to have considerable confidence in the least squares estimators." - Berry and Feldman (1993)

Quotes from Rainey and Baissa (2015) presentation

Robustly Estimating a Location

- Let's simplify- what if we want to estimate the center of a symmetric distribution.

Robustly Estimating a Location

- Let's simplify- what if we want to estimate the center of a symmetric distribution.
- Two options (of many): mean and median

Robustly Estimating a Location

- Let's simplify- what if we want to estimate the center of a symmetric distribution.
- Two options (of many): mean and median
- Characteristics to consider: efficiency when assumptions hold, sensitivity to assumption violation.

Robustly Estimating a Location

- Let's simplify- what if we want to estimate the center of a symmetric distribution.
- Two options (of many): mean and median
- Characteristics to consider: efficiency when assumptions hold, sensitivity to assumption violation.
- For normal data $y_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, median is less efficient:
- $V\left(\hat{\mu}_{\text {mean }}\right)=\frac{\sigma^{2}}{n}$
- $V\left(\hat{\mu}_{\text {median }}\right)=\frac{\pi \sigma^{2}}{2 n}$
- Median is $\frac{\pi}{2}$ times larger (i.e. less efficient)

Robustly Estimating a Location

- Let's simplify- what if we want to estimate the center of a symmetric distribution.
- Two options (of many): mean and median
- Characteristics to consider: efficiency when assumptions hold, sensitivity to assumption violation.
- For normal data $y_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, median is less efficient:
- $V\left(\hat{\mu}_{\text {mean }}\right)=\frac{\sigma^{2}}{n}$
- $V\left(\hat{\mu}_{\text {median }}\right)=\frac{\pi \sigma^{2}}{2 n}$
- Median is $\frac{\pi}{2}$ times larger (i.e. less efficient)
- We can measure sensitivity with the influence function which measures change in estimator based on corruption in one datapoint.

Influence Function

- Imagine that we had a sample Y from a standard normal: -0.068, $-1.282,0.013,0.141,-0.980,1.63 . \bar{Y}=-1.52$

Influence Function

- Imagine that we had a sample Y from a standard normal: -0.068 , $-1.282,0.013,0.141,-0.980,1.63 . \bar{Y}=-1.52$
- Now imagine we add a contaminated 7th observation which could range from -10 to +10 . How would the estimator change for the median and mean?

Influence Function

- Imagine that we had a sample Y from a standard normal: -0.068 , $-1.282,0.013,0.141,-0.980,1.63 . \bar{Y}=-1.52$
- Now imagine we add a contaminated 7th observation which could range from -10 to +10 . How would the estimator change for the median and mean?

Influence Function

Breakdown Point

- The influence function showed us how one aberrant point can change the resulting estimate.

Breakdown Point

- The influence function showed us how one aberrant point can change the resulting estimate.
- We also want to characterize the breakdown point which is the fraction of arbitrarily bad data that the estimator can tolerate without being affected to an arbitrarily large extent

Breakdown Point

- The influence function showed us how one aberrant point can change the resulting estimate.
- We also want to characterize the breakdown point which is the fraction of arbitrarily bad data that the estimator can tolerate without being affected to an arbitrarily large extent
- The breakdown point of the mean is 0 because (as we have seen) a single bad data point can change things a lot.

Breakdown Point

- The influence function showed us how one aberrant point can change the resulting estimate.
- We also want to characterize the breakdown point which is the fraction of arbitrarily bad data that the estimator can tolerate without being affected to an arbitrarily large extent
- The breakdown point of the mean is 0 because (as we have seen) a single bad data point can change things a lot.
- The median has a breakdown point of 50% because half the data can be bad without causing the median to become completely unstuck.

M-estimators

- We can phrase this more generally than the mean or the median which will allow us to extend the ideas to regression via M-estimation

M-estimators

- We can phrase this more generally than the mean or the median which will allow us to extend the ideas to regression via M-estimation
- M-estimators minimize a sum over an objective function $\sum_{i}^{n} \rho(E)$ where E is $Y_{i}-\hat{\mu}$

M-estimators

- We can phrase this more generally than the mean or the median which will allow us to extend the ideas to regression via M-estimation
- M-estimators minimize a sum over an objective function $\sum_{i}^{n} \rho(E)$ where E is $Y_{i}-\hat{\mu}$
- The mean has $\sum_{i} \rho(E)=\sum_{i}\left(Y_{i}-\hat{\mu}\right)^{2}$
- The median has $\sum_{i} \rho(E)=\sum_{i}\left|\left(Y_{i}-\hat{\mu}\right)\right|$

M-estimators

- We can phrase this more generally than the mean or the median which will allow us to extend the ideas to regression via M-estimation
- M-estimators minimize a sum over an objective function $\sum_{i}^{n} \rho(E)$ where E is $Y_{i}-\hat{\mu}$
- The mean has $\sum_{i} \rho(E)=\sum_{i}\left(Y_{i}-\hat{\mu}\right)^{2}$
- The median has $\sum_{i} \rho(E)=\sum_{i}\left|\left(Y_{i}-\hat{\mu}\right)\right|$
- The shape of the influence function is determined by the derivative of the objective function with respect to E.

M-estimators

- We can phrase this more generally than the mean or the median which will allow us to extend the ideas to regression via M-estimation
- M-estimators minimize a sum over an objective function $\sum_{i}^{n} \rho(E)$ where E is $Y_{i}-\hat{\mu}$
- The mean has $\sum_{i} \rho(E)=\sum_{i}\left(Y_{i}-\hat{\mu}\right)^{2}$
- The median has $\sum_{i} \rho(E)=\sum_{i}\left|\left(Y_{i}-\hat{\mu}\right)\right|$
- The shape of the influence function is determined by the derivative of the objective function with respect to E.
- Other objectives include the Huber objective and Tukey's biweight objective which have different properties.

M-estimators

- We can phrase this more generally than the mean or the median which will allow us to extend the ideas to regression via M-estimation
- M-estimators minimize a sum over an objective function $\sum_{i}^{n} \rho(E)$ where E is $Y_{i}-\hat{\mu}$
- The mean has $\sum_{i} \rho(E)=\sum_{i}\left(Y_{i}-\hat{\mu}\right)^{2}$
- The median has $\sum_{i} \rho(E)=\sum_{i}\left|\left(Y_{i}-\hat{\mu}\right)\right|$
- The shape of the influence function is determined by the derivative of the objective function with respect to E.
- Other objectives include the Huber objective and Tukey's biweight objective which have different properties.
- Calculating robust M estimators often requires an iterative procedure and a careful initialization.

M-estimation for Regression

- We can apply this to regression fairly straightforwardly. In robust M-estimators we choose $\rho()$ so that observations with large residuals get less weight.

M-estimation for Regression

- We can apply this to regression fairly straightforwardly. In robust M-estimators we choose $\rho()$ so that observations with large residuals get less weight.
- Can be very robust to outliers in the Y space (less so in the X space usually)

M-estimation for Regression

- We can apply this to regression fairly straightforwardly. In robust M-estimators we choose $\rho()$ so that observations with large residuals get less weight.
- Can be very robust to outliers in the Y space (less so in the X space usually)
- Some options:
- Least Median Squares: choose $\hat{\beta}$ to minimize
median $\left\{\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{\text {LMS }}\right)^{2}\right\}_{i=1}^{n}$. Very high breakdown point, but very inefficient.

M-estimation for Regression

- We can apply this to regression fairly straightforwardly. In robust M-estimators we choose $\rho()$ so that observations with large residuals get less weight.
- Can be very robust to outliers in the Y space (less so in the X space usually)
- Some options:
- Least Median Squares: choose $\hat{\beta}$ to minimize median $\left\{\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{\text {LMS }}\right)^{2}\right\}_{i=1}^{n}$. Very high breakdown point, but very inefficient.
- Least Trimmed Squares: choose $\hat{\beta}$ to minimize the sum of the p smallest elements of $\left\{\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{\text {LTS }}\right)^{2}\right\}_{i=1}^{n}$. High breakdown point and more efficient, still not as efficient as some.

M-estimation for Regression

- We can apply this to regression fairly straightforwardly. In robust M-estimators we choose $\rho()$ so that observations with large residuals get less weight.
- Can be very robust to outliers in the Y space (less so in the X space usually)
- Some options:
- Least Median Squares: choose $\hat{\beta}$ to minimize
median $\left\{\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{\text {LMS }}\right)^{2}\right\}_{i=1}^{n}$. Very high breakdown point, but very inefficient.
- Least Trimmed Squares: choose $\hat{\beta}$ to minimize the sum of the p smallest elements of $\left\{\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{\mathrm{LTS}}\right)^{2}\right\}_{i=1}^{n}$. High breakdown point and more efficient, still not as efficient as some.
- MM-estimator: with Huber's loss is what I recommend in practice (more in appendix)

M-estimation for Regression

- We can apply this to regression fairly straightforwardly. In robust M-estimators we choose $\rho()$ so that observations with large residuals get less weight.
- Can be very robust to outliers in the Y space (less so in the X space usually)
- Some options:
- Least Median Squares: choose $\hat{\beta}$ to minimize median $\left\{\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\rho}}_{\mathrm{LMS}}\right)^{2}\right\}_{i=1}^{n}$. Very high breakdown point, but very inefficient.
- Least Trimmed Squares: choose $\hat{\beta}$ to minimize the sum of the p smallest elements of $\left\{\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{\mathrm{LTS}}\right)^{2}\right\}_{i=1}^{n}$. High breakdown point and more efficient, still not as efficient as some.
- MM-estimator: with Huber's loss is what I recommend in practice (more in appendix)
- You can find an asymptotic covariance matrix for M-estimators but I would bootstrap it if possible as the asymptotics kick in slowly.

```
library(MASS)
set.seed(588)
n <- 50
x <- rnorm(n)
y <- 10 - 2*x + rnorm(n)
x[1:5] <- rnorm(5, mean=5)
y[1:5] <- 10 + rnorm(5)
ols.out <- lm(y~x)
m.out <- rlm(y*x, method="M")
lms.out <- lqs(y`x, method="lms")
lts.out <- lqs(y*x, method="lts")
s.out <- lqs(y`x, method="S")
mm.out <- rlm(y^x, method="MM")
```


Simulation Results

LTS
S
MM

Thoughts on Robust Estimators

- Robust estimators aren't commonly seen in applied social science work but perhaps they should be.

Thoughts on Robust Estimators

- Robust estimators aren't commonly seen in applied social science work but perhaps they should be.
- Even though Gauss-Markov does not require normality, the L in BLUE is a fairly restrictive condition.

Thoughts on Robust Estimators

- Robust estimators aren't commonly seen in applied social science work but perhaps they should be.
- Even though Gauss-Markov does not require normality, the L in BLUE is a fairly restrictive condition.
- In most cases I personally would start with OLS, do diagnostics and then consider a robust alternative. If I don't have time for diagnostics, maybe robust is better from the outset.

Thoughts on Robust Estimators

- Robust estimators aren't commonly seen in applied social science work but perhaps they should be.
- Even though Gauss-Markov does not require normality, the L in BLUE is a fairly restrictive condition.
- In most cases I personally would start with OLS, do diagnostics and then consider a robust alternative. If I don't have time for diagnostics, maybe robust is better from the outset.
- I highly recommend Baissa and Rainey (2016) "When BLUE is Not Best: Non-Normal Errors and the Linear Model" for more on this topic.
- The Fox textbook Chapter 19 is also quite good on this and points out to the key references

Appendix: Characterizing Estimator Robustness (formally)

Definition (Breakdown Point)

The breakdown point of an estimator is the smallest fraction of the data that can be changed an arbitrary amount to produce an arbitrarily large change in the estimate (Seber and Lee 2003, pg 82)

Definition (Influence Function)

Let $F_{p}=(1-p) F+p \delta_{\mathbf{z}_{0}}$ where F is a probability measure, $\delta_{\mathbf{z}_{0}}$ is the point mass at $\mathbf{z}_{0} \in \mathbb{R}^{k}$, and $p \in(0,1)$.
Let $T(\cdot)$ be a statistical functional. The influence function of T is

$$
I F\left(\mathbf{z}_{0} ; T, F\right)=\lim _{p \downarrow 0} \frac{T\left(F_{p}\right)-T(F)}{p}
$$

The influence function is a function of \mathbf{z}_{0} given T and F. It describes how T changes with small amounts of contamination at \mathbf{z}_{0} (Hampel, Rousseeuw, Ronchetti, and Stahel, (1986), p. 84).

Appendix: S Estimators

To talk about $M M$-estimators we need a type of estimator called an S-estimator.

Appendix: S Estimators

To talk about $M M$-estimators we need a type of estimator called an S-estimator.
S-estimators work somewhat differently in that the goal is to minimize the scale estimate subject to a constraint.

Appendix: S Estimators

To talk about $M M$-estimators we need a type of estimator called an S-estimator.
S-estimators work somewhat differently in that the goal is to minimize the scale estimate subject to a constraint.
An S-estimator for the regression model is defined as the values of $\hat{\boldsymbol{\beta}}_{S}$ and s that minimize s subject to the constraint:

$$
\frac{1}{n} \sum_{i=1}^{n} \rho\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{S}}{s}\right) \geq K
$$

where K is user-defined constant (typically set to 0.5) and $\rho: \mathbb{R} \rightarrow[0,1]$ is a function with the following properties (Davies, 1990, p. 1653):
(1) $\rho(0)=1$
(2) $\rho(u)=\rho(-u), u \in \mathbb{R}$
(3) $\rho: \mathbb{R}_{+} \rightarrow[0,1]$ is nonincreasing, continuous at 0 , and continuous on the left
(9) for some $c>0, \rho(u)>0$ if $|u|<c$ and $\rho(u)=0$ if $|u|>c$

Appendix: S Estimators

To talk about $M M$-estimators we need a type of estimator called an S-estimator.
S-estimators work somewhat differently in that the goal is to minimize the scale estimate subject to a constraint.
An S-estimator for the regression model is defined as the values of $\hat{\boldsymbol{\beta}}_{S}$ and s that minimize s subject to the constraint:

$$
\frac{1}{n} \sum_{i=1}^{n} \rho\left(\frac{y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{S}}{s}\right) \geq K
$$

where K is user-defined constant (typically set to 0.5) and $\rho: \mathbb{R} \rightarrow[0,1]$ is a function with the following properties (Davies, 1990, p. 1653):
(1) $\rho(0)=1$
(2) $\rho(u)=\rho(-u), u \in \mathbb{R}$
(3) $\rho: \mathbb{R}_{+} \rightarrow[0,1]$ is nonincreasing, continuous at 0 , and continuous on the left
(9) for some $c>0, \rho(u)>0$ if $|u|<c$ and $\rho(u)=0$ if $|u|>c$

Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds- very high breakdown point and good efficiency.

Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds- very high breakdown point and good efficiency.

The work by first calculating S-estimates of the scale and coefficients and then using these as starting values for a particular M-estimator.

Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds- very high breakdown point and good efficiency.

The work by first calculating S-estimates of the scale and coefficients and then using these as starting values for a particular M-estimator.

Good properties, but costly to compute (usually impossible to compute exactly).
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers

』 Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity

ค. Linear Basis Function Models
9) Generalized Additive Models

10 Fun With Kernels
11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
1 A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens

Measurement Error

"It seems as if measurement error has been pushed into the role of the unwanted child whose existence we would rather deny. Maybe because measurement error is common, insipid, and unsophisticated. Unlike the hidden confounder challenging our intellect, to discover measurement error is a 'no-brainer' - it simply lurks everywhere. Our epidemiological fingerprints are contaminated with measurement error. Everything we observe, we observe with error. Since observation is our business, we would probably rather deny that what we observe is imprecise and maybe even inaccurate, but time has come to unveil the secret: measurement error is threatening our profession."

Karen Michals (2001)

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)
- The Bradley effect (1982)

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)
- The Bradley effect (1982)
- Shy Tory Factor (1992)

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)
- The Bradley effect (1982)
- Shy Tory Factor (1992)
- The Silent Trump Voter?

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)
- The Bradley effect (1982)
- Shy Tory Factor (1992)
- The Silent Trump Voter?

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)
- The Bradley effect (1982)
- Shy Tory Factor (1992)
- The Silent Trump Voter?
- In recall studys, people often can't remember (e.g. how many vegetables did you eat last week?)

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)
- The Bradley effect (1982)
- Shy Tory Factor (1992)
- The Silent Trump Voter?
- In recall studys, people often can't remember (e.g. how many vegetables did you eat last week?)
- Many concepts are hard to measure (e.g. ability, IQ, religiosity, income, etc.)

Measuring Variables

Often, the variables that we use in our regression analysis are measured with error. For example:

- In cross-country data, variables are often measured by surveys within each country (e.g. perceived corruption)
- In individual level data, individuals may misreport information (sensitive questions about preferences, politics, income, etc.)
- The Bradley effect (1982)
- Shy Tory Factor (1992)
- The Silent Trump Voter?
- In recall studys, people often can't remember (e.g. how many vegetables did you eat last week?)
- Many concepts are hard to measure (e.g. ability, IQ, religiosity, income, etc.)
- Other variables, like gender, number of children, may be measured with less error

US Survey Data

Sex and drugs

Men are more likely to use illegal drugs and have more sexual partners than women, according to a 1999-2002 survey.
Number of sexual partners, ages 20-59

Ever used cocaine or street drugs ages 20-59
16.8

SOURCE: Centers for Disease Control AP and Prevention

Measurement Error in the Dependent Variable

Consider the simple linear regression model where we observe Y_{i}^{*} instead of Y_{i} and the following relationships hold

Measurement Error in the Dependent Variable

Consider the simple linear regression model where we observe Y_{i}^{*} instead of Y_{i} and the following relationships hold

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i}
$$

Measurement Error in the Dependent Variable

Consider the simple linear regression model where we observe Y_{i}^{*} instead of Y_{i} and the following relationships hold

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i} \\
& U_{i} \sim_{i . i . d} N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Measurement Error in the Dependent Variable

Consider the simple linear regression model where we observe Y_{i}^{*} instead of Y_{i} and the following relationships hold

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
U_{i} & \sim \sim_{i . i . d} N\left(0, \sigma^{2}\right) \\
Y_{i}^{*} & =Y_{i}+E_{i}
\end{aligned}
$$

Measurement Error in the Dependent Variable

Consider the simple linear regression model where we observe Y_{i}^{*} instead of Y_{i} and the following relationships hold

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
U_{i} & \sim i_{i . i . d} N\left(0, \sigma^{2}\right) \\
Y_{i}^{*} & =Y_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

Measurement Error in the Dependent Variable

Consider the simple linear regression model where we observe Y_{i}^{*} instead of Y_{i} and the following relationships hold

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
U_{i} & \sim i_{i . i . d} N\left(0, \sigma^{2}\right) \\
Y_{i}^{*} & =Y_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

$$
Y_{i}^{*}=\beta_{0}+\beta_{1} X_{i}+E_{i}+U_{i}
$$

Measurement Error in the Dependent Variable

Consider the simple linear regression model where we observe Y_{i}^{*} instead of Y_{i} and the following relationships hold

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
U_{i} & \sim i_{i . i . d} N\left(0, \sigma^{2}\right) \\
Y_{i}^{*} & =Y_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

$$
\begin{aligned}
Y_{i}^{*} & =\beta_{0}+\beta_{1} X_{i}+E_{i}+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}+V_{i}
\end{aligned}
$$

Let's assume that that the Gauss-Markov assumptions hold for the model with the true (but unobserved) variables so that OLS would be unbiased and consistent if we observed Y_{i}. Does the measurement error in Y_{i}^{*} cause any problems when fitting OLS to the observed data?

Measurement Error in the Dependent Variable

When we fit OLS to the observed data:

$$
\begin{aligned}
Y_{i}^{*} & =\beta_{0}+\beta_{1} X_{i}+E_{i}+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}+V_{i}
\end{aligned}
$$

Measurement Error in the Dependent Variable

When we fit OLS to the observed data:

$$
\begin{aligned}
Y_{i}^{*} & =\beta_{0}+\beta_{1} X_{i}+E_{i}+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}+V_{i}
\end{aligned}
$$

- As long as the measurement error E is uncorrelated with X (eg. random reporting error), then under the usual assumptions V will be uncorrelated with X and OLS is unbiased and consistent

Measurement Error in the Dependent Variable

When we fit OLS to the observed data:

$$
\begin{aligned}
Y_{i}^{*} & =\beta_{0}+\beta_{1} X_{i}+E_{i}+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}+V_{i}
\end{aligned}
$$

- As long as the measurement error E is uncorrelated with X (eg. random reporting error), then under the usual assumptions V will be uncorrelated with X and OLS is unbiased and consistent
- If $E\left[E_{i}\right]>0$ the constant will be biased upwards and vice versa, but our slope estimates remain unbiased $E[\hat{\beta}]=\beta$

Measurement Error in the Dependent Variable

When we fit OLS to the observed data:

$$
\begin{aligned}
Y_{i}^{*} & =\beta_{0}+\beta_{1} X_{i}+E_{i}+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}+V_{i}
\end{aligned}
$$

- As long as the measurement error E is uncorrelated with X (eg. random reporting error), then under the usual assumptions V will be uncorrelated with X and OLS is unbiased and consistent
- If $E\left[E_{i}\right]>0$ the constant will be biased upwards and vice versa, but our slope estimates remain unbiased $E[\hat{\beta}]=\beta$
- Since $V[U+E]=\sigma_{U}^{2}+\sigma_{E}^{2}>\sigma_{U}^{2}$ the estimates will be less precise

Measurement Error in the Dependent Variable

When we fit OLS to the observed data:

$$
\begin{aligned}
Y_{i}^{*} & =\beta_{0}+\beta_{1} X_{i}+E_{i}+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}+V_{i}
\end{aligned}
$$

- As long as the measurement error E is uncorrelated with X (eg. random reporting error), then under the usual assumptions V will be uncorrelated with X and OLS is unbiased and consistent
- If $E\left[E_{i}\right]>0$ the constant will be biased upwards and vice versa, but our slope estimates remain unbiased $E[\hat{\beta}]=\beta$
- Since $V[U+E]=\sigma_{U}^{2}+\sigma_{E}^{2}>\sigma_{U}^{2}$ the estimates will be less precise
- If E is correlated with X then OLS is inconsistent and biased.

Measurement Error in the Independent Variable

Consider the simple linear regression model where all the traditional assumptions hold but we observe X_{i}^{*} instead of X_{i}

Measurement Error in the Independent Variable

Consider the simple linear regression model where all the traditional assumptions hold but we observe X_{i}^{*} instead of X_{i}

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
X_{i}^{*} & =X_{i}+E_{i}
\end{aligned}
$$

Measurement Error in the Independent Variable

Consider the simple linear regression model where all the traditional assumptions hold but we observe X_{i}^{*} instead of X_{i}

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
X_{i}^{*} & =X_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

Measurement Error in the Independent Variable

Consider the simple linear regression model where all the traditional assumptions hold but we observe X_{i}^{*} instead of X_{i}

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
X_{i}^{*} & =X_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

Measurement Error in the Independent Variable

Consider the simple linear regression model where all the traditional assumptions hold but we observe X_{i}^{*} instead of X_{i}

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
X_{i}^{*} & =X_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

and we must state assumptions in terms of the new error term, $U_{i}-\beta_{1} E_{i}$

Measurement Error in the Independent Variable

Consider the simple linear regression model where all the traditional assumptions hold but we observe X_{i}^{*} instead of X_{i}

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
X_{i}^{*} & =X_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

and we must state assumptions in terms of the new error term, $U_{i}-\beta_{1} E_{i}$
Let's assume $E\left[E_{i}\right]=0$ (the average error is zero) and the first four GM -assumptions hold (including $\operatorname{Cov}[U, X]=0$ and $\operatorname{Cov}\left[U, X^{*}\right]=0$) so that OLS would be unbiased and consistent if we observed X.

