Week 11: Causality with Unmeasured Confounding

Brandon Stewart ${ }^{1}$

Princeton
December 5 and 7, 2016

[^0]
Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- selection on observables and measured confounding
- This Week
- Monday:
^ natural experiments
* classical view of instrumental variables
- Wednesday:
« modern view of instrumental variables
* regression discontinuity
- The Following Week
- repeated observations
- Long Run
- causality with measured confounding \rightarrow unmeasured confounding \rightarrow repeated data

Questions?
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables
(4) Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(D) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix

Unmeasured Confounding

Unmeasured Confounding

- Last week we considered cases of measured confounding

Unmeasured Confounding

- Last week we considered cases of measured confounding

- In this case we block the backdoor path $D \leftarrow X \rightarrow Y$ by conditioning on X.

Unmeasured Confounding

- Last week we considered cases of measured confounding

- In this case we block the backdoor path $D \leftarrow X \rightarrow Y$ by conditioning on X.
- What happens in the general case where X is unobserved?

Unmeasured Confounding

- Last week we considered cases of measured confounding

- In this case we block the backdoor path $D \leftarrow X \rightarrow Y$ by conditioning on X.
- What happens in the general case where X is unobserved?
- Under selection on unobservables we are going to need a different approach which we will talk about over the next two weeks.

Unmeasured Confounding

- Last week we considered cases of measured confounding

- In this case we block the backdoor path $D \leftarrow X \rightarrow Y$ by conditioning on X.
- What happens in the general case where X is unobserved?
- Under selection on unobservables we are going to need a different approach which we will talk about over the next two weeks.
- No Free Lunch \rightsquigarrow we can't get something for nothing, we will need new variables, new assumptions and new approaches.

Unmeasured Confounding

- Last week we considered cases of measured confounding

- In this case we block the backdoor path $D \leftarrow X \rightarrow Y$ by conditioning on X.
- What happens in the general case where X is unobserved?
- Under selection on unobservables we are going to need a different approach which we will talk about over the next two weeks.
- No Free Lunch \rightsquigarrow we can't get something for nothing, we will need new variables, new assumptions and new approaches.
- Goal: give you a feel for what is possible, but note that you will need to do more research if you want to use one of these techniques.

Approaches to Unmeasured Confounding

- Natural Experiments

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series
- Instrumental Variables

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series
- Instrumental Variables
- Regression Discontinuity

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series
- Instrumental Variables
- Regression Discontinuity
- Bounding

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series
- Instrumental Variables
- Regression Discontinuity
- Bounding
- Sensitivity Analysis

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series
- Instrumental Variables
- Regression Discontinuity
- Bounding
- Sensitivity Analysis
- Front Door Adjustment

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series
- Instrumental Variables
- Regression Discontinuity
- Bounding
- Sensitivity Analysis
- Front Door Adjustment
- Synthetic Controls

Approaches to Unmeasured Confounding

- Natural Experiments
- Interrupted Time-Series
- Instrumental Variables
- Regression Discontinuity
- Bounding
- Sensitivity Analysis
- Front Door Adjustment
- Synthetic Controls

Approaches to Unmeasured Confounding

- Natural Experiments (today)
- Interrupted Time-Series (today)
- Instrumental Variables (today and Wednesday)
- Regression Discontinuity (Wednesday)
- Bounding
- Sensitivity Analysis
- Front Door Adjustment
- Synthetic Controls
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding

(2) Natural Experiments

(3) Traditional Instrumental Variables

44 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix

Natural Experiments

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.
- Trickier to analyze than regular experiments

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.
- Trickier to analyze than regular experiments
- we ought to be suspicious of randomization we don't control

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.
- Trickier to analyze than regular experiments
- we ought to be suspicious of randomization we don't control
- nature may not choose exactly the treatment we want

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.
- Trickier to analyze than regular experiments
- we ought to be suspicious of randomization we don't control
- nature may not choose exactly the treatment we want
- not immediately obvious which groups are comparable

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.
- Trickier to analyze than regular experiments
- we ought to be suspicious of randomization we don't control
- nature may not choose exactly the treatment we want
- not immediately obvious which groups are comparable
- valid comparison may not estimate the causal effect of interest

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.
- Trickier to analyze than regular experiments
- we ought to be suspicious of randomization we don't control
- nature may not choose exactly the treatment we want
- not immediately obvious which groups are comparable
- valid comparison may not estimate the causal effect of interest
- When available, an excellent way to capitalize on randomness in the world to make casual inferences.

Natural Experiments

- Broadly speaking an "experiment" where the treatment is randomized but the randomization was not controlled by the researcher.
- Trickier to analyze than regular experiments
- we ought to be suspicious of randomization we don't control
- nature may not choose exactly the treatment we want
- not immediately obvious which groups are comparable
- valid comparison may not estimate the causal effect of interest
- When available, an excellent way to capitalize on randomness in the world to make casual inferences.
- See Dunning (2012) Natural Experiments in the Social Sciences

Caution on terminology

It is worth nothing that the label "natural experiment" is perhaps unfortunate. As we shall see, the social and political forces that give rise to as-if random assignment of interventions are not generally "natural" in the ordinary sense of that term. Second, natural experiments are observational studies, not true experiments, again, because they lack an experimental manipulation. In sum, natural experiments are neither natural nor experiments.
—Dunning (2012) pg 16

Natural Experiment Examples (True Randomization)

Natural Experiment Examples (True Randomization)

Randomness	Focus	Citation
Vietnam draft	labor market	Angrist 1990
randomized quotas	female leadership in Indian village council presidencies	Chattopadhyay \& Duflo 2004
randomized term lengths	tenure in office on legisla- tive performance	Dal Bo \& Rossi 2010
lottery	effect of winnings on polit- ical attitudes	Doherty, Green \& Gerber 2006
randomized ballot order	ballot order effects in CA	Ho \& Imai bo
		2008

Natural Experiment Examples (As If Randomization)

Randomness	Focus	Citation
child abduction by LRA	child soldering affecting political participation	Blattman 2008
election monitor assign- ment	international election monitoring on fraud	Hyde 2007
random shelling by drunk soldiers	indiscriminate violence on rebellion	Lyall 2009
hurricane	study of friendship formu- lation	Phan and Airoldi 2015
2006 Israel-Hezbollah war	stress on unborn babies	Torche and Shwed 2015
Snowden revelations	reading behavior on wikipedia	Penney (2016)
terrorist attacks	perception of immigrants	Legewie 2013

Questions to Ask Yourself

From Sekhon and Titiunik (2012)
(1) "is the proposed treatment-control comparison guaranteed to be valid by the assumed randomization?"

Questions to Ask Yourself

From Sekhon and Titiunik (2012)
(1) "is the proposed treatment-control comparison guaranteed to be valid by the assumed randomization?"
(2) "if not, what is the comparison that is guaranteed by the randomization, and how does this comparison relate to the comparison the researcher wishes to make?

Example

Example from Sekhon and Titiunik (2012) discussion of Ansolabehere, Snyder and Stewart (2000)

FIGURE 1. Illustration of Redistricting Research Designs

(a) Before One-time Redistricting

(b) After One-time Redistricting

Pitfalls

- We still really need theory to guide our thinking

Pitfalls

- We still really need theory to guide our thinking
- Understanding the assignment and causal process is extremely important (was this really random? is the treatment really what I want?)

Pitfalls

- We still really need theory to guide our thinking
- Understanding the assignment and causal process is extremely important (was this really random? is the treatment really what I want?)
- The result only applies to a limited population that we may not care a great deal about.

Pitfalls

- We still really need theory to guide our thinking
- Understanding the assignment and causal process is extremely important (was this really random? is the treatment really what I want?)
- The result only applies to a limited population that we may not care a great deal about.
- Be sure to verify that you "as-if-random" assignment is really random (e.g. placebo tests, balance tests)

Pitfalls

- We still really need theory to guide our thinking
- Understanding the assignment and causal process is extremely important (was this really random? is the treatment really what I want?)
- The result only applies to a limited population that we may not care a great deal about.
- Be sure to verify that you "as-if-random" assignment is really random (e.g. placebo tests, balance tests)
- Convincingly analyzing a natural experiment takes at least as much careful thought not less!

Reasons to Be Excited

Reasons to Be Excited

- Now that you know what to look for you may see more natural experiments out there

Reasons to Be Excited

- Now that you know what to look for you may see more natural experiments out there
- Exogenous randomization can help us make credible causal inferences in places where we never could have run an experiment

Reasons to Be Excited

- Now that you know what to look for you may see more natural experiments out there
- Exogenous randomization can help us make credible causal inferences in places where we never could have run an experiment
- It is often pretty easy to communicate these kinds of methods to non-experts

Reasons to Be Excited

- Now that you know what to look for you may see more natural experiments out there
- Exogenous randomization can help us make credible causal inferences in places where we never could have run an experiment
- It is often pretty easy to communicate these kinds of methods to non-experts
- Salganik (2017) argues that with always-on digital data collection we will be in better shape moving forward to leverage natural experiments as the opportunities arise.

Interrupted Time Series

Interrupted Time Series

- A simple construction often used with natural experiment is the Interrupted Time Series(ITS)

Interrupted Time Series

- A simple construction often used with natural experiment is the Interrupted Time Series(ITS)
- ITS designs convey the basic intuition that when an event abruptly occurs, we can compare results immediately before and immediately afterwards.

Interrupted Time Series

- A simple construction often used with natural experiment is the Interrupted Time Series(ITS)
- ITS designs convey the basic intuition that when an event abruptly occurs, we can compare results immediately before and immediately afterwards.
- We can write this as a model:

$$
Y_{t}=f(t)+D_{t} \beta+\epsilon_{t}
$$

Interrupted Time Series

- A simple construction often used with natural experiment is the Interrupted Time Series(ITS)
- ITS designs convey the basic intuition that when an event abruptly occurs, we can compare results immediately before and immediately afterwards.
- We can write this as a model:

$$
Y_{t}=f(t)+D_{t} \beta+\epsilon_{t}
$$

- The key identifying assumption is that the observed values of y_{t} before the treatment status switches at t^{*} can be used to specify $f(t)$ for the rest of the series used.
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables
(4) Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(D) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix

Motivating Instrumental Variables

Motivating Instrumental Variables

- We saw how to identify and estimate effects under no unmeasured confounding and just now when nature happens to randomize the treatment we want.

Motivating Instrumental Variables

- We saw how to identify and estimate effects under no unmeasured confounding and just now when nature happens to randomize the treatment we want.
- Are we doomed if neither happens?

