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Where We’ve Been and Where We’re Going...

Last Week
I regression diagnostics

This Week
I Monday:

F experimental Ideal
F identification with measured confounding

I Wednesday:
F regression estimation

Next Week
I identification with unmeasured confounding
I instrumental variables

Long Run
I causality with measured confounding → unmeasured confounding →

repeated data

Questions?
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1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Fun With Censorship

4 Regression Estimators

5 Agnostic Regression

6 Regression and Causality

7 Regression Under Heterogeneous Effects

8 Fun with Visualization, Replication and the NYT

9 Appendix
Subclassification
Identification under Random Assignment
Estimation Under Random Assignment
Blocking
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Lancet 2001: negative correlation between coronary heart disease mortality
and level of vitamin C in bloodstream (controlling for age, gender, blood
pressure, diabetes, and smoking)
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Lancet 2002: no effect of vitamin C on mortality in controlled placebo trial
(controlling for nothing)
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Lancet 2003: comparing among individuals with the same age, gender,
blood pressure, diabetes, and smoking, those with higher vitamin C levels
have lower levels of obesity, lower levels of alcohol consumption, are less
likely to grow up in working class, etc.
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Why So Much Variation?

Confounders

X

T Y
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Observational Studies and Experimental Ideal

Randomization forms gold standard for causal inference, because it
balances observed and unobserved confounders

Cannot always randomize so we do observational studies, where we
adjust for the observed covariates and hope that unobservables are
balanced

Better than hoping: design observational study to approximate an
experiment

I “The planner of an observational study should always ask himself: How
would the study be conducted if it were possible to do it by controlled
experimentation” (Cochran 1965)
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Angrist and Pishke’s Frequently Asked Questions

What is the causal relationship of interest?

What is the experiment that could ideally be used to capture the
causal effect of interest?

What is your identification strategy?

What is your mode of statistical inference?
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Experiment review

An experiment is a study where assignment to treatment is controlled
by the researcher.

I pi = P[Di = 1] be the probability of treatment assignment probability.
I pi is controlled and known by researcher in an experiment.

A randomized experiment is an experiment with the following
properties:

1 Positivity: assignment is probabilistic: 0 < pi < 1

I No deterministic assignment.

2 Unconfoundedness: P[Di = 1|Y(1),Y(0)] = P[Di = 1]

I Treatment assignment does not depend on any potential outcomes.
I Sometimes written as Di⊥⊥(Y(1),Y(0))
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Why do Experiments Help?

Remember selection bias?

E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Yi (1)|Di = 1]− E [Yi (0)|Di = 0]

= E [Yi (1)|Di = 1]− E [Yi (0)|Di = 1] + E [Yi (0)|Di = 1]− E [Yi (0)|Di = 0]

= E [Yi (1)− Yi (0)|Di = 1]︸ ︷︷ ︸
Average Treatment Effect on Treated

+E [Yi (0)|Di = 1]− E [Yi (0)|Di = 0]︸ ︷︷ ︸
selection bias

In an experiment we know that treatment is randomly assigned. Thus we can do
the following:

E [Yi (1)|Di = 1]− E [Yi (0)|Di = 0] = E [Yi (1)|Di = 1]− E [Yi (0)|Di = 1]

= E [Yi (1)]− E [Yi (0)]

When all goes well, an experiment eliminates selection bias.
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Observational studies

Many different sets of identification assumptions that we’ll cover.

To start, focus on studies that are similar to experiments, just without
a known and controlled treatment assignment.

I No guarantee that the treatment and control groups are comparable.

1 Positivity (Common Support): assignment is probabilistic:
0 < P[Di = 1|X,Y(1),Y(0)] < 1

2 No unmeasured confounding: P[Di = 1|X,Y(1),Y(0)] = P[Di = 1|X]

I For some observed X
I Also called: unconfoundedness, ignorability, selection on observables,

no omitted variables, exogenous, conditionally exchangeable, etc.
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Designing observational studies

Rubin (2008) argues that we should still “design” our observational
studies:

I Pick the ideal experiment to this observational study.
I Hide the outcome data.
I Try to estimate the randomization procedure.
I Analyze this as an experiment with this estimated procedure.

Tries to minimize “snooping” by picking the best modeling strategy
before seeing the outcome.
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Discrete covariates

Suppose that we knew that Di was unconfounded within levels of a
binary Xi .

Then we could always estimate the causal effect using iterated
expectations as in a stratified randomized experiment:

EX

{
E[Yi |Di = 1,Xi ]− E[Yi |Di = 0,Xi ]

}
=
(
E[Yi |Di = 1,Xi = 1]− E[Yi |Di = 0,Xi = 1]

)
︸ ︷︷ ︸

diff-in-means for Xi=1

P[Xi = 1]︸ ︷︷ ︸
share of Xi=1

+
(
E[Yi |Di = 1,Xi = 0]− E[Yi |Di = 0,Xi = 0]

)
︸ ︷︷ ︸

diff-in-means for Xi=0

P[Xi = 0]︸ ︷︷ ︸
share of Xi=0

Never used our knowledge of the randomization for this quantity.
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Stratification Example: Smoking and Mortality (Cochran,
1968)

Table 1

Death Rates per 1,000 Person-Years

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5
Cigars/pipes 35.5 20.7 17.4
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Stratification Example: Smoking and Mortality (Cochran,
1968)

Table 2

Mean Ages, Years

Smoking group Canada U.K. U.S.

Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7
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Stratification

To control for differences in age, we would like to compare different
smoking-habit groups with the same age distribution

One possibility is to use stratification:

for each country, divide each group into different age subgroups

calculate death rates within age subgroups

average within age subgroup death rates using fixed weights (e.g.
number of cigarette smokers)
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Stratification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers?
15 · (11/40) + 35 · (13/40) + 50 · (16/40) = 35.5

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 16 / 176



Stratification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers if they had same age
distribution as Non-Smokers?
15 · (29/40) + 35 · (9/40) + 50 · (2/40) = 21.2
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Smoking and Mortality (Cochran, 1968)

Table 3

Adjusted Death Rates using 3 Age groups

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 28.3 12.8 17.7
Cigars/pipes 21.2 12.0 14.2
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Continuous covariates

So, great, we can stratify. Why not do this all the time?

What if Xi = income for unit i?

I Each unit has its own value of Xi : $54,134, $123,043, $23,842.
I If Xi = 54134 is unique, will only observe 1 of these:

E[Yi |Di = 1,Xi = 54134]− E[Yi |Di = 0,Xi = 54134]

I  cannot stratify to each unique value of Xi :

Practically, this is massively important: almost always have data with
unique values.

One option is to discretize as we discussed with age, we will discuss more
later this week!

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 19 / 176



Identification Under Selection on Observables

Identification Assumption
1 (Y1,Y0)⊥⊥D|X (selection on observables)

2 0 < Pr(D = 1|X ) < 1 with probability one (common support)

Identification Result
Given selection on observables we have

E[Y1 − Y0|X ] = E[Y1 − Y0|X ,D = 1]

= E[Y |X ,D = 1]− E[Y |X ,D = 0]

Therefore, under the common support condition:

τATE = E[Y1 − Y0] =

∫
E[Y1 − Y0|X ] dP(X )

=

∫ (
E[Y |X ,D = 1]− E[Y |X ,D = 0]

)
dP(X )
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Identification Under Selection on Observables

Identification Assumption
1 (Y1,Y0)⊥⊥D|X (selection on observables)

2 0 < Pr(D = 1|X ) < 1 with probability one (common support)

Identification Result
Similarly,

τATT = E[Y1 − Y0|D = 1]

=

∫ (
E[Y |X ,D = 1]− E[Y |X ,D = 0]

)
dP(X |D = 1)

To identify τATT the selection on observables and common support conditions can
be relaxed to:

Y0⊥⊥D|X (SOO for Controls)

Pr(D = 1|X ) < 1 (Weak Overlap)
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 E[Y1|X = 0,D = 1] E[Y0|X = 0,D = 1]
1 0

2 1 0
3 E[Y1|X = 0,D = 0] E[Y0|X = 0,D = 0]

0 0
4 0 0
5 E[Y1|X = 1,D = 1] E[Y0|X = 1,D = 1]

1 1
6 1 1
7 E[Y1|X = 1,D = 0] E[Y0|X = 1,D = 0]

0 1
8 0 1
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 E[Y1|X = 0,D = 1]
E[Y0|X = 0,D = 1]= 1 0

2 E[Y0|X = 0,D = 0] 1 0
3 E[Y1|X = 0,D = 0] E[Y0|X = 0,D = 0]

0 0
4 0 0
5 E[Y1|X = 1,D = 1]

E[Y0|X = 1,D = 1]= 1 1
6 E[Y0|X = 1,D = 0] 1 1
7 E[Y1|X = 1,D = 0] E[Y0|X = 1,D = 0]

0 1
8 0 1

(Y1,Y0)⊥⊥D|X implies that we conditioned on all confounders. The treat-
ment is randomly assigned within each stratum of X :

E[Y0|X = 0,D = 1] = E[Y0|X = 0,D = 0] and

E[Y0|X = 1,D = 1] = E[Y0|X = 1,D = 0]
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 E[Y1|X = 0,D = 1]
E[Y0|X = 0,D = 1]= 1 0

2 E[Y0|X = 0,D = 0] 1 0
3 E[Y1|X = 0,D = 0] = E[Y0|X = 0,D = 0]

0 0
4 E[Y1|X = 0,D = 1] 0 0
5 E[Y1|X = 1,D = 1]

E[Y0|X = 1,D = 1]= 1 1
6 E[Y0|X = 1,D = 0] 1 1
7 E[Y1|X = 1,D = 0] = E[Y0|X = 1,D = 0]

0 1
8 E[Y1|X = 1,D = 1] 0 1

(Y1,Y0)⊥⊥D|X also implies

E[Y1|X = 0,D = 1] = E[Y1|X = 0,D = 0] and

E[Y1|X = 1,D = 1] = E[Y1|X = 1,D = 0]
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What is confounding?