Measurement Error in the Independent Variable

Consider the simple linear regression model where all the traditional assumptions hold but we observe X_{i}^{*} instead of X_{i}

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+U_{i} \\
X_{i}^{*} & =X_{i}+E_{i}
\end{aligned}
$$

Therefore, the model for our observed data is

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

and we must state assumptions in terms of the new error term, $U_{i}-\beta_{1} E_{i}$
Let's assume $E\left[E_{i}\right]=0$ (the average error is zero) and the first four GM -assumptions hold (including $\operatorname{Cov}[U, X]=0$ and $\operatorname{Cov}\left[U, X^{*}\right]=0$) so that OLS would be unbiased and consistent if we observed X.

Does the measurement error cause any problems when fitting OLS to the observed data (i.e. using X^{*} instead of X)?

Measurement Error in the Independent Variable

The consequences depend on the correlation between E and X^{*} and or X.

Measurement Error in the Independent Variable

The consequences depend on the correlation between E and X^{*} and or X.
Our model for our observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

Measurement Error in the Independent Variable

The consequences depend on the correlation between E and X^{*} and or X.
Our model for our observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the observed variable $\operatorname{Cov}\left[X^{*}, E\right]=0$, then:

Measurement Error in the Independent Variable

The consequences depend on the correlation between E and X^{*} and or X.
Our model for our observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the observed variable $\operatorname{Cov}\left[X^{*}, E\right]=0$, then:

- since $\left(U_{i}-\beta_{1} E_{i}\right)$ is uncorrelated with X_{i}^{*} if both E and U are uncorrelated with X_{i}^{*}, our estimator $\hat{\beta}_{1}$ is unbiased and consistent

Measurement Error in the Independent Variable

The consequences depend on the correlation between E and X^{*} and or X.
Our model for our observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the observed variable $\operatorname{Cov}\left[X^{*}, E\right]=0$, then:

- since $\left(U_{i}-\beta_{1} E_{i}\right)$ is uncorrelated with X_{i}^{*} if both E and U are uncorrelated with X_{i}^{*}, our estimator $\hat{\beta}_{1}$ is unbiased and consistent
- If E and U are uncorrelated, the overall error variance is $V\left[\left(U-\beta_{1} E\right)\right]=\sigma_{U}^{2}+\beta_{1}^{2} \sigma_{E}^{2}$ which is $>\sigma_{U}^{2}$ unless $\beta_{1}=0$.

Measurement Error in the Independent Variable

The consequences depend on the correlation between E and X^{*} and or X.
Our model for our observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the observed variable $\operatorname{Cov}\left[X^{*}, E\right]=0$, then:

- since $\left(U_{i}-\beta_{1} E_{i}\right)$ is uncorrelated with X_{i}^{*} if both E and U are uncorrelated with X_{i}^{*}, our estimator $\hat{\beta}_{1}$ is unbiased and consistent
- If E and U are uncorrelated, the overall error variance is $V\left[\left(U-\beta_{1} E\right)\right]=\sigma_{U}^{2}+\beta_{1}^{2} \sigma_{E}^{2}$ which is $>\sigma_{U}^{2}$ unless $\beta_{1}=0$.
- Note: This has nothing to do with assumptions about errors U, we always maintain that $\operatorname{Cov}\left[X^{*}, U\right]=0$ and $\operatorname{Cov}[X, U]=0$

Measurement Error in the Independent Variable

Our model for the observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the unobserved variable, $\operatorname{Cov}[X, E]=0$, then:

Measurement Error in the Independent Variable

Our model for the observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the unobserved variable, $\operatorname{Cov}[X, E]=0$, then:

- the observed variable $X^{*}=X+E$ and the measurement error E must be correlated:

$$
\operatorname{Cov}\left[X^{*}, E\right]=E\left[X^{*} E\right]=E[(X+E) E]=E\left[X E+E^{2}\right]=0+\sigma_{E}^{2}=\sigma_{E}^{2}
$$

so the covariance between the observed measure X^{*} and the measurement error E is equal to the variance of E (classical error-in-variables (CEV) assumption).

Measurement Error in the Independent Variable

Our model for the observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the unobserved variable, $\operatorname{Cov}[X, E]=0$, then:

- the observed variable $X^{*}=X+E$ and the measurement error E must be correlated:

$$
\operatorname{Cov}\left[X^{*}, E\right]=E\left[X^{*} E\right]=E[(X+E) E]=E\left[X E+E^{2}\right]=0+\sigma_{E}^{2}=\sigma_{E}^{2}
$$

so the covariance between the observed measure X^{*} and the measurement error E is equal to the variance of E (classical error-in-variables (CEV) assumption).

- This correlation causes problems since now:
$\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]=-\beta_{1} \operatorname{Cov}\left[X^{*}, E\right]=-\beta_{1} \sigma_{E}^{2}$ and since the composite error is correlated with the observed measure OLS will be biased and inconsistent.

Measurement Error in the Independent Variable

Our model for the observed data is:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1}\left(X_{i}^{*}-E_{i}\right)+U_{i} \\
& =\beta_{0}+\beta_{1} X_{i}^{*}+\left(U_{i}-\beta_{1} E_{i}\right)
\end{aligned}
$$

If the measurement error is uncorrelated with the unobserved variable, $\operatorname{Cov}[X, E]=0$, then:

- the observed variable $X^{*}=X+E$ and the measurement error E must be correlated:

$$
\operatorname{Cov}\left[X^{*}, E\right]=E\left[X^{*} E\right]=E[(X+E) E]=E\left[X E+E^{2}\right]=0+\sigma_{E}^{2}=\sigma_{E}^{2}
$$

so the covariance between the observed measure X^{*} and the measurement error E is equal to the variance of E (classical error-in-variables (CEV) assumption).

- This correlation causes problems since now:
$\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]=-\beta_{1} \operatorname{Cov}\left[X^{*}, E\right]=-\beta_{1} \sigma_{E}^{2}$ and since the composite error is correlated with the observed measure OLS will be biased and inconsistent.
- Can we know the direction of the (asymptotic) bias?

Classical Errors in Variables (Appendix)

Classical Errors in Variables (Appendix)

$$
\hat{\beta}_{1} \xrightarrow{p} \beta_{1}+\frac{\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]}{V\left[X^{*}\right]}
$$

Classical Errors in Variables (Appendix)

$$
\begin{aligned}
\hat{\beta}_{1} & \xrightarrow{p} \beta_{1}+\frac{\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]}{V\left[X^{*}\right]} \\
& =\beta_{1}-\frac{\beta_{1} \sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}
\end{aligned}
$$

Classical Errors in Variables (Appendix)

$$
\begin{aligned}
\hat{\beta}_{1} & \xrightarrow{p} \beta_{1}+\frac{\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]}{V\left[X^{*}\right]} \\
& =\beta_{1}-\frac{\beta_{1} \sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}} \\
& =\beta_{1}\left(1-\frac{\sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right)
\end{aligned}
$$

Classical Errors in Variables (Appendix)

$$
\begin{aligned}
\hat{\beta}_{1} & \xrightarrow{p} \beta_{1}+\frac{\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]}{V\left[X^{*}\right]} \\
& =\beta_{1}-\frac{\beta_{1} \sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}} \\
& =\beta_{1}\left(1-\frac{\sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right) \\
& =\beta_{1}\left(\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right)
\end{aligned}
$$

Classical Errors in Variables (Appendix)

$$
\begin{aligned}
\hat{\beta}_{1} & \xrightarrow{p} \beta_{1}+\frac{\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]}{V\left[X^{*}\right]} \\
& =\beta_{1}-\frac{\beta_{1} \sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}} \\
& =\beta_{1}\left(1-\frac{\sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right) \\
& =\beta_{1}\left(\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right) \\
& =\beta_{1}\left(\frac{\sigma_{X}^{2}}{\sigma_{X^{*}}^{2}}\right)
\end{aligned}
$$

Classical Errors in Variables (Appendix)

$$
\begin{aligned}
\hat{\beta}_{1} & \xrightarrow{p} \beta_{1}+\frac{\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]}{V\left[X^{*}\right]} \\
& =\beta_{1}-\frac{\beta_{1} \sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}} \\
& =\beta_{1}\left(1-\frac{\sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right) \\
& =\beta_{1}\left(\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right) \\
& =\beta_{1}\left(\frac{\sigma_{X}^{2}}{\sigma_{X^{*}}^{2}}\right)
\end{aligned}
$$

Notice that given our CEV assumption $\left(\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right)<1$ so that the probability limit of β_{1} is always closer to zero than β_{1} (attenuation bias).

Classical Errors in Variables (Appendix)

$$
\begin{aligned}
\hat{\beta}_{1} & \xrightarrow{p} \beta_{1}+\frac{\operatorname{Cov}\left[X^{*}, U-\beta_{1} E\right]}{V\left[X^{*}\right]} \\
& =\beta_{1}-\frac{\beta_{1} \sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}} \\
& =\beta_{1}\left(1-\frac{\sigma_{E}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right) \\
& =\beta_{1}\left(\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right) \\
& =\beta_{1}\left(\frac{\sigma_{X}^{2}}{\sigma_{X^{*}}^{2}}\right)
\end{aligned}
$$

Notice that given our CEV assumption $\left(\frac{\sigma_{X}^{2}}{\sigma_{X}^{2}+\sigma_{E}^{2}}\right)<1$ so that the probability limit of β_{1} is always closer to zero than β_{1} (attenuation bias).
Bias is small if variance of observed measure σ_{X}^{2} is large relative to variance of error term σ_{E}^{2} (high signal to noise ratio).

Measurement Error in Multiple Independent Variables

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+u
$$

- If only X_{1} is measured with CEV type error (but X_{2} and X_{3} are correct), then β_{1} exhibits attenuation bias, and β_{2} and β_{3} will be inconsistent and biased unless X_{1} is uncorrelated with X_{2} and X_{3}

Measurement Error in Multiple Independent Variables

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+u
$$

- If only X_{1} is measured with CEV type error (but X_{2} and X_{3} are correct), then β_{1} exhibits attenuation bias, and β_{2} and β_{3} will be inconsistent and biased unless X_{1} is uncorrelated with X_{2} and X_{3}
- the direction and magnitude of bias in X_{2} and X_{3} are not easy to derive and often unclear

Measurement Error in Multiple Independent Variables

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+u
$$

- If only X_{1} is measured with CEV type error (but X_{2} and X_{3} are correct), then β_{1} exhibits attenuation bias, and β_{2} and β_{3} will be inconsistent and biased unless X_{1} is uncorrelated with X_{2} and X_{3}
- the direction and magnitude of bias in X_{2} and X_{3} are not easy to derive and often unclear
- If we have CEV measurement error in multiple X s then the size and direction of biases are unclear.

What can we do about measurement error?

- Improve our measures (e.g. pilot tests for surveys)

What can we do about measurement error?

- Improve our measures (e.g. pilot tests for surveys)
- Triangulate several measures (e.g. a battery of survey questions about the same issue)

What can we do about measurement error?

- Improve our measures (e.g. pilot tests for surveys)
- Triangulate several measures (e.g. a battery of survey questions about the same issue)
- Triangulate several studies (replicate experiments several times with different subjects and at different times)

What can we do about measurement error?

- Improve our measures (e.g. pilot tests for surveys)
- Triangulate several measures (e.g. a battery of survey questions about the same issue)
- Triangulate several studies (replicate experiments several times with different subjects and at different times)
- Rely on variables that are less prone to bias

What can we do about measurement error?

- Improve our measures (e.g. pilot tests for surveys)
- Triangulate several measures (e.g. a battery of survey questions about the same issue)
- Triangulate several studies (replicate experiments several times with different subjects and at different times)
- Rely on variables that are less prone to bias
- Randomized response, list experiments etc.

What can we do about measurement error?

- Improve our measures (e.g. pilot tests for surveys)
- Triangulate several measures (e.g. a battery of survey questions about the same issue)
- Triangulate several studies (replicate experiments several times with different subjects and at different times)
- Rely on variables that are less prone to bias
- Randomized response, list experiments etc.
- Modeling based approaches (next semester)

Summary for Measurement Error

Summary for Measurement Error

- Measurement error in the outcome

Summary for Measurement Error

- Measurement error in the outcome
- does not cause bias unless measurement error correlated with X variables

Summary for Measurement Error

- Measurement error in the outcome
- does not cause bias unless measurement error correlated with X variables
- does reduce efficiency

Summary for Measurement Error

- Measurement error in the outcome
- does not cause bias unless measurement error correlated with X variables
- does reduce efficiency
- Measurement error in the explanatory variable

Summary for Measurement Error

- Measurement error in the outcome
- does not cause bias unless measurement error correlated with X variables
- does reduce efficiency
- Measurement error in the explanatory variable
- does not cause bias if measurement error is uncorrelated with observed, mis-measured X (but increases variance)

Summary for Measurement Error

- Measurement error in the outcome
- does not cause bias unless measurement error correlated with X variables
- does reduce efficiency
- Measurement error in the explanatory variable
- does not cause bias if measurement error is uncorrelated with observed, mis-measured X (but increases variance)
- does lead to attenuation bias even if measurement error is uncorrelated with unobserved true X

Summary for Measurement Error

- Measurement error in the outcome
- does not cause bias unless measurement error correlated with X variables
- does reduce efficiency
- Measurement error in the explanatory variable
- does not cause bias if measurement error is uncorrelated with observed, mis-measured X (but increases variance)
- does lead to attenuation bias even if measurement error is uncorrelated with unobserved true X

Note: This is true only under fairly strong assumptions including mean zero measurement error.

Concluding Thoughts for the Day

- Regression rests on a number of assumptions

Concluding Thoughts for the Day

- Regression rests on a number of assumptions
- Easy to test some of these and hard to test others.

Concluding Thoughts for the Day

- Regression rests on a number of assumptions
- Easy to test some of these and hard to test others.
- Always check your data!

Concluding Thoughts for the Day

- Regression rests on a number of assumptions
- Easy to test some of these and hard to test others.
- Always check your data!
- Don't let regression be a magic black box for you- understand why it is giving the answers it gives.

References

- Wand, Jonathan N., Kenneth W. Shotts, Jasjeet S. Sekhon, Walter R. Mebane Jr, Michael C. Herron, and Henry E. Brady. "The butterfly did it: The aberrant vote for Buchanan in Palm Beach County, Florida." American Political Science Review (2001): 793-810.
- Lange, Peter, and Geoffrey Garrett. "The politics of growth: Strategic interaction and economic performance in the advanced industrial democracies, 19741980." The Journal of Politics 47, no. 03 (1985): 791-827.
- Jackman, Robert W. "The Politics of Economic Growth in the Industrial Democracies, 197480: Leftist Strength or North Sea Oil?." The Journal of Politics 49, no. 01 (1987): 242-256.

Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap
- After Thanksgiving
- causality with measured confounding

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap
- After Thanksgiving
- causality with measured confounding
- Long Run
- regression \rightarrow diagnostics \rightarrow causal inference

Questions?

Residuals are still important. Look at them.

(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers

』 Robust Regression Methods
(5) Optional: Measurement Error
(6. Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models

10 Fun With Kernels
11 Heteroskedasticity
12 Clustering
13 Optional: Serial Correlation
14 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

Nonlinearity

Linearity of the Conditional Expectation Function $(\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u})$ is a key assumption. Why?

Nonlinearity

Linearity of the Conditional Expectation Function $(\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u})$ is a key assumption. Why?

Nonlinearity

Linearity of the Conditional Expectation Function $(\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u})$ is a key assumption. Why?

Nonlinearity

- If $E[Y \mid \mathbf{X}]$ is not linear in $\mathbf{X}, E[\mathbf{u} \mid \mathbf{X}] \neq 0$ for all values $\mathbf{X}=\mathbf{x}$ and $\hat{\boldsymbol{\beta}}$ may be biased and inconsistent.

Nonlinearity

- If $E[Y \mid \mathbf{X}]$ is not linear in $\mathbf{X}, E[\mathbf{u} \mid \mathbf{X}] \neq 0$ for all values $\mathbf{X}=\mathbf{x}$ and $\hat{\boldsymbol{\beta}}$ may be biased and inconsistent.
- Nonlinearities may be important but few social scientific theories offer any guidance as to functional form whatsoever.

Nonlinearity

- If $E[Y \mid \mathbf{X}]$ is not linear in $\mathbf{X}, E[\mathbf{u} \mid \mathbf{X}] \neq 0$ for all values $\mathbf{X}=\mathbf{x}$ and $\hat{\boldsymbol{\beta}}$ may be biased and inconsistent.
- Nonlinearities may be important but few social scientific theories offer any guidance as to functional form whatsoever.
- Statements like "y increases with x " (monotonicity) are as specific as most social theories get.

Nonlinearity

- If $E[Y \mid \mathbf{X}]$ is not linear in $\mathbf{X}, E[\mathbf{u} \mid \mathbf{X}] \neq 0$ for all values $\mathbf{X}=\mathbf{x}$ and $\hat{\boldsymbol{\beta}}$ may be biased and inconsistent.
- Nonlinearities may be important but few social scientific theories offer any guidance as to functional form whatsoever.
- Statements like "y increases with x " (monotonicity) are as specific as most social theories get.
- Possible Exceptions: Returns to scale, constant elasticities, interactive effects, cyclical patterns in time series data, etc.

Nonlinearity

- If $E[Y \mid \mathbf{X}]$ is not linear in $\mathbf{X}, E[\mathbf{u} \mid \mathbf{X}] \neq 0$ for all values $\mathbf{X}=\mathbf{x}$ and $\hat{\boldsymbol{\beta}}$ may be biased and inconsistent.
- Nonlinearities may be important but few social scientific theories offer any guidance as to functional form whatsoever.
- Statements like "y increases with x " (monotonicity) are as specific as most social theories get.
- Possible Exceptions: Returns to scale, constant elasticities, interactive effects, cyclical patterns in time series data, etc.
- Usually we employ "linearity by default" but we should try to make sure this is appropriate: detect non-linearities and model them accurately

Diagnosing Nonlinearity

- For marginal relationships Y and X
- Scatterplots with loess lines

Diagnosing Nonlinearity

- For marginal relationships Y and X
- Scatterplots with loess lines
- For partial relationships Y and X_{1}, controlling for $X_{2}, X_{3}, \ldots, X_{k}$ the regression surface is high-dimensional.

Diagnosing Nonlinearity

- For marginal relationships Y and X
- Scatterplots with loess lines
- For partial relationships Y and X_{1}, controlling for $X_{2}, X_{3}, \ldots, X_{k}$ the regression surface is high-dimensional. We need other diagnostic tools such as:

Diagnosing Nonlinearity

- For marginal relationships Y and X
- Scatterplots with loess lines
- For partial relationships Y and X_{1}, controlling for $X_{2}, X_{3}, \ldots, X_{k}$ the regression surface is high-dimensional. We need other diagnostic tools such as:
- Added variables plots and component residual plots

Diagnosing Nonlinearity

- For marginal relationships Y and X
- Scatterplots with loess lines
- For partial relationships Y and X_{1}, controlling for $X_{2}, X_{3}, \ldots, X_{k}$ the regression surface is high-dimensional. We need other diagnostic tools such as:
- Added variables plots and component residual plots
- Semi-parametric regression techniques like Generalized Additive Models (GAMs)

Diagnosing Nonlinearity

- For marginal relationships Y and X
- Scatterplots with loess lines
- For partial relationships Y and X_{1}, controlling for $X_{2}, X_{3}, \ldots, X_{k}$ the regression surface is high-dimensional. We need other diagnostic tools such as:
- Added variables plots and component residual plots
- Semi-parametric regression techniques like Generalized Additive Models (GAMs)
- Non-parametric multiple regression techniques (beyond the scope of this course)

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}
- How to construct an added variable plot:

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}
- How to construct an added variable plot:
(1) Get residuals from regression of Y on all covariates except X_{j}

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}
- How to construct an added variable plot:
(1) Get residuals from regression of Y on all covariates except X_{j}
(2) Get residuals from regression of X_{j} on all other covariates

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}
- How to construct an added variable plot:
(1) Get residuals from regression of Y on all covariates except X_{j}
(2) Get residuals from regression of X_{j} on all other covariates
(3) Plot residuals from (1) against residuals from (2)

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}
- How to construct an added variable plot:
(1) Get residuals from regression of Y on all covariates except X_{j}
(2) Get residuals from regression of X_{j} on all other covariates
(3) Plot residuals from (1) against residuals from (2)
- In R: avPlots (model) from the car package

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}
- How to construct an added variable plot:
(1) Get residuals from regression of Y on all covariates except X_{j}
(2) Get residuals from regression of X_{j} on all other covariates
(3) Plot residuals from (1) against residuals from (2)
- In R: avPlots (model) from the car package
- OLS fit to this plot will have exactly $\widehat{\beta}_{j}$ and 0 intercept (drawing on the partialing out interpretation we discussed before)

Added variable plot

- Need a way to visualize conditional relationship between Y and X_{j}
- How to construct an added variable plot:
(1) Get residuals from regression of Y on all covariates except X_{j}
(2) Get residuals from regression of X_{j} on all other covariates
(3) Plot residuals from (1) against residuals from (2)
- In R: avPlots (model) from the car package
- OLS fit to this plot will have exactly $\widehat{\beta}_{j}$ and 0 intercept (drawing on the partialing out interpretation we discussed before)
- Use local smoother (loess) to detect any non-linearity

Buchanan AV plot

```
par(mfrow = c(1,2))
out <- avPlots(mod3, "edaytotal")
lines(loess.smooth(x = out$edaytotal[,1],
    y= out$edaytotal[,2]), col = "dodgerblue", lwd = 2)
out2 <- avPlots(mod3, "absnbuchanan")
lines(loess.smooth(x = out2$absnbuchanan[,1],
y= out2$absnbuchanan[,2]), col = "dodgerblue", lwd = 2)
```


Component-Residual plots

- CR plots are a refinement of AV plots:

Component-Residual plots

- CR plots are a refinement of AV plots:
(1) Compute residuals from full regression:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

Component-Residual plots

- CR plots are a refinement of AV plots:
(1) Compute residuals from full regression:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

(2) Compute "linear component" of the partial relationship:

$$
C_{i}=\widehat{\beta}_{j} X_{i j}
$$

Component-Residual plots

- CR plots are a refinement of AV plots:
(1) Compute residuals from full regression:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

(2) Compute "linear component" of the partial relationship:

$$
C_{i}=\widehat{\beta}_{j} X_{i j}
$$

(3) Add linear component to residual:

$$
\widehat{u}_{i}^{j}=\widehat{u}_{i}+C_{i}
$$

Component-Residual plots

- CR plots are a refinement of AV plots:
(1) Compute residuals from full regression:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