Motivating Instrumental Variables

- We saw how to identify and estimate effects under no unmeasured confounding and just now when nature happens to randomize the treatment we want.
- Are we doomed if neither happens?
- Instrumental variables (IV) allow us to exploit an exogenous source of variation that drives the treatment but does not otherwise affect the outcome.

Motivating Instrumental Variables

- We saw how to identify and estimate effects under no unmeasured confounding and just now when nature happens to randomize the treatment we want.
- Are we doomed if neither happens?
- Instrumental variables (IV) allow us to exploit an exogenous source of variation that drives the treatment but does not otherwise affect the outcome.
- If we have an instrument, we can deal with unmeasured confounding in the treatment-outcome relationship.

Motivating Instrumental Variables

- We saw how to identify and estimate effects under no unmeasured confounding and just now when nature happens to randomize the treatment we want.
- Are we doomed if neither happens?
- Instrumental variables (IV) allow us to exploit an exogenous source of variation that drives the treatment but does not otherwise affect the outcome.
- If we have an instrument, we can deal with unmeasured confounding in the treatment-outcome relationship.
- It is going to turn out that the same construction will let us deal with non-compliance in experiments.

Graphical Model

Graphical Model

- Z is the instrument, D is the treatment, and U is the unmeasured confounder

Graphical Model

- Z is the instrument, D is the treatment, and U is the unmeasured confounder
- Exclusion restriction
- no common causes of the instrument and the outcome
- no direct or indirect effect of the instrument on the outcome not through the treatment

Graphical Model

- Z is the instrument, D is the treatment, and U is the unmeasured confounder
- Exclusion restriction
- no common causes of the instrument and the outcome
- no direct or indirect effect of the instrument on the outcome not through the treatment
- First-stage relationship Z affects D

Some Examples

- Angrist (1990): Draft lottery as an IV for military service (income as outcome)
- Acemoglu et al (2001): settler mortality as an IV for institutional quality (GDP/capita as outcome)
- Levitt (1997): being an election year as IV for police force size (crime as outcome)
- Miguel, Satayanath \& Sergenti (2004): lagged rainfall as IV for GDP per capita effect (outcome is civil war onset).
- Kern \& Hainmueller (2009): having West German TV reception in East Berlin as an instrument for West German TV watching (outcome is support for the East German regime)
- Nunn \& Wantchekon (2011): historical distance of ethnic group to the coast as a instrument for the slave raiding of that ethnic group (outcome are trust attitudes today)
- Acharya, Blackwell, Sen (2015): cotton suitability as IV for proportion slave in 1860 (outcome is white attitudes today)

Core Idea

Core Idea

The world has randomized something just maybe not the thing you want.

Core Idea

The world has randomized something just maybe not the thing you want.

Subject to an exclusion restriction you may be able to get (approximately) what you want anyway.

Non-Compliance Motivation for Instrumental Variables

Non-Compliance Motivation for Instrumental Variables

Problem

Non-Compliance Motivation for Instrumental Variables

Problem

- Often we cannot force subjects to take specific treatments

Non-Compliance Motivation for Instrumental Variables

Problem

- Often we cannot force subjects to take specific treatments
- Units choosing to take the treatment may differ in unobserved characteristics from units that refrain from doing so

Non-Compliance Motivation for Instrumental Variables

Problem

- Often we cannot force subjects to take specific treatments
- Units choosing to take the treatment may differ in unobserved characteristics from units that refrain from doing so

Example: Non-compliance in JTPA Experiment

	Not Enrolled in Training	Enrolled in Training	Total
Assigned to Control	3,663	54	3,717
Assigned to Training	2,683	4,804	7,487
Total	6,346	4,858	11,204

Two Views on Instrumental Variables

Two Views on Instrumental Variables

(1) Traditional Econometric Framework

- Constant treatment effects
- Linearity in case of a multivalued treatment

Two Views on Instrumental Variables

(1) Traditional Econometric Framework

- Constant treatment effects
- Linearity in case of a multivalued treatment
(2) Potential Outcome Model of IV
- Heterogeneous treatment effects
- Focus in Local Average Treatment Effect (LATE)

The Problem (informal)

The Problem (informal)

Suppose want to know the average effect of X on Y .

The Problem (informal)

Suppose want to know the average effect of X on Y .
Two Problems:

The Problem (informal)

Suppose want to know the average effect of X on Y .
Two Problems:
(1) We may not be able to measure all variables that affect both X and Y .

The Problem (informal)

Suppose want to know the average effect of X on Y .
Two Problems:
(1) We may not be able to measure all variables that affect both X and Y .
(2) We may not be able to measure X without error.

The Problem (informal)

Suppose want to know the average effect of X on Y .
Two Problems:
(1) We may not be able to measure all variables that affect both X and Y .
(2) We may not be able to measure X without error.

Both of these conditions will induce bias in our effect estimates.

The Problem (formal)

The Problem (formal)

Suppose that the classical "exogeneity" condition $\left(E\left[U \mid X_{1}, \ldots, X_{k}\right]=0\right)$ does not hold for the causally interpreted linear model:

The Problem (formal)

Suppose that the classical "exogeneity" condition $\left(E\left[U \mid X_{1}, \ldots, X_{k}\right]=0\right)$ does not hold for the causally interpreted linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{k} X_{i k}+U_{i} \\
& U_{i} \sim_{i . i . d} N\left(0, \sigma_{u}^{2}\right) .
\end{aligned}
$$

The Problem (formal)

Suppose that the classical "exogeneity" condition $\left(E\left[U \mid X_{1}, \ldots, X_{k}\right]=0\right)$ does not hold for the causally interpreted linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{k} X_{i k}+U_{i} \\
& U_{i} \sim_{i . i . d} N\left(0, \sigma_{u}^{2}\right) .
\end{aligned}
$$

This can happen for a number of reasons including:

The Problem (formal)

Suppose that the classical "exogeneity" condition $\left(E\left[U \mid X_{1}, \ldots, X_{k}\right]=0\right)$ does not hold for the causally interpreted linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{k} X_{i k}+U_{i} \\
& U_{i} \sim_{i . i . d} N\left(0, \sigma_{u}^{2}\right) .
\end{aligned}
$$

This can happen for a number of reasons including:

- omitted variables

The Problem (formal)

Suppose that the classical "exogeneity" condition $\left(E\left[U \mid X_{1}, \ldots, X_{k}\right]=0\right)$ does not hold for the causally interpreted linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{k} X_{i k}+U_{i} \\
& U_{i} \sim_{i . i . d} N\left(0, \sigma_{u}^{2}\right) .
\end{aligned}
$$

This can happen for a number of reasons including:

- omitted variables
- measurement error in X

The Problem (formal)

Suppose that the classical "exogeneity" condition $\left(E\left[U \mid X_{1}, \ldots, X_{k}\right]=0\right)$ does not hold for the causally interpreted linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{k} X_{i k}+U_{i} \\
& U_{i} \sim_{i . i . d} N\left(0, \sigma_{u}^{2}\right) .
\end{aligned}
$$

This can happen for a number of reasons including:

- omitted variables
- measurement error in X
- included variables (post-treatment or M-structures)

The Problem (formal)

Suppose that the classical "exogeneity" condition $\left(E\left[U \mid X_{1}, \ldots, X_{k}\right]=0\right)$ does not hold for the causally interpreted linear model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\ldots+\beta_{k} X_{i k}+U_{i} \\
& U_{i} \sim_{i . i . d} N\left(0, \sigma_{u}^{2}\right) .
\end{aligned}
$$

This can happen for a number of reasons including:

- omitted variables
- measurement error in X
- included variables (post-treatment or M-structures)
- simultaneous equations (endogenous feedback loops)

A Potential Solution: Instrumental Variables (IV)

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i} \\
& X_{i}=\gamma_{0}+\gamma_{1} Z_{i}+U_{i}
\end{aligned}
$$

A Potential Solution: Instrumental Variables (IV)

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i} \\
E\left[U_{i} \mid X_{i}\right] \neq 0 \\
X_{i}=\gamma_{0}+\gamma_{1} Z_{i}+U_{i}
\end{gathered}
$$

A Potential Solution: Instrumental Variables (IV)

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i} \\
E\left[U_{i} \mid X_{i}\right] \neq 0 \\
X_{i}=\gamma_{0}+\gamma_{1} Z_{i}+U_{i} \\
E\left[U_{i} \mid Z_{i}\right]=0
\end{gathered}
$$

A Potential Solution: Instrumental Variables (IV)

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+U_{i} \\
E\left[U_{i} \mid X_{i}\right] \neq 0 \\
X_{i}=\gamma_{0}+\gamma_{1} Z_{i}+U_{i} \\
E\left[U_{i} \mid Z_{i}\right]=0 \\
\operatorname{Cov}\left[X_{i}, Z_{i}\right] \neq 0
\end{gathered}
$$

Commonly Used Instrumental Variables

- Assigned status in randomized trials with noncompliance

Commonly Used Instrumental Variables

- Assigned status in randomized trials with noncompliance
- the assigned versus enrolled distinction you explored in the lalonde data

Commonly Used Instrumental Variables

- Assigned status in randomized trials with noncompliance
- the assigned versus enrolled distinction you explored in the lalonde data
- "received" versus "read" the mailing in the social pressure experiment

Commonly Used Instrumental Variables

- Assigned status in randomized trials with noncompliance
- the assigned versus enrolled distinction you explored in the lalonde data
- "received" versus "read" the mailing in the social pressure experiment
- Rainfall, earthquakes, ...

Commonly Used Instrumental Variables

- Assigned status in randomized trials with noncompliance
- the assigned versus enrolled distinction you explored in the lalonde data
- "received" versus "read" the mailing in the social pressure
 experiment
- Rainfall, earthquakes, ...
- ...

The IV Estimator

With our assumed model,

- regressing X on Z identifies γ_{1}

The IV Estimator

With our assumed model,

- regressing X on Z identifies γ_{1}
- regressing Y on Z identifies $\gamma_{1} \cdot \beta_{1}=$

The IV Estimator

With our assumed model,

- regressing X on Z identifies γ_{1}
- regressing Y on Z identifies

$\gamma_{1} \cdot \beta_{1}=$

- $\frac{\widehat{\gamma_{1}} \cdot \beta_{1}}{\widehat{\gamma_{1}}}$ identifies $\frac{\gamma_{1} \cdot \beta_{1}}{\gamma_{1}}=\beta_{1}$

The Problem of Weak Instruments

The Problem of Weak Instruments

Notice that the IV technique uses a ratio $\frac{\gamma_{1} \cdot \beta_{1}}{\gamma_{1}}=\beta_{1}$.