Confounding is the bias caused by common causes of the treatment
and outcome.

I Leads to “spurious correlation.”

In observational studies, the goal is to avoid confounding inherent in
the data.

Pervasive in the social sciences:

I effect of income on voting (confounding: age)
I effect of job training program on employment (confounding:

motivation)
I effect of political institutions on economic development (confounding:

previous economic development)

No unmeasured confounding assumes that we’ve measured all sources
of confounding.
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Big problem

How can we determine if no unmeasured confounding holds if we
didn’t assign the treatment?

Put differently:

I What covariates do we need to condition on?
I What covariates do we need to include in our regressions?

One way, from the assumption itself:

I P[Di = 1|X,Y(1),Y(0)] = P[Di = 1|X]
I Include covariates such that, conditional on them, the treatment

assignment does not depend on the potential outcomes.

Another way: use DAGs and look at back-door paths.
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Backdoor paths and blocking paths

Backdoor path: is a non-causal path from D to Y .

I Would remain if we removed any arrows pointing out of D.

Backdoor paths between D and Y  common causes of D and Y :

D

X

Y

Here there is a backdoor path D ← X → Y , where X is a common
cause for the treatment and the outcome.
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Other types of confounding

D

U X

Y

D is enrolling in a job training program.

Y is getting a job.

U is being motivated

X is number of job applications sent out.

Big assumption here: no arrow from U to Y .

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 25 / 176



Other types of confounding

D

U X

Y

D is exercise.

Y is having a disease.

U is lifestyle.

X is smoking

Big assumption here: no arrow from U to Y .
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What’s the problem with backdoor paths?

D

U X

Y

A path is blocked if:

1 we control for or stratify a non-collider on that path OR
2 we do not control for a collider.

Unblocked backdoor paths  confounding.

In the DAG here, if we condition on X , then the backdoor path is
blocked.
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Not all backdoor paths

D

U1

XX

Y

Conditioning on the posttreatment covariates opens the non-causal
path.

I  selection bias.
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Don’t condition on post-treatment variables

Every time you do, a puppy cries.
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M-bias

D

U1 U2

XX

Y

Not all backdoor paths induce confounding.

This backdoor path is blocked by the collider X that we don’t control
for.

If we control for X  opens the path and induces confounding.

I Sometimes called M-bias.

Controversial because of differing views on what to control for:

I Rubin thinks that M-bias is a “mathematical curiosity” and we should
control for all pretreatment variables

I Pearl and others think M-bias is a real threat.
I See the Elwert and Winship piece for more!
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Backdoor criterion

Can we use a DAG to evaluate no unmeasured confounders?

Pearl answered yes, with the backdoor criterion, which states that the
effect of D on Y is identified if:

1 No backdoor paths from D to Y OR
2 Measured covariates are sufficient to block all backdoor paths from D

to Y .

First is really only valid for randomized experiments.

The backdoor criterion is fairly powerful. Tells us:

I if there is confounding given this DAG,
I if it is possible to remove the confounding, and
I what variables to condition on to eliminate the confounding.

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 31 / 176



Example: Sufficient Conditioning Sets

●

U1
●

U3

● Z1 ●Z2 ●Z3

●

X
●

Z5
●

Y

●

U9

●

U11

●

Z4

●

U2

●

U5

●

U4

●

U6

●U7

●

U10

●

U8

●● ●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

Remove arrows out of X .
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Example: Sufficient Conditioning Sets

●

U1
●

U3

● Z1 ●Z2 ●Z3

●

X
●

Z5
●

Y

●

U9

●

U11

●

Z4

●

U2

●

U5

●

U4

●

U6

●U7

●

U10

●

U8

●● ●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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Example: Sufficient Conditioning Sets

●

U1
●

U3

● Z1 ●Z2 ●Z3

●

X
●

Z5
●

Y
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U9
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Z4
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●●

●●

●●

●
●

●

Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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Example: Sufficient Conditioning Sets

●
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●
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Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 35 / 176



Example: Sufficient Conditioning Sets
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Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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Example: Non-sufficient Conditioning Sets

●
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Recall that paths are blocked by “unconditioned colliders” or conditioned non-colliders
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Example: Non-sufficient Conditioning Sets

●
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●
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Implications (via Vanderweele and Shpitser 2011)

Two common criteria fail here:

1 Choose all pre-treatment covariates
(would condition on C2 inducing M-bias)

2 Choose all covariates which directly cause the treatment and the outcome
(would leave open a backdoor path A← C3 ← U3 → Y .)
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SWIGs

D | d Y (d)

U X

Y

It’s a little hard to see how the backdoor criterion implies no
unmeasured confounders.

I No potential outcomes on this graph!

Richardson and Robins: Single World Intervention Graphs

I Split D node into natural value (D) and intervention value d .
I Let all effects of D take their potential value under intervention Y (d).

Now can see: are D and Y (d) related?

I D ← U → X → Y (d) implies not independent
I Conditioning on X blocks that backdoor path  D⊥⊥Y (d)|X

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 40 / 176



No unmeasured confounders is not testable

No unmeasured confounding places no restrictions on the observed
data. (

Yi (0)
∣∣Di = 1,Xi

)︸ ︷︷ ︸
unobserved

d
=
(
Yi (0)

∣∣Di = 0,Xi

)︸ ︷︷ ︸
observed

Here,
d
= means equal in distribution.

No way to directly test this assumption without the counterfactual
data, which is missing by definition!

With backdoor criterion, you must have the correct DAG.
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Assessing no unmeasured confounders

Can do “placebo” tests, where Di cannot have an effect (lagged
outcomes, etc)

Della Vigna and Kaplan (2007, QJE): effect of Fox News availability
on Republican vote share

I Availability in 2000/2003 can’t affect past vote shares.

Unconfoundedness could still be violated even if you pass this test!
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Alternatives to no unmeasured confounding

Without explicit randomization, we need some way of identifying
causal effects.

No unmeasured confounders ≈ randomized experiment.

I Identification results very similar to experiments.

With unmeasured confounding are we doomed? Maybe not!

Other approaches rely on finding plausibly exogenous variation in
assignment of Di :

I Instrumental variables (randomization + exclusion restriction)
I Over-time variation (diff-in-diff, fixed effects)
I Arbitrary thresholds for treatment assignment (RDD)
I All discussed in the next couple of weeks!
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Summary

Today we discussed issues of identification (with just a dash of
estimation via stratification)

Next class we will talk about estimation and what OLS is doing under
this framework.

Causal inference is hard but worth doing!
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Fun with Censorship

Often you don’t need sophisticated methods to reveal interesting
findings

“Ansolabahere’s Law”: real relationship is visible in a bivariate plot
and remains in a more sophisticated in a statistical model

In other words: all inferences require both visual and mathematical
evidence

Example: King, Pan and Roberts (2013) “How Censorship in China
Allows Government Criticism but Silences Collective Expression”
American Political Science Review

They use very simple (statistical) methods to great effect.

This line of work is one of my favorites.

Sequence of slides that follow courtesy of King, Pan and Roberts
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Chinese Censorship

The largest selective suppression of human expression in history:

implemented manually,

by ≈ 200, 000 workers,

located in government and inside social media firms

Theories of the Goal of Censorship

1 Stop criticism of the state

2 Stop criticism of the state Wrong

3 Stop collective action Right

Either or both could be right or wrong.
(They also censor 2 other smaller categories)

Benefit

?

Huge

Cost

Huge

Small
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Observational Study

Collect 3,674,698 social media posts in 85 topic areas over 6 months

Random sample: 127,283

(Repeat design; Total analyzed: 11,382,221)

 For each post (on a timeline in one of 85 content areas):
I Download content the instant it appears
I (Carefully) revisit each later to determine if it was censored
I Use computer-assisted methods of text analysis (some existing, some

new, all adapted to Chinese)
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Censorship is not Ambiguous: BBS Error Page
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For 2 Unusual Topics: Constant Censorship Effort
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All other topics: Censorship & Post Volume are “Bursty”
0

10
20

30
40

50
60

70

C
ou
nt

Jan Feb Mar Apr May Jun Jul

Count Published
Count Censored Riots in 

 Zengcheng

Unit of analysis:
I volume burst
I (≈ 3 SDs greater

than baseline volume)

They monitored 85 topic
areas (Jan–July 2011)

Found 87 volume bursts
in total

Identified real world
events associated with
each burst

Their hypothesis: The government censors all posts in volume bursts
associated with events with collective action (regardless of how critical or
supportive of the state)
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Observational Test 1: Post Volume

Begin with 87 volume bursts in 85 topics areas

For each burst, calculate change in % censorship inside to outside
each volume burst within topic areas – censorship magnitude

If goal of censorship is to stop collective action, they expect:

1 On average, % censored
should increase during
volume bursts

2 Some bursts (associated
with politically relevant
events) should have
much higher censorship -0.2 0.0 0.2 0.4 0.6 0.8

0
1
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Censorship Magnitude

D
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Observational Test 2: The Event Generating Volume
Bursts

Event classification (each category can be +, −, or neutral comments
about the state)

1 Collective Action Potential Collective Action Potential
I protest or organized crowd formation outside the Internet
I individuals who have organized or incited collective action on the

ground in the past;
I topics related to nationalism or nationalist sentiment that have incited

protest or collective action in the past.

2 Criticism of censors Criticism of censors

3 Pornography Pornography

4 (Other) News

5 Government Policies
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What Types of Events Are Censored?
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What Types of Events Are Censored?