(2) Compute "linear component" of the partial relationship:

$$
C_{i}=\widehat{\beta}_{j} X_{i j}
$$

(3) Add linear component to residual:

$$
\widehat{u}_{i}^{j}=\widehat{u}_{i}+C_{i}
$$

(9) Plot partial residual \widehat{u}_{i}^{j} against X_{j}

Component-Residual plots

- CR plots are a refinement of AV plots:
(1) Compute residuals from full regression:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

(2) Compute "linear component" of the partial relationship:

$$
C_{i}=\widehat{\beta}_{j} X_{i j}
$$

(3) Add linear component to residual:

$$
\widehat{u}_{i}^{j}=\widehat{u}_{i}+C_{i}
$$

(9) Plot partial residual \hat{u}_{i}^{j} against X_{j}

- Same slope as AV plots

Component-Residual plots

- CR plots are a refinement of AV plots:
(1) Compute residuals from full regression:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

(2) Compute "linear component" of the partial relationship:

$$
C_{i}=\widehat{\beta}_{j} X_{i j}
$$

(3) Add linear component to residual:

$$
\widehat{u}_{i}^{j}=\widehat{u}_{i}+C_{i}
$$

(9) Plot partial residual \widehat{u}_{i}^{j} against X_{j}

- Same slope as AV plots
- X-axis is the original scale of X_{j}, so slightly easier for diagnostics

Component-Residual plots

- CR plots are a refinement of $A V$ plots:
(1) Compute residuals from full regression:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

(2) Compute "linear component" of the partial relationship:

$$
C_{i}=\widehat{\beta}_{j} X_{i j}
$$

(3) Add linear component to residual:

$$
\widehat{u}_{i}^{j}=\widehat{u}_{i}+C_{i}
$$

(9) Plot partial residual \widehat{u}_{i}^{j} against X_{j}

- Same slope as AV plots
- X-axis is the original scale of X_{j}, so slightly easier for diagnostics
- Use local smoother (loess) to detect non-linearity

Buchanan CR plot

R Code

crPlots (mod3, las = 1)

Component + Residual Plots

Limitations of CR Plots

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships
- Oftentimes, these two-dimensional displays fail to uncover structure in a higher-dimensional problem

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships
- Oftentimes, these two-dimensional displays fail to uncover structure in a higher-dimensional problem
- We may detect an interaction between X_{1} and X_{2} in a 3D scatterplot that we could miss in two scatterplots of Y on each X

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships
- Oftentimes, these two-dimensional displays fail to uncover structure in a higher-dimensional problem
- We may detect an interaction between X_{1} and X_{2} in a 3D scatterplot that we could miss in two scatterplots of Y on each X
- Cook (1993) shows that CR plots only work when either:

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships
- Oftentimes, these two-dimensional displays fail to uncover structure in a higher-dimensional problem
- We may detect an interaction between X_{1} and X_{2} in a 3D scatterplot that we could miss in two scatterplots of Y on each X
- Cook (1993) shows that CR plots only work when either:

1) The relationship between Y and X_{j} is linear

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships
- Oftentimes, these two-dimensional displays fail to uncover structure in a higher-dimensional problem
- We may detect an interaction between X_{1} and X_{2} in a 3D scatterplot that we could miss in two scatterplots of Y on each X
- Cook (1993) shows that CR plots only work when either:

1) The relationship between Y and X_{j} is linear
2) Other explanatory variables $\left(X_{1}, \ldots, X_{j-1}\right)$ are linearly related to X_{j}

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships
- Oftentimes, these two-dimensional displays fail to uncover structure in a higher-dimensional problem
- We may detect an interaction between X_{1} and X_{2} in a 3D scatterplot that we could miss in two scatterplots of Y on each X
- Cook (1993) shows that CR plots only work when either:

1) The relationship between Y and X_{j} is linear
2) Other explanatory variables $\left(X_{1}, \ldots, X_{j-1}\right)$ are linearly related to X_{j}

- This suggests that linearizing the relationship between the X_{s} through transformations can be helpful

Limitations of CR Plots

- AV plots and CR plots can only reveal partial relationships
- Oftentimes, these two-dimensional displays fail to uncover structure in a higher-dimensional problem
- We may detect an interaction between X_{1} and X_{2} in a 3D scatterplot that we could miss in two scatterplots of Y on each X
- Cook (1993) shows that CR plots only work when either:

1) The relationship between Y and X_{j} is linear
2) Other explanatory variables $\left(X_{1}, \ldots, X_{j-1}\right)$ are linearly related to X_{j}

- This suggests that linearizing the relationship between the X_{s} through transformations can be helpful
- Experience suggests weak non-linearities among X s do not invalidate CR plots

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited.

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited. However we can partially address nonlinearity by:

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited. However we can partially address nonlinearity by:

- Breaking categorical or continuous variables into dummy variables (e.g. education levels)

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited. However we can partially address nonlinearity by:

- Breaking categorical or continuous variables into dummy variables (e.g. education levels)
- Including interactions

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited. However we can partially address nonlinearity by:

- Breaking categorical or continuous variables into dummy variables (e.g. education levels)
- Including interactions
- Including polynomial terms

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited. However we can partially address nonlinearity by:

- Breaking categorical or continuous variables into dummy variables (e.g. education levels)
- Including interactions
- Including polynomial terms
- Transformations such as logs

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited. However we can partially address nonlinearity by:

- Breaking categorical or continuous variables into dummy variables (e.g. education levels)
- Including interactions
- Including polynomial terms
- Transformations such as logs
- Generalized Additive Models (GAM)

How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited. However we can partially address nonlinearity by:

- Breaking categorical or continuous variables into dummy variables (e.g. education levels)
- Including interactions
- Including polynomial terms
- Transformations such as logs
- Generalized Additive Models (GAM)
- Many more flexible, nonlinear regression models exist beyond the scope of this course.

Transformed Buchanan regression

```
                        R Code
mod.nopb2 <- lm(log(edaybuchanan) ~ log(edaytotal) + log(absnbuchanan),
data = flvote, subset = county != "Palm Beach")
crPlots(mod.nopb2, las = 1)
```

Component + Residual Plots

(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers
(1) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
9) Generalized Additive Models

10 Fun With Kernels
11 Heteroskedasticity
(12) Clustering
(12) Optional: Serial Correlation

14 A Contrarian View of Robust Standard Errors
13 Fuin with Neighbors
16 Fun with Kittens

Bias-Variance Tradeoff

Bias-Variance Tradeoff

Example Synthetic Problem

$$
y=\sin \left(1+x^{2}\right)+\epsilon
$$

This section adapted from slides by Radford Neal.

Linear Basis Function Models

Linear Basis Function Models

- We talked before about polynomials x^{2}, x^{3}, x^{4} for modeling non-linearities, this is a linear basis function model.

Linear Basis Function Models

- We talked before about polynomials x^{2}, x^{3}, x^{4} for modeling non-linearities, this is a linear basis function model.
- In general the idea is to do a linear regression of y on $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{m-1}(x)$ where ϕ_{j} are basis functions.

Linear Basis Function Models

- We talked before about polynomials x^{2}, x^{3}, x^{4} for modeling non-linearities, this is a linear basis function model.
- In general the idea is to do a linear regression of y on $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{m-1}(x)$ where ϕ_{j} are basis functions.
- The model is now:

$$
\begin{aligned}
y & =f(x, \beta)+\epsilon \\
f(x, \beta) & =\beta_{0}+\sum_{j=1}^{m-1} \beta_{j} \phi_{j}(x)=\beta^{T} \phi(x)
\end{aligned}
$$

Polynomial Basis Functions

We can look at OLS fits with polynomial basis functions of increasing order.

Polynomial Basis Functions

We can look at OLS fits with polynomial basis functions of increasing order.

Polynomial Basis Functions

We can look at OLS fits with polynomial basis functions of increasing order.

It appears that the last model is too complex and is overfitting a bit.

Local Basis Functions

Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over the whole input space. Often local basis functions are more appropriate.

Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over the whole input space. Often local basis functions are more appropriate.

One choice is a Gaussian basis function

$$
\left.\phi_{j}(x)=\exp \left(-\left(x-\mu_{j}\right)^{2}\right) / 2 s^{2}\right)
$$

Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over the whole input space. Often local basis functions are more appropriate.

One choice is a Gaussian basis function

$$
\left.\phi_{j}(x)=\exp \left(-\left(x-\mu_{j}\right)^{2}\right) / 2 s^{2}\right)
$$

Gaussian Basis Fits

Regularization

Regularization

- We've seen that flexible models can lead to overfitting

Regularization

- We've seen that flexible models can lead to overfitting
- Two ways to address: limit model flexibility or use a flexible model and regularize

Regularization

- We've seen that flexible models can lead to overfitting
- Two ways to address: limit model flexibility or use a flexible model and regularize
- Regularization is a way of expressing a preference for smoothness in our function by adding a penalty term to our optimization function.

Regularization

- We've seen that flexible models can lead to overfitting
- Two ways to address: limit model flexibility or use a flexible model and regularize
- Regularization is a way of expressing a preference for smoothness in our function by adding a penalty term to our optimization function.
- Here we will consider a penalty of the form $\lambda \sum_{j=1}^{m-1} \beta_{j}^{2}$ where λ controls the strength of the penalty.

Regularization

- We've seen that flexible models can lead to overfitting
- Two ways to address: limit model flexibility or use a flexible model and regularize
- Regularization is a way of expressing a preference for smoothness in our function by adding a penalty term to our optimization function.
- Here we will consider a penalty of the form $\lambda \sum_{j=1}^{m-1} \beta_{j}^{2}$ where λ controls the strength of the penalty.
- The penalty trades off some bias for an improvement in variance

Regularization

- We've seen that flexible models can lead to overfitting
- Two ways to address: limit model flexibility or use a flexible model and regularize
- Regularization is a way of expressing a preference for smoothness in our function by adding a penalty term to our optimization function.
- Here we will consider a penalty of the form $\lambda \sum_{j=1}^{m-1} \beta_{j}^{2}$ where λ controls the strength of the penalty.
- The penalty trades off some bias for an improvement in variance
- The trick in general is how to set λ

Results

Here are the results with $\lambda=0.1$:

Results

Here are the results with $\lambda=1$:

Results

Here are the results with $\lambda=10$:

Results

Here are the results with $\lambda=0.01$:

Conclusions from This Example

Conclusions from This Example

- we can control overfitting by modifying the width of the basis function s or with penalty

Conclusions from This Example

- we can control overfitting by modifying the width of the basis function s or with penalty
- we will need some way in general to tune these

Conclusions from This Example

- we can control overfitting by modifying the width of the basis function s or with penalty
- we will need some way in general to tune these
- we will also need some way to handle multivariate functions.

Conclusions from This Example

- we can control overfitting by modifying the width of the basis function s or with penalty
- we will need some way in general to tune these
- we will also need some way to handle multivariate functions.
- next up, Generalized Additive Models
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
B. Linear Basis Function Models
(9) Generalized Additive Models

10 Fun With Kernels
11 Heteroskedasticity
12 Clustering
(13) Optional: Serial Correlation

4 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

Generalized Additive Models (GAM)

Recall the linear model,

$$
y_{i}=\beta_{0}+x_{1 i} \beta_{1}+x_{2 i} \beta_{2}+x_{3 i} \beta_{3}+u_{i}
$$

Generalized Additive Models (GAM)

Recall the linear model,

$$
y_{i}=\beta_{0}+x_{1 i} \beta_{1}+x_{2 i} \beta_{2}+x_{3 i} \beta_{3}+u_{i}
$$

For GAMs, we maintain additivity, but instead of imposing linearity we allow flexible functional forms for each explanatory variable, where $s_{1}(\cdot), s_{2}(\cdot)$, and $s_{3}(\cdot)$ are smooth functions that are estimated from the data:

Generalized Additive Models (GAM)

Recall the linear model,

$$
y_{i}=\beta_{0}+x_{1 i} \beta_{1}+x_{2 i} \beta_{2}+x_{3 i} \beta_{3}+u_{i}
$$

For GAMs, we maintain additivity, but instead of imposing linearity we allow flexible functional forms for each explanatory variable, where $s_{1}(\cdot), s_{2}(\cdot)$, and $s_{3}(\cdot)$ are smooth functions that are estimated from the data:

$$
y_{i}=\beta_{0}+s_{1}\left(x_{1 i}\right)+s_{2}\left(x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

Generalized Additive Models (GAM)

$$
y_{i}=\beta_{0}+s_{1}\left(x_{1 i}\right)+s_{2}\left(x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

- GAMS are semi-parametric, they strike a compromise between nonparametric methods and parametric regression

Generalized Additive Models (GAM)

$$
y_{i}=\beta_{0}+s_{1}\left(x_{1 i}\right)+s_{2}\left(x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

- GAMS are semi-parametric, they strike a compromise between nonparametric methods and parametric regression
- $s_{j}(\cdot)$ are usually estimated with locally weighted regression smoothers or cubic smoothing splines (but many approaches are possible)

Generalized Additive Models (GAM)

$$
y_{i}=\beta_{0}+s_{1}\left(x_{1 i}\right)+s_{2}\left(x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

- GAMS are semi-parametric, they strike a compromise between nonparametric methods and parametric regression
- $s_{j}(\cdot)$ are usually estimated with locally weighted regression smoothers or cubic smoothing splines (but many approaches are possible)
- They do NOT give you a set of regression parameters $\hat{\beta}$. Instead one obtains a graphical summary of how $E\left[Y \mid X, X_{2}, \ldots, X_{k}\right]$ varies with X_{1} (estimates of $s_{j}(\cdot)$ at every value of $\left.X_{i, j}\right)$

Generalized Additive Models (GAM)

$$
y_{i}=\beta_{0}+s_{1}\left(x_{1 i}\right)+s_{2}\left(x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

- GAMS are semi-parametric, they strike a compromise between nonparametric methods and parametric regression
- $s_{j}(\cdot)$ are usually estimated with locally weighted regression smoothers or cubic smoothing splines (but many approaches are possible)
- They do NOT give you a set of regression parameters $\hat{\beta}$. Instead one obtains a graphical summary of how $E\left[Y \mid X, X_{2}, \ldots, X_{k}\right]$ varies with X_{1} (estimates of $s_{j}(\cdot)$ at every value of $\left.X_{i, j}\right)$
- Theory and estimation are somewhat involved, but they are easy to use:
- gam.out <- gam(y~s(x1)+s(x2)+x3) plot(gam.out)
- Multiple functions but I recommend mgcv package

Generalized Additive Models (GAM)

The GAM approach can be extended to allow interactions $\left(s_{12}(\cdot)\right)$ between explanatory variables, but this eats up degrees of freedom so you need a lot of data.

$$
y_{i}=\beta_{0}+s_{12}\left(x_{1 i}, x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

Generalized Additive Models (GAM)

The GAM approach can be extended to allow interactions $\left(s_{12}(\cdot)\right)$ between explanatory variables, but this eats up degrees of freedom so you need a lot of data.

$$
y_{i}=\beta_{0}+s_{12}\left(x_{1 i}, x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

It can also be used for hybrid models where we model some variables as parametrically and other with a flexible function:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+s_{2}\left(x_{2 i}\right)+s_{3}\left(x_{3 i}\right)+u_{i}
$$

GAM Fit to Attitudes Toward Immigration

GAM Fit to Attitudes Toward Immigration

GAM Fit to Attitudes Toward Immigration

GAM Fit to Attitudes Toward Immigration

red/green are +/- 2 s.e.

GAM Fit to Attitudes Toward Immigration

GAM Fit to Dyadic Democracy and Militarized Disputes

(a) Perspective of Non-Democracies

Concluding Thoughts

Concluding Thoughts

- Non-linearity is pretty easy to detect and can substantially change our inferences

Concluding Thoughts

- Non-linearity is pretty easy to detect and can substantially change our inferences
- GAMs are a great way to model/detect non-linearity but transformations are often simpler

Concluding Thoughts

- Non-linearity is pretty easy to detect and can substantially change our inferences
- GAMs are a great way to model/detect non-linearity but transformations are often simpler
- However, be wary of the global properties of transformations and polynomials

Concluding Thoughts

- Non-linearity is pretty easy to detect and can substantially change our inferences
- GAMs are a great way to model/detect non-linearity but transformations are often simpler
- However, be wary of the global properties of transformations and polynomials
- Non-linearity concerns are most relevant for continuous covariates with a large range (age)
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity

- Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels
(11) Heteroskedasticity
(12) Clustering
(1) Optional: Serial Correlation

14 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

Fun With Kernels

Hainmueller and Hazlett (2013). "Kernel Regularized Least Squares: Reducing Misspecification Bias with a Flexible and Interpretable Machine Learning Approach" Political Analysis. ${ }^{2}$
${ }^{2}$ I thank Chad Hazlett for sharing many of the slides that follow

Motivation: Misspecification Bias

Consider a data generating process such as:
> \# Predictors
> GDP = runif (500)
$>$ Polity $=.5 * G D P^{\wedge} 2+.2 *$ runif (200)
$>$
> \# True Model
> Stability $=\log ($ GDP $)+r n o r m(500)$

Motivation: Misspecification Bias

Consider a data generating process such as:
> \# Predictors
> GDP = runif (500)
$>$ Polity $=.5 *$ GDP $^{\wedge} 2+.2 *$ runif (200)
$>$
> \# True Model
> Stability $=\log ($ GDP $)+r n o r m(500)$

Regressing Stability on polity and GDP:
> \# OLS
> lm(Stability ~ Polity + GDP)

	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$				
(Intercept)	-2.3000	0.1039	$-22.145<2 e-16$	$* * *$	
Polity	-3.1983	0.7613	-4.201	$3.15 \mathrm{e}-05$	$* * *$
GDP	4.3443	0.4237	$10.252<2 e-16$	$* * *$	

Motivation: Misspecification Bias

Consider a data generating process such as:
> \# Predictors
> GDP $=$ runif (500)
$>$ Polity $=.5 * \mathrm{GDP}^{\wedge} 2+.2 * \operatorname{runif}(200)$
$>$
> \# True Model
> Stability $=\log ($ GDP $)+$ rnorm(500)

Regressing Stability on polity and GDP:
> \# OLS
> lm(Stability ~ Polity + GDP)

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	-2.3000	0.1039	$-22.145<2 \mathrm{e}-16$	$* * *$	
Polity	-3.1983	0.7613	-4.201	$3.15 \mathrm{e}-05$	$* * *$
GDP	4.3443	0.4237	$10.252<2 \mathrm{e}-16$	$* * *$	

Entirely wrong conclusions!

Misspecification Bias

Try more flexible method that still reports marginal effects:
> krls(y=Stability, X=cbind(GDP,Polity))

Average Marginal Effects:
Est Std. Error $\quad \mathrm{t}$ value $\operatorname{Pr}(>|\mathrm{t}|)$
GDP $\quad 3.3855912 \quad 0.5217110 \quad 6.4893996 \quad 2.084441 \mathrm{e}-10$
Polity -0.4143114 $0.7826758-0.5293525 \quad 5.967968 \mathrm{e}-01$

Misspecification Bias

Try more flexible method that still reports marginal effects:
> krls(y=Stability, X=cbind (GDP,Polity))
Average Marginal Effects:

	Est	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
GDP	3.3855912	0.5217110	6.4893996	$2.084441 \mathrm{e}-10$
Polity	-0.4143114	0.7826758	-0.5293525	$5.967968 \mathrm{e}-01$
	E[stability\|gdp, mean(polity)]		E[stability\|mean(gdp), polity]	

Kernel Basics

Kernel

For now, a kernel is a function $\mathbb{R}^{\mathbb{P}} \times \mathbb{R}^{\mathbb{P}} \rightarrow \mathbb{R}$

$$
k\left(x_{i}, x_{j}\right) \rightarrow \mathbb{R}
$$

Kernel Basics

Kernel

For now, a kernel is a function $\mathbb{R}^{\mathbb{P}} \times \mathbb{R}^{\mathbb{P}} \rightarrow \mathbb{R}$

$$
k\left(x_{i}, x_{j}\right) \rightarrow \mathbb{R}
$$

Some kernels are naturally interpretable as a distance metric, e.g. the Gaussian:

Gaussian Kernel

$$
\begin{aligned}
& k(\cdot, \cdot): \mathbb{R}^{D} \times \mathbb{R}^{P} \mapsto \mathbb{R} \\
& k\left(x_{j}, x_{i}\right)=e^{-\frac{\left\|x_{j}-x_{i}\right\|^{2}}{\sigma^{2}}}
\end{aligned}
$$

where $\left\|X_{j}-X_{i}\right\|$ is the Euclidean distance between X_{j} and X_{i}

Using the Kernel Trick for Regression

- A feature map, $\phi: \mathbb{R}^{P} \mapsto \mathbb{R}^{P^{\prime}}$, such that: $k\left(X_{i}, X_{j}\right)=\left\langle\phi\left(X_{i}\right), \phi\left(X_{j}\right)\right\rangle$

Using the Kernel Trick for Regression

- A feature map, $\phi: \mathbb{R}^{P} \mapsto \mathbb{R}^{P^{\prime}}$, such that: $k\left(X_{i}, X_{j}\right)=\left\langle\phi\left(X_{i}\right), \phi\left(X_{j}\right)\right\rangle$
- A linear model in the new features: $f\left(X_{i}\right)=\phi\left(X_{i}\right)^{T} \theta, \theta \in \mathbb{R}^{P^{\prime}}$

Using the Kernel Trick for Regression

- A feature map, $\phi: \mathbb{R}^{P} \mapsto \mathbb{R}^{P^{\prime}}$, such that: $k\left(X_{i}, X_{j}\right)=\left\langle\phi\left(X_{i}\right), \phi\left(X_{j}\right)\right\rangle$
- A linear model in the new features: $f\left(X_{i}\right)=\phi\left(X_{i}\right)^{T} \theta, \theta \in \mathbb{R}^{P^{\prime}}$
- Regularized (ridge) regression:

$$
\underset{\theta \in \mathbb{R}^{P^{\prime}}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\phi\left(X_{i}\right)^{T} \theta\right)^{2}+\lambda\langle\theta, \theta\rangle
$$

Using the Kernel Trick for Regression

- A feature map, $\phi: \mathbb{R}^{P} \mapsto \mathbb{R}^{P^{\prime}}$, such that: $k\left(X_{i}, X_{j}\right)=\left\langle\phi\left(X_{i}\right), \phi\left(X_{j}\right)\right\rangle$
- A linear model in the new features: $f\left(X_{i}\right)=\phi\left(X_{i}\right)^{T} \theta, \theta \in \mathbb{R}^{P^{\prime}}$
- Regularized (ridge) regression:

$$
\underset{\theta \in \mathbb{R}^{P^{\prime}}}{\operatorname{argmin}} \sum_{i=1}^{N}\left(Y_{i}-\phi\left(X_{i}\right)^{T} \theta\right)^{2}+\lambda\langle\theta, \theta\rangle
$$

- Solve the F.O.C.s:

$$
\begin{aligned}
R(\theta, \lambda) & =\sum_{i=1}^{N}\left(Y_{i}-\phi\left(X_{i}\right)^{\top} \theta\right)^{2}+\lambda \theta^{\top} \theta \\
\frac{\partial R(\theta, \lambda)}{\partial \theta} & =-2 \sum_{i=1}^{N} \phi\left(X_{i}\right)\left(Y_{i}-\phi\left(X_{i}\right)^{\top} \theta\right)+2 \lambda \theta=0
\end{aligned}
$$

How would humans learn this?