The Problem of Weak Instruments

Notice that the IV technique uses a ratio $\frac{\gamma_{1} \cdot \beta_{1}}{\gamma_{1}}=\beta_{1}$.

Dividing by zero (or near zero) makes things blow up.

The Problem of Weak Instruments

Notice that the IV technique uses a ratio $\frac{\gamma_{1} \cdot \beta_{1}}{\gamma_{1}}=\beta_{1}$.
Dividing by zero (or near zero) makes things blow up.

Therefore, if the instrument is weak ($\gamma_{1} \approx 0$), and our estimates of γ_{1} and $\gamma_{1} \cdot \beta_{1}$ are not perfect, we can get inaccurate estimates of β_{1} :

The Problem of Weak Instruments

Notice that the IV technique uses a ratio $\frac{\gamma_{1} \cdot \beta_{1}}{\gamma_{1}}=\beta_{1}$.
Dividing by zero (or near zero) makes things blow up.

Therefore, if the instrument is weak $\left(\gamma_{1} \approx 0\right)$, and our estimates of γ_{1} and $\gamma_{1} \cdot \beta_{1}$ are not perfect, we can get inaccurate estimates of β_{1} :

- medium sample size \Rightarrow high variance

The Problem of Weak Instruments

Notice that the IV technique uses a ratio $\frac{\gamma_{1} \cdot \beta_{1}}{\gamma_{1}}=\beta_{1}$.
Dividing by zero (or near zero) makes things blow up.

Therefore, if the instrument is weak $\left(\gamma_{1} \approx 0\right)$, and our estimates of γ_{1} and $\gamma_{1} \cdot \beta_{1}$ are not perfect, we can get inaccurate estimates of β_{1} :

- medium sample size \Rightarrow high variance
- small violations of assumptions
\Rightarrow large bias

Preview of Modern Approaches: Relaxing Constant Effects

Preview of Modern Approaches: Relaxing Constant Effects

Suppose we believe that the effects of Z and X are different for different units.

$$
\begin{aligned}
& Y_{i}=\beta_{0 i}+\beta_{1 i} X_{i}+U_{i} \\
& X_{i}=\gamma_{0 i}+\gamma_{1 i} Z_{i}+V_{i}
\end{aligned}
$$

IV Estimator with Heterogeneous Effects

- regressing X on Z now only identifies $\bar{\gamma}_{1}$

IV Estimator with Heterogeneous Effects

- regressing X on Z now only identifies $\bar{\gamma}_{1}$
- regressing Y on Z identifies only $\overline{\gamma_{1} \cdot \beta_{1}}$

IV Estimator with Heterogeneous Effects

- regressing X on Z now only identifies $\bar{\gamma}_{1}$
- regressing Y on Z identifies only $\overline{\gamma_{1} \cdot \beta_{1}}$

- $\overline{\gamma_{1} \cdot \beta_{1}} \neq \overline{\gamma_{1}} \cdot \overline{\beta_{1}}$

IV Estimator with Heterogeneous Effects

- regressing X on Z now only identifies $\bar{\gamma}_{1}$
- regressing Y on Z identifies only $\overline{\gamma_{1} \cdot \beta_{1}}$

- $\overline{\gamma_{1} \cdot \beta_{1}} \neq \overline{\gamma_{1}} \cdot \overline{\beta_{1}}$
- Therefore the IV estimator does not estimate even the average $\beta_{1}\left(\frac{\overline{\gamma_{1} \cdot \beta_{1}}}{\overline{\gamma_{1}}} \neq \overline{\beta_{1}}\right)$

IV Estimator with Heterogeneous Effects

- regressing X on Z now only identifies $\bar{\gamma}_{1}$
- regressing Y on Z identifies only $\overline{\gamma_{1} \cdot \beta_{1}}$

- $\overline{\gamma_{1} \cdot \beta_{1}} \neq \overline{\gamma_{1}} \cdot \overline{\beta_{1}}$
- Therefore the IV estimator does not estimate even the average $\beta_{1}\left(\frac{\overline{\gamma_{1} \cdot \beta_{1}}}{\overline{\gamma_{1}}} \neq \overline{\beta_{1}}\right)$
With additional assumptions ($\gamma_{i 1} \geq 0$ for all i), the IV estimator identifies a weighted average effect of X on Y according the effects of Z on X.

Recall the Omitted variable bias

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- D is the treatment variable (e.g. training)

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- D is the treatment variable (e.g. training)
- D may be endogenous so that $\operatorname{Cov}\left[D, u_{2}\right] \neq 0$

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- D is the treatment variable (e.g. training)
- D may be endogenous so that $\operatorname{Cov}\left[D, u_{2}\right] \neq 0$
- Recall that the OLS estimator for α_{1} is given by:

$$
\hat{\alpha}_{1, O L S}=\frac{\operatorname{Cov}[Y, D]}{V[D]}=
$$

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- D is the treatment variable (e.g. training)
- D may be endogenous so that $\operatorname{Cov}\left[D, u_{2}\right] \neq 0$
- Recall that the OLS estimator for α_{1} is given by:

$$
\hat{\alpha}_{1, O L S}=\frac{\operatorname{Cov}[Y, D]}{V[D]}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, D\right]}{\operatorname{Cov}[D, D]}
$$

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- D is the treatment variable (e.g. training)
- D may be endogenous so that $\operatorname{Cov}\left[D, u_{2}\right] \neq 0$
- Recall that the OLS estimator for α_{1} is given by:

$$
\begin{aligned}
& \hat{\alpha}_{1, O L S}=\frac{\operatorname{Cov}[Y, D]}{V[D]}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, D\right]}{\operatorname{Cov}[D, D]} \\
& \hat{\alpha}_{1, O L S}=\frac{\alpha_{1} \operatorname{Cov}[D, D]+\operatorname{Cov}\left[D, u_{2}\right]}{\operatorname{Cov}[D, D]}
\end{aligned}
$$

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- D is the treatment variable (e.g. training)
- D may be endogenous so that $\operatorname{Cov}\left[D, u_{2}\right] \neq 0$
- Recall that the OLS estimator for α_{1} is given by:

$$
\begin{aligned}
\hat{\alpha}_{1, O L S} & =\frac{\operatorname{Cov}[Y, D]}{V[D]}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, D\right]}{\operatorname{Cov}[D, D]} \\
\hat{\alpha}_{1, \text { OLS }} & =\frac{\alpha_{1} \operatorname{Cov}[D, D]+\operatorname{Cov}\left[D, u_{2}\right]}{\operatorname{Cov}[D, D]} \\
\hat{\alpha}_{1, \text { OLS }} & =\alpha_{1}+\frac{\operatorname{Cov}\left[D, u_{2}\right]}{\operatorname{Cov}[D, D]}
\end{aligned}
$$

Recall the Omitted variable bias

- True model: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- D is the treatment variable (e.g. training)
- D may be endogenous so that $\operatorname{Cov}\left[D, u_{2}\right] \neq 0$
- Recall that the OLS estimator for α_{1} is given by:

$$
\begin{aligned}
\hat{\alpha}_{1, O L S} & =\frac{\operatorname{Cov}[Y, D]}{V[D]}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, D\right]}{\operatorname{Cov}[D, D]} \\
\hat{\alpha}_{1, O L S} & =\frac{\alpha_{1} \operatorname{Cov}[D, D]+\operatorname{Cov}\left[D, u_{2}\right]}{\operatorname{Cov}[D, D]} \\
\hat{\alpha}_{1, O L S} & =\alpha_{1}+\frac{\operatorname{Cov}\left[D, u_{2}\right]}{\operatorname{Cov}[D, D]} \\
E\left[\hat{\alpha}_{1, O L S}\right] & =\alpha_{1}+E\left[\frac{\operatorname{Cov}\left[D, u_{2}\right]}{\operatorname{Cov}[D, D]}\right]
\end{aligned}
$$

so bias depends on correlation between u and D

Instrumental Variable Estimator Assumptions

Instrumental Variable Estimator Assumptions

Imagine we have two equations:

Instrumental Variable Estimator Assumptions

Imagine we have two equations:

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$

Instrumental Variable Estimator Assumptions

Imagine we have two equations:

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- Z is our instrumental variable (e.g. randomized encouragement)
- π_{1} is effect of Z on D

Instrumental Variable Estimator Assumptions

Imagine we have two equations:

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- Z is our instrumental variable (e.g. randomized encouragement)
- π_{1} is effect of Z on D

Instrumental Variable Assumptions:
(1) $\pi_{1} \neq 0$ so Z creates some variation in D (called first stage or relevance)

Instrumental Variable Estimator Assumptions

Imagine we have two equations:

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- Z is our instrumental variable (e.g. randomized encouragement)
- π_{1} is effect of Z on D

Instrumental Variable Assumptions:
(1) $\pi_{1} \neq 0$ so Z creates some variation in D
(called first stage or relevance)
(2) Z is exogenous meaning $\operatorname{Cov}\left[u_{1}, Z\right]=0$ and $\operatorname{Cov}\left[u_{2}, Z\right]=0$.

Instrumental Variable Estimator Assumptions

Imagine we have two equations:

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- Z is our instrumental variable (e.g. randomized encouragement)
- π_{1} is effect of Z on D

Instrumental Variable Assumptions:
(1) $\pi_{1} \neq 0$ so Z creates some variation in D
(called first stage or relevance)
(2) Z is exogenous meaning $\operatorname{Cov}\left[u_{1}, Z\right]=0$ and $\operatorname{Cov}\left[u_{2}, Z\right]=0$. The latter is an exclusion restriction, it implies that the only reason why Z is correlated with Y is through the correlation between Z and D. So Z has no independent effect on Y.

Instrumental Variable Estimator Assumptions

Earnings Y

Training D

Offer to get
 Training Z

Instrumental Variable Estimator Assumptions

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Instrumental Variable Estimator Assumptions

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Based on these IV assumptions we can identify three effects:

Instrumental Variable Estimator Assumptions

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Based on these IV assumptions we can identify three effects:
(1) The first stage effect: Effect of Z on D.

Instrumental Variable Estimator Assumptions

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Based on these IV assumptions we can identify three effects:
(1) The first stage effect: Effect of Z on D.
(2) Reduced form or intent-to-treat effect: Effect of Z on Y.

Instrumental Variable Estimator Assumptions

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Based on these IV assumptions we can identify three effects:
(1) The first stage effect: Effect of Z on D.
(2) Reduced form or intent-to-treat effect: Effect of Z on Y.
(3) The instrumental variable treatment effect: Effect of D on Y, using only the exogenous variation in D that is induced by Z.