Censorship Magnitude

Popular Book Published in Audio Format
Disney Announced Theme Park
EPA Issues New Rules on Lead
Chinese Solar Company Announces Earnings
China Puts Nuclear Program on Hold
Gov't Increases Power Prices
Jon Hunstman Steps Down as Ambassador to China
News About Iran Nuclear Program
Indoor Smoking Ban Takes Effect
Popular Video Game Released
Education Reform for Migrant Children
Food Prices Rise
U.S. Military Intervention in Libya

Censorship Magnitude

New Laws on Fifty Cent Party
Rush to Buy Salt After Earthquake

Students Throw Shoes at Fang BinXing
Fuzhou Bombing

Localized Advocacy for Environment Lottery
Google is Hacked

Collective Anger At Lead Poisoning in Jiangsu
Ai Weiwei Arrested

Pornography Mentioning Popular Book
Zengcheng Protests

Baidu Copyright Lawsuit
Pornography Disguised as News

Protests in Inner Mongolia

Policies
News
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Censoring Collective Action: Ai Weiwei’s Arrest
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Censoring Collective Action: Protests in Inner Mongolia
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Low Censorship on One Child Policy
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Low Censorship on News: Power Prices
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Where We’ve Been and Where We’re Going...

Last Week
I regression diagnostics

This Week
I Monday:

F experimental Ideal
F identification with measured confounding

I Wednesday:
F regression estimation

Next Week
I identification with unmeasured confounding
I instrumental variables

Long Run
I causality with measured confounding → unmeasured confounding →

repeated data

Questions?
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Regression

David Freedman:

I sometimes have a nightmare about Kepler. Suppose a few of us
were transported back in time to the year 1600, and were invited
by the Emperor Rudolph II to set up an Imperial Department of
Statistics in the court at Prague. Despairing of those circular
orbits, Kepler enrolls in our department. We teach him the
general linear model, least squares, dummy variables, everything.
He goes back to work, fits the best circular orbit for Mars by
least squares, puts in a dummy variable for the exceptional
observation - and publishes. And that’s the end, right there in
Prague at the beginning of the 17th century.
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Regression and Causality

Regression is an estimation strategy that can be used with an
identification strategy to estimate a causal effect

When is regression causal? When the CEF is causal.

This means that the question of whether regression has a causal
interpretation is a question about identification
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Identification under Selection on Observables: Regression

Consider the linear regression of Yi = β0 + τDi + X ′i β + εi .

Given selection on observables, there are mainly three identification
scenarios:

1 Constant treatment effects and outcomes are linear in X

I τ will provide unbiased and consistent estimates of ATE.

2 Constant treatment effects and unknown functional form

I τ will provide well-defined linear approximation to the average causal
response function E[Y |D = 1,X ]− E[Y |D = 0,X ]. Approximation
may be very poor if E[Y |D,X ] is misspecified and then τ may be
biased for the ATE.

3 Heterogeneous treatment effects (τ differs for different values of X )

I If outcomes are linear in X , τ is unbiased and consistent estimator for
conditional-variance-weighted average of the underlying causal effects.
This average is often different from the ATE.
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Identification under Selection on Observables: Regression

Identification Assumption

1 Constant treatment effect: τ = Y1i − Y0i for all i

2 Control outcome is linear in X : Y0i = β0 + X ′i β + εi with εi⊥⊥Xi (no
omitted variables and linearly separable confounding)

Identification Result

Then τATE = E[Y1 − Y0] is identified by a regression of the observed
outcome on the covariates and the treatment indicator
Yi = β0 + τDi + X ′i β + εi
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Ideal Case: Linear Constant Effects Model
Assume constant linear effects and linearly separable confounding:

Yi (d) = Yi = β0 + τDi + ηi

Linearly separable confounding: assume that E[ηi |Xi ] = X ′i β,
which means that ηi = X ′i β + εi where E[εi |Xi ] = 0.

Under this model, (Y1,Y0)⊥⊥D|X implies εi |X⊥⊥D
As a result,

Yi = β0 + τDi + E[ηi ]

= β0 + τDi + X ′i β + E[εi ]

= β0 + τDi + X ′i β

Thus, a regression where Di and Xi are entered linearly can recover
the ATE.
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Implausible  Plausible

Constant effects and linearly separable confounding aren’t very
appealing or plausible assumptions

To understand what happens when they don’t hold, we need to
understand the properties of regression with minimal assumptions:
this is often called an agnostic view of regression.

The Aronow and Miller book is an excellent introduction to the
agnostic view of regression and I recommend checking it out. Here I
will give you just a flavor of it.
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1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Fun With Censorship

4 Regression Estimators

5 Agnostic Regression

6 Regression and Causality

7 Regression Under Heterogeneous Effects

8 Fun with Visualization, Replication and the NYT

9 Appendix
Subclassification
Identification under Random Assignment
Estimation Under Random Assignment
Blocking
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Regression as parametric modeling

Let’s start with the parametric view we have taken thus far.

Gauss-Markov assumptions:

I linearity, i.i.d. sample, full rank Xi , zero conditional mean error,
homoskedasticity.

 OLS is BLUE, plus normality of the errors and we get small sample
SEs.

What is the basic approach here? It is a model for the conditional
distribution of Yi given Xi :

[Yi |Xi ] ∼ N(X ′i β, σ
2)
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Agnostic views on regression

[Yi |Xi ] ∼ N(X ′i β, σ
2)

Above parametric view has strong distributional assumption on Yi .

Properties like BLUE or BUE depend on these assumptions holding.

Alternative: take an agnostic view on regression.

I Use OLS without believing these assumptions.

Lose the distributional assumptions, focus on the conditional
expectation function (CEF):

µ(x) = E[Yi |Xi = x ] =
∑
y

y · P[Yi = y |Xi = x ]
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Justifying linear regression

Define linear regression:

β = arg min
b

E[(Yi − X ′i b)2]

The solution to this is the following:

β = E[XiX
′
i ]
−1E[XiYi ]

Note that the is the population coefficient vector, not the estimator
yet.

In other words, even a non-linear CEF has a “true” linear
approximation, even though that approximation may not be great.
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Regression anatomy

Consider simple linear regression:

(α, β) = arg min
a,b

E
[
(Yi − a− bXi )

2
]

In this case, we can write the population/true slope β as:

β = E[XiX
′
i ]−1E[XiYi ] =

Cov(Yi ,Xi )

Var[Xi ]

With more covariates, β is more complicated, but we can still write it
like this.

Let X̃ki be the residual from a regression of Xki on all the other
independent variables. Then, βk , the coefficient for Xki is:

βk =
Cov(Yi , X̃ki )

Var(X̃ki )
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Justification 1: Linear CEFs

Justification 1: if the CEF is linear, the population regression function
is it. That is, if E [Yi |Xi ] = X ′i b, then b = β.

When would we expect the CEF to be linear? Two cases.

1 Outcome and covariates are multivariate normal.
2 Linear regression model is saturated.

A model is saturated if there are as many parameters as there are
possible combination of the Xi variables.
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Saturated model example

Two binary variables, X1i for marriage status and X2i for having
children.

Four possible values of Xi , four possible values of µ(Xi ):

E [Yi |X1i = 0,X2i = 0] = α

E [Yi |X1i = 1,X2i = 0] = α + β

E [Yi |X1i = 0,X2i = 1] = α + γ

E [Yi |X1i = 1,X2i = 1] = α + β + γ + δ

We can write the CEF as follows:

E [Yi |X1i ,X2i ] = α + βX1i + γX2i + δ(X1iX2i )
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Saturated models example

E [Yi |X1i ,X2i ] = α + βX1i + γX2i + δ(X1iX2i )

Basically, each value of µ(Xi ) is being estimated separately.

I  within-strata estimation.
I No borrowing of information from across values of Xi .

Requires a set of dummies for each categorical variable plus all
interactions.

Or, a series of dummies for each unique combination of Xi .

This makes linearity hold mechanically and so linearity is not an
assumption.
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Saturated model example

Washington (AER) data on the effects of daughters.

We’ll look at the relationship between voting and number of kids
(causal?).

girls <- foreign::read.dta("girls.dta")

head(girls[, c("name", "totchi", "aauw")])

## name totchi aauw

## 1 ABERCROMBIE, NEIL 0 100

## 2 ACKERMAN, GARY L. 3 88

## 3 ADERHOLT, ROBERT B. 0 0

## 4 ALLEN, THOMAS H. 2 100

## 5 ANDREWS, ROBERT E. 2 100

## 6 ARCHER, W.R. 7 0
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Linear model

summary(lm(aauw ~ totchi, data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 61.31 1.81 33.81 <2e-16 ***

## totchi -5.33 0.62 -8.59 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 42 on 1733 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.0408, Adjusted R-squared: 0.0403

## F-statistic: 73.8 on 1 and 1733 DF, p-value: <2e-16
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Saturated model
summary(lm(aauw ~ as.factor(totchi), data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 56.41 2.76 20.42 < 2e-16 ***

## as.factor(totchi)1 5.45 4.11 1.33 0.1851

## as.factor(totchi)2 -3.80 3.27 -1.16 0.2454

## as.factor(totchi)3 -13.65 3.45 -3.95 8.1e-05 ***

## as.factor(totchi)4 -19.31 4.01 -4.82 1.6e-06 ***

## as.factor(totchi)5 -15.46 4.85 -3.19 0.0015 **

## as.factor(totchi)6 -33.59 10.42 -3.22 0.0013 **

## as.factor(totchi)7 -17.13 11.41 -1.50 0.1336

## as.factor(totchi)8 -55.33 12.28 -4.51 7.0e-06 ***

## as.factor(totchi)9 -50.41 24.08 -2.09 0.0364 *

## as.factor(totchi)10 -53.41 20.90 -2.56 0.0107 *

## as.factor(totchi)12 -56.41 41.53 -1.36 0.1745

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 41 on 1723 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.0506, Adjusted R-squared: 0.0446

## F-statistic: 8.36 on 11 and 1723 DF, p-value: 1.84e-14
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Saturated model minus the constant
summary(lm(aauw ~ as.factor(totchi) - 1, data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## as.factor(totchi)0 56.41 2.76 20.42 <2e-16 ***

## as.factor(totchi)1 61.86 3.05 20.31 <2e-16 ***

## as.factor(totchi)2 52.62 1.75 30.13 <2e-16 ***

## as.factor(totchi)3 42.76 2.07 20.62 <2e-16 ***

## as.factor(totchi)4 37.11 2.90 12.79 <2e-16 ***

## as.factor(totchi)5 40.95 3.99 10.27 <2e-16 ***

## as.factor(totchi)6 22.82 10.05 2.27 0.0233 *

## as.factor(totchi)7 39.29 11.07 3.55 0.0004 ***

## as.factor(totchi)8 1.08 11.96 0.09 0.9278

## as.factor(totchi)9 6.00 23.92 0.25 0.8020

## as.factor(totchi)10 3.00 20.72 0.14 0.8849

## as.factor(totchi)12 0.00 41.43 0.00 1.0000

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 41 on 1723 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.587, Adjusted R-squared: 0.584

## F-statistic: 204 on 12 and 1723 DF, p-value: <2e-16
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Compare to within-strata means

The saturated model makes no assumptions about the between-strata
relationships.