How would humans learn this?

Linear regression?

$$
E[\text { alt } \mid \text { lat, long }]=\beta_{0}+\beta_{1} \text { lat }+\beta_{2} \text { long }+\beta_{3} \text { lat } \times \text { long }+\ldots
$$

How would humans learn this?

Linear regression?

$$
E[\text { alt } \mid \text { lat, long }]=\beta_{0}+\beta_{1} \text { lat }+\beta_{2} \text { long }+\beta_{3} \text { lat } \times \text { long }+\ldots
$$

Similarity model:

$E[a / t \mid$ lat, long $]=c_{1}($ similarity to obs 1$)+\ldots+c_{5}($ similarity to obs5 $)$

Intuition: Similarity

Think of this function space as built on similarity:

$$
\begin{aligned}
f\left(X^{\star}\right) & =\sum_{i=1}^{N} c_{i} k\left(X^{\star}, X_{i}\right) \\
& =c_{1}\left(\text { similarity of } X^{\star} \text { to } X_{1}\right)+\ldots+c_{N}\left(\text { similarity of } X^{\star} \text { to } X_{N}\right)
\end{aligned}
$$

Intuition: Similarity

Think of this function space as built on similarity:

$$
\begin{aligned}
f\left(X^{\star}\right) & =\sum_{i=1}^{N} c_{i} k\left(X^{\star}, X_{i}\right) \\
& =c_{1}\left(\text { similarity of } X^{\star} \text { to } X_{1}\right)+\ldots+c_{N}\left(\text { similarity of } X^{\star} \text { to } X_{N}\right)
\end{aligned}
$$

Some random functions from this space:

A real example: Harff 2003

From summary (krls(y, X))

DV: Genocide onset		
	$\beta_{O L S}$	$E\left[\frac{d y}{d x_{i}}\right]$
Prior upheaval	0.009^{*}	0.00
	(0.004)	0.00
Prior genocide	0.26^{*}	0.19^{*}
	(0.12)	(0.08)
Ideological char. elite	0.15^{*}	0.13^{*}
	(0.084)	(0.08)
Autocracy	0.16^{*}	0.12^{*}
	(0.077)	(0.07)
Ethnic char. elite	0.12	0.05
	(0.084)	(0.08)
$\log ($ trade openness $)$	-0.17^{*}	-0.09^{*}
	(0.057)	(0.03)

Behind the averages

plot $(\operatorname{krls}(\mathrm{X}, \mathrm{y}))$
Distributions of pointwise marginal effects

Efficiency Comparison

$$
y=2 x+\epsilon, x \sim N(0,1), \epsilon \sim N(0,1)
$$

High-dimensional data with non-linearities

$y=\left(X_{1} X_{2}\right)-2\left(X_{3} X_{4}\right)+3\left(X_{5} X_{6} X_{7}\right)-\left(X_{1} X_{8}\right)+2\left(X_{8} X_{9} X_{10}\right)+X_{10}+\epsilon$ where all X are i.i.d.
$\operatorname{Bernoulli}(p)$ at varying $p, \varepsilon \sim N(0, .5)$. 1, 000 test points.

Linear model with bad leverage points

- $y=.5 x+\varepsilon$ where $\varepsilon \sim N(0, .3)$
- One bad point, $\left(y_{i}=-5, x_{i}=5\right)$.

Interaction or non-linearity?

Truth: $y=5 x_{1}^{2}+\varepsilon, \quad \rho\left(x_{1}, x_{2}\right)=.72$
$\varepsilon \sim(0, .44) . x_{1} \sim \operatorname{Uniform}(0,2)$

Interaction or non-linearity?

Truth: $y=5 x_{1}^{2}+\varepsilon, \quad \rho\left(x_{1}, x_{2}\right)=.72$
$\varepsilon \sim(0, .44) . x_{1} \sim \operatorname{Uniform}(0,2)$

Interaction or non-linearity?

Truth: $y=5 x_{1}^{2}+\varepsilon, \quad \rho\left(x_{1}, x_{2}\right)=.72$
$\varepsilon \sim(0, .44) . x_{1} \sim \operatorname{Uniform}(0,2)$
OLS Model: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} * x_{2}$

Interaction or non-linearity?

Truth: $y=5 x_{1}^{2}+\varepsilon, \quad \rho\left(x_{1}, x_{2}\right)=.72$
$\varepsilon \sim(0, .44) . x_{1} \sim \operatorname{Uniform}(0,2)$
OLS Model: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} * x_{2}$
KRLS Model: $\operatorname{krls}\left(y_{,}\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\right)$

Interaction or non-linearity?

Truth: $y=5 x_{1}^{2}+\varepsilon, \quad \rho\left(x_{1}, x_{2}\right)=.72$
$\varepsilon \sim(0, .44) . x_{1} \sim \operatorname{Uniform}(0,2)$
OLS Model: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} * x_{2}$
KRLS Model: $\operatorname{krls}\left(y_{1}\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\right)$

Estimator	OLS	KRLS			
$\partial y / \partial x_{i j}$	Average	Average	1st Qu.	Median	3rd Qu.
const	-1.50				
	(0.34)				
x_{1}	7.51	9.22	5.22	9.38	14.03
	(0.40)	(0.52)	(0.82)	(0.85)	(0.79)
x_{2}	-1.28	0.02	-0.08	0.00	0.10
	(0.21)	(0.13)	(0.19)	(0.16)	(0.20)
$\left(x_{1} \cdot x_{2}\right)$	1.24				
	(0.15)				
N	250				

Concluding Thoughts

Concluding Thoughts

- Strengths
- extremely powerful at detecting interactions

Concluding Thoughts

- Strengths
- extremely powerful at detecting interactions
- captures increasingly complex functions as data increases

Concluding Thoughts

- Strengths
- extremely powerful at detecting interactions
- captures increasingly complex functions as data increases
- great as a robustness check

Concluding Thoughts

- Strengths
- extremely powerful at detecting interactions
- captures increasingly complex functions as data increases
- great as a robustness check
- Difficulties/Future Work

Concluding Thoughts

- Strengths
- extremely powerful at detecting interactions
- captures increasingly complex functions as data increases
- great as a robustness check
- Difficulties/Future Work
- computation scales in number of datapoints $\left(O\left(N^{3}\right)\right)$ which means it doesn't work for more than about 5000 datapoints

Concluding Thoughts

- Strengths
- extremely powerful at detecting interactions
- captures increasingly complex functions as data increases
- great as a robustness check
- Difficulties/Future Work
- computation scales in number of datapoints $\left(O\left(N^{3}\right)\right)$ which means it doesn't work for more than about 5000 datapoints
- it may model deep interactions but it is still hard to summarize deep interactions

References

- Hainmueller and Hazlett (2013). "Kernel Regularized Least Squares: Reducing Misspecification Bias with a Flexible and Interpretable Machine Learning Approach" Political Analysis.
- Beck, N. and Jackman, S. 1998. Beyond Linearity by Default: Generalized Additive Models. American Journal of Political Science.
- Wood (2003). "Thin plate regression splines." Journal of the Royal Statistical Society: Series B.
- Hastie, T.J. and Tibshirani, R.J. 1990. General Additive Models.
- Hastie, Tibshirani, and Friedman (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
- Schölkopf and Smola (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Cambridge, MA: MIT Press.

Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap
- After Thanksgiving
- causality with measured confounding

Where We've Been and Where We're Going...

- Last Week
- regression in the social sciences
- This "Week"
- Monday (14):
\star unusual and influential data \rightarrow robust estimation
- Wednesday (16):
\star non-linearity \rightarrow generalized additive models
- Monday (21):
\star unusual errors \rightarrow sandwich SEs and block bootstrap
- After Thanksgiving
- causality with measured confounding
- Long Run
- regression \rightarrow diagnostics \rightarrow causal inference

Questions?
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers
(1) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity

- Linear Basis Function Models

9) Generalized Additive Models

10 Fun With Kernel's
(11) Heteroskedasticity
(12) Clustering
(13) Optional: Serial Correlation

14 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

A Quick Note of Thanks

Review of the OLS Assumptions

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(9) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(5) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(9) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

- 1-4 give us unbiasedness/consistency

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(9) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

- 1-4 give us unbiasedness/consistency
- 1-5 are the Gauss-Markov, allow for large-sample inference

Review of the OLS Assumptions

(1) Linearity: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$
(2) Random/iid sample: $\left(y_{i}, \mathbf{x}_{i}^{\prime}\right)$ are a iid sample from the population.
(3) No perfect collinearity: \mathbf{X} is an $n \times(K+1)$ matrix with rank $K+1$
(9) Zero conditional mean: $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=\mathbf{0}$
(9) Homoskedasticity: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
(0) Normality: $\mathbf{u} \mid \mathbf{X} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{n}\right)$

- 1-4 give us unbiasedness/consistency
- 1-5 are the Gauss-Markov, allow for large-sample inference
- 1-6 allow for small-sample inference

How Do We Deal With This?

Plan for Today

Talk about different forms of error variance problems

Plan for Today

Talk about different forms of error variance problems
(1) Heteroskedasticity

Plan for Today

Talk about different forms of error variance problems
(1) Heteroskedasticity
(2) Clustering

Plan for Today

Talk about different forms of error variance problems
(1) Heteroskedasticity
(2) Clustering
(3) Optional: Serial correlation

Plan for Today

Talk about different forms of error variance problems
(1) Heteroskedasticity
(2) Clustering
(3) Optional: Serial correlation

Each is a violation of homoskedasticity, but each has its own diagnostics and corrections.

Plan for Today

Talk about different forms of error variance problems
(1) Heteroskedasticity
(2) Clustering
(3) Optional: Serial correlation

Each is a violation of homoskedasticity, but each has its own diagnostics and corrections.

Then we will discuss a contrarian view

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$
- Using assumptions 1 and 4 , we can show that we have the following (derivation in the appendix):

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$
- Using assumptions 1 and 4 , we can show that we have the following (derivation in the appendix):

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- With homoskedasticity, $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$
- Using assumptions 1 and 4 , we can show that we have the following (derivation in the appendix):

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- With homoskedasticity, $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$
- Using assumptions 1 and 4, we can show that we have the following (derivation in the appendix):

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- With homoskedasticity, $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$

$$
\begin{aligned}
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}] & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \Sigma \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \text { (by homoskedasticity) }
\end{aligned}
$$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$
- Using assumptions 1 and 4, we can show that we have the following (derivation in the appendix):

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- With homoskedasticity, $\boldsymbol{\Sigma}=\sigma^{2}$ I

$$
\begin{aligned}
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}] & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \text { (by homoskedasticity) } \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$
- Using assumptions 1 and 4, we can show that we have the following (derivation in the appendix):

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- With homoskedasticity, $\boldsymbol{\Sigma}=\sigma^{2}$ I

$$
\begin{aligned}
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}] & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \text { (by homoskedasticity) } \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Review of Homoskedasticity

- Remember:

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- Let $\operatorname{Var}[\mathbf{u} \mid \mathbf{X}]=\boldsymbol{\Sigma}$
- Using assumptions 1 and 4, we can show that we have the following (derivation in the appendix):

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- With homoskedasticity, $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$

$$
\begin{aligned}
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}] & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \text { (by homoskedasticity) } \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

- Replace σ^{2} with estimate $\widehat{\sigma}^{2}$ will give us our estimate of the covariance matrix

Non-constant Error Variance

- Homoskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}=\left[\begin{array}{ccccc}
\sigma^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma^{2}
\end{array}\right]
$$

Non-constant Error Variance

- Homoskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}=\left[\begin{array}{ccccc}
\sigma^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma^{2}
\end{array}\right]
$$

- Heteroskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

Non-constant Error Variance

- Homoskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}=\left[\begin{array}{ccccc}
\sigma^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma^{2}
\end{array}\right]
$$

- Heteroskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

- Independent, not identical

Non-constant Error Variance

- Homoskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}=\left[\begin{array}{ccccc}
\sigma^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma^{2}
\end{array}\right]
$$

- Heteroskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

- Independent, not identical
- $\operatorname{Cov}\left(u_{i}, u_{j} \mid \mathbf{X}\right)=0$

Non-constant Error Variance

- Homoskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\sigma^{2} \mathbf{I}=\left[\begin{array}{ccccc}
\sigma^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma^{2}
\end{array}\right]
$$

- Heteroskedastic:

$$
V[\mathbf{u} \mid \mathbf{X}]=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

- Independent, not identical
- $\operatorname{Cov}\left(u_{i}, u_{j} \mid \mathbf{X}\right)=0$
- $\operatorname{Var}\left(u_{i} \mid \mathbf{X}\right)=\sigma_{i}^{2}$

Example: $V[\mathbf{u} \mid \mathbf{X}]=\sigma^{2}$ Homoskedasticity

Example: $V[\mathbf{u} \mid \mathbf{X}]=\sigma_{i}^{2}$ Heteroskedasticity

Consequences of Heteroskedasticity

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Test statistics won't have t or F distributions

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Test statistics won't have t or F distributions
- α-level tests, the probability of Type I error $\neq \alpha$

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Test statistics won't have t or F distributions
- α-level tests, the probability of Type I error $\neq \alpha$
- Coverage of $1-\alpha \mathrm{Cls} \neq 1-\alpha$

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Test statistics won't have t or F distributions
- α-level tests, the probability of Type I error $\neq \alpha$
- Coverage of $1-\alpha \mathrm{Cls} \neq 1-\alpha$
- OLS is not BLUE

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Test statistics won't have t or F distributions
- α-level tests, the probability of Type I error $\neq \alpha$
- Coverage of $1-\alpha \mathrm{Cls} \neq 1-\alpha$
- OLS is not BLUE
- However:

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Test statistics won't have t or F distributions
- α-level tests, the probability of Type I error $\neq \alpha$
- Coverage of $1-\alpha \mathrm{Cls} \neq 1-\alpha$
- OLS is not BLUE
- However:
- $\widehat{\boldsymbol{\beta}}$ still unbiased and consistent for $\boldsymbol{\beta}$

Consequences of Heteroskedasticity

- Standard $\widehat{\sigma}^{2}$ is biased and inconsistent for σ^{2}
- Standard error estimates incorrect:

$$
\widehat{S E}\left[\widehat{\beta}_{1}\right]=\frac{\widehat{\sigma}^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Test statistics won't have t or F distributions
- α-level tests, the probability of Type I error $\neq \alpha$
- Coverage of $1-\alpha \mathrm{Cls} \neq 1-\alpha$
- OLS is not BLUE
- However:
- $\widehat{\boldsymbol{\beta}}$ still unbiased and consistent for $\boldsymbol{\beta}$
- degree of the problem depends on how serious the heteroskedasticity is

Visual diagnostics

(1) Plot of residuals versus fitted values

Visual diagnostics

(1) Plot of residuals versus fitted values

- In R, plot(mod, which = 1)

Visual diagnostics

(1) Plot of residuals versus fitted values

- In R, plot(mod, which = 1)
(2) Spread location plots

Visual diagnostics

(1) Plot of residuals versus fitted values

- In R, plot(mod, which = 1)
(2) Spread location plots
- y-axis: Square-root of the absolute value of the residuals (folds the plot in half)

Visual diagnostics

(1) Plot of residuals versus fitted values

- In R, plot(mod, which = 1)
(2) Spread location plots
- y-axis: Square-root of the absolute value of the residuals (folds the plot in half)
- x-axis: Fitted values

Visual diagnostics

(1) Plot of residuals versus fitted values

- In R, plot(mod, which = 1)
(2) Spread location plots
- y-axis: Square-root of the absolute value of the residuals (folds the plot in half)
- x-axis: Fitted values
- Usually has loess trend curve to check if variance varies with fitted values

Visual diagnostics

(1) Plot of residuals versus fitted values

- In R, plot(mod, which = 1)
(2) Spread location plots
- y-axis: Square-root of the absolute value of the residuals (folds the plot in half)
- x-axis: Fitted values
- Usually has loess trend curve to check if variance varies with fitted values
- In R, plot(mod, which = 3)

Example: Buchanan votes

```
flvote <- foreign::read.dta("flbuchan.dta")
mod <- lm(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)
##
## Coefficients:
## (Intercept) 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 332.7 on 65 degrees of freedom
## Multiple R-squared: 0.4628, Adjusted R-squared: 0.4545
## F-statistic: 56 on 1 and 65 DF, p-value: 2.417e-10
```


Diagnostics

```
par(mfrow = c(1,2), pch = 19, las = 1, col = "grey50", bty = "n")
plot(mod, which = 1, lwd = 3)
plot(mod, which = 3, lwd = 3)
```


Residuals vs Fitted

Scale-Location

Formal Tests for Non-constant Error Variances

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).
- They are all roughly based on the same idea:

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).
- They are all roughly based on the same idea:
- $H_{0}: V\left[u_{i} \mid \mathbf{X}\right]=\sigma^{2}$

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).
- They are all roughly based on the same idea:
- $H_{0}: V\left[u_{i} \mid \mathbf{X}\right]=\sigma^{2}$
- Under the zero conditional mean assumption, this is equivalent to $H_{0}: E\left[u_{i}^{2} \mid \mathbf{X}\right]=E\left[u_{i}^{2}\right]=\sigma^{2}$, a constant unrelated to \mathbf{X}

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).
- They are all roughly based on the same idea:
- $H_{0}: V\left[u_{i} \mid \mathbf{X}\right]=\sigma^{2}$
- Under the zero conditional mean assumption, this is equivalent to $H_{0}: E\left[u_{i}^{2} \mid \mathbf{X}\right]=E\left[u_{i}^{2}\right]=\sigma^{2}$, a constant unrelated to \mathbf{X}
- This implies that, under H_{0}, the squared residuals should also be unrelated to the explanatory variables

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).
- They are all roughly based on the same idea:
- $H_{0}: V\left[u_{i} \mid \mathbf{X}\right]=\sigma^{2}$
- Under the zero conditional mean assumption, this is equivalent to $H_{0}: E\left[u_{i}^{2} \mid \mathbf{X}\right]=E\left[u_{i}^{2}\right]=\sigma^{2}$, a constant unrelated to \mathbf{X}
- This implies that, under H_{0}, the squared residuals should also be unrelated to the explanatory variables

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).
- They are all roughly based on the same idea:
- $H_{0}: V\left[u_{i} \mid \mathbf{X}\right]=\sigma^{2}$
- Under the zero conditional mean assumption, this is equivalent to $H_{0}: E\left[u_{i}^{2} \mid \mathbf{X}\right]=E\left[u_{i}^{2}\right]=\sigma^{2}$, a constant unrelated to \mathbf{X}
- This implies that, under H_{0}, the squared residuals should also be unrelated to the explanatory variables
- The Breusch-Pagan test:
(1) Regression y_{i} on \mathbf{x}_{i}^{\prime} and store residuals, \widehat{u}_{i}
(2) Regress \widehat{u}_{i}^{2} on \mathbf{x}_{i}^{\prime}
(3) Run F-test against null that all slope coefficients are 0

Formal Tests for Non-constant Error Variances

- Plots are usually sufficient, but formal tests for heteroskedasticity exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).
- They are all roughly based on the same idea:
- $H_{0}: V\left[u_{i} \mid \mathbf{X}\right]=\sigma^{2}$
- Under the zero conditional mean assumption, this is equivalent to $H_{0}: E\left[u_{i}^{2} \mid \mathbf{X}\right]=E\left[u_{i}^{2}\right]=\sigma^{2}$, a constant unrelated to \mathbf{X}
- This implies that, under H_{0}, the squared residuals should also be unrelated to the explanatory variables
- The Breusch-Pagan test:
(1) Regression y_{i} on \mathbf{x}_{i}^{\prime} and store residuals, \widehat{u}_{i}
(2) Regress \widehat{u}_{i}^{2} on \mathbf{x}_{i}^{\prime}
(3) Run F-test against null that all slope coefficients are 0
- In R, bptest in the lmtest package

Breush-Pagan Example

```
library(lmtest)
bptest(mod)
##
## studentized Breusch-Pagan test
##
## data: mod
## BP = 12.59, df = 1, p-value = 0.0003878
```


Dealing with Non-Constant Error Variance

Dealing with Non-Constant Error Variance

(1) Transform the dependent variable (this will affect other model assumptions)

Dealing with Non-Constant Error Variance

(1) Transform the dependent variable (this will affect other model assumptions)
(2) Adjust for the heteroskedasticity using known weights and Weighted Least Squares (WLS)

Dealing with Non-Constant Error Variance

(1) Transform the dependent variable (this will affect other model assumptions)
(2) Adjust for the heteroskedasticity using known weights and Weighted Least Squares (WLS)
(3) Use an estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ that is robust to heteroskedasticity

Dealing with Non-Constant Error Variance

(1) Transform the dependent variable (this will affect other model assumptions)
(2) Adjust for the heteroskedasticity using known weights and Weighted Least Squares (WLS)
(3) Use an estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ that is robust to heteroskedasticity
(3) Admit we have the wrong model and use a different approach

Variance Stabilizing Transformations

Variance Stabilizing Transformations

If the variance for each error $\left(\sigma_{i}^{2}\right)$ is proportional to some function of the mean $\left(\mathbf{x}_{i} \boldsymbol{\beta}\right)$, then a variance stabilizing transformation may be appropriate.

Variance Stabilizing Transformations

If the variance for each error $\left(\sigma_{i}^{2}\right)$ is proportional to some function of the mean $\left(\mathbf{x}_{i} \boldsymbol{\beta}\right)$, then a variance stabilizing transformation may be appropriate.

Note: Transformations will affect the other regression assumptions, as well as interpretation of the regression coefficients.

Variance Stabilizing Transformations

If the variance for each error $\left(\sigma_{i}^{2}\right)$ is proportional to some function of the mean $\left(\mathbf{x}_{i} \boldsymbol{\beta}\right)$, then a variance stabilizing transformation may be appropriate.

Note: Transformations will affect the other regression assumptions, as well as interpretation of the regression coefficients.