First Stage Effect

First Stage Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

First Stage Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

First stage effect: Z on D

$$
\hat{\pi}_{1}=\frac{\operatorname{Cov}[D, Z]}{V[Z]}
$$

First Stage Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

First stage effect: Z on D

$$
\hat{\pi}_{1}=\frac{\operatorname{Cov}[D, Z]}{V[Z]}=\frac{\operatorname{Cov}\left[\pi_{0}+\pi_{1} Z+u_{1}, Z\right]}{\operatorname{Cov}[Z, Z]}
$$

First Stage Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

First stage effect: Z on D

$$
\begin{aligned}
\hat{\pi}_{1} & =\frac{\operatorname{Cov}[D, Z]}{V[Z]}=\frac{\operatorname{Cov}\left[\pi_{0}+\pi_{1} Z+u_{1}, Z\right]}{\operatorname{Cov}[Z, Z]} \\
\hat{\pi}_{1} & =\frac{\pi_{1} \operatorname{Cov}[Z, Z]+\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]}
\end{aligned}
$$

First Stage Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

First stage effect: Z on D

$$
\begin{aligned}
\hat{\pi}_{1} & =\frac{\operatorname{Cov}[D, Z]}{V[Z]}=\frac{\operatorname{Cov}\left[\pi_{0}+\pi_{1} Z+u_{1}, Z\right]}{\operatorname{Cov}[Z, Z]} \\
\hat{\pi}_{1} & =\frac{\pi_{1} \operatorname{Cov}[Z, Z]+\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]} \\
\hat{\pi}_{1} & =\pi_{1}+\frac{\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]}
\end{aligned}
$$

First Stage Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

First stage effect: Z on D

$$
\begin{aligned}
\hat{\pi}_{1} & =\frac{\operatorname{Cov}[D, Z]}{V[Z]}=\frac{\operatorname{Cov}\left[\pi_{0}+\pi_{1} Z+u_{1}, Z\right]}{\operatorname{Cov}[Z, Z]} \\
\hat{\pi}_{1} & =\frac{\pi_{1} \operatorname{Cov}[Z, Z]+\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]} \\
\hat{\pi}_{1} & =\pi_{1}+\frac{\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]} \\
E\left[\hat{\pi}_{1}\right] & =\pi_{1}+E\left[\frac{\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]}\right.
\end{aligned}
$$

First Stage Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

First stage effect: Z on D

$$
\begin{aligned}
\hat{\pi}_{1} & =\frac{\operatorname{Cov}[D, Z]}{V[Z]}=\frac{\operatorname{Cov}\left[\pi_{0}+\pi_{1} Z+u_{1}, Z\right]}{\operatorname{Cov}[Z, Z]} \\
\hat{\pi}_{1} & =\frac{\pi_{1} \operatorname{Cov}[Z, Z]+\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]} \\
\hat{\pi}_{1} & =\pi_{1}+\frac{\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]} \\
E\left[\hat{\pi}_{1}\right] & =\pi_{1}+E\left[\frac{\operatorname{Cov}\left[Z, u_{1}\right]}{\operatorname{Cov}[Z, Z]}\right]=\pi_{1}
\end{aligned}
$$

$\hat{\pi}_{1}$ is consistent since $\operatorname{Cov}\left[u_{1}, Z\right]=0$

First Stage Effect in JTPA

First stage effect: Z on $D: \hat{\pi}_{1}=\frac{\operatorname{Cov}[D, Z]}{V[Z]}$
R Code
> cov(d[,c("earnings","training","assignmt")])
earnings training assignmt
earnings $2.811338 \mathrm{e}+08685.5254685257 .0625061$
training $6.855255 e+02 \quad 0.2456123 \quad 0.1390407$
$\begin{array}{llll}\text { assignmt } 2.570625 \mathrm{e}+02 \quad 0.1390407 & 0.221713\end{array}$
R Code
> 0.1390407/0.2217139
[1] 0.6271177

First Stage Effect in JTPA

R Code
> summary(lm(training ${ }^{\sim}$ assignmt,data=d))

Call:
$\operatorname{lm}(f o r m u l a=$ training \sim assignmt, data $=d$)

Residuals:

Min	1Q	Median	3Q	Max
-0.64165	-0.01453	-0.01453	0.35835	0.98547

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 0.014528 $0.0065292 .2250 .0261 *$ assignmt $0.6271180 .007987 \quad 78.522<2 \mathrm{e}-16$ ***

Signif. codes: 0 *** $0.001 * * 0.01 * 0.05$. 0.11
Residual standard error: 0.398 on 11202 degrees of freedom Multiple R-squared: 0.355, Adjusted R-squared: 0.355
F-statistic: 6166 on 1 and 11202 DF, p-value: < $2.2 \mathrm{e}-1$

Reduced Form/Intent-to-treat Effect

Reduced Form/Intent-to-treat Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Reduced Form/Intent-to-treat Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Reduced Form/Intent-to-treat Effect: Z on Y : Plug first into second stage:

$$
Y=\alpha_{0}+\alpha_{1}\left(\pi_{0}+\pi_{1} Z+u_{1}\right)+u_{2}
$$

Reduced Form/Intent-to-treat Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Reduced Form/Intent-to-treat Effect: Z on Y : Plug first into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1}\left(\pi_{0}+\pi_{1} Z+u_{1}\right)+u_{2} \\
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right)
\end{aligned}
$$

Reduced Form/Intent-to-treat Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Reduced Form/Intent-to-treat Effect: Z on Y : Plug first into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1}\left(\pi_{0}+\pi_{1} Z+u_{1}\right)+u_{2} \\
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$.

Reduced Form/Intent-to-treat Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Reduced Form/Intent-to-treat Effect: Z on Y : Plug first into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1}\left(\pi_{0}+\pi_{1} Z+u_{1}\right)+u_{2} \\
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Note that

$$
\hat{\gamma}_{1}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}\left[\gamma_{0}+\gamma_{1} Z+u_{3}, Z\right]}{\operatorname{Cov}[Z, Z]}
$$

Reduced Form/Intent-to-treat Effect

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Reduced Form/Intent-to-treat Effect: Z on Y : Plug first into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1}\left(\pi_{0}+\pi_{1} Z+u_{1}\right)+u_{2} \\
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Note that

$$
\begin{aligned}
\hat{\gamma}_{1} & =\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}\left[\gamma_{0}+\gamma_{1} Z+u_{3}, Z\right]}{\operatorname{Cov}[Z, Z]} \\
E\left[\hat{\gamma}_{1}\right] & =\gamma_{1}+E\left[\frac{\operatorname{Cov}\left[Z, u_{3}\right]}{\operatorname{Cov}[Z, Z]}\right]=\gamma_{1}
\end{aligned}
$$

$\hat{\gamma}_{1}$ is consistent since $\operatorname{Cov}\left[u_{1}, Z\right]=0$ and $\operatorname{Cov}\left[u_{2}, Z\right]=0$ implies $\operatorname{Cov}\left[u_{3}, Z\right]=0$

Reduced Form/Intent-to-treat Effect

R Code
> summary (lm(earnings ${ }^{\sim}$ assignmt, data=d))

Call:
$\operatorname{lm}(f o r m u l a=$ earnings \sim assignmt, data $=d$)

Residuals:

Min	1Q	Median	3Q	Max
-16200	-13803	-4817	8950	139560

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) 15040.5 $274.954 .716<2 e-16 * * *$
$\begin{array}{lllll}\text { assignmt } \quad 1159.4 & 336.3 & 3.448 & 0.000567 \text { *** }\end{array}$
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
Residual standard error: 16760 on 11202 degrees of freedom Multiple R-squared: 0.00106, Adjusted R-squared: 0.000971
F-statistic: 11.89 on 1 and 11202 DF, p-value: 0.000566

Instrumental Variable Effect: Wald Estimator

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[\nu_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
Y=\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right)
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $\boldsymbol{Y}=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z] / \operatorname{Cov}[Z, Z]}{\operatorname{Cov}[D, Z] / \operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\begin{aligned}
& \alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z] / \operatorname{Cov}[Z, Z]}{\operatorname{Cov}[D, Z] / \operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]} \\
& \hat{\alpha}_{1}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}
\end{aligned}
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\begin{aligned}
& \alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z] / \operatorname{Cov}[Z, Z]}{\operatorname{Cov}[D, Z] / \operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]} \\
& \hat{\alpha}_{1}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\frac{\alpha_{1} \operatorname{Cov}[D, Z]+\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=
\end{aligned}
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\begin{aligned}
& \alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z] / \operatorname{Cov}[Z, Z]}{\operatorname{Cov}[D, Z] / \operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]} \\
& \hat{\alpha}_{1}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\frac{\alpha_{1} \operatorname{Cov}[D, Z]+\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\alpha_{1}+\frac{\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}
\end{aligned}
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\begin{aligned}
& \alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z] / \operatorname{Cov}[Z, Z]}{\operatorname{Cov}[D, Z] / \operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]} \\
& \hat{\alpha}_{1}=\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\frac{\alpha_{1} \operatorname{Cov}[D, Z]+\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\alpha_{1}+\frac{\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}
\end{aligned}
$$

$$
E\left[\hat{\alpha}_{1}\right]=
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\begin{aligned}
\alpha_{1} & =\frac{\gamma_{1}}{\pi_{1}}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z] / \operatorname{Cov}[Z, Z]}{\operatorname{Cov}[D, Z] / \operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]} \\
\hat{\alpha}_{1} & =\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\frac{\alpha_{1} \operatorname{Cov}[D, Z]+\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\alpha_{1}+\frac{\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]} \\
E\left[\hat{\alpha}_{1}\right] & =\alpha_{1}+E\left[\frac{\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}\right]
\end{aligned}
$$

Instrumental Variable Effect: Wald Estimator

- Second Stage: $Y=\alpha_{0}+\alpha_{1} D+u_{2}$
- First Stage: $D=\pi_{0}+\pi_{1} Z+u_{1}$
- IV assumptions: $\operatorname{Cov}\left[u_{1}, Z\right]=0, \pi_{1} \neq 0$, and $\operatorname{Cov}\left[u_{2}, Z\right]=0$

IV Effect: X on Y using exogenous variation in D that is induced by Z. Recall

$$
\begin{aligned}
Y & =\left(\alpha_{0}+\alpha_{1} \pi_{0}\right)+\left(\alpha_{1} \pi_{1}\right) Z+\left(\alpha_{1} u_{1}+u_{2}\right) \\
Y & =\gamma_{0}+\gamma_{1} Z+u_{3}
\end{aligned}
$$

where $\gamma_{0}=\alpha_{0}+\alpha_{1} \pi_{0}, \gamma_{1}=\alpha_{1} \pi_{1}$, and $u_{3}=\alpha_{1} u_{1}+u_{2}$. Given this, we can identify α_{1} :

$$
\begin{aligned}
\alpha_{1} & =\frac{\gamma_{1}}{\pi_{1}}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z] / \operatorname{Cov}[Z, Z]}{\operatorname{Cov}[D, Z] / \operatorname{Cov}[Z, Z]}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]} \\
\hat{\alpha}_{1} & =\frac{\operatorname{Cov}\left[\alpha_{0}+\alpha_{1} D+u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\frac{\alpha_{1} \operatorname{Cov}[D, Z]+\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}=\alpha_{1}+\frac{\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]} \\
E\left[\hat{\alpha}_{1}\right] & =\alpha_{1}+E\left[\frac{\operatorname{Cov}\left[u_{2}, Z\right]}{\operatorname{Cov}[D, Z]}\right]
\end{aligned}
$$

$\hat{\alpha}_{1}$ is consistent if $\operatorname{Cov}\left[u_{2}, Z\right]=0$ but has a bias which decreases with instrument strength.