Just calculates within-strata means:

c1 <- coef(lm(aauw ~ as.factor(totchi) - 1, data = girls))

c2 <- with(girls, tapply(aauw, totchi, mean, na.rm = TRUE))

rbind(c1, c2)

## 0 1 2 3 4 5 6 7 8 9 10 12

## c1 56 62 53 43 37 41 23 39 1.1 6 3 0

## c2 56 62 53 43 37 41 23 39 1.1 6 3 0

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 77 / 176



Other justifications for OLS

Justification 2: X ′i β is the best linear predictor (in a mean-squared
error sense) of Yi .

I Why? β = arg minb E[(Yi − X ′i b)2]

Justification 3: X ′i β provides the minimum mean squared error linear
approximation to E [Yi |Xi ].

Even if the CEF is not linear, a linear regression provides the best
linear approximation to that CEF.

Don’t need to believe the assumptions (linearity) in order to use
regression as a good approximation to the CEF.

Warning if the CEF is very nonlinear then this approximation could be
terrible!!

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 78 / 176



The error terms

Let’s define the error term: ei ≡ Yi − X ′i β so that:

Yi = X ′i β + [Yi − X ′i β] = X ′i β + ei

Note the residual ei is uncorrelated with Xi :

E[Xiei ] = E[Xi (Yi − X ′i β)]

= E[XiYi ]− E[XiX
′
i β]

= E[XiYi ]− E
[
XiX

′
i E[XiX

′
i ]
−1E[XiYi ]

]
= E[XiYi ]− E[XiX

′
i ]E[XiX

′
i ]−1E[XiYi ]

= E[XiYi ]− E[XiYi ] = 0

No assumptions on the linearity of E[Yi |Xi ].
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OLS estimator

We know the population value of β is:

β = E[XiX
′
i ]
−1E[XiYi ]

How do we get an estimator of this?

Plug-in principle  replace population expectation with sample
versions:

β̂ =

[
1

N

∑
i

XiX
′
i

]−1
1

N

∑
i

XiYi

If you work through the matrix algebra, this turns out to be:

β̂ =
(
X′X

)−1
X′y
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Asymptotic OLS inference

With this representation in hand, we can write the OLS estimator as
follows:

β̂ = β +

[∑
i

XiX
′
i

]−1∑
i

Xiei

Core idea:
∑

i Xiei is the sum of r.v.s so the CLT applies.

That, plus some simple asymptotic theory allows us to say:

√
N(β̂ − β) N(0,Ω)

Converges in distribution to a Normal distribution with mean vector 0
and covariance matrix, Ω:

Ω = E[XiX
′
i ]−1E[XiX

′
i e

2
i ]E[XiX

′
i ]−1.

No linearity assumption needed!
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Estimating the variance

In large samples then:

√
N(β̂ − β) ∼ N(0,Ω)

How to estimate Ω? Plug-in principle again!

Ω̂ =

[∑
i

XiX
′
i

]−1 [∑
i

XiX
′
i ê

2
i

][∑
i

XiX
′
i

]−1

.

Replace ei with its emprical counterpart (residuals) êi = Yi − X ′i β̂.

Replace the population moments of Xi with their sample counterparts.

The square root of the diagonals of this covariance matrix are the
“robust” or Huber-White standard errors.
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Agnostic Statistics

The key insight here is that we can derive estimators under somewhat
weaker assumptions

They still rely heavily on large samples (asymptotic results) and
independent samples.

See Aronow and Miller for much more.
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Regression and causality

Most econometrics textbooks: regression defined without respect to
causality.

But then when is β̂ “biased”? What does this even mean?

The question, then, is when does knowing the CEF tell us something
about causality?

Angrist and Pishke argues that a regression is causal when the CEF it
approximates is causal. Identification is king.

We will show that under certain conditions, a regression of the
outcome on the treatment and the covariates can recover a causal
parameter, but perhaps not the one in which we are interested.
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Linear constant effects model, binary treatment

Now with the benefit of covering agnostic regression, let’s review again the
simple case.

Experiment: with a simple experiment, we can rewrite the consistency
assumption to be a regression formula:

Yi = DiYi (1) + (1− Di )Yi (0)

= Yi (0) + (Yi (1)− Yi (0))Di

= E[Yi (0)] + τDi + (Yi (0)− E[Yi (0)])

= µ0 + τDi + v0
i

Note that if ignorability holds (as in an experiment) for Yi (0), then it
will also hold for v0

i , since E[Yi (0)] is constant. Thus, this satifies the
usual assumptions for regression.
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Now with covariates

Now assume no unmeasured confounders: Yi (d)⊥⊥Di |Xi .

We will assume a linear model for the potential outcomes:

Yi (d) = α + τ · d + ηi

Remember that linearity isn’t an assumption if Di is binary

Effect of Di is constant here, the ηi are the only source of individual
variation and we have E [ηi ] = 0.

Consistency assumption allows us to write this as:

Yi = α + τDi + ηi .
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Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′i γ + νi
New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′i γ + E [νi |Xi ]

= α + τDi + X ′i γ
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Summing up regression with constant effects

Reviewing the assumptions we’ve used:

I no unmeasured confounders
I constant treatment effects
I linearity of the treatment/covariates

Under these, we can run the following regression to estimate the ATE,
τ :

Yi = α + τDi + X ′i γ + νi

Works with continuous or ordinal Di if effect of these variables is truly
linear.
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Heterogeneous effects, binary treatment

Completely randomized experiment:

Yi = DiYi (1) + (1− Di )Yi (0)

= Yi (0) + (Yi (1)− Yi (0))Di

= µ0 + τiDi + (Yi (0)− µ0)

= µ0 + τDi + (Yi (0)− µ0) + (τi − τ) · Di

= µ0 + τDi + εi

Error term now includes two components:

1 “Baseline” variation in the outcome: (Yi (0)− µ0)
2 Variation in the treatment effect, (τi − τ)

We can verify that under experiment, E[εi |Di ] = 0

Thus, OLS estimates the ATE with no covariates.
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Adding covariates

What happens with no unmeasured confounders? Need to condition
on Xi now.

Remember identification of the ATE/ATT using iterated expectations.

ATE is the weighted sum of Conditional Average Treatment Effects
(CATEs):

τ =
∑
x

τ(x) Pr[Xi = x ]

ATE/ATT are weighted averages of CATEs.

What about the regression estimand, τR? How does it relate to the
ATE/ATT?
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Heterogeneous effects and regression

Let’s investigate this under a saturated regression model:

Yi =
∑
x

Bxiαx + τRDi + ei .

Use a dummy variable for each unique combination of Xi :
Bxi = I(Xi = x)

Linear in Xi by construction!
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Investigating the regression coefficient

How can we investigate τR? Well, we can rely on the regression
anatomy:

τR =
Cov(Yi ,Di − E [Di |Xi ])

Var(Di − E [Di |Xi ])

Di − E[Di |Xi ] is the residual from a regression of Di on the full set of
dummies.

With a little work we can show:

τR =
E
[
τ(Xi )(Di − E[Di |Xi ])

2
]

E[(Di − E [Di |Xi ])2]
=

E[τ(Xi )σ
2
d(Xi )]

E[σ2
d(Xi )]

σ2
d(x) = Var[Di |Xi = x ] is the conditional variance of treatment

assignment.
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ATE versus OLS

τR = E[τ(Xi )Wi ] =
∑
x

τ(x)
σ2
d(x)

E[σ2
d(Xi )]

P[Xi = x ]

Compare to the ATE:

τ = E[τ(Xi )] =
∑
x

τ(x)P[Xi = x ]

Both weight strata relative to their size (P[Xi = x ])

OLS weights strata higher if the treatment variance in those strata
(σ2

d(x)) is higher in those strata relative to the average variance
across strata (E[σ2

d(Xi )]).

The ATE weights only by their size.
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Regression weighting

Wi =
σ2
d(Xi )

E[σ2
d(Xi )]

Why does OLS weight like this?

OLS is a minimum-variance estimator  more weight to more precise
within-strata estimates.

Within-strata estimates are most precise when the treatment is evenly
spread and thus has the highest variance.

If Di is binary, then we know the conditional variance will be:

σ2
d(x) = P[Di = 1|Xi = x ] (1− P[Di = 1|Xi = x ])

Maximum variance with P[Di = 1|Xi = x ] = 1/2.
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OLS weighting example
Binary covariate:

Group 1 Group 2

P[Xi = 1] = 0.75 P[Xi = 0] = 0.25

P[Di = 1|Xi = 1] = 0.9 P[Di = 1|Xi = 0] = 0.5

σ2
d(1) = 0.09 σ2

d(0) = 0.25

τ(1) = 1 τ(0) = −1

Implies the ATE is τ = 0.5
Average conditional variance: E[σ2

d(Xi )] = 0.13
 weights for Xi = 1 are: 0.09/0.13 = 0.692, for Xi = 0: 0.25/0.13
= 1.92.

τR = E[τ(Xi )Wi ]

= τ(1)W (1)P[Xi = 1] + τ(0)W (0)P[Xi = 0]

= 1× 0.692× 0.75 +−1× 1.92× 0.25

= 0.039
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When will OLS estimate the ATE?