Examples:

Transformation	Mean/Variance Relationship
\sqrt{Y}	$\sigma_{i}^{2} \propto \mathbf{x}_{i} \boldsymbol{\beta}$
$\log Y$	$\sigma_{i}^{2} \propto\left(\mathbf{x}_{i} \boldsymbol{\beta}\right)^{2}$
$1 / Y$	$\sigma_{i}^{2} \propto\left(\mathbf{x}_{i} \boldsymbol{\beta}\right)^{4}$

Example: Transforming Buchanan Votes

```
mod2 <- lm(log(edaybuchanan) ~ log(edaytotal), data = flvote)
summary(mod2)
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & Estimate & Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & -2.72789 & 0.39956 & -6.827 & \(3.5 \mathrm{e}-09\) & \(* * *\) \\
\#\# log (edaytotal) & 0.72853 & 0.03803 & 19.154 & \(<2 \mathrm{e}-16\) & \(* * *\)
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4688 on 65 degrees of freedom
## Multiple R-squared: 0.8495, Adjusted R-squared: 0.8472
## F-statistic: 366.9 on 1 and 65 DF, p-value: < 2.2e-16
```


Example: Transformed Scale-Location Plot

 plot(mod2, which=3)
Scale-Location

Fitted values Im(log(edaybuchanan) ~ log(edaytotal))

Example: Transformed

```
bptest(mod, studentize=FALSE)
##
## Breusch-Pagan test
##
## data: mod
## BP = 250.07, df = 1, p-value < 2.2e-16
bptest(mod2, studentize=FALSE)
##
## Breusch-Pagan test
##
## data: mod2
## BP = 0.01105, df = 1, p-value = 0.9163
```


Appendix: Weighted Least Squares

- Suppose that the heteroskedasticity is known up to a multiplicative constant:

$$
\operatorname{Var}\left[u_{i} \mid \mathbf{X}\right]=a_{i} \sigma^{2}
$$

where $a_{i}=a_{i}\left(\mathbf{x}_{i}^{\prime}\right)$ is a positive and known function of \mathbf{x}_{i}^{\prime}

- WLS: multiply y_{i} by $1 / \sqrt{a_{i}}$:

$$
y_{i} / \sqrt{a_{i}}=\beta_{0} / \sqrt{a_{i}}+\beta_{1} x_{i 1} / \sqrt{a_{i}}+\cdots+\beta_{k} x_{i k} / \sqrt{a_{i}}+u_{i} / \sqrt{a_{i}}
$$

Appendix: Weighted Least Squares Intuition

Appendix: Weighted Least Squares Intuition

- Rescales errors to $u_{i} / \sqrt{a_{i}}$, which maintains zero mean error
- But makes the error variance constant again:

$$
\operatorname{Var}\left[\left.\frac{1}{\sqrt{a_{i}}} u_{i} \right\rvert\, \mathbf{X}\right]=\frac{1}{a_{i}} \operatorname{Var}\left[u_{i} \mid \mathbf{X}\right]
$$

Appendix: Weighted Least Squares Intuition

- Rescales errors to $u_{i} / \sqrt{a_{i}}$, which maintains zero mean error
- But makes the error variance constant again:

$$
\begin{aligned}
\operatorname{Var}\left[\left.\frac{1}{\sqrt{a_{i}}} u_{i} \right\rvert\, \mathbf{X}\right] & =\frac{1}{a_{i}} \operatorname{Var}\left[u_{i} \mid \mathbf{X}\right] \\
& =\frac{1}{a_{i}} a_{i} \sigma^{2}
\end{aligned}
$$

Appendix: Weighted Least Squares Intuition

- Rescales errors to $u_{i} / \sqrt{a_{i}}$, which maintains zero mean error
- But makes the error variance constant again:

$$
\begin{aligned}
\operatorname{Var}\left[\left.\frac{1}{\sqrt{a_{i}}} u_{i} \right\rvert\, \mathbf{X}\right] & =\frac{1}{a_{i}} \operatorname{Var}\left[u_{i} \mid \mathbf{X}\right] \\
& =\frac{1}{a_{i}} a_{i} \sigma^{2} \\
& =\sigma^{2}
\end{aligned}
$$

- If you know a_{i}, then you can use this approach to makes the model homoskedastic and, thus, BLUE again
- When do we know a_{i} ?

Appendix: Weighted Least Squares procedure

Appendix: Weighted Least Squares procedure

- Define the weighting matrix:

$$
\mathbf{W}=\left[\begin{array}{cccc}
1 / \sqrt{a_{1}} & 0 & 0 & 0 \\
0 & 1 / \sqrt{a_{2}} & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1 / \sqrt{a_{n}}
\end{array}\right]
$$

- Run the following regression:

$$
\begin{aligned}
\mathbf{W} \mathbf{y} & =\mathbf{W} \mathbf{X} \boldsymbol{\beta}+\mathbf{W} \mathbf{u} \\
\mathbf{y}^{*} & =\mathbf{X}^{*} \boldsymbol{\beta}+\mathbf{u}^{*}
\end{aligned}
$$

- Run regression of $\mathbf{y}^{*}=\mathbf{W y}$ on $\mathbf{X}^{*}=\mathbf{W X}$ and all Gauss-Markov assumptions are satisfied
- Plugging into the usual formula for $\widehat{\boldsymbol{\beta}}$:

$$
\widehat{\boldsymbol{\beta}}_{W}=\left(\mathbf{X}^{\prime} \mathbf{W}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W}^{\prime} \mathbf{W} \mathbf{y}
$$

Appendix: WLS Example

- In R, use weights = argument to $1 m$ and give the weights squared: $1 / a_{i}$
- With the Buchanan data, maybe we think that the variance is proportional to the total number of ballots cast:

Appendix: WLS Example

- In R, use weights = argument to $1 m$ and give the weights squared: $1 / a_{i}$
- With the Buchanan data, maybe we think that the variance is proportional to the total number of ballots cast:

```
mod.wls <- lm(edaybuchanan ~ edaytotal, weights = 1/edaytotal,
    data = flvote)
summary(mod.wls)
##
## Coefficients:
### Estimate Std. Error t value Pr(>|t|)
##
## Residual standard error: 0.5645 on 65 degrees of freedom
## Multiple R-squared: 0.6292, Adjusted R-squared: 0.6235
## F-statistic: 110.3 on 1 and 65 DF, p-value: 1.22e-15
```


Appendix: Comparing WLS to OLS

```
par(mfrow=c(1,2), pch = 19, las = 1, col = "grey50", bty = "n")
plot(mod, which = 3, main = "OLS", lwd = 2)
plot(mod.wls, which = 3, main = "WLS", lwd = 2)
```


OLS

Scale-Location

WLS
Scale-Location

Heteroskedasticity Consistent Estimator

Heteroskedasticity Consistent Estimator

- Under non-constant error variance:

$$
\operatorname{Var}[\mathbf{u}]=\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

Heteroskedasticity Consistent Estimator

- Under non-constant error variance:

$$
\operatorname{Var}[\mathbf{u}]=\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

- When $\boldsymbol{\Sigma} \neq \sigma^{2} \mathbf{I}$, we are stuck with this expression:

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Heteroskedasticity Consistent Estimator

- Under non-constant error variance:

$$
\operatorname{Var}[\mathbf{u}]=\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

- When $\boldsymbol{\Sigma} \neq \sigma^{2} \mathbf{I}$, we are stuck with this expression:

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- Idea: If we can consistently estimate the components of $\boldsymbol{\Sigma}$, we could directly use this expression by replacing $\boldsymbol{\Sigma}$ with its estimate, $\hat{\boldsymbol{\Sigma}}$.

White's Heteroskedasticity Consistent Estimator

Suppose we have heteroskedasticity of unknown form:

$$
V[\mathbf{u}]=\Sigma=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

White's Heteroskedasticity Consistent Estimator

Suppose we have heteroskedasticity of unknown form:

$$
V[\mathbf{u}]=\Sigma=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

then $V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and White (1980) shows that

White's Heteroskedasticity Consistent Estimator

Suppose we have heteroskedasticity of unknown form:

$$
V[\mathbf{u}]=\Sigma=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

then $V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and White (1980) shows that

$$
\widehat{V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left[\begin{array}{ccccc}
\hat{\mathbf{u}}_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \hat{\mathbf{u}}_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \hat{\mathbf{u}}_{n}^{2}
\end{array}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

is a consistent estimator of $V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]$ under any form of heteroskedasticity consistent with $V[\mathbf{u}]$ above.

White's Heteroskedasticity Consistent Estimator

 Suppose we have heteroskedasticity of unknown form:$$
V[\mathbf{u}]=\Sigma=\left[\begin{array}{ccccc}
\sigma_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

then $V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and White (1980) shows that

$$
\widehat{V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left[\begin{array}{ccccc}
\hat{\mathbf{u}}_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \hat{\mathbf{u}}_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \hat{\mathbf{u}}_{n}^{2}
\end{array}\right] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

is a consistent estimator of $V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]$ under any form of heteroskedasticity consistent with $V[\mathbf{u}]$ above.

The estimate based on the above is called the heteroskedasticity consistent (HC) or robust standard errors.

White's Heteroskedasticity Consistent Estimator

Robust standard errors are easily computed with the "sandwich" formula:

White's Heteroskedasticity Consistent Estimator

Robust standard errors are easily computed with the "sandwich" formula:
(1) Fit the regression and obtain the residuals $\hat{\mathbf{u}}$

White's Heteroskedasticity Consistent Estimator

Robust standard errors are easily computed with the "sandwich" formula:
(1) Fit the regression and obtain the residuals $\hat{\mathbf{u}}$
(2) Construct the "meat" matrix $\widehat{\boldsymbol{\Sigma}}$ with squared residuals in diagonal:

$$
\widehat{\boldsymbol{\Sigma}}=\left[\begin{array}{ccccc}
\hat{\mathbf{u}}_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \hat{\mathbf{u}}_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \hat{\mathbf{u}}_{n}^{2}
\end{array}\right]
$$

White's Heteroskedasticity Consistent Estimator

Robust standard errors are easily computed with the "sandwich" formula:
(1) Fit the regression and obtain the residuals $\hat{\mathbf{u}}$
(2) Construct the "meat" matrix $\widehat{\boldsymbol{\Sigma}}$ with squared residuals in diagonal:

$$
\widehat{\boldsymbol{\Sigma}}=\left[\begin{array}{ccccc}
\hat{\mathbf{u}}_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \hat{\mathbf{u}}_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \hat{\mathbf{u}}_{n}^{2}
\end{array}\right]
$$

(3) Plug $\widehat{\boldsymbol{\Sigma}}$ into the sandwich formula to obtain the robust estimator of the variance-covariance matrix

$$
V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\boldsymbol{\Sigma}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

White's Heteroskedasticity Consistent Estimator

Robust standard errors are easily computed with the "sandwich" formula:
(1) Fit the regression and obtain the residuals $\hat{\mathbf{u}}$
(2) Construct the "meat" matrix $\widehat{\boldsymbol{\Sigma}}$ with squared residuals in diagonal:

$$
\widehat{\boldsymbol{\Sigma}}=\left[\begin{array}{ccccc}
\hat{\mathbf{u}}_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \hat{\mathbf{u}}_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \hat{\mathbf{u}}_{n}^{2}
\end{array}\right]
$$

(3) Plug $\widehat{\boldsymbol{\Sigma}}$ into the sandwich formula to obtain the robust estimator of the variance-covariance matrix

$$
V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\boldsymbol{\Sigma}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

White's Heteroskedasticity Consistent Estimator

Robust standard errors are easily computed with the "sandwich" formula:
(1) Fit the regression and obtain the residuals $\hat{\mathbf{u}}$
(2) Construct the "meat" matrix $\widehat{\boldsymbol{\Sigma}}$ with squared residuals in diagonal:

$$
\widehat{\boldsymbol{\Sigma}}=\left[\begin{array}{ccccc}
\hat{\mathbf{u}}_{1}^{2} & 0 & 0 & \ldots & 0 \\
0 & \hat{\mathbf{u}}_{2}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \hat{\mathbf{u}}_{n}^{2}
\end{array}\right]
$$

(3) Plug $\widehat{\boldsymbol{\Sigma}}$ into the sandwich formula to obtain the robust estimator of the variance-covariance matrix

$$
V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\boldsymbol{\Sigma}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- There are various small sample corrections to improve performance when sample size is small. The most common variant (sometimes labeled HC1) is:

$$
V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\frac{n}{n-k-1} \cdot\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\boldsymbol{\Sigma}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Regular \& Robust Standard Errors in Florida Example

R Code

```
> library(sandwich)
> library(lmtest)
> coeftest(mod1) # homoskedasticity
t test of coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.4231e+01 4.9141e+01 1.1036 0.2738
TotalVotes00 2.3229e-03 3.1041e-04 7.4831 2.417e-10 ***
> coeftest(mod1,vcov = vcovHC(mod1, type = "HCO")) # classic White
t test of coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.4231e+01 4.0612e+01 1.3353 0.18642
TotalVotes00 2.3229e-03 8.7047e-04 2.6685 0.00961 **
> coeftest(mod1,vcov = vcovHC(mod1, type = "HC1")) # small sample correction
t test of coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.4231e+01 4.1232e+01 1.3153 0.19304
TotalVotes00 2.3229e-03 8.8376e-04 2.6284 0.01069 *
```


WLS vs. White's Estimator

- WLS:

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient
- and $\widehat{S E}\left[\widehat{\boldsymbol{\beta}}_{W L S}\right]$ is unbiased and consistent

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient
- and $\widehat{S E}\left[\widehat{\boldsymbol{\beta}}_{W L S}\right]$ is unbiased and consistent
- but weights usually aren't known

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient
- and $\widehat{S E}\left[\widehat{\boldsymbol{\beta}}_{W L S}\right]$ is unbiased and consistent
- but weights usually aren't known
- White's Estimator:

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient
- and $\widehat{S E}\left[\widehat{\boldsymbol{\beta}}_{W L S}\right]$ is unbiased and consistent
- but weights usually aren't known
- White's Estimator:
- Doesn't change estimate $\widehat{\boldsymbol{\beta}}$

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient
- and $\widehat{S E}\left[\widehat{\boldsymbol{\beta}}_{W L S}\right]$ is unbiased and consistent
- but weights usually aren't known
- White's Estimator:
- Doesn't change estimate $\widehat{\boldsymbol{\beta}}$
- Consistent for $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ under any form of heteroskedasticity

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient
- and $\widehat{S E}\left[\widehat{\boldsymbol{\beta}}_{W L S}\right]$ is unbiased and consistent
- but weights usually aren't known
- White's Estimator:
- Doesn't change estimate $\widehat{\boldsymbol{\beta}}$
- Consistent for $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ under any form of heteroskedasticity
- Because it relies on consistency, it is a large sample result, best with large n

WLS vs. White's Estimator

- WLS:
- With known weights, WLS is efficient
- and $\widehat{S E}\left[\widehat{\boldsymbol{\beta}}_{W L S}\right]$ is unbiased and consistent
- but weights usually aren't known
- White's Estimator:
- Doesn't change estimate $\widehat{\boldsymbol{\beta}}$
- Consistent for $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ under any form of heteroskedasticity
- Because it relies on consistency, it is a large sample result, best with large n
- For small n, performance might be poor (correction factors exist but are often insufficient)
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers
(1) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity

- Linear Basis Function Models

9) Generalized Additive Models

10 Fun With Kerne's
(11) Heteroskedasticity

(12) Clustering

(13) Optional: Serial Correlation

14 A Contrarian View of Robust Standard Errors
15 Fun with Neighbors
16 Fun with Kittens

Clustered Dependence: Intuition

Clustered Dependence: Intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.

Clustered Dependence: Intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Their design: randomly sample households and randomly assign them to different treatment conditions

Clustered Dependence: Intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Their design: randomly sample households and randomly assign them to different treatment conditions
- But the measurement of turnout is at the individual level

Clustered Dependence: Intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Their design: randomly sample households and randomly assign them to different treatment conditions
- But the measurement of turnout is at the individual level
- Violation of iid/random sampling:

Clustered Dependence: Intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Their design: randomly sample households and randomly assign them to different treatment conditions
- But the measurement of turnout is at the individual level
- Violation of iid/random sampling:
- errors of individuals within the same household are correlated

Clustered Dependence: Intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Their design: randomly sample households and randomly assign them to different treatment conditions
- But the measurement of turnout is at the individual level
- Violation of iid/random sampling:
- errors of individuals within the same household are correlated
- \rightsquigarrow violation of homoskedasticity

Clustered Dependence: Intuition

- Think back to the Gerber, Green, and Larimer (2008) social pressure mailer example.
- Their design: randomly sample households and randomly assign them to different treatment conditions
- But the measurement of turnout is at the individual level
- Violation of iid/random sampling:
- errors of individuals within the same household are correlated
- \rightsquigarrow violation of homoskedasticity
- Called clustering or clustered dependence

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units
- Units (usually) belong to a single cluster:

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units
- Units (usually) belong to a single cluster:
- voters in households

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units
- Units (usually) belong to a single cluster:
- voters in households
- individuals in states

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units
- Units (usually) belong to a single cluster:
- voters in households
- individuals in states
- students in classes

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units
- Units (usually) belong to a single cluster:
- voters in households
- individuals in states
- students in classes
- rulings in judges

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units
- Units (usually) belong to a single cluster:
- voters in households
- individuals in states
- students in classes
- rulings in judges
- Especially important when outcome varies at the unit-level, $y_{i j}$ and the main independent variable varies at the cluster level, x_{j}.

Clustered Dependence: notation

- Clusters: $j=1, \ldots, m$
- Units: $i=1, \ldots, n_{j}$
- n_{j} is the number of units in cluster j
- $n=\sum_{j} n_{j}$ is the total number of units
- Units (usually) belong to a single cluster:
- voters in households
- individuals in states
- students in classes
- rulings in judges
- Especially important when outcome varies at the unit-level, $y_{i j}$ and the main independent variable varies at the cluster level, x_{j}.
- Ignoring clustering is "cheating": units not independent

Clustered Dependence: Example Model

Clustered Dependence: Example Model

$$
\begin{aligned}
y_{i j} & =\beta_{0}+\beta_{1} x_{i j}+\varepsilon_{i j} \\
& =\beta_{0}+\beta_{1} x_{i j}+v_{j}+u_{i j}
\end{aligned}
$$

Clustered Dependence: Example Model

$$
\begin{aligned}
y_{i j} & =\beta_{0}+\beta_{1} x_{i j}+\varepsilon_{i j} \\
& =\beta_{0}+\beta_{1} x_{i j}+v_{j}+u_{i j}
\end{aligned}
$$

- $v_{j} \stackrel{i i d}{\sim} N\left(0, \rho \sigma^{2}\right)$ cluster error component

Clustered Dependence: Example Model

$$
\begin{aligned}
y_{i j} & =\beta_{0}+\beta_{1} x_{i j}+\varepsilon_{i j} \\
& =\beta_{0}+\beta_{1} x_{i j}+v_{j}+u_{i j}
\end{aligned}
$$

- $v_{j} \stackrel{i i d}{\sim} N\left(0, \rho \sigma^{2}\right)$ cluster error component
- $u_{i j} \stackrel{i i d}{\sim} N\left(0,(1-\rho) \sigma^{2}\right)$ unit error component

Clustered Dependence: Example Model

$$
\begin{aligned}
y_{i j} & =\beta_{0}+\beta_{1} x_{i j}+\varepsilon_{i j} \\
& =\beta_{0}+\beta_{1} x_{i j}+v_{j}+u_{i j}
\end{aligned}
$$

- $v_{j} \stackrel{i i d}{\sim} N\left(0, \rho \sigma^{2}\right)$ cluster error component
- $u_{i j} \stackrel{i i d}{\sim} N\left(0,(1-\rho) \sigma^{2}\right)$ unit error component
- v_{j} and $u_{i j}$ are assumed to be independent of each other

Clustered Dependence: Example Model

$$
\begin{aligned}
y_{i j} & =\beta_{0}+\beta_{1} x_{i j}+\varepsilon_{i j} \\
& =\beta_{0}+\beta_{1} x_{i j}+v_{j}+u_{i j}
\end{aligned}
$$

- $v_{j} \stackrel{\text { iid }}{\sim} N\left(0, \rho \sigma^{2}\right)$ cluster error component
- $u_{i j} \stackrel{i i d}{\sim} N\left(0,(1-\rho) \sigma^{2}\right)$ unit error component
- v_{j} and $u_{i j}$ are assumed to be independent of each other
- $\rho \in(0,1)$ is called the within-cluster correlation.

Clustered Dependence: Example Model

$$
\begin{aligned}
y_{i j} & =\beta_{0}+\beta_{1} x_{i j}+\varepsilon_{i j} \\
& =\beta_{0}+\beta_{1} x_{i j}+v_{j}+u_{i j}
\end{aligned}
$$

- $v_{j} \stackrel{i i d}{\sim} N\left(0, \rho \sigma^{2}\right)$ cluster error component
- $u_{i j} \stackrel{i i d}{\sim} N\left(0,(1-\rho) \sigma^{2}\right)$ unit error component
- v_{j} and $u_{i j}$ are assumed to be independent of each other
- $\rho \in(0,1)$ is called the within-cluster correlation.
- What if we ignore this structure and just use $\varepsilon_{i j}$ as the error?