Instrumental Variable Effect: Wald Estimator

$$
\text { Instrumental Variable Effect: } \alpha_{1}=\frac{\text { Effect of } Z \text { on } Y}{\text { Effect of } Z \text { on } D}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

R Code

```
> cov(d[,c("earnings","training","assignmt")])
    earnings training assignmt
earnings 2.811338e+08 685.5254685 257.0625061
training 6.855255e+02 0.2456123 0.1390407
assignmt 2.570625e+02 0.1390407 0.221713
```

 R Code
 > 257.0625061/0.1390407
[1] 1848.829

Instrumental Variable Effect: Two Stage Least Squares

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:
(1) Fit first stage and obtain fitted values $\hat{D}=\hat{\pi}_{0}+\hat{\pi}_{1} Z$

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:
(1) Fit first stage and obtain fitted values $\hat{D}=\hat{\pi}_{0}+\hat{\pi}_{1} Z$
(2) Plug into second stage:

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:
(1) Fit first stage and obtain fitted values $\hat{D}=\hat{\pi}_{0}+\hat{\pi}_{1} Z$
(2) Plug into second stage:

$$
Y=\alpha_{0}+\alpha_{1} \hat{D}+u_{2}
$$

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:
(1) Fit first stage and obtain fitted values $\hat{D}=\hat{\pi}_{0}+\hat{\pi}_{1} Z$
(2) Plug into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1} \hat{D}+u_{2} \\
Y & =\alpha_{0}+\alpha_{1}\left(\hat{\pi}_{0}+\hat{\pi}_{1} Z\right)+u_{2}
\end{aligned}
$$

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:
(1) Fit first stage and obtain fitted values $\hat{D}=\hat{\pi}_{0}+\hat{\pi}_{1} Z$
(2) Plug into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1} \hat{D}+u_{2} \\
Y & =\alpha_{0}+\alpha_{1}\left(\hat{\pi}_{0}+\hat{\pi}_{1} Z\right)+u_{2} \\
Y & =\left(\alpha_{0}+\alpha_{1} \hat{\pi}_{0}\right)+\alpha_{1}\left(\hat{\pi}_{1} Z\right)+u_{2}
\end{aligned}
$$

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:
(1) Fit first stage and obtain fitted values $\hat{D}=\hat{\pi}_{0}+\hat{\pi}_{1} Z$
(2) Plug into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1} \hat{D}+u_{2} \\
Y & =\alpha_{0}+\alpha_{1}\left(\hat{\pi}_{0}+\hat{\pi}_{1} Z\right)+u_{2} \\
Y & =\left(\alpha_{0}+\alpha_{1} \hat{\pi}_{0}\right)+\alpha_{1}\left(\hat{\pi}_{1} Z\right)+u_{2}
\end{aligned}
$$

- α_{1} is solely identified based on variation in D that comes from Z

Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

$$
\alpha_{1}=\frac{\gamma_{1}}{\pi_{1}}=\frac{\operatorname{Cov}[Y, Z]}{\operatorname{Cov}[D, Z]}
$$

is numerically equivalent to the following two step procedure:
(1) Fit first stage and obtain fitted values $\hat{D}=\hat{\pi}_{0}+\hat{\pi}_{1} Z$
(2) Plug into second stage:

$$
\begin{aligned}
Y & =\alpha_{0}+\alpha_{1} \hat{D}+u_{2} \\
Y & =\alpha_{0}+\alpha_{1}\left(\hat{\pi}_{0}+\hat{\pi}_{1} Z\right)+u_{2} \\
Y & =\left(\alpha_{0}+\alpha_{1} \hat{\pi}_{0}\right)+\alpha_{1}\left(\hat{\pi}_{1} Z\right)+u_{2}
\end{aligned}
$$

- α_{1} is solely identified based on variation in D that comes from Z
- Point estimates from second regression are equivalent to IV estimator, the standard errors are not quite correct since they ignore the estimation uncertainty in $\hat{\pi}_{0}$ and $\hat{\pi}_{1}$.

Instrumental Variable Effect: Two Stage Least Squares

R Code

```
> training_hat <- lm(training~ assignmt,data=d)$fitted
> summary(lm(earnings_~training_hat,data=d))
Call:
lm(formula = earnings ~ training_hat, data = d)
Residuals:
Min 1Q Median 
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 15013.6 281.3 53.375 < 2e-16 ***
training_hat 1848.8 536.2 3.448 0.000567 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 16760 on 11202 degrees of freedom
Multiple R-squared: 0.00106, Adjusted R-squared: 0.000971
F-statistic: 11.89 on 1 and 11202 DF, p-value: 0.0005669
```


Instrumental Variable Effect: Two Stage Least Squares

```
                                    R Code
```

```
> library(AER)
```