When does τ = τR?

Constant treatment effects: τ(x) = τ = τR
Constant probability of treatment: e(x) = P[Di = 1|Xi = x ] = e.

I Implies that the OLS weights are 1.

Incorrect linearity assumption in Xi will lead to more bias.
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Other ways to use regression

What’s the path forward?

I Accept the bias (might be relatively small with saturated models)
I Use a different regression approach

Let µd(x) = E[Yi (d)|Xi = x ] be the CEF for the potential outcome
under Di = d .

By consistency and n.u.c., we have µd(x) = E[Yi |Di = d ,Xi = x ].

Estimate a regression of Yi on Xi among the Di = d group.

Then, µ̂d(x) is just a predicted value from the regression for Xi = x .

How can we use this?
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Imputation estimators

Impute the treated potential outcomes with Ŷi (1) = µ̂1(Xi )!

Impute the control potential outcomes with Ŷi (0) = µ̂0(Xi )!

Procedure:

I Regress Yi on Xi in the treated group and get predicted values for all
units (treated or control).

I Regress Yi on Xi in the control group and get predicted values for all
units (treated or control).

I Take the average difference between these predicted values.

More mathematically, look like this:

τimp =
1

N

∑
i

µ̂1(Xi )− µ̂0(Xi )

Sometimes called an imputation estimator.
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Simple imputation estimator

Use predict() from the within-group models on the data from the
entire sample.

Useful trick: use a model on the entire data and model.frame() to
get the right design matrix:

## heterogeneous effects

y.het <- ifelse(d == 1, y + rnorm(n, 0, 5), y)

mod <- lm(y.het ~ d + X)

mod1 <- lm(y.het ~ X, subset = d == 1)

mod0 <- lm(y.het ~ X, subset = d == 0)

y1.imps <- predict(mod1, model.frame(mod))

y0.imps <- predict(mod0, model.frame(mod))

mean(y1.imps - y0.imps)

## [1] 0.61
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Notes on imputation estimators

If µ̂d(x) are consistent estimators, then τimp is consistent for the ATE.

Why don’t people use this?

I Most people don’t know the results we’ve been talking about.
I Harder to implement than vanilla OLS.

Can use linear regression to estimate µ̂d(x) = x ′βd
Recent trend is to estimate µ̂d(x) via non-parametric methods such
as:

I Kernel regression, local linear regression, regression trees, etc
I Easiest is generalized additive models (GAMs)
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Imputation estimator visualization
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Imputation estimator visualization
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Imputation estimator visualization
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Nonlinear relationships

Same idea but with nonlinear relationship between Yi and Xi :
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Nonlinear relationships

Same idea but with nonlinear relationship between Yi and Xi :
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Nonlinear relationships

Same idea but with nonlinear relationship between Yi and Xi :
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Using semiparametric regression
Here, CEFs are nonlinear, but we don’t know their form.

We can use GAMs from the mgcv package to for flexible estimate:

library(mgcv)

mod0 <- gam(y ~ s(x), subset = d == 0)

summary(mod0)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## y ~ s(x)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0225 0.0154 -1.46 0.16

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(x) 6.03 7.08 41.3 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## R-sq.(adj) = 0.909 Deviance explained = 92.8%

## GCV = 0.0093204 Scale est. = 0.0071351 n = 30
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Using GAMs
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Using GAMs
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Using GAMs
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Wait...so what are we actually doing most of the time?
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Conclusions

Regression is mechanically very simple, but philosophically somewhat
complicated

It is a useful descriptive tool for approximating a conditional
expectation function

Once again though, the estimand of interest isn’t necessarily the
regression coefficient.
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Next Week

Causality with Unmeasured Confounding

Reading:
I Fox Chapter 9.8 Instrumental Variables and TSLS
I Angrist and Pishke Chapter 4 Instrumental Variables
I Morgan and Winship Chapter 9 Instrumental Variable Estimators of

Causal Effects
I Optional: Hernan and Robins Chapter 16 Instrumental Variable

Estimation
I Optional: Sovey, Allison J. and Green, Donald P. 2011. “Instrumental

Variables Estimation in Political Science: A Readers’ Guide.” American
Journal of Political Science
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1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Fun With Censorship

4 Regression Estimators

5 Agnostic Regression

6 Regression and Causality

7 Regression Under Heterogeneous Effects

8 Fun with Visualization, Replication and the NYT

9 Appendix
Subclassification
Identification under Random Assignment
Estimation Under Random Assignment
Blocking

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 116 / 176



Visualization in the New York Times
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Alternate Graphs

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 118 / 176



Alternate Graphs
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Alternate Graphs
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Alternate Graphs
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Alternate Graphs
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Alternate Graphs
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Thoughts

Two stories here:

1 Visualization and data coding choices are important

2 The internet is amazing (especially with replication data being
available!)
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This Appendix

The main lecture slides have glossed over some of the details and
assumptions for identification

This appendix contains mathematical results and conditions necessary
to estimate causal effects.

I have also included a section with more details on blocking
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Subclassification Estimator

Identification Result

τATE =

∫ (
E[Y |X ,D = 1]− E[Y |X ,D = 0]

)
dP(X )

τATT =

∫ (
E[Y |X ,D = 1]− E[Y |X ,D = 0]

)
dP(X |D = 1)

Assume X takes on K different cells {X 1, ...,X k , ...,XK}. Then the
analogy principle suggests estimators:

τ̂ATE =
K∑

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
; τ̂ATT =

K∑
k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1

N1

)
Nk is # of obs. and Nk

1 is # of treated obs. in cell k

Ȳ k
1 is mean outcome for the treated in cell k

Ȳ k
0 is mean outcome for the untreated in cell k
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Subclassification by Age (K = 2)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old 28 24 4 3 10

Young 22 16 6 7 10

Total 10 20

What is τ̂ATE =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
?

τ̂ATE = 4 · (10/20) + 6 · (10/20) = 5
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Subclassification by Age (K = 2)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old 28 24 4 3 10

Young 22 16 6 7 10

Total 10 20

What is τ̂ATT =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1
N1

)
?

τ̂ATT = 4 · (3/10) + 6 · (7/10) = 5.4
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Subclassification by Age and Gender (K = 4)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old, Male 28 22 4 3 7

Old, Female 24 0 3

Young, Male 21 16 5 3 4

Young, Female 23 17 6 4 6

Total 10 20

What is τ̂ATE =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

N

)
?

Not identified!
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Subclassification by Age and Gender (K = 4)

Death Rate Death Rate # #
Xk Smokers Non-Smokers Diff. Smokers Obs.

Old, Male 28 22 4 3 7

Old, Female 24 0 3

Young, Male 21 16 5 3 4

Young, Female 23 17 6 4 6

Total 10 20

What is τ̂ATT =
∑K

k=1

(
Ȳ k

1 − Ȳ k
0

)
·
(
Nk

1
N1

)
?

τ̂ATT = 4 · (3/10) + 5 · (3/10) + 6 · (4/10) = 5.1
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Selection Bias

Recall the selection problem when comparing the mean outcomes for the
treated and the untreated:

Problem

E[Y |D = 1]− E[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= E[Y1|D = 1]− E[Y0|D = 0]

= E[Y1 − Y0|D = 1]︸ ︷︷ ︸
ATT

+ {E[Y0|D = 1]− E[Y0|D = 0]}︸ ︷︷ ︸
BIAS

How can we eliminate the bias term?

As a result of randomization, the selection bias term will be zero

The treatment and control group will tend to be similar along all
characteristics (identical in expectation), including the potential
outcomes under the control condition
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Identification Under Random Assignment

Identification Assumption

(Y1,Y0)⊥⊥D (random assignment)

Identification Result

Problem: τATE = E[Y1 − Y0] is unobserved. But given random assignment

E[Y |D = 1] = E[D · Y1 + (1− D) · Y0|D = 1]

= E[Y1|D = 1]

= E[Y1]

E[Y |D = 0] = E[D · Y1 + (1− D) · Y0|D = 0]

= E[Y0|D = 0]

= E[Y0]

τATE = E[Y1 − Y0] = E[Y1]− E[Y0] = E[Y |D = 1]− E[Y |D = 0]︸ ︷︷ ︸
Difference in Means
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Average Treatment Effect (ATE)
Imagine a population with 4 units:

i Y1i Y0i Yi Di

1 3 0 3 1
2 1 1 1 1
3 2 0 0 0
4 2 1 1 0

What is τATE = E[Y1]− E[Y0]?
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Average Treatment Effect (ATE)
Imagine a population with 4 units:

i Y1i Y0i Yi Di

1 3 0 3 1
2 1 1 1 1
3 2 0 0 0
4 2 1 1 0

E[Y1] 2
E[Y0] .5

τATE = E[Y1]− E[Y0] = 2− .5 = 1.5
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Average Treatment Effect (ATE)
Imagine a population with 4 units:

i Y1i Y0i Yi Di

1 3 ? 3 1
2 1 ? 1 1
3 ? 0 0 0
4 ? 1 1 0

E[Y1] ?
E[Y0] ?

What is τATE = E[Y1]− E[Y0]?
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Average Treatment Effect (ATE)
Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 ? 3 1 ?
2 1 ? 1 1 ?
3 ? 0 0 0 ?
4 ? 1 1 0 ?

E[Y1] ?
E[Y0] ?

What is τATE = E[Y1]−E[Y0]? In an experiment, the researcher controls the prob-
ability of assignment to treatment for all units P(Di = 1) and by imposing equal
probabilities we ensure that treatment assignment is independent of the potential
outcomes, i.e. (Y1,Y0)⊥⊥D.
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Average Treatment Effect (ATE)
Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

E[Y1] 2
E[Y0] .5

What is τATE = E[Y1]−E[Y0]? Given that Di is randomly assigned with probability
1/2, we have E[Y |D = 1] = E[Y1|D = 1] = E[Y1].