Clustered Dependence: Example Model

$$
\begin{aligned}
y_{i j} & =\beta_{0}+\beta_{1} x_{i j}+\varepsilon_{i j} \\
& =\beta_{0}+\beta_{1} x_{i j}+v_{j}+u_{i j}
\end{aligned}
$$

- $v_{j} \stackrel{i i d}{\sim} N\left(0, \rho \sigma^{2}\right)$ cluster error component
- $u_{i j} \stackrel{i i d}{\sim} N\left(0,(1-\rho) \sigma^{2}\right)$ unit error component
- v_{j} and $u_{i j}$ are assumed to be independent of each other
- $\rho \in(0,1)$ is called the within-cluster correlation.
- What if we ignore this structure and just use $\varepsilon_{i j}$ as the error?
- Variance of the composite error is σ^{2} :

$$
\begin{aligned}
\operatorname{Var}\left[\varepsilon_{i j}\right] & =\operatorname{Var}\left[v_{j}+u_{i j}\right] \\
& =\operatorname{Var}\left[v_{j}\right]+\operatorname{Var}\left[u_{i j}\right] \\
& =\rho \sigma^{2}+(1-\rho) \sigma^{2}=\sigma^{2}
\end{aligned}
$$

Lack of Independence

- Covariance between two units i and s in the same cluster is $\rho \sigma^{2}$:

$$
\operatorname{Cov}\left[\varepsilon_{i j}, \varepsilon_{s j}\right]=\rho \sigma^{2}
$$

Lack of Independence

- Covariance between two units i and s in the same cluster is $\rho \sigma^{2}$:

$$
\operatorname{Cov}\left[\varepsilon_{i j}, \varepsilon_{s j}\right]=\rho \sigma^{2}
$$

- Correlation between units in the same group is just ρ :

$$
\operatorname{Cor}\left[\varepsilon_{i j}, \varepsilon_{s j}\right]=\rho
$$

Lack of Independence

- Covariance between two units i and s in the same cluster is $\rho \sigma^{2}$:

$$
\operatorname{Cov}\left[\varepsilon_{i j}, \varepsilon_{s j}\right]=\rho \sigma^{2}
$$

- Correlation between units in the same group is just ρ :

$$
\operatorname{Cor}\left[\varepsilon_{i j}, \varepsilon_{s j}\right]=\rho
$$

- Zero covariance of two units i and s in different clusters j and k :

$$
\operatorname{Cov}\left[\varepsilon_{i j}, \varepsilon_{s k}\right]=0
$$

Example Covariance Matrix

$$
\begin{aligned}
& \boldsymbol{\varepsilon}=\left[\begin{array}{llllll}
\varepsilon_{1,1} & \varepsilon_{2,1} & \varepsilon_{3,1} & \varepsilon_{4,2} & \varepsilon_{5,2} & \varepsilon_{6,2}
\end{array}\right]^{\prime} \\
& \operatorname{Var}[\varepsilon]=\boldsymbol{\Sigma}=\left[\begin{array}{ccccccc}
\sigma^{2} & \sigma^{2} \cdot \rho & \sigma^{2} \cdot \rho & 0 & 0 & 0 \\
\sigma^{2} \cdot \rho & \sigma^{2} & \sigma^{2} \cdot \rho & 0 & 0 & 0 \\
\sigma^{2} \cdot \rho & \sigma^{2} \cdot \rho & \sigma^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma^{2} & \sigma^{2} \cdot \rho & \sigma^{2} \cdot \rho \\
0 & 0 & 0 & \sigma^{2} \cdot \rho & \sigma^{2} & \sigma^{2} \cdot \rho \\
0 & 0 & 0 & \sigma^{2} \cdot \rho & \sigma^{2} \cdot \rho & \sigma^{2}
\end{array}\right]
\end{aligned}
$$

Appendix: Example 6 Units, 2 Clusters

```
\boldsymbol{\varepsilon}=[\begin{array}{llllll}{\mp@subsup{\varepsilon}{1,1}{}}&{\mp@subsup{\varepsilon}{2,1}{}}&{\mp@subsup{\varepsilon}{3,1}{}}&{\mp@subsup{\varepsilon}{4,2}{}}&{\mp@subsup{\varepsilon}{5,2}{}}&{\mp@subsup{\varepsilon}{6,2}{}}\end{array}\mp@subsup{]}{}{\prime}
```



```
=[}ccccccccc
```

which can be verified as follows:

- $V\left[\varepsilon_{i j}\right]=V\left[v_{j}+u_{i j}\right]=V\left[v_{j}\right]+V\left[u_{i j}\right]=\rho \sigma^{2}+(1-\rho) \sigma^{2}=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i j}, \varepsilon_{l j}\right]=E\left[\varepsilon_{i j} \varepsilon_{l j}\right]-E\left[\varepsilon_{i j}\right] E\left[\varepsilon_{l j}\right]=E\left[\varepsilon_{i j} \varepsilon_{l j}\right]=E\left[\left(v_{j}+u_{i j}\right)\left(v_{j}+u_{l j}\right)\right]$
$=E\left[v_{j}^{2}\right]+E\left[v_{j} u_{i j}\right]+E\left[v_{j} u_{j}\right]+E\left[u_{i j} u_{j}\right]$
$=E\left[v_{j}^{2}\right]+E\left[v_{j}\right] E\left[u_{i j}\right]+E\left[v_{j}\right] E\left[u_{l j}\right]+E\left[u_{i j}\right] E\left[u_{j j}\right]$
$=E\left[v_{j}^{2}\right]=V\left[v_{j}\right]+\left(E\left[v_{j}\right]\right)^{2}=V\left[v_{j}\right]=\rho \sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i j}, \varepsilon_{\mid k}\right]=E\left[\varepsilon_{i j} \varepsilon_{\mid k}\right]-E\left[\varepsilon_{i j}\right] E\left[\varepsilon_{\mid k}\right]=E\left[\varepsilon_{i j} \varepsilon_{l k}\right]=E\left[\left(v_{j}+u_{i j}\right)\left(v_{k}+u_{l k}\right)\right]$
$=E\left[v_{j} v_{k}\right]+E\left[v_{j} u_{l k}\right]+E\left[v_{k} u_{i j}\right]+E\left[u_{i j} u_{\mid k}\right]$
$=E\left[v_{j}\right] E\left[v_{k}\right]+E\left[v_{j}\right] E\left[u_{l k}\right]+E\left[v_{k}\right] E\left[u_{i j}\right]+E\left[u_{i j}\right] E\left[u_{l k}\right]=0$

Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, $\boldsymbol{\Sigma}$, is block diagonal:

Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, $\boldsymbol{\Sigma}$, is block diagonal:

- By independence, the errors are uncorrelated across clusters:

$$
V[\varepsilon]=\boldsymbol{\Sigma}=\left[\begin{array}{c|c|c|c}
\boldsymbol{\Sigma}_{1} & 0 & \ldots & 0 \\
\hline \mathbf{0} & \boldsymbol{\Sigma}_{2} & \ldots & \mathbf{0} \\
\hline & & \ddots & \\
\hline \mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Sigma}_{M}
\end{array}\right]
$$

Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, $\boldsymbol{\Sigma}$, is block diagonal:

- By independence, the errors are uncorrelated across clusters:
$V[\varepsilon]=\boldsymbol{\Sigma}=\left[\begin{array}{c|c|c|c}\boldsymbol{\Sigma}_{1} & 0 & \ldots & 0 \\ \hline \mathbf{0} & \boldsymbol{\Sigma}_{2} & \ldots & \mathbf{0} \\ \hline & & \ddots & \\ \hline \mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Sigma}_{M}\end{array}\right]$
- But the errors may be correlated for units within the same cluster:

Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, $\boldsymbol{\Sigma}$, is block diagonal:

- By independence, the errors are uncorrelated across clusters:

$$
V[\varepsilon]=\boldsymbol{\Sigma}=\left[\begin{array}{c|c|c|c}
\boldsymbol{\Sigma}_{1} & 0 & \ldots & 0 \\
\hline \mathbf{0} & \boldsymbol{\Sigma}_{2} & \ldots & \mathbf{0} \\
\hline & & \ddots & \\
\hline \mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Sigma}_{M}
\end{array}\right]
$$

- But the errors may be correlated for units within the same cluster:

$$
\boldsymbol{\Sigma}_{j}=\left[\begin{array}{cccc}
\sigma^{2} & \sigma^{2} \cdot \rho & \ldots & \sigma^{2} \cdot \rho \\
\sigma^{2} \cdot \rho & \sigma^{2} & \ldots & \sigma^{2} \cdot \rho \\
& & \ddots & \\
\sigma^{2} \cdot \rho & \sigma^{2} \cdot \rho & \ldots & \sigma^{2}
\end{array}\right]
$$

Correcting for Clustering

Correcting for Clustering

(1) Including a dummy variable for each cluster (fixed effects)

Correcting for Clustering

(1) Including a dummy variable for each cluster (fixed effects)
(2) "Random effects" models (take above model as true and estimate ρ and σ^{2})

Correcting for Clustering

(1) Including a dummy variable for each cluster (fixed effects)
(2) "Random effects" models (take above model as true and estimate ρ and σ^{2})
(3) Cluster-robust ("clustered") standard errors

Correcting for Clustering

(1) Including a dummy variable for each cluster (fixed effects)
(2) "Random effects" models (take above model as true and estimate ρ and σ^{2})
(3) Cluster-robust ("clustered") standard errors
(9) Aggregate data to the cluster-level and use OLS $\bar{y}_{j}=\frac{1}{n_{j}} \sum_{i} y_{i j}$

Correcting for Clustering

(1) Including a dummy variable for each cluster (fixed effects)
(2) "Random effects" models (take above model as true and estimate ρ and σ^{2})
(3) Cluster-robust ("clustered") standard errors
(9) Aggregate data to the cluster-level and use OLS $\bar{y}_{j}=\frac{1}{n_{j}} \sum_{i} y_{i j}$

- If n_{j} varies by cluster, then cluster-level errors will have heteroskedasticity

Correcting for Clustering

(1) Including a dummy variable for each cluster (fixed effects)
(2) "Random effects" models (take above model as true and estimate ρ and σ^{2})
(3) Cluster-robust ("clustered") standard errors
(9) Aggregate data to the cluster-level and use OLS $\bar{y}_{j}=\frac{1}{n_{j}} \sum_{i} y_{i j}$

- If n_{j} varies by cluster, then cluster-level errors will have heteroskedasticity
- Can use WLS with cluster size as the weights

Cluster-Robust SEs

- First, let's write the within-cluster regressions like so:

$$
\mathbf{y}_{j}=\mathbf{X}_{j} \boldsymbol{\beta}+\varepsilon_{j}
$$

Cluster-Robust SEs

- First, let's write the within-cluster regressions like so:

$$
\mathbf{y}_{j}=\mathbf{X}_{j} \boldsymbol{\beta}+\varepsilon_{j}
$$

- \mathbf{y}_{j} is the vector of responses for cluster j, and so on

Cluster-Robust SEs

- First, let's write the within-cluster regressions like so:

$$
\mathbf{y}_{j}=\mathbf{X}_{j} \boldsymbol{\beta}+\varepsilon_{j}
$$

- \mathbf{y}_{j} is the vector of responses for cluster j, and so on
- We assume that respondents are independent across clusters, but possibly dependent within clusters. Thus, we have

$$
\operatorname{Var}\left[\varepsilon_{j} \mid \mathbf{X}_{j}\right]=\boldsymbol{\Sigma}_{j}
$$

Cluster-Robust SEs

- First, let's write the within-cluster regressions like so:

$$
\mathbf{y}_{j}=\mathbf{X}_{j} \boldsymbol{\beta}+\varepsilon_{j}
$$

- \mathbf{y}_{j} is the vector of responses for cluster j, and so on
- We assume that respondents are independent across clusters, but possibly dependent within clusters. Thus, we have

$$
\operatorname{Var}\left[\varepsilon_{j} \mid \mathbf{X}_{j}\right]=\boldsymbol{\Sigma}_{j}
$$

- Remember our sandwich expression:

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Cluster-Robust SEs

- First, let's write the within-cluster regressions like so:

$$
\mathbf{y}_{j}=\mathbf{X}_{j} \boldsymbol{\beta}+\varepsilon_{j}
$$

- \mathbf{y}_{j} is the vector of responses for cluster j, and so on
- We assume that respondents are independent across clusters, but possibly dependent within clusters. Thus, we have

$$
\operatorname{Var}\left[\varepsilon_{j} \mid \mathbf{X}_{j}\right]=\boldsymbol{\Sigma}_{j}
$$

- Remember our sandwich expression:

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Sigma} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- Under this clustered dependence, we can write this as:

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\sum_{j=1}^{m} \mathbf{X}_{j}^{\prime} \boldsymbol{\Sigma}_{j} \mathbf{X}_{j}\right)\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Estimating the Variance Components: ρ and σ^{2}

The overall error variance σ^{2} is easily estimated using our usual estimator based on the regression residuals: $\widehat{\sigma}^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{N-k-1}$

Estimating the Variance Components: ρ and σ^{2}

The overall error variance σ^{2} is easily estimated using our usual estimator based on the regression residuals: $\widehat{\sigma}^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{N-k-1}$

The within-cluster correlation can be estimated as follows:
(1) Subtract from each residual $\hat{\varepsilon}_{i j}$ the mean residual within its cluster. Call this vector of demeaned residuals $\tilde{\varepsilon}$, which estimates the unit error component \boldsymbol{u}

Estimating the Variance Components: ρ and σ^{2}

The overall error variance σ^{2} is easily estimated using our usual estimator based on the regression residuals: $\widehat{\sigma}^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{N-k-1}$

The within-cluster correlation can be estimated as follows:
(1) Subtract from each residual $\hat{\varepsilon}_{i j}$ the mean residual within its cluster. Call this vector of demeaned residuals $\tilde{\varepsilon}$, which estimates the unit error component \boldsymbol{u}
(2) Compute the variance of the demeaned residuals as: $\widehat{\tilde{\sigma}}^{2}=\frac{\tilde{\varepsilon}^{\prime} \tilde{\varepsilon}}{N-M-k-1}$, which estimates $(1-\rho) \sigma^{2}$

Estimating the Variance Components: ρ and σ^{2}

The overall error variance σ^{2} is easily estimated using our usual estimator based on the regression residuals: $\widehat{\sigma}^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{N-k-1}$

The within-cluster correlation can be estimated as follows:
(1) Subtract from each residual $\hat{\varepsilon}_{i j}$ the mean residual within its cluster. Call this vector of demeaned residuals $\tilde{\varepsilon}$, which estimates the unit error component \boldsymbol{u}
(2) Compute the variance of the demeaned residuals as: $\widehat{\tilde{\sigma}}^{2}=\frac{\tilde{\varepsilon}^{\prime} \tilde{\varepsilon}}{N-M-k-1}$, which estimates $(1-\rho) \sigma^{2}$
(3) The within cluster correlation is then estimated as: $\hat{\rho}=\frac{\widehat{\sigma}^{2}-\widehat{\tilde{\sigma}}^{2}}{\hat{\sigma}^{2}}$

Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:

Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:
(1) Take your estimates of $\widehat{\sigma^{2}}$ and $\widehat{\rho}$ and construct the block diagonal variance-covariance matrix $\widehat{\boldsymbol{\Sigma}}$:
$\widehat{\boldsymbol{\Sigma}}=\left[\begin{array}{c|c|c|c}\widehat{\boldsymbol{\Sigma}_{1}} & 0 & \ldots & 0 \\ \hline \mathbf{0} & \widehat{\boldsymbol{\Sigma}_{2}} & \ldots & \mathbf{0} \\ \hline & & \ddots & \\ \hline \mathbf{0} & \mathbf{0} & \ldots & \widehat{\boldsymbol{\Sigma}_{M}}\end{array}\right]$ with $\widehat{\boldsymbol{\Sigma}_{j}}=\left[\begin{array}{cccc}\widehat{\sigma^{2}} & \widehat{\sigma^{2}} \cdot \widehat{\rho} & \ldots & \widehat{\sigma^{2}} \cdot \widehat{\rho} \\ \widehat{\sigma^{2}} \cdot \widehat{\rho} & \widehat{\sigma^{2}} & \ldots & \widehat{\sigma^{2}} \cdot \widehat{\rho} \\ & & \ddots & \\ \widehat{\sigma^{2}} \cdot \widehat{\rho} & \widehat{\sigma^{2}} \cdot \widehat{\rho} & \ldots & \widehat{\sigma^{2}}\end{array}\right]$

Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:
(1) Take your estimates of $\widehat{\sigma^{2}}$ and $\widehat{\rho}$ and construct the block diagonal variance-covariance matrix $\widehat{\boldsymbol{\Sigma}}$:
$\widehat{\boldsymbol{\Sigma}}=\left[\begin{array}{c|c|c|c}\widehat{\boldsymbol{\Sigma}_{1}} & 0 & \ldots & 0 \\ \hline \mathbf{0} & \widehat{\boldsymbol{\Sigma}_{2}} & \ldots & \mathbf{0} \\ \hline & & \ddots & \\ \hline \mathbf{0} & \mathbf{0} & \ldots & \widehat{\boldsymbol{\Sigma}_{M}}\end{array}\right]$ with $\widehat{\boldsymbol{\Sigma}_{j}}=\left[\begin{array}{cccc}\widehat{\sigma^{2}} & \widehat{\sigma^{2}} \cdot \widehat{\rho} & \ldots & \widehat{\sigma^{2}} \cdot \widehat{\rho} \\ \widehat{\sigma^{2}} \cdot \widehat{\rho} & \widehat{\sigma^{2}} & \ldots & \widehat{\sigma^{2}} \cdot \widehat{\rho} \\ & & \ddots & \\ \widehat{\sigma^{2}} \cdot \widehat{\rho} & \widehat{\sigma^{2}} \cdot \widehat{\rho} & \ldots & \widehat{\sigma^{2}}\end{array}\right]$
(2) Plug $\widehat{\boldsymbol{\Sigma}}$ into the sandwich estimator to obtain the cluster "corrected" estimator of the variance-covariance matrix

$$
V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\boldsymbol{\Sigma}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

Estimating Cluster Robust Standard Errors

We can now compute the CRSEs using our sandwich formula:
(1) Take your estimates of $\widehat{\sigma^{2}}$ and $\widehat{\rho}$ and construct the block diagonal variance-covariance matrix $\widehat{\boldsymbol{\Sigma}}$:

$$
\widehat{\boldsymbol{\Sigma}}=\left[\begin{array}{c|c|c|c}
\widehat{\boldsymbol{\Sigma}} & 0 & \ldots & 0 \\
\hline \mathbf{0} & \widehat{\boldsymbol{\Sigma}_{2}} & \ldots & \mathbf{0} \\
\hline & & \ddots & \\
\hline \mathbf{0} & \mathbf{0} & \ldots & \widehat{\boldsymbol{\Sigma}_{M}}
\end{array}\right] \text { with } \widehat{\boldsymbol{\Sigma}_{j}}=\left[\begin{array}{cccc}
\widehat{\sigma^{2}} & \widehat{\sigma^{2}} \cdot \widehat{\rho} & \ldots & \widehat{\sigma^{2}} \cdot \widehat{\rho} \\
\widehat{\sigma^{2}} \cdot \widehat{\rho} & \widehat{\sigma^{2}} & \ldots & \widehat{\sigma^{2}} \cdot \widehat{\rho} \\
& & \ddots & \\
\widehat{\sigma^{2}} \cdot \widehat{\rho} & \widehat{\sigma^{2}} \cdot \widehat{\rho} & \ldots & \widehat{\sigma^{2}}
\end{array}\right]
$$

(2) Plug $\widehat{\boldsymbol{\Sigma}}$ into the sandwich estimator to obtain the cluster "corrected" estimator of the variance-covariance matrix

$$
V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \widehat{\mathbf{\Sigma}} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- No canned function for CRSE in R; use our custom function posted on the course website

```
> source("vcovCluster.r")
> coeftest(model, vcov = vcovCluster(model, cluster = clusterID))
```


Example: Gerber, Green, Larimer

Dear Registered Voter:
WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?
Why do so many people fail to vote? We've been talking about the problem for years, but it only seems to get worse. This year, we're taking a new approach. We're sending this mailing to you and your neighbors to publicize who does and does not vote.

The chart shows the names of some of your neighbors, showing which have voted in the past. After the August 8 election, we intend to mail an updated chart. You and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY - VOTE!

MAPLE DR	Aug 04	Nov 04	Aug 06
9995 JOSEPH JAMES SMITH	Voted	Voted	-
9995 JENNIFER KAY SMITH		Voted	-
9997 RICHARD B JACKSON		Voted	-
9999 KATHY MARIE JACKSON		Voted	-

Social Pressure Model

```
load("gerber_green_larimer.RData")
social$voted <- 1 * (social$voted == "Yes")
social$treatment <- factor(social$treatment,
    levels = c("Control", "Hawthorne", "Civic Duty",
                            "Neighbors", "Self"))
mod1 <- lm(voted ~ treatment, data = social)
coeftest(mod1)
##
## t test of coefficients:
##
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & 0.2966383 & 0.0010612 & \(279.5250<2.2 \mathrm{e}-16 \quad{ }^{* * *}\) \\
\#\# treatmentHawthorne & 0.0257363 & 0.0026007 & \(9.8958<2.2 \mathrm{e}-16 \quad{ }^{* * *}\) \\
\#\# treatmentCivic Duty & 0.0178993 & 0.0026003 & 6.8835 & \(5.849 \mathrm{e}-12{ }^{* * *}\) \\
\#\# treatmentNeighbors & 0.0813099 & 0.0026008 & \(31.2634<2.2 \mathrm{e}-16 \quad{ }^{* * *}\) \\
\#\# treatmentSelf & 0.0485132 & 0.0026003 & \(18.6566<2.2 \mathrm{e}-16\) ***
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Social Pressure Model, CRSEs

Again no canned CRSE in R, so we use our own.

```
source("vcovCluster.R")
coeftest(mod1, vcov = vcovCluster(mod1, "hh_id"))
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 0.2966383 0.0013096 226.5172 < 2.2e-16 ***
## treatmentHawthorne 0.0257363 0.0032579 7.8997 2.804e-15 ***
## treatmentCivic Duty 0.0178993 0.0032366 5.5302 3.200e-08 ***
## treatmentNeighbors 0.0813099 0.0033696 24.1308 < 2.2e-16 ***
## treatmentSelf 0.0485132 0.0033000 14.7009 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias

Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias
- CRSE is consistent estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ given clustered dependence

Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias
- CRSE is consistent estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ given clustered dependence
- Relies on independence between clusters, dependence within clusters

Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias
- CRSE is consistent estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ given clustered dependence
- Relies on independence between clusters, dependence within clusters
- Doesn't depend on the model we present

Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias
- CRSE is consistent estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ given clustered dependence
- Relies on independence between clusters, dependence within clusters
- Doesn't depend on the model we present
- CRSEs usually > conventional SEs-use when you suspect clustering

Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias
- CRSE is consistent estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ given clustered dependence
- Relies on independence between clusters, dependence within clusters
- Doesn't depend on the model we present
- CRSEs usually > conventional SEs-use when you suspect clustering
- Consistency of the CRSE are in the number of groups, not the number of individuals

Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias
- CRSE is consistent estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ given clustered dependence
- Relies on independence between clusters, dependence within clusters
- Doesn't depend on the model we present
- CRSEs usually > conventional SEs-use when you suspect clustering
- Consistency of the CRSE are in the number of groups, not the number of individuals
- CRSEs can be incorrect with a small (<50 maybe) number of clusters (often biased downward)

Cluster-Robust Standard Errors

- CRSE do not change our estimates $\widehat{\boldsymbol{\beta}}$, cannot fix bias
- CRSE is consistent estimator of $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]$ given clustered dependence
- Relies on independence between clusters, dependence within clusters
- Doesn't depend on the model we present
- CRSEs usually > conventional SEs-use when you suspect clustering
- Consistency of the CRSE are in the number of groups, not the number of individuals
- CRSEs can be incorrect with a small (<50 maybe) number of clusters (often biased downward)
- Block bootstrap can be a useful alternative (key idea: bootstrap by resampling the clusters)
(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers
(1) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(o. Linear Basis Function Models
9) Generalized Additive Models

10 Fun With Kernels
11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors

15 Fun with Neighbors
16 Fun with Kittens

Time Dependence: Serial Correlation

Time Dependence: Serial Correlation

- Sometimes we deal with data that is measured over time, $t=1, \ldots, T$

Time Dependence: Serial Correlation

- Sometimes we deal with data that is measured over time, $t=1, \ldots, T$
- Examples: a country over several years or a person over weeks/months

Time Dependence: Serial Correlation

- Sometimes we deal with data that is measured over time, $t=1, \ldots, T$
- Examples: a country over several years or a person over weeks/months
- Often have serially correlated: errors in one time period are correlated with errors in other time periods

Time Dependence: Serial Correlation

- Sometimes we deal with data that is measured over time, $t=1, \ldots, T$
- Examples: a country over several years or a person over weeks/months
- Often have serially correlated: errors in one time period are correlated with errors in other time periods
- Many different ways for this to happen, but we often assume a very limited type of dependence called $\operatorname{AR}(1)$.

Time Dependence: Serial Correlation

Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times $t=1, \ldots, T$ (e.g. a country over several years, an individual over several month, etc.).

Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times $t=1, \ldots, T$ (e.g. a country over several years, an individual over several month, etc.).

Such observations are often serially correlated (not independent across time). We can model this with the following $\operatorname{AR}(1)$ model:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times $t=1, \ldots, T$ (e.g. a country over several years, an individual over several month, etc.).

Such observations are often serially correlated (not independent across time). We can model this with the following $\operatorname{AR}(1)$ model:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where the autoregressive error is

$$
u_{t}=\rho u_{t-1}+e_{t} \quad \text { where } \quad|\rho|<1
$$

Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times $t=1, \ldots, T$ (e.g. a country over several years, an individual over several month, etc.).