> library(AER)
> summary(ivreg(earnings ~ training | assignmt,data = d))
> summary(ivreg(earnings ~ training | assignmt,data = d))
Call:
Call:
ivreg(formula = earnings ~ training | assignmt, data = d)
ivreg(formula = earnings ~ training | assignmt, data = d)
Residuals:
Residuals:
Min 1Q Median 3Q Max
Min 1Q Median 3Q Max
-16862 -13716 -4943 8834 140746
-16862 -13716 -4943 8834 140746
Coefficients:
Coefficients:
Estimate Std. Error t value Pr (>|t|)
Estimate Std. Error t value Pr (>|t|)
(Intercept) 15013.6 280.6 53.508 < 2e-16 ***
(Intercept) 15013.6 280.6 53.508 < 2e-16 ***
training 1848.8 534.9 3.457 0.000549 ***
training 1848.8 534.9 3.457 0.000549 ***
-
Residual standard error: 16720 on 11202 degrees of freedom
Multiple R-Squared: 0.00603, Adjusted R-squared: 0.005941
Wald test: 11.95 on 1 and 11202 DF, p-value: 0.0005491

```

\section*{Judging the Credibility of IV Estimates}

\section*{Judging the Credibility of IV Estimates}
- The probability limit of the IV estimator is given by:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma^{u_{2}}}{\sigma^{D}}
\]
so to obtain consistent estimates the instrument \(Z\) must be:

\section*{Judging the Credibility of IV Estimates}
- The probability limit of the IV estimator is given by:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma^{u_{2}}}{\sigma^{D}}
\]
so to obtain consistent estimates the instrument \(Z\) must be:
- Relevant: \(\operatorname{Cov}(Z, D) \neq 0\) (testable)

\section*{Judging the Credibility of IV Estimates}
- The probability limit of the IV estimator is given by:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma^{u_{2}}}{\sigma^{D}}
\]
so to obtain consistent estimates the instrument \(Z\) must be:
- Relevant: \(\operatorname{Cov}(Z, D) \neq 0\) (testable)
- If \(\operatorname{Cov}(Z, D)\) is small, the instrument is weak. We get consistency in asymptotia, but in small (finite) samples we can get strong bias even if instrument is perfectly exogenous

\section*{Judging the Credibility of IV Estimates}
- The probability limit of the IV estimator is given by:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma^{u_{2}}}{\sigma^{D}}
\]
so to obtain consistent estimates the instrument \(Z\) must be:
- Relevant: \(\operatorname{Cov}(Z, D) \neq 0\) (testable)
- If \(\operatorname{Cov}(Z, D)\) is small, the instrument is weak. We get consistency in asymptotia, but in small (finite) samples we can get strong bias even if instrument is perfectly exogenous
- Exogenous: \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) (untestable)

\section*{Judging the Credibility of IV Estimates}
- The probability limit of the IV estimator is given by:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma^{u_{2}}}{\sigma^{D}}
\]
so to obtain consistent estimates the instrument \(Z\) must be:
- Relevant: \(\operatorname{Cov}(Z, D) \neq 0\) (testable)
- If \(\operatorname{Cov}(Z, D)\) is small, the instrument is weak. We get consistency in asymptotia, but in small (finite) samples we can get strong bias even if instrument is perfectly exogenous
- Exogenous: \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) (untestable)
- If \(Z\) has an independent effect on \(Y\) other than through \(D\) we have \(\operatorname{Cov}\left(Z, u_{2}\right) \neq 0\) and estimates are inconsistent

\section*{Judging the Credibility of IV Estimates}
- The probability limit of the IV estimator is given by:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma^{u_{2}}}{\sigma^{D}}
\]
so to obtain consistent estimates the instrument \(Z\) must be:
- Relevant: \(\operatorname{Cov}(Z, D) \neq 0\) (testable)
- If \(\operatorname{Cov}(Z, D)\) is small, the instrument is weak. We get consistency in asymptotia, but in small (finite) samples we can get strong bias even if instrument is perfectly exogenous
- Exogenous: \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) (untestable)
- If \(Z\) has an independent effect on \(Y\) other than through \(D\) we have \(\operatorname{Cov}\left(Z, u_{2}\right) \neq 0\) and estimates are inconsistent
- Even small violations can lead to significant large sample bias unless instruments are strong

\section*{Judging the Credibility of IV Estimates}
- The probability limit of the IV estimator is given by:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma^{u_{2}}}{\sigma^{D}}
\]
so to obtain consistent estimates the instrument \(Z\) must be:
- Relevant: \(\operatorname{Cov}(Z, D) \neq 0\) (testable)
- If \(\operatorname{Cov}(Z, D)\) is small, the instrument is weak. We get consistency in asymptotia, but in small (finite) samples we can get strong bias even if instrument is perfectly exogenous
- Exogenous: \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) (untestable)
- If \(Z\) has an independent effect on \(Y\) other than through \(D\) we have \(\operatorname{Cov}\left(Z, u_{2}\right) \neq 0\) and estimates are inconsistent
- Even small violations can lead to significant large sample bias unless instruments are strong
- Failure of either condition is a problem! But both conditions can be hard to satisfy at the same time. There often is a tradeoff.

\section*{Instrumental Variable Examples}
\begin{tabular}{|l|l|l|l|}
\hline Study & Outcome & Treatment & Instrument \\
\hline \begin{tabular}{l} 
Angrist and Evans \\
(1998)
\end{tabular} & Earnings & \begin{tabular}{l} 
More than 2 \\
Children
\end{tabular} & \begin{tabular}{l} 
Multiple Second \\
Birth (Twins)
\end{tabular} \\
\hline \begin{tabular}{l} 
Angrist and Evans \\
(1998)
\end{tabular} & Earnings & \begin{tabular}{l} 
More than 2 \\
Children
\end{tabular} & \begin{tabular}{l} 
First Two Children \\
are Same Sex
\end{tabular} \\
\hline Levitt (1997) & Crime Rates & \begin{tabular}{l} 
Number of \\
Policemen
\end{tabular} & Mayoral Elections \\
\hline \begin{tabular}{l} 
Angrist and Krueger \\
(1991)
\end{tabular} & Earnings & Years of Schooling & Quarter of Birth \\
\hline Angrist (1990) & Earnings & Veteran Status & \begin{tabular}{l} 
Vietnam Draft \\
Lottery
\end{tabular} \\
\hline \begin{tabular}{l} 
Miguel, Satyanath \\
and Sergenti (2004)
\end{tabular} & Civil War Onset & GDP per capita & Lagged Rainfall \\
\hline \begin{tabular}{l} 
Acemoglu, Johnson \\
and Robinson (2001)
\end{tabular} & \begin{tabular}{l} 
Economic \\
performance
\end{tabular} & Religiosity & GDP per capita \\
\hline \begin{tabular}{l} 
Cleary and Barro \\
(2006)
\end{tabular} & \begin{tabular}{l} 
Distance from \\
Equator
\end{tabular} \\
\hline
\end{tabular}

\section*{Exogenous, but Weak Instruments}

\section*{Exogenous, but Weak Instruments}
- In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous

\section*{Exogenous, but Weak Instruments}
- In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous
- Because of sampling variability in first stage estimation of fitted values, some part of the correlation between errors in first and second stage seeps into 2SLS estimates (correlation disappears in large samples)

\section*{Exogenous, but Weak Instruments}
- In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous
- Because of sampling variability in first stage estimation of fitted values, some part of the correlation between errors in first and second stage seeps into 2SLS estimates (correlation disappears in large samples)
- Finite sample bias can be considerable (e.g., 20-30\%), even when the sample size is over 100,000 if the instrument is weak

\section*{Exogenous, but Weak Instruments}
- In contrast to OLS, the IV estimator is not unbiased in small (finite) samples even when instrument is perfectly exogenous
- Because of sampling variability in first stage estimation of fitted values, some part of the correlation between errors in first and second stage seeps into 2SLS estimates (correlation disappears in large samples)
- Finite sample bias can be considerable (e.g., 20-30\%), even when the sample size is over 100,000 if the instrument is weak
- Relative bias of \(\alpha_{D, I V}\) versus \(\alpha_{D, O L S}\) is approximately \(1 / F\) where \(F\) is the \(F\)-statistic for testing \(H_{0}: \pi_{Z}=0\), i.e. partial effect of \(Z\) on \(D\) is zero (or against joint zero for multiple instruments)

\section*{Exogenous, but Weak Instruments}
- Adding instruments increases the relevance of the instrument set (increases the first stage F)

\section*{Exogenous, but Weak Instruments}
- Adding instruments increases the relevance of the instrument set (increases the first stage F)
- But too many instruments increases small sample bias (compared to few instruments) and also call into doubt the exclusion restrictions

\section*{Exogenous, but Weak Instruments}
- Adding instruments increases the relevance of the instrument set (increases the first stage F)
- But too many instruments increases small sample bias (compared to few instruments) and also call into doubt the exclusion restrictions
- Best to have single, strong instrument

\section*{Exogenous, but Weak Instruments}
- Adding instruments increases the relevance of the instrument set (increases the first stage F)
- But too many instruments increases small sample bias (compared to few instruments) and also call into doubt the exclusion restrictions
- Best to have single, strong instrument
- There are more complex competitors to 2SLS:

\section*{Exogenous, but Weak Instruments}
- Adding instruments increases the relevance of the instrument set (increases the first stage F)
- But too many instruments increases small sample bias (compared to few instruments) and also call into doubt the exclusion restrictions
- Best to have single, strong instrument
- There are more complex competitors to 2SLS:
- Limited Information Maximum Likelihood (LIML) estimation
- Jackknife instrumental variables
- Imbens and Rosenbaum (2005) robust IV.

\section*{Exogenous, but Weak Instruments}
- Adding instruments increases the relevance of the instrument set (increases the first stage F)
- But too many instruments increases small sample bias (compared to few instruments) and also call into doubt the exclusion restrictions
- Best to have single, strong instrument
- There are more complex competitors to 2SLS:
- Limited Information Maximum Likelihood (LIML) estimation
- Jackknife instrumental variables
- Imbens and Rosenbaum (2005) robust IV.
- Small sample studies suggest that LIML and robust IV may be superior to 2SLS in small samples (but remains open area of research)

\section*{Failure of Exogeneity}

\section*{Failure of Exogeneity}
- Note the probability limit:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma_{u_{2}}}{\sigma_{D}}
\]

\section*{Failure of Exogeneity}
- Note the probability limit:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma_{u_{2}}}{\sigma_{D}}
\]
- In general we get inconsistent estimates if \(\operatorname{Corr}\left(Z, u_{2}\right) \neq 0\). This large sample bias can often be considerable but is hard to quantify precisely because it depends on unobservables

\section*{Failure of Exogeneity}
- Note the probability limit:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma_{u_{2}}}{\sigma_{D}}
\]
- In general we get inconsistent estimates if \(\operatorname{Corr}\left(Z, u_{2}\right) \neq 0\). This large sample bias can often be considerable but is hard to quantify precisely because it depends on unobservables
- If the instrument is stronger, large sample bias can be attenuated, but often magnitude of \(\operatorname{Corr}\left(Z, u_{2}\right)\) dominates

\section*{Failure of Exogeneity}
- Note the probability limit:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma_{u_{2}}}{\sigma_{D}}
\]
- In general we get inconsistent estimates if \(\operatorname{Corr}\left(Z, u_{2}\right) \neq 0\). This large sample bias can often be considerable but is hard to quantify precisely because it depends on unobservables
- If the instrument is stronger, large sample bias can be attenuated, but often magnitude of \(\operatorname{Corr}\left(Z, u_{2}\right)\) dominates