All possible randomizations with two treated units:

Treated Units: 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4
Average Y |D = 1: 2 2.5 2.5 1.5 1.5 2

So E[Y |D = 1] = E[Y1] = 2
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Average Treatment Effect (ATE)
Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

E[Y1] 2
E[Y0] .5

By the same logic, we have: E[Y |D = 0] = E[Y0|D = 0] = E[Y0] = .5.

Therefore the average treatment effect is identified:

τATE = E[Y1]− E[Y0] = E[Y |D = 1]− E[Y |D = 0]︸ ︷︷ ︸
Difference in Means
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Average Treatment Effect (ATE)
Imagine a population with 4 units:

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

E[Y1] 2
E[Y0] .5

Also since E[Y |D = 0] = E[Y0|D = 0] = E[Y0|D = 1] = E[Y0]
we have that

τATT = E[Y1 − Y0|D = 1] = E[Y1|D = 1]− E[Y0|D = 0]

= E[Y1]− E[Y0] = E[Y1 − Y0]

= τATE
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Identification under Random Assignment

Identification Assumption
(Y1,Y0)⊥⊥D (random assignment)

Identification Result
We have that

E[Y0|D = 0] = E[Y0] = E[Y0|D = 1]

and therefore

E [Y |D = 1]− E[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= E [Y1 − Y0|D = 1]︸ ︷︷ ︸
ATET

+ {E[Y0|D = 1]− E[Y0|D = 0]}︸ ︷︷ ︸
BIAS

= E [Y1 − Y0|D = 1]︸ ︷︷ ︸
ATET

As a result,

E [Y |D = 1]− E[Y |D = 0]︸ ︷︷ ︸
Difference in Means

= τATE = τATET
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Identification in Randomized Experiments

Identification Assumption

Given random assignment (Y1,Y0)⊥⊥D

Identification Result

Let FYd
(y) be the cumulative distribution function (CDF) of Yd , then

FY0 (y) = Pr(Y0 ≤ y) = Pr(Y0 ≤ y |D = 0)

= Pr(Y ≤ y |D = 0).

Similarly,
FY1 (y) = Pr(Y ≤ y |D = 1).

So the effect of the treatment at any quantile θ ∈ [0, 1] is identified:

αθ = Qθ(Y1)− Qθ(Y0) = Qθ(Y |D = 1)− Qθ(Y |D = 0)

where FYd
(Qθ(Yd)) = θ.

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 133 / 176



1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Fun With Censorship

4 Regression Estimators

5 Agnostic Regression

6 Regression and Causality

7 Regression Under Heterogeneous Effects

8 Fun with Visualization, Replication and the NYT

9 Appendix
Subclassification
Identification under Random Assignment
Estimation Under Random Assignment
Blocking

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 134 / 176



Estimation Under Random Assignment
Consider a randomized trial with N individuals.

Estimand

τATE = E[Y1 − Y0] = E[Y |D = 1]− E[Y |D = 0]

Estimator
By the analogy principle we use

τ̂ = Ȳ1 − Ȳ0

Ȳ1 =

∑
Yi · Di∑
Di

=
1

N1

∑
Di=1

Yi ;

Ȳ0 =

∑
Yi · (1− Di )∑

(1− Di )
=

1

N0

∑
Di=0

Yi

with N1 =
∑

i Di and N0 = N − N1.

Under random assignment, τ̂ is an unbiased and consistent estimator of τATE
(E[τ̂ ] = τATE and τ̂N

p→ τATE .)
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Unbiasedness Under Random Assignment

One way of showing that τ̂ is unbiased is to exploit the fact that under
independence of potential outcomes and treatment status, E[D] = N1

N and

E[1− D] = N0
N

Rewrite the estimators as follows:

τ̂ =
1

N

N∑
i=1

(
D · Y1

N1/N
− (1− D) · Y0

N0/N

)
Take expectations with respect to the sampling distribution given by the
design. Under the Neyman model, Y1 and Y0 are fixed and only Di is
random.

E[τ̂ ] =
1

N

N∑
i=1

(
E[D] · Y1

N1/N
− E[(1− D)] · Y0

N0/N

)
=

1

N

N∑
i=1

(Y1 − Y0) = τ
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What is the Estimand?

So far we have emphasized effect estimation, but what about
uncertainty?

In the design based literature, variability in our estimates can arise
from two sources:

1 Sampling variation induced by the procedure that selected the units
into our sample.

2 Variation induced by the particular realization of the treatment variable.

This distinction is important, but often ignored

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 137 / 176



What is the Estimand?

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0 Y1 Y0 Y1 Y0Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0
Y1 Y0

Population Sample
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SATE and PATE

Typically we focus on estimating the average causal effect in a
particular sample: Sample Average Treatment Effect (SATE)

I Uncertainty arises only from hypothetical randomizations.

I Inferences are limited to the sample in our study.

Might care about the Population Average Treatment Effect (PATE)

I Requires precise knowledge about the sampling process that selected
units from the population into the sample.

I Need to account for two sources of variation:

F Variation from the sampling process

F Variation from treatment assignment.

Thus, in general, Var(P̂ATE) > Var(ŜATE).
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Standard Error for Sample ATE

The standard error is the standard deviation of a sampling distribution:

SEθ̂ ≡
√

1
J

∑J
1(θ̂j − θ̂)2 (with J possible random assignments).

i Y1i Y0i Yi Di P(Di = 1)
1 3 0 3 1 2/4
2 1 1 1 1 2/4
3 2 0 0 0 2/4
4 2 1 1 0 2/4

ATE estimates given all possible random assignments with two treated units:

Treated Units: 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4

ÂTE : 1.5 1.5 2 1 1.5 1.5

The average ÂTE is 1.5 and therefore the true standard error is
SE

ÂTE
=

√
1
6

[(1.5− 1.5)2 + (1.5− 1.5)2 + (2− 1.5)2 + (1− 1.5)2 + (1.5− 1.5)2 + (1.5− 1.5)2] ≈ .28
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Standard Error for Sample ATE

Standard Error for Sample ATE
Given complete randomization of N units with N1 assigned to treatment and N0 = N − N1 to
control, the true standard error of the estimated sample ATE is given by

SE
ÂTE

=

√(
N − N1

N − 1

)
Var [Y1i ]

N1
+

(
N − N0

N − 1

)
Var [Y0i ]

N0
+

(
1

N − 1

)
2Cov [Y1i ,Y0i ]

with population variances and covariance

Var [Ydi ] ≡
1

N

N∑
1

(
Ydi −

∑N
1 Ydi

N

)2

= σ2
Yd |Di=d

Cov [Y1i ,Y0i ] ≡
1

N

N∑
1

(
Y1i −

∑N
1 Y1i

N

)(
Y0i −

∑N
1 Y0i

N

)
= σ2

Y1,Y0

Plugging in, we obtain the true standard error of the estimated sample ATE

SE
ÂTE

=

√(
4− 2

4− 1

)
.25

2
+

(
4− 2

4− 1

)
.5

2
+

(
1

4− 1

)
2(−.25) ≈ .28
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Standard Error for Sample ATE

Standard Error for Sample ATE
Given complete randomization of N units with N1 assigned to treatment and N0 = N − N1 to
control, the true standard error of the estimated sample ATE is given by

SE
ÂTE

=

√(
N − N1

N − 1

)
Var [Y1i ]

N1
+

(
N − N0

N − 1

)
Var [Y0i ]

N0
+

(
1

N − 1

)
2Cov [Y1i ,Y0i ]

with population variances and covariance

Var [Ydi ] ≡
1

N

N∑
1

(
Ydi −

∑N
1 Ydi

N

)2

= σ2
Yd |Di=d

Cov [Y1i ,Y0i ] ≡
1

N

N∑
1

(
Y1i −

∑N
1 Y1i

N

)(
Y0i −

∑N
1 Y0i

N

)
= σ2

Y1,Y0

Standard error decreases if:

N grows

Var [Y1], Var [Y0] decrease

Cov [Y1,Y0] decreases
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Conservative Estimator ŜE
ÂTE

Conservative Estimator for Standard Error for Sample ATE

ŜE
ÂTE

=

√
̂Var [Y1i ]

N1
+

̂Var [Y0i ]

N0

with estimators of the sample variances given by

̂Var [Y1i ] ≡
1

N1 − 1

N∑
i|Di=1

(
Y1i −

∑N
i|Di=1 Y1i

N1

)2

= σ̂2
Y |Di=1

̂Var [Y0i ] ≡
1

N0 − 1

N∑
i|Di=0

(
Y0i −

∑N
i|Di=0 Y0i

N0

)2

= σ̂2
Y |Di=0

What about the covariance?
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Conservative Estimator ŜE
ÂTE

Conservative Estimator for Standard Error for Sample ATE

ŜE
ÂTE

=

√
̂Var [Y1i ]

N1
+

̂Var [Y0i ]

N0

with estimators of the sample variances given by

̂Var [Y1i ] ≡
1

N1 − 1

N∑
i|Di=1

(
Y1i −

∑N
i|Di=1 Y1i

N1

)2

= σ̂2
Y |Di=1

̂Var [Y0i ] ≡
1

N0 − 1

N∑
i|Di=0

(
Y0i −

∑N
i|Di=0 Y0i

N0

)2

= σ̂2
Y |Di=0

Conservative compared to the true standard error, i.e. SE
ÂTE

< ŜE
ÂTE

Asymptotically unbiased in two special cases:

if τi is constant (i.e. Cor [Y1,Y0] = 1)

if we estimate standard error of population average treatment effect (Cov [Y1,Y0] is
negligible when we sample from a large population)

Equivalent to standard error for two sample t-test with unequal variances or “robust”
standard error in regression of Y on D
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Proof: SE
ÂTE
≤ ŜE

ÂTE
Upper bound for standard error is when Cor [Y1,Y0] = 1:

Cor [Y1,Y0] =
Cov [Y1,Y0]√
Var [Y1]Var [Y0]

≤ 1⇐⇒ Cov [Y1,Y0] ≤
√

Var [Y1]Var [Y0]