Such observations are often serially correlated (not independent across time). We can model this with the following $\operatorname{AR}(1)$ model:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where the autoregressive error is

$$
u_{t}=\rho u_{t-1}+e_{t} \quad \text { where } \quad|\rho|<1
$$

- $e_{t} \sim N\left(0, \sigma_{e}^{2}\right)$

Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times $t=1, \ldots, T$ (e.g. a country over several years, an individual over several month, etc.).

Such observations are often serially correlated (not independent across time). We can model this with the following $\operatorname{AR}(1)$ model:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where the autoregressive error is

$$
u_{t}=\rho u_{t-1}+e_{t} \quad \text { where } \quad|\rho|<1
$$

- $e_{t} \sim N\left(0, \sigma_{e}^{2}\right)$
- ρ is an unknown autoregressive coefficient (note if $\rho=0$ we have classic errors used before)

Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times $t=1, \ldots, T$ (e.g. a country over several years, an individual over several month, etc.).

Such observations are often serially correlated (not independent across time). We can model this with the following $\operatorname{AR}(1)$ model:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where the autoregressive error is

$$
u_{t}=\rho u_{t-1}+e_{t} \quad \text { where } \quad|\rho|<1
$$

- $e_{t} \sim N\left(0, \sigma_{e}^{2}\right)$
- ρ is an unknown autoregressive coefficient (note if $\rho=0$ we have classic errors used before)
- Typically assume stationarity meaning that $V\left[u_{t}\right]$ and $\operatorname{Cov}\left[u_{t}, u_{t+h}\right]$ are independent of t

Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times $t=1, \ldots, T$ (e.g. a country over several years, an individual over several month, etc.).

Such observations are often serially correlated (not independent across time). We can model this with the following $\operatorname{AR}(1)$ model:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where the autoregressive error is

$$
u_{t}=\rho u_{t-1}+e_{t} \quad \text { where } \quad|\rho|<1
$$

- $e_{t} \sim N\left(0, \sigma_{e}^{2}\right)$
- ρ is an unknown autoregressive coefficient (note if $\rho=0$ we have classic errors used before)
- Typically assume stationarity meaning that $V\left[u_{t}\right]$ and $\operatorname{Cov}\left[u_{t}, u_{t+h}\right]$ are independent of t
- Generalizes to higher order serial correlation (e.g. an $\operatorname{AR}(2)$ model is given by $u_{t}=\rho u_{t-1}+\delta u_{t-2}+e_{t}$).

The Error Structure for the AR(1) Model

The Error Structure for the AR(1) Model

We have $\mathbf{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{T}\end{array}\right]^{\prime}$

The Error Structure for the AR(1) Model

We have $\mathbf{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{T}\end{array}\right]^{\prime}$ and the $\operatorname{AR}(1)$ model implies the following error structure (derivation in appendix):

The Error Structure for the AR(1) Model

We have $\mathbf{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{T}\end{array}\right]^{\prime}$ and the $\operatorname{AR}(1)$ model implies the following error structure (derivation in appendix):

$$
V[\mathbf{u}]=\boldsymbol{\Sigma}=\frac{\sigma^{2}}{\left(1-\rho^{2}\right)}\left[\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\
\rho & 1 & \rho & \cdots & \rho^{T-2} \\
\rho^{2} & \rho & 1 & \cdots & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1
\end{array}\right]
$$

The Error Structure for the AR(1) Model

We have $\mathbf{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{T}\end{array}\right]^{\prime}$ and the $\operatorname{AR}(1)$ model implies the following error structure (derivation in appendix):

$$
V[\mathbf{u}]=\boldsymbol{\Sigma}=\frac{\sigma^{2}}{\left(1-\rho^{2}\right)}\left[\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\
\rho & 1 & \rho & \cdots & \rho^{T-2} \\
\rho^{2} & \rho & 1 & \cdots & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1
\end{array}\right]
$$

That is, the covariance between errors in $t=1$ and $t=2$ is $\frac{\sigma^{2}}{\left(1-\rho^{2}\right)} \rho$, between errors in $t=1$ and $t=3$ is $\frac{\sigma^{2}}{\left(1-\rho^{2}\right)} \rho^{2}$, etc.

The Error Structure for the AR(1) Model

We have $\mathbf{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{T}\end{array}\right]^{\prime}$ and the $\operatorname{AR}(1)$ model implies the following error structure (derivation in appendix):

$$
V[\mathbf{u}]=\boldsymbol{\Sigma}=\frac{\sigma^{2}}{\left(1-\rho^{2}\right)}\left[\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\
\rho & 1 & \rho & \cdots & \rho^{T-2} \\
\rho^{2} & \rho & 1 & \cdots & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1
\end{array}\right]
$$

That is, the covariance between errors in $t=1$ and $t=2$ is $\frac{\sigma^{2}}{\left(1-\rho^{2}\right)} \rho$, between errors in $t=1$ and $t=3$ is $\frac{\sigma^{2}}{\left(1-\rho^{2}\right)} \rho^{2}$, etc.
This implies that the correlation between the errors decays exponentially with the number of periods separating them.

The Error Structure for the AR(1) Model

We have $\mathbf{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{T}\end{array}\right]^{\prime}$ and the $\operatorname{AR}(1)$ model implies the following error structure (derivation in appendix):

$$
V[\mathbf{u}]=\boldsymbol{\Sigma}=\frac{\sigma^{2}}{\left(1-\rho^{2}\right)}\left[\begin{array}{ccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{T-1} \\
\rho & 1 & \rho & \cdots & \rho^{T-2} \\
\rho^{2} & \rho & 1 & \cdots & \rho^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{T-1} & \rho^{T-2} & \rho^{T-3} & \cdots & 1
\end{array}\right]
$$

That is, the covariance between errors in $t=1$ and $t=2$ is $\frac{\sigma^{2}}{\left(1-\rho^{2}\right)} \rho$, between errors in $t=1$ and $t=3$ is $\frac{\sigma^{2}}{\left(1-\rho^{2}\right)} \rho^{2}$, etc.
This implies that the correlation between the errors decays exponentially with the number of periods separating them.
ρ is usually positive, which implies that we underestimate the variance if we ignore serial correlation.

How to Detect and Fix Serial Correlated Errors

How to Detect and Fix Serial Correlated Errors

Detection:

- Plot residuals over time (or more fancy "autocorrelation" plots)

How to Detect and Fix Serial Correlated Errors

Detection:

- Plot residuals over time (or more fancy "autocorrelation" plots)
- Formal tests (e.g. Durbin-Watson statistics)

How to Detect and Fix Serial Correlated Errors

Detection:

- Plot residuals over time (or more fancy "autocorrelation" plots)
- Formal tests (e.g. Durbin-Watson statistics)

Possible Corrections:

How to Detect and Fix Serial Correlated Errors

Detection:

- Plot residuals over time (or more fancy "autocorrelation" plots)
- Formal tests (e.g. Durbin-Watson statistics)

Possible Corrections:

- Use standard errors that are robust to serial correlation (e.g. Newey-West)

How to Detect and Fix Serial Correlated Errors

Detection:

- Plot residuals over time (or more fancy "autocorrelation" plots)
- Formal tests (e.g. Durbin-Watson statistics)

Possible Corrections:

- Use standard errors that are robust to serial correlation (e.g. Newey-West)
- AR corrections (e.g. Prais-Winston, Cochrane-Orcutt, etc.)

How to Detect and Fix Serial Correlated Errors

Detection:

- Plot residuals over time (or more fancy "autocorrelation" plots)
- Formal tests (e.g. Durbin-Watson statistics)

Possible Corrections:

- Use standard errors that are robust to serial correlation (e.g. Newey-West)
- AR corrections (e.g. Prais-Winston, Cochrane-Orcutt, etc.)
- Lagged dependent variables or other dynamic panel models

How to Detect and Fix Serial Correlated Errors

Detection:

- Plot residuals over time (or more fancy "autocorrelation" plots)
- Formal tests (e.g. Durbin-Watson statistics)

Possible Corrections:

- Use standard errors that are robust to serial correlation (e.g. Newey-West)
- AR corrections (e.g. Prais-Winston, Cochrane-Orcutt, etc.)
- Lagged dependent variables or other dynamic panel models
- First-differencing the data

Monthly Presidential Approval Ratings and Gas Prices

Monthly Presidential Approval Ratings and Gas Prices

R Code

```
> library(Zelig)
> data(approval)
> mod1 <- lm(approve ~ avg.price, data=approval)
> coeftest(mod1)
t test of coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 100.472076 3.567277 28.165< < .2e-16
avg.price -0.243885 0.019465 -12.529< 2.2e-16 ***
```


Tests for Serial Correlation: Durbin-Watson

Recall our $\operatorname{AR}(1)$ model is:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where $u_{t}=\rho u_{t-1}+e_{t}, e_{t} \sim N\left(0, \sigma^{2}\right)$, and ρ is our unknown autoregressive coefficient (with $|\rho|<1$).

Tests for Serial Correlation: Durbin-Watson

Recall our $\operatorname{AR}(1)$ model is:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where $u_{t}=\rho u_{t-1}+e_{t}, e_{t} \sim N\left(0, \sigma^{2}\right)$, and ρ is our unknown autoregressive coefficient (with $|\rho|<1$).

The null hypothesis (no serial correlation) is: $H_{0}: \rho=0$ The alternative (positive serial correlation): $H_{1}: \rho>0$

Tests for Serial Correlation: Durbin-Watson

Recall our $\operatorname{AR}(1)$ model is:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where $u_{t}=\rho u_{t-1}+e_{t}, e_{t} \sim N\left(0, \sigma^{2}\right)$, and ρ is our unknown autoregressive coefficient (with $|\rho|<1$).

The null hypothesis (no serial correlation) is: $H_{0}: \rho=0$ The alternative (positive serial correlation): $H_{1}: \rho>0$

One common test for serial correlation is the Durbin-Watson statistic:

$$
D W=\frac{\sum_{t=2}^{n} \hat{u}_{t}-\hat{u}_{t-1}}{\sum_{t=1}^{n} \hat{u}_{t}^{2}} \text { where } \quad D W \approx 2(1-\widehat{\rho})
$$

Tests for Serial Correlation: Durbin-Watson

Recall our AR(1) model is:

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where $u_{t}=\rho u_{t-1}+e_{t}, e_{t} \sim N\left(0, \sigma^{2}\right)$, and ρ is our unknown autoregressive coefficient (with $|\rho|<1$).

The null hypothesis (no serial correlation) is: $H_{0}: \rho=0$ The alternative (positive serial correlation): $H_{1}: \rho>0$

One common test for serial correlation is the Durbin-Watson statistic:

$$
D W=\frac{\sum_{t=2}^{n} \hat{u}_{t}-\hat{u}_{t-1}}{\sum_{t=1}^{n} \hat{u}_{t}^{2}} \quad \text { where } \quad D W \approx 2(1-\widehat{\rho})
$$

- If $D W \approx 2$ then $\widehat{\rho} \approx 0$ (Note that $0 \leq D W \leq 4)$
- If $D W<1$ we have serious positive serial correlation
- If $D W>3$ we have serious negative serial correlation

Monthly Presidential Approval Ratings and Gas Prices

R Code
> library (lmtest)
> dwtest(approve ~ avg.price, data=approval)

Durbin-Watson test
data: approve ~ avg.price
$D W=0.4863, \mathrm{p}$-value $=1.326 \mathrm{e}-14$
alternative hypothesis: true autocorrelation is greater than 0
The test suggests strong positive serial correlation. Standard errors are severely downward biased.

Corrections: HAC Standard Errors

Corrections: HAC Standard Errors

- A common way to correct for serial correlation is to use OLS but to estimate the variances using an estimator that is heteroskedasticity and autocorrelation consistent (HAC) (Newey and West (1987)).

Corrections: HAC Standard Errors

- A common way to correct for serial correlation is to use OLS but to estimate the variances using an estimator that is heteroskedasticity and autocorrelation consistent (HAC) (Newey and West (1987)).
- The theory behind the HAC variance estimator is somewhat complicated, but the interpretation is similar to our usual OLS robust standard errors.

Corrections: HAC Standard Errors

- A common way to correct for serial correlation is to use OLS but to estimate the variances using an estimator that is heteroskedasticity and autocorrelation consistent (HAC) (Newey and West (1987)).
- The theory behind the HAC variance estimator is somewhat complicated, but the interpretation is similar to our usual OLS robust standard errors.
- HAC standard errors leave estimate of $\hat{\boldsymbol{\beta}}$ unchanged and do not fix potential bias in $\hat{\boldsymbol{\beta}}$

Corrections: HAC Standard Errors

- A common way to correct for serial correlation is to use OLS but to estimate the variances using an estimator that is heteroskedasticity and autocorrelation consistent (HAC) (Newey and West (1987)).
- The theory behind the HAC variance estimator is somewhat complicated, but the interpretation is similar to our usual OLS robust standard errors.
- HAC standard errors leave estimate of $\hat{\boldsymbol{\beta}}$ unchanged and do not fix potential bias in $\hat{\boldsymbol{\beta}}$
- HAC are consistent estimator for $V[\hat{\beta}]$ in the presence of heteroskedasticity and or autocorrelation

Corrections: HAC Standard Errors

- A common way to correct for serial correlation is to use OLS but to estimate the variances using an estimator that is heteroskedasticity and autocorrelation consistent (HAC) (Newey and West (1987)).
- The theory behind the HAC variance estimator is somewhat complicated, but the interpretation is similar to our usual OLS robust standard errors.
- HAC standard errors leave estimate of $\hat{\boldsymbol{\beta}}$ unchanged and do not fix potential bias in $\hat{\boldsymbol{\beta}}$
- HAC are consistent estimator for $V[\hat{\boldsymbol{\beta}}]$ in the presence of heteroskedasticity and or autocorrelation
- The sandwich package in R implements a variety of HAC estimators

Corrections: HAC Standard Errors

- A common way to correct for serial correlation is to use OLS but to estimate the variances using an estimator that is heteroskedasticity and autocorrelation consistent (HAC) (Newey and West (1987)).
- The theory behind the HAC variance estimator is somewhat complicated, but the interpretation is similar to our usual OLS robust standard errors.
- HAC standard errors leave estimate of $\hat{\boldsymbol{\beta}}$ unchanged and do not fix potential bias in $\hat{\boldsymbol{\beta}}$
- HAC are consistent estimator for $V[\hat{\boldsymbol{\beta}}]$ in the presence of heteroskedasticity and or autocorrelation
- The sandwich package in R implements a variety of HAC estimators
- A common option is NeweyWest

Monthly Presidential Approval Ratings and Gas Prices

R Code

```
> mod1 <- lm(approve~avg.price,data=approval)
> coeftest(mod1) # homoskedastic errors
t test of coefficients:
```

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ | |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 100.472076 | 3.567277 | $28.165<2.2 \mathrm{e}-16 * * *$ |
| avg.price | -0.243885 | $0.019465-12.529<2.2 \mathrm{e}-16 * * *$ | |

> coeftest(mod1, vcov = NeweyWest) \# HAC errors
t test of coefficients:

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	100.472076	14.499337	6.9294	$2.652 \mathrm{e}-09$

Once we correct for autocorrelation, standard errors increase dramatically.

Review of Standard Errors

- Violations of homoskedasticity can come in many forms

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance
- Clustered dependence

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance
- Clustered dependence
- Serial dependence

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance
- Clustered dependence
- Serial dependence
- Use plots or formal tests to detect heteroskedasticity

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance
- Clustered dependence
- Serial dependence
- Use plots or formal tests to detect heteroskedasticity
- "Robust SEs" of various forms are consistent even when these problems are present

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance
- Clustered dependence
- Serial dependence
- Use plots or formal tests to detect heteroskedasticity
- "Robust SEs" of various forms are consistent even when these problems are present
- White HC standard errors

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance
- Clustered dependence
- Serial dependence
- Use plots or formal tests to detect heteroskedasticity
- "Robust SEs" of various forms are consistent even when these problems are present
- White HC standard errors
- Cluster-robust standard errors

Review of Standard Errors

- Violations of homoskedasticity can come in many forms
- Non-constant error variance
- Clustered dependence
- Serial dependence
- Use plots or formal tests to detect heteroskedasticity
- "Robust SEs" of various forms are consistent even when these problems are present
- White HC standard errors
- Cluster-robust standard errors
- Newey-West HAC standard errors

Appendix: Derivation of Error Structure for the AR(1)

 ModelWe have

$$
V\left[u_{t}\right]=V\left[\rho u_{t-1}+e_{t}\right]=\rho^{2} V\left[u_{t-1}\right]+\sigma^{2}
$$

with stationarity, $V\left[u_{t}\right]=V\left[u_{t-1}\right]$, and so

$$
V\left[u_{t}\right]\left(1-\rho^{2}\right)=\sigma^{2} \Rightarrow V\left[u_{t}\right]=\frac{\sigma^{2}}{\left(1-\rho^{2}\right)}
$$

also

$$
\operatorname{Cov}\left[u_{t}, u_{t-1}\right]=E\left[u_{t} u_{t-1}\right]=E\left[\left(\rho u_{t-1}+e_{t}\right) e_{t-1}\right]=\rho V\left[e_{t-1}\right]=\rho \frac{\sigma^{2}}{\left(1-\rho^{2}\right)}
$$

or generally

$$
\operatorname{Cov}\left[u_{t}, u_{t-h}\right]=\rho^{h} \frac{\sigma^{2}}{\left(1-\rho^{2}\right)}
$$

(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers

』 Robust Regression Methods
(5) Optional: Measurement Error
(6. Conclusion and Appendix
(7) Detecting Nonlinearity

- Linear Basis Function Models

9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
12 Clustering
(10) Optional: Serial Correlation

14 A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens

A Contrarian View of Robust Standard Errors

King, Gary and Margaret E. Roberts. "How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It" Political Analysis (2015) 23: 159-179. ${ }^{3}$

[^1]
Robust Standard Errors: Used Everywhere

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66% of articles using regression

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
* APSR (2009-2012): 66% of articles using regression
* IO (2009-2012): 73\% of articles using regression

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
* APSR (2009-2012): 66% of articles using regression
* IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
\star APSR (2009-2012): 66% of articles using regression
* IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45% of articles using regression
- Everywhere else, too:

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66\% of articles using regression
^ IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression
- Everywhere else, too:
\star All of Google Scholar: 53,900 mentions

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66\% of articles using regression
^ IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression
- Everywhere else, too:
\star All of Google Scholar: 53,900 mentions
* And going up: 1,000 new per month

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66\% of articles using regression
* IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression
- Everywhere else, too:
\star All of Google Scholar: 53,900 mentions
* And going up: 1,000 new per month

Robust Standard Errors are a Bright, Red Flag

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66\% of articles using regression
* IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression
- Everywhere else, too:
\star All of Google Scholar: 53,900 mentions
* And going up: 1,000 new per month

Robust Standard Errors are a Bright, Red Flag

- People think robust se's will inoculate them from criticism

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66\% of articles using regression
* IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression
- Everywhere else, too:
* All of Google Scholar: 53,900 mentions
* And going up: 1,000 new per month

Robust Standard Errors are a Bright, Red Flag

- People think robust se's will inoculate them from criticism
- They are wrong

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66\% of articles using regression
* IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression
- Everywhere else, too:
\star All of Google Scholar: 53,900 mentions
* And going up: 1,000 new per month

Robust Standard Errors are a Bright, Red Flag

- People think robust se's will inoculate them from criticism
- They are wrong
- Instead, they are a bright, reg flag saying:

Robust Standard Errors: Used Everywhere

- Robust standard errors: a widely used technique to fix SEs under model misspecification
- In Political Science:
^ APSR (2009-2012): 66\% of articles using regression
* IO (2009-2012): 73\% of articles using regression
* AJPS (2009-2012): 45\% of articles using regression
- Everywhere else, too:
\star All of Google Scholar: 53,900 mentions
* And going up: 1,000 new per month

Robust Standard Errors are a Bright, Red Flag

- People think robust se's will inoculate them from criticism
- They are wrong
- Instead, they are a bright, reg flag saying:
"My model is misspecified!"

RSEs: Two Possibilities

RSEs: Two Possibilities

RSEs and SEs differ

RSEs: Two Possibilities

RSEs and SEs differ

RSEs and SEs are the same

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

RSEs and SEs are the same

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:
- Some coefficients: unbiased but inefficient

RSEs and SEs are the same

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:
- Some coefficients: unbiased but inefficient

RSEs and SEs are the same

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient
Other quantities of interest: Biased

RSEs and SEs are the same

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient
Other quantities of interest: Biased

- In the worst case scenario:

RSEs and SEs are the same

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient

- Other quantities of interest: Biased
- In the worst case scenario:

The functional form,

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient
Other quantities of interest: Biased

- In the worst case scenario:

The functional form, variance,

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient

- Other quantities of interest: Biased
- In the worst case scenario:

The functional form, variance, or dependence specification is wrong

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient

- Other quantities of interest: Biased
- In the worst case scenario:
- The functional form, variance, or dependence specification is wrong

All quantities of interest will be biased.
RSEs and SEs are the same

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient

- Other quantities of interest: Biased
- In the worst case scenario:

The functional form, variance, or dependence specification is wrong
All quantities of interest will be biased.
RSEs and SEs are the same

- Consistent with a correctly specified model

RSEs: Two Possibilities

RSEs and SEs differ

- In the best case scenario:

Some coefficients: unbiased but inefficient
Other quantities of interest: Biased

- In the worst case scenario:

The functional form, variance, or dependence specification is wrong
All quantities of interest will be biased.
RSEs and SEs are the same

- Consistent with a correctly specified model
- RSEs are not useful, as a "fix"

Their Alternative Procedure

Their Alternative Procedure

Robust standard errors:

Their Alternative Procedure

Robust standard errors:

- What they are not:

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are:

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!
(1) Do RSEs and SEs differ?

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!
(1) Do RSEs and SEs differ?
(2) If they do:

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!
(1) Do RSEs and SEs differ?
(2) If they do:

- Use model diagnostics

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!
(1) Do RSEs and SEs differ?
(2) If they do:

- Use model diagnostics (e.g. residual plots, qq-plots, misspecification tests)

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!
(1) Do RSEs and SEs differ?
(2) If they do:

- Use model diagnostics (e.g. residual plots, qq-plots, misspecification tests)
- Evaluate misspecification

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!
(1) Do RSEs and SEs differ?
(2) If they do:

- Use model diagnostics (e.g. residual plots, qq-plots, misspecification tests)
- Evaluate misspecification
- Respecify the model

Their Alternative Procedure

Robust standard errors:

- What they are not: an elixir
- What they are: Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!
(1) Do RSEs and SEs differ?
(2) If they do:

- Use model diagnostics (e.g. residual plots, qq-plots, misspecification tests)
- Evaluate misspecification
- Respecify the model
(3) Keeping going, until they don't differ.

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

For RSEs to help: Everything has to be Juuuussttt Right

Biased just enough to make RSEs useful,

Model Correct

RSEs same as SEs
Point estimates correct
Awesome!

Model Misspecified

RSEs differ from SEs
Point estimates biased
Respecify!

For RSEs to help: Everything has to be Juuuussttt Right

Biased just enough to make RSEs useful,

RSEs same as SEs
Point estimates correct
Awesome!

but not so much as to bias everything else

Model Misspecified

RSEs differ from SEs
Point estimates biased
Respecify!