- The best we can often do is often to be skeptical and to make sure exogeneity is highly plausible in the setting to which we apply IV

\section*{Failure of Exogeneity}
- Note the probability limit:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma_{u_{2}}}{\sigma_{D}}
\]
- In general we get inconsistent estimates if \(\operatorname{Corr}\left(Z, u_{2}\right) \neq 0\). This large sample bias can often be considerable but is hard to quantify precisely because it depends on unobservables
- If the instrument is stronger, large sample bias can be attenuated, but often magnitude of \(\operatorname{Corr}\left(Z, u_{2}\right)\) dominates
- The best we can often do is often to be skeptical and to make sure exogeneity is highly plausible in the setting to which we apply IV
- Sensitivity analysis:

\section*{Failure of Exogeneity}
- Note the probability limit:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma_{u_{2}}}{\sigma_{D}}
\]
- In general we get inconsistent estimates if \(\operatorname{Corr}\left(Z, u_{2}\right) \neq 0\). This large sample bias can often be considerable but is hard to quantify precisely because it depends on unobservables
- If the instrument is stronger, large sample bias can be attenuated, but often magnitude of \(\operatorname{Corr}\left(Z, u_{2}\right)\) dominates
- The best we can often do is often to be skeptical and to make sure exogeneity is highly plausible in the setting to which we apply IV
- Sensitivity analysis:
- Is the instrument plausibly exogenous or can it be easily predicted from covariates?

\section*{Failure of Exogeneity}
- Note the probability limit:
\[
\operatorname{plim} \alpha_{D, I V}=\alpha_{D}+\frac{\operatorname{Corr}\left(Z, u_{2}\right)}{\operatorname{Corr}(Z, D)} \frac{\sigma_{u_{2}}}{\sigma_{D}}
\]
- In general we get inconsistent estimates if \(\operatorname{Corr}\left(Z, u_{2}\right) \neq 0\). This large sample bias can often be considerable but is hard to quantify precisely because it depends on unobservables
- If the instrument is stronger, large sample bias can be attenuated, but often magnitude of \(\operatorname{Corr}\left(Z, u_{2}\right)\) dominates
- The best we can often do is often to be skeptical and to make sure exogeneity is highly plausible in the setting to which we apply IV
- Sensitivity analysis:
- Is the instrument plausibly exogenous or can it be easily predicted from covariates?

\section*{Failure of Exogeneity}
- Does a randomly assigned instrument \(Z\) always satisfy \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) ?

\section*{Failure of Exogeneity}
- Does a randomly assigned instrument \(Z\) always satisfy \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) ?
- No!

\section*{Failure of Exogeneity}
- Does a randomly assigned instrument \(Z\) always satisfy \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) ?
- No! Encouragement may still have independent effect on outcome other than through the treatment

\section*{Failure of Exogeneity}
- Does a randomly assigned instrument \(Z\) always satisfy \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) ?
- No! Encouragement may still have independent effect on outcome other than through the treatment
- When designing an encouragement experiment we need to be careful to design encouragements so that they are relevant, but also narrowly targeted to only create variation in treatment intake

\section*{Failure of Exogeneity}
- Does a randomly assigned instrument \(Z\) always satisfy \(\operatorname{Cov}\left(Z, u_{2}\right)=0\) ?
- No! Encouragement may still have independent effect on outcome other than through the treatment
- When designing an encouragement experiment we need to be careful to design encouragements so that they are relevant, but also narrowly targeted to only create variation in treatment intake
- SUTVA may be a concern as well

\section*{General Words of Caution}

\section*{General Words of Caution}

These methods are not a panacea. Even if someone calls them a "natural experiment" that doesn't actually make it like an experiment.

\section*{General Words of Caution}

These methods are not a panacea. Even if someone calls them a "natural experiment" that doesn't actually make it like an experiment.
"The general lesson is once again the ultimate futility of trying to avoid thinking about how and why things work"
- Angus Deaton (2010)

\section*{General Words of Caution}

These methods are not a panacea. Even if someone calls them a "natural experiment" that doesn't actually make it like an experiment.
"The general lesson is once again the ultimate futility of trying to avoid thinking about how and why things work"
- Angus Deaton (2010)
"[there is a] risk [of] transforming the methodologic dream of avoiding unmeasured confounding into a nightmare of conflicting biased estimates"
- Hernan and Robins (2006)

\section*{Conclusion}

\section*{Conclusion}
- IV works only under very specific circumstances (e.g. well designed encouragement design experiments)

\section*{Conclusion}
- IV works only under very specific circumstances (e.g. well designed encouragement design experiments)
- Often, it will be difficult to find instruments that are both relevant (strong enough) and exogenous

\section*{Conclusion}
- IV works only under very specific circumstances (e.g. well designed encouragement design experiments)
- Often, it will be difficult to find instruments that are both relevant (strong enough) and exogenous
- Violations of assumptions can lead to large biases and estimation theory is complicated

\section*{Conclusion}
- IV works only under very specific circumstances (e.g. well designed encouragement design experiments)
- Often, it will be difficult to find instruments that are both relevant (strong enough) and exogenous
- Violations of assumptions can lead to large biases and estimation theory is complicated
- So far, we have assumed constant treatment effects \(\alpha_{D}\) which seems unrealistic in most settings. Often an instrument affects only a subpopulation of interest and we have little information about treatment effects for other units that may not be affected by the instrument at all.

\section*{Conclusion}
- IV works only under very specific circumstances (e.g. well designed encouragement design experiments)
- Often, it will be difficult to find instruments that are both relevant (strong enough) and exogenous
- Violations of assumptions can lead to large biases and estimation theory is complicated
- So far, we have assumed constant treatment effects \(\alpha_{D}\) which seems unrealistic in most settings. Often an instrument affects only a subpopulation of interest and we have little information about treatment effects for other units that may not be affected by the instrument at all.
- Next time we'll discuss modern IV with heterogeneous potential outcomes
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(C) Appendix

\section*{Fun With Coarsening Bias}

\title{
Coarsening Bias: How Coarse Treatment Measurement Upwardly Biases Instrumental Variable Estimates
}

\author{
John Marshall \\ Department of Government, Harvard University, Cambridge, MA 02138 \\ e-mail: jlmarsh@fas.harvard.edu (corresponding author)
}

Edited by Jonathan Katz

\begin{abstract}
Political scientists increasingly use instrumental variable (IV) methods, and must often choose between operationalizing their endogenous treatment variable as discrete or continuous. For theoretical and data availability reasons, researchers frequently coarsen treatments with multiple intensities (e.g., treating a continuous treatment as binary). I show how such coarsening can substantially upwardly bias IV estimates by subtly violating the exclusion restriction assumption, and demonstrate that the extent of this bias depends upon the first stage and underlying causal response function. However, standard IV methods using a treatment where multiple intensities are affected by the instrument-even when fine-grained measurement at every intensity is not possible-recover a consistent causal estimate without requiring a stronger exclusion restriction assumption. These analytical insights are illustrated in the context of identifying the long-run effect of high school education on voting Conservative in Great Britain. I demonstrate that coarsening years of schooling into an indicator for completing high school upwardly biases the IV estimate by a factor of three.
\end{abstract}

\section*{The Idea}

(a) Weak exclusion restriction

(b) Strong exclusion restriction

Fig. 1 Graphical representation of weak and strong exclusion restrictions.

\section*{Design}
- Data: British Election Survey 1979-2010
- Outcome: voting for conservative party in most recent election
- Instrument: respondents turning 14 in 1947 or later who were affected by the 1947 school leaving reform (increased age from 14 to 15)
- Treatment: either years of schooling or coarsened indicator for completed high school or not

\section*{Data}


Fig. 31947 compulsory schooling reform and student leaving age by cohort.
Notes: Data are from the British Election Survey. Curves represent fourth-order polynomial fits. Gray dots are birth-year cohort averages, and their size reflects their weight in the sample.

\section*{Findings}
- Finding: Using the dichotomous version of the treatment inflates the result by a factor of three
- Suggestion: Use the linear version of the treatment (although see the article for more details!)

\section*{Where We've Been and Where We're Going...}

\section*{Where We've Been and Where We're Going...}
- Last Week
- selection on observables and measured confounding
- This Week
- Monday:
^ natural experiments
* classical view of instrumental variables
- Wednesday:
« modern view of instrumental variables
* regression discontinuity
- The Following Week
- repeated observations
- Long Run
- causality with measured confounding \(\rightarrow\) unmeasured confounding \(\rightarrow\) repeated data

Questions?
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables
(4) Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(6) Fun With Weak Instruments
(9) Appendix

\section*{Identification with Traditional Instrumental Variables}
- Two equations:
- \(Y=\gamma+\alpha D+\varepsilon\) (Second Stage)
- \(D=\tau+\rho Z+\eta\) (First Stage)
- Four Assumptions
(1) Exogeneity: \(\operatorname{Cov}(Z, \eta)=0\)
(2) Exclusion: \(\operatorname{Cov}(Z, \varepsilon)=0\)
(3) First Stage Relevance: \(\rho \neq 0\)
(9) Homogeneity: \(\alpha=Y_{1, i}-Y_{0, i}\) constant for all units \(i\).

Or in the case of a multivalued treatment with \(s\) levels we assume \(\alpha=Y_{s, i}-Y_{s-1, i}\).

\section*{Instrumental Variables and Potential Outcomes}
- Basic idea of IV:
- \(D_{i}\) not randomized, but \(Z_{i}\) is
- \(Z_{i}\) only affects \(Y_{i}\) through \(D_{i}\)

\section*{Instrumental Variables and Potential Outcomes}
- Basic idea of IV:
- \(D_{i}\) not randomized, but \(Z_{i}\) is
- \(Z_{i}\) only affects \(Y_{i}\) through \(D_{i}\)
- \(D_{i}\) now depends on \(Z_{i} \rightsquigarrow\) two potential treatments: \(D_{i}(1)=D_{i}(z=1)\) and \(D_{i}(0)\).

\section*{Instrumental Variables and Potential Outcomes}
- Basic idea of IV:
- \(D_{i}\) not randomized, but \(Z_{i}\) is
- \(Z_{i}\) only affects \(Y_{i}\) through \(D_{i}\)
- \(D_{i}\) now depends on \(Z_{i} \rightsquigarrow\) two potential treatments: \(D_{i}(1)=D_{i}(z=1)\) and \(D_{i}(0)\).
- Outcome can depend on both the treatment and the instrument: \(Y_{i}(d, z)\) is the outcome if unit \(i\) had received treatment \(D_{i}=d\) and instrument value \(Z_{i}=z\).

\section*{Potential Outcome Model for Instrumental Variables}

\section*{Potential Outcome Model for Instrumental Variables}

Definition (Instrument)
\(Z_{i}\) : Binary instrument for unit \(i\).
\[
Z_{i}= \begin{cases}1 & \text { if unit } i \text { "encouraged" to receive treatment } \\ 0 & \text { if unit } i \text { "encouraged" to receive control }\end{cases}
\]

\section*{Definition (Potential Treatments)}
\(D_{z}\) indicates potential treatment status given \(Z=z\)