SE
ÂTE

=

√(
N − N1

N − 1

)
Var [Y1]

N1
+

(
N − N0

N − 1

)
Var [Y0]

N0
+

(
1

N − 1

)
2Cov [Y1,Y0]

=

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + 2Cov [Y1,Y0]

)

≤

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + 2

√
Var [Y1]Var [Y0]

)

≤

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + Var [Y1] + Var [Y0]

)

Last step follows from the following inequality

(
√

Var [Y1]−
√

Var [Y0])2 ≥ 0

Var [Y1]− 2
√

Var [Y1]Var [Y0] + Var [Y0] ≥ 0⇐⇒ Var [Y1] + Var [Y0] ≥ 2
√

Var [Y1]Var [Y0]
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Proof: SE
ÂTE
≤ ŜE

ÂTE

SE
ÂTE

≤

√
1

N − 1

(
N0

N1
Var [Y1] +

N1

N0
Var [Y0] + Var [Y1] + Var [Y0]

)

≤

√
N2

0Var [Y1] + N2
1Var [Y0] + N1N0(Var [Y1] + Var [Y0])

(N − 1)N1N0

≤

√
(N2

0 + N1N0)Var [Y1] + (N2
1 + N1N0)Var [Y0]

(N − 1)N1N0

≤

√
(N0 + N1)N0Var [Y1]

(N − 1)N1N0
+

(N1 + N0)N1Var [Y0]

(N − 1)N1N0

≤

√
N Var [Y1]

(N − 1)N1
+

N Var [Y0]

(N − 1)N0

≤

√
N

N − 1

(
Var [Y1]

N1
+

Var [Y0]

(N0)

)

≤

√√√√ N

N − 1

(
V̂ar [Y1]

N1
+

V̂ar [Y0]

(N0)

)

So the estimator for the standard error is conservative.
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Standard Error for Sample ATE

i Y1i Y0i Yi

1 3 0 3
2 1 1 1
3 2 0 0
4 2 1 1

ŜE
ÂTE

estimates given all possible assignments with two treated units:

Treated Units: 1 & 2 1 & 3 1 & 4 2 & 3 2 & 4 3 & 4

ÂTE : 1.5 1.5 2 1 1.5 1.5

ŜE
ÂTE

: 1.11 .5 .71 .71 .5 .5

The average ŜE
ÂTE

is ≈ .67 compared to the true standard error of SE
ÂTE
≈ .28
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Example: Effect of Training on Earnings

Treatment Group:

I N1 = 7, 487
I Estimated Average Earnings Ȳ1: $16, 199
I Estimated Sample Standard deviation σ̂Y |Di=1: $17, 038

Control Group :

I N0 = 3, 717
I Estimated Average Earnings Ȳ0: $15, 040
I Estimated Sample deviation σ̂Y |Di=0: $16, 180

Estimated average effect of training:

I τ̂ATE = Ȳ1 − Ȳ0 = 16, 199− 15, 040 = $1, 159

Estimated standard error for effect of training:

I ŜE
ÂTE

=

√
σ̂2
Y |Di =1

N1
+

σ̂2
Y |Di =0

(N0) =
√

17,0382

7,487 + 16,1802

3,717 ≈ $330

Is this consistent with a zero average treatment effect αATE = 0?
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Testing the Null Hypothesis of Zero Average Effect

Under the null hypothesis H0: τATE = 0, the average potential outcomes in
the population are the same for treatment and control: E[Y1] = E[Y0].

Since units are randomly assigned, both the treatment and control groups
should therefore have the same sample average earnings

However, we in fact observe a difference in mean earnings of $1, 159

What is the probability of observing a difference this large if the true average
effect of the training were zero (i.e. the null hypothesis were true)?
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Testing the Null Hypothesis of Zero Average Effect

Use a two-sample t-test with unequal variances:

t =
τ̂√

σ̂2
Yi |Di=1

N1
+
σ̂2
Yi |Di=0

N0

=
$1, 159√

$17, 0382

7, 487
+

$16, 1802

3, 717

≈ 3.5

I From basic statistical theory, we know that tN
d→ N (0, 1)

I And for a standard normal distribution, the probability of observing a
value of t that is larger than |t| > 1.96 is < .05

I So obtaining a value as high as t = 3.5 is very unlikely under the null
hypothesis of a zero average effect

I We reject the null hypothesis H0: τ0 = 0 against the alternative H1:
τ0 6= 0 at asymptotic 5% significance level whenever |t| > 1.96.

I Inverting the test statistic we can construct a 95% confidence interval

τ̂ATE ± 1.96 · ŜE
ÂTE

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 148 / 176



Testing the Null Hypothesis of Zero Average Effect
R Code

> d <- read.dta("jtpa.dta")

> head(d[,c("earnings","assignmt")])

earnings assignmt

1 1353 1

2 4984 1

3 27707 1

4 31860 1

5 26615 0

>

> meanAsd <- function(x){
+ out <- c(mean(x),sd(x))

+ names(out) <- c("mean","sd")

+ return(out)

+ }
>

> aggregate(earnings~assignmt,data=d,meanAsd)

assignmt earnings.mean earnings.sd

1 0 15040.50 16180.25

2 1 16199.94 17038.85
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Testing the Null Hypothesis of Zero Average Effect

R Code
> t.test(earnings~assignmt,data=d,var.equal=FALSE)

Welch Two Sample t-test

data: earnings by assignmt

t = -3.5084, df = 7765.599, p-value = 0.0004533

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1807.2427 -511.6239

sample estimates:

mean in group 0 mean in group 1

15040.50 16199.94
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Regression to Estimate the Average Treatment Effect

Estimator (Regression)

The ATE can be expressed as a regression equation:

Yi = Di Y1i + (1− Di )Y0i

= Y0i + (Y1i − Y0i )Di

= Ȳ0︸︷︷︸
α

+ (Ȳ1 − Ȳ0)︸ ︷︷ ︸
τReg

Di + {(Yi0 − Ȳ0) + Di · [(Yi1 − Ȳ1)− (Yi0 − Ȳ0)]}︸ ︷︷ ︸
ε

= α + τRegDi + εi
τReg could be biased for τATE in two ways:

I Baseline difference in potential outcomes under control that is
correlated with Di .

I Individual treatment effects τi are correlated with Di

I Under random assignment, both correlations are zero in expectation

Effect heterogeneity implies “heteroskedasticity”, i.e. error variance differs
by values of Di .

I Neyman model imples “robust” standard errors.

Can use regression in experiments without assuming constant effects.
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Regression to Estimate the Average Treatment Effect

R Code
> library(sandwich)

> library(lmtest)

>

> lout <- lm(earnings~assignmt,data=d)

> coeftest(lout,vcov = vcovHC(lout, type = "HC1")) # matches Stata

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15040.50 265.38 56.6752 < 2.2e-16 ***

assignmt 1159.43 330.46 3.5085 0.0004524 ***

---
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Covariates and Experiments

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0

Y1 Y0 Y1 Y0 Y1 Y0Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0

X

X

X

X

X
X

X X X X X X
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Covariates

Randomization is gold standard for causal inference because in
expectation it balances observed but also unobserved characteristics
between treatment and control group.

Unlike potential outcomes, you observe baseline covariates for all
units. Covariate values are predetermined with respect to the
treatment and do not depend on Di .

Under randomization, fX |D(X |D = 1)
d
= fX |D(X |D = 0) (equality in

distribution).

Similarity in distributions of covariates is known as covariate balance.

If this is not the case, then one of two possibilities:
I Randomization was compromised.
I Sampling error (bad luck)

One should always test for covariate balance on important covariates,
using so called “balance checks” (eg. t-tests, F-tests, etc.)
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Covariates and Experiments

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●5

10

15

−3 −2 −1 0 1 2
Covariate

O
ut

co
m

e

0

100

200

300

400

−1.0 −0.5 0.0 0.5 1.0
Covariate Imbalance

co
un

t

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 155 / 176



Regression with Covariates

Practioners often run some variant of the following model with
experimental data:

Yi = α + τDi + Xiβ + εi

Why include Xi when experiments “control” for covariates by design?

I Correct for chance covariate imbalances that indicate that τ̂ may be far
from τATE .

I Increase precision: remove variation in the outcome accounted for by
pre-treatment characteristics, thus making it easier to attribute
remaining differences to the treatment.

ATE estimates are robust to model specification (with sufficient N).
I Never control for post-treatment covariates!
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True ATE
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True ATE and Unadjusted Regression Estimator
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Adjusted Regression Estimator
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E[X]<E[X|D=1], so we expect E[Y_1]<E[Y|D=1]

E[Y|D=1]_reg = E[Y|D=1] + Q(E[X] − E[X|D=1])
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Adjusted Regression Estimator

−2 −1 0 1 2

0
5

10
15

20

x

Y

●

●
● ●

●

●

●
●

●

●
●

●

●
● ●●

●

●●

●

●

●

Y_1
Y_0
Y|D=1
Y|D=0
E[Y_1]
E[Y|D=1]
E[X]
E[X|D=1]
E[Y|D=1]_reg

E[X]<E[X|D=1], so we expect E[Y_1]<E[Y|D=1]

E[Y|D=1]_reg = E[Y|D=1] + Q(E[X] − E[X|D=1])

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 160 / 176



Adjusted Regression Estimator
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Covariate Adjustment with Regression
Freedman (2008) shows that regression of the form:

Yi = α + τregDi + β1Xi + εi

τ̂reg is consistent for ATE and has small sample bias (unless model is true)
I bias is on the order of 1/n and diminishes rapidly as N increases

τ̂reg will not necessarily improve precision if model is incorrect
I But harmful to precision only if more than 3/4 of units are assigned to

one treatment condition or Cov(Di ,Y1 − Y0) larger than Cov(Di ,Y ).