The Goldilocks Region is not Idyllic

The Goldilocks Region is not Idyllic

In the Goldilocks region,

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.
- We can estimate β, but not:

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.
- We can estimate β, but not:

夫 the probability the Democrat wins,

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.
- We can estimate β, but not:
\star the probability the Democrat wins,
* the variation in vote outcome,

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.
- We can estimate β, but not:
\star the probability the Democrat wins,
* the variation in vote outcome,

ฝ or vote predictions with confidence intervals.

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.
- We can estimate β, but not:
* the probability the Democrat wins,
* the variation in vote outcome,
\star or vote predictions with confidence intervals.
- We can't check: whether model implications are realistic.

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.
- We can estimate β, but not:
\star the probability the Democrat wins,
* the variation in vote outcome,
* or vote predictions with confidence intervals.
- We can't check: whether model implications are realistic.
- Parts of the model are wrong;

The Goldilocks Region is not Idyllic

In the Goldilocks region,

- No fully specified model
- Only a few QOI's can be estimated.
- Suppose DV: Democrat proportion of two-party vote.
- We can estimate β, but not:
\star the probability the Democrat wins,
* the variation in vote outcome,
* or vote predictions with confidence intervals.
- We can't check: whether model implications are realistic.
- Parts of the model are wrong; why do we think the rest are right?

Difference Between SE and RSE Exposes Misspecification

Difference Between SE and RSE Exposes Misspecification

Difference Between SE and RSE Exposes Misspecification

Difference Between SE and RSE Exposes Misspecification

Difference Between SE and RSE Exposes Misspecification

Example: RSEs Expose Non-normality

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)
- Treatment of interest: population

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)
- Treatment of interest: population
- Controls: GDP, former colony status, distance from Western world, etc...

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)
- Treatment of interest: population
- Controls: GDP, former colony status, distance from Western world, etc...
- Conclusion: Aid favors less populous countries.

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)
- Treatment of interest: population
- Controls: GDP, former colony status, distance from Western world, etc...
- Conclusion: Aid favors less populous countries.
- Difference between RSEs and SEs: Large.

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)
- Treatment of interest: population
- Controls: GDP, former colony status, distance from Western world, etc...
- Conclusion: Aid favors less populous countries.
- Difference between RSEs and SEs: Large.
- Robust SE: 0.72,

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)
- Treatment of interest: population
- Controls: GDP, former colony status, distance from Western world, etc...
- Conclusion: Aid favors less populous countries.
- Difference between RSEs and SEs: Large.
- Robust SE: 0.72, SE: 0.37

Example: RSEs Expose Non-normality

- Replication Neumayer, ISQ 2003
- Dependent variable: multilateral aid flows (as percentage of GDP)
- Treatment of interest: population
- Controls: GDP, former colony status, distance from Western world, etc...
- Conclusion: Aid favors less populous countries.
- Difference between RSEs and SEs: Large.
- Robust SE: 0.72, SE: 0.37
- \Rightarrow indicates model misspecification

Problem: Highly Skewed Dependent Variable

Problem: Highly Skewed Dependent Variable

Original

Problem: Highly Skewed Dependent Variable

Original

Transformed

Diagnostics: Reveal Misspecification

Diagnostics: Reveal Misspecification

Population vs Residuals, Author's Model

Diagnostics: Reveal Misspecification

Population vs Residuals, Author's Model

Diagnostics: Reveal Misspecification

Population vs Residuals, Author's Model

Textbook case of heteroskedasticity

Diagnostics: Reveal Misspecification

Population vs Residuals, Author's Model

Population vs Residuals, Altered Model

Textbook case of heteroskedasticity

Diagnostics: Reveal Misspecification

Population vs Residuals, Author's Model

Textbook case of heteroskedasticity

Population vs Residuals, Altered Model

Textbook case of homoskedasticity

After Fix: Different Conclusion

After Fix: Different Conclusion

Concluding Contrarian Thoughts

Concluding Contrarian Thoughts

Their advice:

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir.

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead:

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification,

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.
- Respecify the model,

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.
- Respecify the model, until robust and classical SE's coincide

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.
- Respecify the model, until robust and classical SE's coincide

Their Examples:

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.
- Respecify the model, until robust and classical SE's coincide Their Examples:
- Robust SEs indicate fundamental modelling problems

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.
- Respecify the model, until robust and classical SE's coincide Their Examples:
- Robust SEs indicate fundamental modelling problems
- Easily identified with diagnostics

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.
- Respecify the model, until robust and classical SE's coincide Their Examples:
- Robust SEs indicate fundamental modelling problems
- Easily identified with diagnostics
- Fixing these problems

Concluding Contrarian Thoughts

Their advice:

- RSEs: not an elixir. Should not be used as a patch.
- Instead: a sensitive detector of misspecification.
- Evaluate misspecification, by conducting diagnostic tests.
- Respecify the model, until robust and classical SE's coincide

Their Examples:

- Robust SEs indicate fundamental modelling problems
- Easily identified with diagnostics
- Fixing these problems \Rightarrow hugely different substantive conclusions

Concluding Thoughts on Diagnostics

Residuals are important. Look at them.

Next Week

- Causality with Measured Confounding
- Reading:
- Angrist and Pishke Chapter 2 (The Experimental Ideal) Chapter 3.2 (Regression and Causality)
- Morgan and Winship Chapters 3-4 (Causal Graphs and Conditioning Estimators)
- Optional: Elwert and Winship (2014) "Endogenous selection bias: The problem of conditioning on a collider variable" Annual Review of Sociology
- Optional: Morgan and Winship Chapter 11 Repeated Observations and the Estimation of Causal Effects
- As a side note: if you want to read the argument against the contrarian response: Aronow (2016) "A Note on 'How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It.'" It is an interesting piece- feel free to come talk to me about this debate!

Appendix: Derivation of Variance under Homoskedasticity

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
&=\left(\mathbf{X}^{\mathbf{\prime}} \mathbf{X}\right)^{-1} \mathbf{x}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u}) \\
&=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u} \\
& V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]= V[\boldsymbol{\beta} \mid \mathbf{X}]+V\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u} \mid \mathbf{X}\right] \\
&=V\left[\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{u} \mid \mathbf{X}\right] \\
&=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} V[\mathbf{u} \mid \mathbf{X}]\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime}(\text { note: } \mathbf{X} \text { nonrandom } \mid \mathbf{X}) \\
&=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} V[\mathbf{u} \mid \mathbf{X}] \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
&=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}(\text { by homoskedasticity }) \\
&= \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Replacing σ^{2} with our estimator $\widehat{\sigma}^{2}$ gives us our estimator for the $(k+1) \times(k+1)$ variance-covariance matrix for the vector of regression coefficients:

$$
\widehat{V[\hat{\boldsymbol{\beta}} \mid \mathbf{X}]}=\widehat{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations

2 Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity

- Linear Basis Function Models

9) Generalized Additive Models

10 Fun With Kerne's
11 Heteroskedasticity
12 Clustering
(13) Optional: Serial Correlation

1 A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens

Fun With Neighbors

Fun With Neighbors

- We talked about error dependence induced by time and by cluster.

Fun With Neighbors

- We talked about error dependence induced by time and by cluster.
- An alternative process is spatial dependence.

Fun With Neighbors

- We talked about error dependence induced by time and by cluster.
- An alternative process is spatial dependence.
- Just as with the other types of models we have to specify what it means to be close to a neighbor, but this choice is often more influential than anticipated.

Fun With Neighbors

- We talked about error dependence induced by time and by cluster.
- An alternative process is spatial dependence.
- Just as with the other types of models we have to specify what it means to be close to a neighbor, but this choice is often more influential than anticipated.

Zhukov, Yuri M. and Brandon M. Stewart. "Choosing Your Neighbors: Networks of Diffusion in International Relations" International Studies Quarterly 2013; 57: 271-287.

Our Main Questions

Our Main Questions

(1) Who are a country's neighbors?

Our Main Questions

(1) Who are a country's neighbors?
(2) How do neighbor's affect each other?

Our Main Questions

(1) Who are a country's neighbors? Connectivity Assumption
(2) How do neighbor's affect each other? Spatial Weights Assumption

Our Main Questions

(1) Who are a country's neighbors? Connectivity Assumption
(2) How do neighbor's affect each other? Spatial Weights Assumption
(3) How do we make these assumptions?

Our Main Questions

(1) Who are a country's neighbors? Connectivity Assumption
(2) How do neighbor's affect each other? Spatial Weights Assumption
(3) How do we make these assumptions?

How Do We Generally Choose Neighbors?

How Do We Generally Choose Neighbors?

(1) Contiguity is the most common variable

How Do We Generally Choose Neighbors?

(1) Contiguity is the most common variable
(2) 75% of articles with spatial variable in the top 6 IR journals of the last 10 years

How Do We Generally Choose Neighbors?

(1) Contiguity is the most common variable
(2) 75% of articles with spatial variable in the top 6 IR journals of the last 10 years
(3) Atheoretical choices, rarely justified

How Do We Generally Choose Neighbors?

(1) Contiguity is the most common variable
(2) 75% of articles with spatial variable in the top 6 IR journals of the last 10 years
(3) Atheoretical choices, rarely justified
(9) Different types of neighbors tell different stories

Visualization of Connections: Contiguity

Figure: Contiguity neighbors with 500 km snap distance

Visualization of Connections: Minimum Distance

Figure: Minimum distance neighbors (capital cities)

Visualization of Connections: K-Nearest Neighbors

Figure: $k=4$ Nearest Neighbors (capital cities)

Visualization of Connections: Graph-based Neighbors

Figure: Sphere of Influence Neighbors (capital cities)

Application: Democratic Diffusion

Gleditsch and Ward (2006)

Changes of political regime modeled as a first-order Markov chain process with the transition matrix

$$
\mathbf{K}=\left[\begin{array}{ll}
\operatorname{Pr}\left(y_{i, t}=0 \mid y_{i, t-1}=0\right) & \operatorname{Pr}\left(y_{i, t}=1 \mid y_{i, t-1}=0\right) \\
\operatorname{Pr}\left(y_{i, t}=0 \mid y_{i, t-1}=1\right) & \operatorname{Pr}\left(y_{i, t}=1 \mid y_{i, t-1}=1\right)
\end{array}\right]
$$

where $y_{i, t}=1$ if an (A) utocratic regime exists in country i at time t, and $y_{i, t}=0$ if the regime is (D)emocratic.
... in other words:

$$
\mathbf{K}=\left[\begin{array}{ll}
\operatorname{Pr}(D \rightarrow D) & \operatorname{Pr}(D \rightarrow A) \\
\operatorname{Pr}(A \rightarrow D) & \operatorname{Pr}(A \rightarrow A)
\end{array}\right]
$$

Equilibrium Effects of Democratic Transition

If a regime transition takes place in country i, what is the change in predicted probability of a regime transition in country j (country i's neighbor)?

$$
\mathrm{QI}=\operatorname{Pr}\left(y_{j, t} \mid y_{i, t}=y_{i, t-1}\right)-\operatorname{Pr}\left(y_{j, t} \mid y_{i, t} \neq y_{i, t-1}\right)
$$

where $y_{i, t}=0$ if country i is a democracy at time t and $y_{i, t}=1$ if it is an autocracy. All other covariates are held constant.

Equilibrium Effects of Democratic Transition

If a regime transition takes place in country i, what is the change in predicted probability of a regime transition in country j (country i's neighbor)?

$$
\mathrm{QI}=\operatorname{Pr}\left(y_{j, t} \mid y_{i, t}=y_{i, t-1}\right)-\operatorname{Pr}\left(y_{j, t} \mid y_{i, t} \neq y_{i, t-1}\right)
$$

where $y_{i, t}=0$ if country i is a democracy at time t and $y_{i, t}=1$ if it is an autocracy. All other covariates are held constant.

Illustrative cases

- Iraq transitions from autocracy to democracy.
- Russia transitions from democracy to autocracy.

Iraq's democratization and regional regime stability

Contiguity +500 km

Iraq transitions from autocracy to democracy (1998 data)

Monte Carlo simulation (1,000 runs)

Iraq

Iraq's democratization and regional regime stability

Minimum Distance

Iraq transitions from autocracy to democracy (1998 data)

Monte Carlo simulation (1,000 runs)

Iraq

Regime Type	\square	$-0.05-0.025$
\square Democracy	\square	$-0.025--0.001$
$\square \square \square \square$ Autocracy	\square	0
	\square	$0.001-0.025$
	\square	$0.025-0.05$

Iraq's democratization and regional regime stability

k = 4 Nearest Neighbors
Iraq transitions from autocracy to democracy (1998 data)

Monte Carlo simulation (1,000 runs)

Iraq's democratization and regional regime stability

Sphere of Influence

Iraq transitions from autocracy to democracy (1998 data)

Monte Carlo simulation (1,000 runs)

Iraq
Regime Type
Change in Transition Probability

Regime Type	\square	$-0.05--0.025$
\square Democracy	\square	$-0.025--0.001$
$\square \square \square$ Autocracy	\square	0
	\square	$0.001-0.025$
		$0.025-0.05$

Russia's autocratization and regional regime stability

Contiguity + 500 km

Russia transitions from democracy to autocracy (1998 data)

Monte Carlo simulation (1,000 runs)

Russia

Regime Type	\square	$-0.05--0.025$
\square Democracy	\square	$-0.025--0.001$
$\square \square \square$ Autocracy	\square	0
	\square	$0.001-0.025$
	\square	$0.025-0.05$

Russia's autocratization and regional regime stability

Minimum Distance

Russia transitions from democracy to autocracy (1998 data)

Monte Carlo simulation (1,000 runs)

Russia

Russia's autocratization and regional regime stability

k = 4 Nearest Neighbors
Russia transitions from democracy to autocracy (1998 data)

Monte Carlo simulation (1,000 runs)

	Russia	Change in Transit
Regime Type		$-0.05--0.025$
\square Democracy	\square	$-0.025--0.001$
$\square \square /$ Autocracy	\square	0
	\square	$0.001-0.025$
		$0.025-0.05$

Russia's autocratization and regional regime stability

Sphere of Influence

Russia transitions from democracy to autocracy (1998 data)

Russia

(1) Assumptions and Violations
(2) Non-normality
(3) Outliers
(4) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity
(8) Linear Basis Function Models
(9) Generalized Additive Models
(10) Fun With Kernels

11 Heteroskedasticity
(12) Clustering

13 Optional: Serial Correlation
(14) A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens
(1) Assumptions and Violations
2) Non-normality
(3) Outliers
(1) Robust Regression Methods
(5) Optional: Measurement Error
(6) Conclusion and Appendix
(7) Detecting Nonlinearity

- Linear Basis Function Models

9) Generalized Additive Models

10 Fun With Kerne's
11 Heteroskedasticity
12 Clustering
(13) Optional: Serial Correlation

14 A Contrarian View of Robust Standard Errors
(15) Fun with Neighbors

16 Fun with Kittens

Kitten Wars

Kitten Wars

-

Warm, Flaky, Delicious Crowd Pleaser.
Pillubury" Crescent Rolls ISove si Now

Alfredo vs. Amy

Click on the cutest to decide the winner!!!
Can't decide? Refresh the page for a draw.

Home
Winningest Kittens
Losingest Kittens
Newest Kittens
Add your Kitten
The Daily Kitten
facebook group
fag
Privacy Policy
e-mail us
kitten search:

Kitten Wars

Winningest Kittens!

more
1.

Bitsy
has won 76% of 8642 battles.

Freddie
has won 76% of 3768 battles.

Kitten Wars

Winningest Kittens!

more

Bitsy
has won 76% of 8642 battles.

has won 76% of 3768 battles.
Losingest Kittens!

Scary Cat
has lost 79% of 11211 battles.

Beitsim
has lost 79% of 1919 battles.

Kitten Wars for Ideas (Salganik and Levy)

Kitten Wars for Ideas (Salganik and Levy)

RESEARCH ARTICLE

Wiki Surveys: Open and Quantifiable Social Data Collection

Matthew J. Salganik, Karen E. C. Levy
Published: May 20, 2015 • DOI: 10.1371/journal.pone. 0123483

Article	Authors	Metrics	Comments	Related Content

Abstract

Introduction
Wiki surveys
Pairwise Wiki Surveys
Case studies
Discussion
Ethics Statement
Supporting Information
Acknowledgments
Author Contributions
References

Reader Comments (0)
Media Coverage
Figures

Abstract

In the social sciences, there is a longstanding tension between data collection methods that facilitate quantification and those that are open to unanticipated information. Advances in technology now enable new, hybrid methods that combine some of the benefits of both approaches. Drawing inspiration from online information aggregation systems like Wikipedia and from traditional survey research, we propose a new class of research instruments called wiki surveys. Just as Wikipedia evolves over time based on contributions from participants, we envision an evolving survey driven by contributions from respondents. We develop three general principles that underlie wiki surveys: they should be greedy, collaborative, and adaptive. Building on these principles, we develop methods for data collection and data analysis for one type of wiki survey, a pairwise wiki survey. Using two proof-of-concept case studies involving our free and open-source website www.allourideas.org, we show that pairwise wiki surveys can yield insights that would be difficult to obtain with other methods.

Figures

Week 9: Diagnostics and Solutions

Kitten Wars for Ideas (Salganik and Levy)

Bringing survey research into the digital age.

Mix core ideas from survey research with new insights from crowdsourcing. Add a heavy dose of statistics. Stir in a bit of fresh thinking. Enjoy.

```
Try a Wiki Survey Create a Wiki Survey
```

HOW A WIKI SURVEY WORKS

Create
Start with a question and some seed ideas, and you can create a wiki survey in moments.

Participate
The participants you invite will enjoy our simple process of voting and adding new ideas.

Discover
The best ideas will bubble to the top using our system that is open, transparent, and powerful.

Kitten Wars for Ideas (Salganik and Levy)

Users can view results here
 This is a copy of a wiki survey that was used by New York City Mayor's Office. You can read more about the projectnere: mutp:/fintyrplanyc
 Which do you think is better for creating a greener, greater New York City?

Add your own idea here...

Kitten Wars for Ideas (Salganik and Levy)

Which do you think is better for creating a greener, greater New York City?

Ideas	Score (0-100) 9
Require all big buildings to make certain energy efficiency upgrades	67
Promote cycling by installing safe bike lanes	65
Promote the use of solar energy using the latest technology on all high-rise buildings.	65
Invest in multiple modes of transportation and provide both improved infrastructure and improved safety	65
Continue enhancing bike lane network, to finally connect separated bike lane systems to each other across all five boroughs.	65
Replace sodium vapor street lights with LED or other energy-saving lights.	64
Utilize NYC Rooftops to install Solar PV panels	63
Plant more trees	62
Create a network of protected bike paths throughout the entire city	62
Add improvements to the bike lanes in the inner city. This will encourage exercise and reduce city's carbon footprint.	62

The Power of Releasing Software

The Power of Releasing Software

The Governor asks ... again

Governor Tarso Genro of the state of Rio Grande do Sul, Brazil has done it again. The Governor and his team completed a second round of their amazing open government project called Governador Pergunta (The Governor Asks), which collects public feedback on important policy challenges using a customized version of allourideas.org.

The Power of Releasing Software

wiki surveys to assess risks of stateled mass killings

As part of their work with the Holocaust Museum's Center for the Prevention of Genocide, Jay Ulfelder and Ben Valentino launched a wiki survey to help assess the risks of state-led mass killing onsets in 2014. You can read about their results on this interesting blog post.

The Power of Releasing Software

UN Global Sustainability Report 2013

We are happy to announce that the United Nations Division for Sustainable Development is using allourideas.org to solicit ideas from scientists around the world for the 2013 UN Global Sustainability Report. The report will

Powered By Research (You Can Do It Too!)

Powered By Research (You Can Do It Too!)

Backed by research

All Our Ideas is a research project based at Princeton University that is dedicated to creating new ways of collecting social data. You can learn more about the theory and methods behind our project by reading our paper or watching our talk. Thanks to Google, the National Science Foundation, and Princeton for supporting this research.

$$
z_{i} \sim \begin{cases}N\left(\dot{\boldsymbol{x}}_{i}^{T} \boldsymbol{\theta}_{\boldsymbol{v}}, 1\right) I\left(z_{i}^{*}>0\right) & \text { if } y_{i}=1 \\ N\left(\dot{\boldsymbol{x}}_{i}^{T} \boldsymbol{\theta}_{\boldsymbol{v}}, 1\right) I\left(z_{i}^{*}<0\right) & \text { if } y_{i}=0\end{cases}
$$

Powered By Research (You Can Do It Too!)

Bradley-Terry model

From Wikipedia, the free encyclopedia

The Bradley-Terry model is a probability model that can predict the outcome of a comparison. Given a pair of individuals i and j drawn from some population, it estimates the probability that the pairwise comparison $i>j$ turns out true, as

$$
P(i>j)=\frac{p_{i}}{p_{i}+p_{j}}
$$

where p_{i} is a positive real-valued score assigned to individual i. The comparison $i>j$ can be read as " i is preferred to $j^{\prime \prime}$, " i ranks higher than j ", or " i beats $j^{\prime \prime}$, depending on the application.
For example, p_{i} may represent the skill of a team in a sports tournament, estimated from the number of times i has won a match. $P(i>j)$ then represents the probability that i will win a match against $j \cdot{ }^{[1][2]}$ Another example used to explain the model's purpose is that of scoring products in a certain category by quality. While it's hard for a person to draft a direct ranking of (many) brands of wine, it may be feasible to compare a sample of pairs of wines and say, for each pair, which one is better. The Bradley-Terry model can then be used to derive a full ranking. ${ }^{[2]}$

Powered By Research (You Can Do It Too!)

References

- Angrist, Joshua D., and Jrn-Steffen Pischke. Mostly harmless econometrics: An empiricist's companion. Princeton university press, 2008.
- Breusch, Trevor S., and Adrian R. Pagan. "A simple test for heteroscedasticity and random coefficient variation." Econometrica: Journal of the Econometric Society (1979): 1287-1294.
- Durbin, James, and Geoffrey S. Watson. "Testing for serial correlation in least squares regression. II." Biometrika (1951): 159-177.
- Freedman, David A. "On the so-called Huber sandwich estimator and robust standard errors." The American Statistician 60.4 (2006).
- King, Gary and Margaret E. Roberts. "How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It" Political Analysis (2015) 23: 159-179.
- Newey, Whitney K., and Kenneth D. West. "A simple, positive semi-definite, heteroskedasticity and autocorrelationconsistent covariance matrix." (1986).
- Salganik MJ, Levy KEC (2015) Wiki Surveys: Open and Quantifiable Social Data Collection. PLoS ONE 10(5): e0123483.
- Wand, Jonathan N., Kenneth W. Shotts, Jasjeet S. Sekhon, Walter R. Mebane Jr, Michael C. Herron, and Henry E. Brady. "The butterfly did it: The aberrant vote for Buchanan in Palm Beach County, Florida." American Political Science Review (2001): 793-810.

[^0]: ${ }^{1}$ These slides are heavily influenced by Matt Blackwell, Adam Glynn, Jens Hainmueller and Kevin Quinn.

[^1]: ${ }^{3}$ I thank Gary and Molly for the slides that follow.