Lin (2013) shows that regression of the form:

Yi = α + τinteractDi + β1 · (Xi − X̄ ) + β2 · Di · (Xi − X̄ ) + εi

τ̂interact is consistent for ATE and has the same small sample bias

Cannot hurt asymptotic precision even if model is incorrect and will likely
increase precision if covariates are predictive of the outcomes.

Results hold for multiple covariates
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Covariate Adjustment with Regression
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Why are Experimental Findings Robust to Alternative
Specifications?

Note the following important property of OLS known as the
Frisch-Waugh-Lovell (FWL) theorem or Anatomy of Regression:

βk =
Cov(Yi , x̃ki )

Var(x̃ki )

where x̃ki is the residual from a regression of xki on all other covariates.
Any multivariate regression coefficient can be expressed as the coefficient
on a bivariate regression between the outcome and the regressor, after
“partialling out” other variables in the model.
Let D̃i be the residuals after regressing Di on Xi . For experimental data,
on average, what will D̃i be equal to?
Since D̃i ≈ Di , multivariate regressions will yield similar results to bivariate
regressions.
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Summary: Covariate Adjustment with Regression

One does not need to believe in the classical linear model (linearity and
constant treatment effects) to tolerate or even advocate OLS covariate
adjustment in randomized experiments (agnostic view of regression)

Covariate adjustment can buy you power (and thus allows for a smaller
sample).

Small sample bias might be a concern in small samples, but usually
swamped by efficiency gains.

Since covariates are controlled for by design, results are typically not model
dependent

Best if covariate adjustment strategy is pre-specified as this rules out fishing.

Always show the unadjusted estimate for transparency.
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Testing in Small Samples: Fisher’s Exact Test

Test of differences in means with large N:

H0 : E[Y1] = E[Y0], H1 : E[Y1] 6= E[Y0] (weak null)

Fisher’s Exact Test with small N:

H0 : Y1 = Y0, H1 : Y1 6= Y0 (sharp null of no effect)

Let Ω be the set of all possible randomization realizations.

We only observe the outcomes, Yi , for one realization of the
experiment. We calculate τ̂ = Ȳ1 − Ȳ0.

Under the sharp null hypothesis, we can compute the value that the
difference in means estimator would have taken under any other
realization, τ̂(ω), for ω ∈ Ω.
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di

1 3 ? 1
2 1 ? 1
3 ? 0 0
4 ? 1 0

τ̂ATE 1.5

What do we know given the sharp null H0 : Y1 = Y0?
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di

1 3 3 1
2 1 1 1
3 0 0 0
4 1 1 0

τ̂ATE 1.5
τ̂(ω) 1.5

Given the full schedule of potential outcomes under the sharp null, we can
compute the null distribution of ATEH0 across all possible randomization.
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di

1 3 3 1 1
2 1 1 1 0
3 0 0 0 1
4 1 1 0 0

τ̂ATE 1.5
τ̂(ω) 1.5 0.5
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di

1 3 3 1 1 1
2 1 1 1 0 0
3 0 0 0 1 0
4 1 1 0 0 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di

1 3 3 1 1 1 0
2 1 1 1 0 0 1
3 0 0 0 1 0 1
4 1 1 0 0 1 0

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di Di

1 3 3 1 1 1 0 0
2 1 1 1 0 0 1 1
3 0 0 0 1 0 1 0
4 1 1 0 0 1 0 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5 -.5

Stewart (Princeton) Week 10: Measured Confounding November 28 and 30, 2016 167 / 176



Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di Di Di

1 3 3 1 1 1 0 0 0
2 1 1 1 0 0 1 1 0
3 0 0 0 1 0 1 0 1
4 1 1 0 0 1 0 1 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5 -.5 -1.5

So Pr(τ̂(ω) ≥ τ̂ATE ) = 2/6 ≈ .33.

Which assumptions are needed?
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Testing in Small Samples: Fisher’s Exact Test

i Y1i Y0i Di Di Di Di Di Di

1 3 3 1 1 1 0 0 0
2 1 1 1 0 0 1 1 0
3 0 0 0 1 0 1 0 1
4 1 1 0 0 1 0 1 1

τ̂ATE 1.5
τ̂(ω) 1.5 0.5 1.5 -1.5 -.5 -1.5

So Pr(α̂(ω) ≥ τ̂ATE ) = 2/6 ≈ .33.

Which assumptions are needed? None! Randomization as “reasoned basis
for causal inference” (Fisher 1935)
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Blocking

Imagine you have data on the units that you are about to randomly
assign. Why leave it to “pure” chance to balance the observed
characteristics?

Idea in blocking is to pre-stratify the sample and then to randomize
separately within each stratum to ensure that the groups start out
with identical observable characteristics on the blocked factors.

You effectively run a separate experiment within each stratum,
randomization will balance the unobserved attributes

Why is this helpful?

I Four subjects with pre-treatment outcomes of {2,2,8,8}
I Divided evenly into treatment and control groups and treatment effect

is zero
I Simple random assignment will place {2,2} and {8,8} together in the

same treatment or control group 1/3 of the time
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Blocking

Imagine you run an experiment where you block on gender. It’s possible to
think about an ATE composed of two seperate block-specific ATEs:

τ =
Nf

Nf + Nm
· τf +

Nm

Nf + Nm
· τm

An unbiased estimator for this quantity will be

τ̂B =
Nf

Nf + Nm
· τ̂f +

Nm

Nf + Nm
· τ̂m

or more generally, if there are J strata or blocks, then

τ̂B =
J∑

j=1

Nj

N
τ̂j
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Blocking

Because the randomizations in each block are independent, the variance of
the blocking estimator is simply (Var(aX + bY ) = a2Var(X ) + b2Var(Y ))
:

Var(τ̂B) =

(
Nf

Nf + Nm

)2

Var(τ̂f ) +

(
Nm

Nf + Nm

)2

Var(τ̂m)

or more generally

Var(τ̂B) =
J∑

j=1

(
Nj

N

)2

Var(τ̂j)
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Blocking with Regression

When analyzing a blocked randomized experiment with OLS and the probability
of receiving treatment is equal across blocks, then OLS with block “fixed effects”
will result in a valid estimator of the ATE:

yi = τDi +
J∑

j=2

βj · Bij + εi

where Bj is a dummy for the j-th block (one omitted as reference category).

If probabilites of treatment, pij = P(Dij = 1), vary by block, then weight each
observation:

wij =

(
1

pij

)
Di +

(
1

1− pij

)
(1− Di )

Why do this? When treatment probabilities vary by block, then OLS will weight
blocks by the variance of the treatment variable in each block. Without
correcting for this, OLS will result in biased estimates of ATE!
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When Does Blocking Help?

Imagine a model for a complete and blocked randomized design:

Yi = α + τCRDi + εi (1)

Yi = α + τBRDi +
J∑

j=2

βjBij + ε∗i (2)

where Bj is a dummy for the j-th block. Then given iid sampling:

Var [τ̂CR ] =
σ2
ε∑n

i=1(Di − D̄)2
with σ̂2

ε =

∑n
i=1 ε̂

2
i

n − 2
=

SSRε̂
n − 2

Var [τ̂BR ] =
σ2
ε∗∑n

i=1(Di − D̄)2(1− R2
j )

with σ̂ε∗
2 =

∑n
i=1 ε̂

∗2

i

n − k − 1
=

SSRε̂∗

n − k − 1

where R2
j is R2 from regression of D on all Bj variables and a constant.
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When Does Blocking Help?

Yi = α + τCRDi + εi (3)

Yi = α + τBRDi +
J∑

j=2

βjBij + ε∗i (4)

where Bk is a dummy for the k-th block. Then given iid sampling:

V [τ̂CR ] =
σ2
ε∑n

i=1(Di − D̄)2
with σ̂2

ε =

∑n
i=1 ε̂

2
i

n − 2
=

SSRε̂
n − 2

V [τ̂BR ] =
σ2
ε∗∑n

i=1(Di − D̄)2(1− R2
j )

with σ̂ε∗
2 =

∑n
i=1 ε̂

∗2

i

n − k − 1
=

SSRε̂∗

n − k − 1

where R2
j is R2 from regression of D on the Bk dummies and a constant.

So when is Var [τ̂BR ] < Var [τ̂CR ]?
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When Does Blocking Help?

Yi = α + τCRDi + εi (5)

Yi = α + τBRDi +
J∑

j=2

βjBij + ε∗i (6)

where Bk is a dummy for the k-th block. Then given iid sampling:

V [τ̂CR ] =
σ2
ε∑n

i=1(Di − D̄)2
with σ̂2

ε =

∑n
i=1 ε̂

2
i

n − 2
=

SSRε̂
n − 2

V [τ̂BR ] =
σ2
ε∗∑n

i=1(Di − D̄)2(1− R2
j )

with σ̂ε∗
2 =

∑n
i=1 ε̂

∗2

i

n − k − 1
=

SSRε̂∗

n − k − 1

where R2
j is R2 from regression of D on the Bk dummies and a constant.

Since R2
j ≈ 0 V [τ̂BR ] < V [τ̂CR ] if

SSR
ε̂∗

n−k−1 <
SSRε̂

n−2
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Blocking

How does blocking help?

I Increases efficiency if the blocking variables predict outcomes (i.e. they
“remove” the variation that is driven by nuisance factors)

I Blocking on irrelevant predictors can burn up degrees of freedom.
I Can help with small sample bias due to “bad” randomization
I Is powerful especially in small to medium sized samples.

What to block on?

I “Block what you can, randomize what you can’t”
I The baseline of the outcome variable and other main predictors.
I Variables desired for subgroup analysis

How to block?

I Stratification
I Pair-matching
I Check: blockTools library.
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Analysis with Blocking

“As ye randomize, so shall ye analyze” (Senn 2004): Need to
account for the method of randomization when performing statistical
analysis.

If using OLS, strata dummies should be included when analyzing
results of stratified randomization.

I If probability of treatment assignment varies across blocks, then weight
treated units by probability of being in treatment and controls by the
probability of being a control.

Failure to control for the method of randomization can result in
incorrect test size.
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