- \(D_{1}=1\) encouraged to take treatment and takes treatment

\section*{Assumption}

Observed treatments are realized as
\[
D=Z \cdot D_{1}+(1-Z) \cdot D_{0} \text { so } D_{i}= \begin{cases}D_{1 i} & \text { if } Z_{i}=1 \\ D_{0 i} & \text { if } Z_{i}=0\end{cases}
\]

\section*{Key Assumptions in the Modern Approach}
(1) Exogeneity of the Instrument

\section*{Key Assumptions in the Modern Approach}
(1) Exogeneity of the Instrument
(2) Exclusion Restriction

\section*{Key Assumptions in the Modern Approach}
(1) Exogeneity of the Instrument
(2) Exclusion Restriction
(3) First-stage relationship

\section*{Key Assumptions in the Modern Approach}
(1) Exogeneity of the Instrument
(2) Exclusion Restriction
(3) First-stage relationship
(9) Monotonicity

\section*{Key Assumptions in the Modern Approach}
(1) Exogeneity of the Instrument
(2) Exclusion Restriction
(3) First-stage relationship
(9) Monotonicity

You may sometimes see assumptions 1 and 2 collapsed into an assumption called something like "Ignorability of the Instrument". I find it helpful to assess them separately though.

\section*{Assumption 1: Exogeneity of the Instrument}
- Essentially we need the instrument to be randomized:
\[
\left[\left\{Y_{i}(d, z), \forall d, z\right\}, D_{i}(1), D_{i}(0)\right] \Perp Z_{i}
\]

\section*{Assumption 1: Exogeneity of the Instrument}
- Essentially we need the instrument to be randomized:
\[
\left[\left\{Y_{i}(d, z), \forall d, z\right\}, D_{i}(1), D_{i}(0)\right] \Perp Z_{i}
\]
- We can weaken this to conditional ignorability. But why believe conditional ignorability for the instrument but not the treatment?

\section*{Assumption 1: Exogeneity of the Instrument}
- Essentially we need the instrument to be randomized:
\[
\left[\left\{Y_{i}(d, z), \forall d, z\right\}, D_{i}(1), D_{i}(0)\right] \Perp Z_{i}
\]
- We can weaken this to conditional ignorability. But why believe conditional ignorability for the instrument but not the treatment?
- Best instruments are truly randomized.

\section*{Assumption 1: Exogeneity of the Instrument}
- Essentially we need the instrument to be randomized:
\[
\left[\left\{Y_{i}(d, z), \forall d, z\right\}, D_{i}(1), D_{i}(0)\right] \Perp Z_{i}
\]
- We can weaken this to conditional ignorability. But why believe conditional ignorability for the instrument but not the treatment?
- Best instruments are truly randomized.
- This assumption alone gets us the intent-to-treat (ITT) effect:
\[
E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]=E\left[Y_{i}\left(D_{i}(1), 1\right)-Y_{i}\left(D_{i}(0), 0\right)\right]
\]

\section*{Assumption 2: Exclusion Restriction}
- The instrument has no direct effect on the outcome, once we fix the value of the treatment.
\[
Y_{i}(d, 1)=Y_{i}(d, 0) \quad \text { for } d=0,1
\]

\section*{Assumption 2: Exclusion Restriction}
- The instrument has no direct effect on the outcome, once we fix the value of the treatment.
\[
Y_{i}(d, 1)=Y_{i}(d, 0) \quad \text { for } d=0,1
\]
- Given this exclusion restriction, we know that the potential outcomes for each treatment status only depend on the treatment, not the instrument:
\[
\begin{aligned}
& Y_{i}(1) \equiv Y_{i}(1,1)=Y_{i}(1,0) \\
& Y_{i}(0) \equiv Y_{i}(0,1)=Y_{i}(0,0)
\end{aligned}
\]

\section*{Assumption 2: Exclusion Restriction}
- The instrument has no direct effect on the outcome, once we fix the value of the treatment.
\[
Y_{i}(d, 1)=Y_{i}(d, 0) \quad \text { for } d=0,1
\]
- Given this exclusion restriction, we know that the potential outcomes for each treatment status only depend on the treatment, not the instrument:
\[
\begin{aligned}
& Y_{i}(1) \equiv Y_{i}(1,1)=Y_{i}(1,0) \\
& Y_{i}(0) \equiv Y_{i}(0,1)=Y_{i}(0,0)
\end{aligned}
\]
- Random assignment of the instrument is not sufficient for exclusion

\section*{Assumption 2: Exclusion Restriction}
- The instrument has no direct effect on the outcome, once we fix the value of the treatment.
\[
Y_{i}(d, 1)=Y_{i}(d, 0) \quad \text { for } d=0,1
\]
- Given this exclusion restriction, we know that the potential outcomes for each treatment status only depend on the treatment, not the instrument:
\[
\begin{aligned}
& Y_{i}(1) \equiv Y_{i}(1,1)=Y_{i}(1,0) \\
& Y_{i}(0) \equiv Y_{i}(0,1)=Y_{i}(0,0)
\end{aligned}
\]
- Random assignment of the instrument is not sufficient for exclusion
- NOT A TESTABLE ASSUMPTION

\section*{Assumption 3: First Stage Relationship}
- The instrument must have an effect on the treatment.
\[
E\left[D_{i}(1)-D_{i}(0)\right] \neq 0
\]

\section*{Assumption 3: First Stage Relationship}
- The instrument must have an effect on the treatment.
\[
E\left[D_{i}(1)-D_{i}(0)\right] \neq 0
\]
- Implies that
- \(\operatorname{Cov}\left(D_{i}, Z_{i}\right) \neq 0\),
- \(0<P(Z=1)<1\)
- \(P\left(D_{1}=1\right) \neq P\left(D_{0}=1\right)\)

\section*{Assumption 3: First Stage Relationship}
- The instrument must have an effect on the treatment.
\[
E\left[D_{i}(1)-D_{i}(0)\right] \neq 0
\]
- Implies that
- \(\operatorname{Cov}\left(D_{i}, Z_{i}\right) \neq 0\),
- \(0<P(Z=1)<1\)
- \(P\left(D_{1}=1\right) \neq P\left(D_{0}=1\right)\)
- This is testable by regressing \(D\) on \(Z\)

\section*{Assumption 3: First Stage Relationship}
- The instrument must have an effect on the treatment.
\[
E\left[D_{i}(1)-D_{i}(0)\right] \neq 0
\]
- Implies that
- \(\operatorname{Cov}\left(D_{i}, Z_{i}\right) \neq 0\),
- \(0<P(Z=1)<1\)
- \(P\left(D_{1}=1\right) \neq P\left(D_{0}=1\right)\)
- This is testable by regressing \(D\) on \(Z\)
- Note that even a weak instrument can induce a lot of bias. Thus, for practical sample sizes you need a strong first stage effect.

\section*{Assumption 4: Monotonicity}
- To allow for heterogenous effects we need to make a new assumption about the relationship between the instrument and the treatment.

\section*{Assumption 4: Monotonicity}
- To allow for heterogenous effects we need to make a new assumption about the relationship between the instrument and the treatment.
- Monotonicity says that the presence of the instrument never dissuades someone from taking the treatment:
\[
D_{i}(1)-D_{i}(0) \geq 0
\]

\section*{Assumption 4: Monotonicity}
- To allow for heterogenous effects we need to make a new assumption about the relationship between the instrument and the treatment.
- Monotonicity says that the presence of the instrument never dissuades someone from taking the treatment:
\[
D_{i}(1)-D_{i}(0) \geq 0
\]
- Note if this holds in the opposite direction \(D_{i}(1)-D_{i}(0) \leq 0\), we can always rescale \(D_{i}\) to make the assumption hold.

\section*{Principal Strata}

\section*{Principal Strata}

Following Angrist, Imbens, and Rubin (1996), we can define four subpopulations (for cases with a binary treatment and a binary instrument):

\section*{Principal Strata}

Following Angrist, Imbens, and Rubin (1996), we can define four subpopulations (for cases with a binary treatment and a binary instrument):

\section*{Definition}
- Compliers: \(D_{1}>D_{0}\left(D_{0}=0\right.\) and \(\left.D_{1}=1\right)\).

\section*{Principal Strata}

Following Angrist, Imbens, and Rubin (1996), we can define four subpopulations (for cases with a binary treatment and a binary instrument):

\section*{Definition}
- Compliers: \(D_{1}>D_{0}\left(D_{0}=0\right.\) and \(\left.D_{1}=1\right)\).
- Always-takers: \(D_{1}=D_{0}=1\).

\section*{Principal Strata}

Following Angrist, Imbens, and Rubin (1996), we can define four subpopulations (for cases with a binary treatment and a binary instrument):

\section*{Definition}
- Compliers: \(D_{1}>D_{0}\left(D_{0}=0\right.\) and \(\left.D_{1}=1\right)\).
- Always-takers: \(D_{1}=D_{0}=1\).
- Never-takers: \(D_{1}=D_{0}=0\).

\section*{Principal Strata}

Following Angrist, Imbens, and Rubin (1996), we can define four subpopulations (for cases with a binary treatment and a binary instrument):

\section*{Definition}
- Compliers: \(D_{1}>D_{0}\left(D_{0}=0\right.\) and \(\left.D_{1}=1\right)\).
- Always-takers: \(D_{1}=D_{0}=1\).
- Never-takers: \(D_{1}=D_{0}=0\).
- Defiers: \(D_{1}<D_{0}\left(D_{0}=1\right.\) and \(\left.D_{1}=0\right)\).

\section*{Principal Strata}

Following Angrist, Imbens, and Rubin (1996), we can define four subpopulations (for cases with a binary treatment and a binary instrument):

\section*{Definition}
- Compliers: \(D_{1}>D_{0}\left(D_{0}=0\right.\) and \(\left.D_{1}=1\right)\).
- Always-takers: \(D_{1}=D_{0}=1\).
- Never-takers: \(D_{1}=D_{0}=0\).
- Defiers: \(D_{1}<D_{0}\left(D_{0}=1\right.\) and \(\left.D_{1}=0\right)\).

Only one of the potential treatment indicators \(\left(D_{0}, D_{1}\right)\) is observed, so in the general case we cannot identify which group any particular individual belongs to

\section*{Monotonicity means no defiers}
\begin{tabular}{lll} 
Name & \(D_{i}(1)\) & \(D_{i}(0)\) \\
\hline Always Takers & 1 & 1 \\
Never Takers & 0 & 0 \\
Compliers & 1 & 0 \\
Defiers & 0 & 1
\end{tabular}
- We sometimes call assumption 4 no defiers because the monotonicity assumption rules out the existence of defiers.

\section*{Monotonicity means no defiers}
\begin{tabular}{lll} 
Name & \(D_{i}(1)\) & \(D_{i}(0)\) \\
\hline Always Takers & 1 & 1 \\
Never Takers & 0 & 0 \\
Compliers & 1 & 0 \\
Defiers & 0 & 1
\end{tabular}
- We sometimes call assumption 4 no defiers because the monotonicity assumption rules out the existence of defiers.
- This means we can now sometimes identify the subgroup

\section*{Monotonicity means no defiers}
\begin{tabular}{lll} 
Name & \(D_{i}(1)\) & \(D_{i}(0)\) \\
\hline Always Takers & 1 & 1 \\
Never Takers & 0 & 0 \\
Compliers & 1 & 0 \\
Defiers & 0 & 1
\end{tabular}
- We sometimes call assumption 4 no defiers because the monotonicity assumption rules out the existence of defiers.
- This means we can now sometimes identify the subgroup
- Anyone with \(D_{i}=1\) when \(Z_{i}=0\) must be an always-taker and anyone with \(D_{i}=0\) when \(Z_{i}=1\) must be a never-taker.

\section*{Local Average Treatment Effect (LATE)}
- Under these four assumptions, we can use the Wald estimator to estimate the local average treatment effect (LATE) or the complier average treatment effect (CATE).

\section*{Local Average Treatment Effect (LATE)}
- Under these four assumptions, we can use the Wald estimator to estimate the local average treatment effect (LATE) or the complier average treatment effect (CATE).
- This is the ATE among the compliers: those that take the treatment when encouraged to do so.

\section*{Local Average Treatment Effect (LATE)}
- Under these four assumptions, we can use the Wald estimator to estimate the local average treatment effect (LATE) or the complier average treatment effect (CATE).
- This is the ATE among the compliers: those that take the treatment when encouraged to do so.
- That is, the LATE theorem (proof in the appendix), states that:
\[
\frac{E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]}{E\left[D_{i} \mid Z_{i}=1\right]-E\left[D_{i} \mid Z_{i}=0\right]}=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}(1)>D_{i}(0)\right]
\]

\section*{Local Average Treatment Effect (LATE)}
- Under these four assumptions, we can use the Wald estimator to estimate the local average treatment effect (LATE) or the complier average treatment effect (CATE).
- This is the ATE among the compliers: those that take the treatment when encouraged to do so.
- That is, the LATE theorem (proof in the appendix), states that:
\[
\frac{E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]}{E\left[D_{i} \mid Z_{i}=1\right]-E\left[D_{i} \mid Z_{i}=0\right]}=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}(1)>D_{i}(0)\right]
\]
- This may seem mundane in that we have simply changed our assumptions and not our estimation, but this fact was a massive intellectual jump in our understanding of IV.

\section*{Who are the Compliers?}
\begin{tabular}{|l|l|l|l|}
\hline Study & Outcome & Treatment & Instrument \\
\hline \begin{tabular}{l} 
Angrist and Evans \\
(1998)
\end{tabular} & Earnings & \begin{tabular}{l} 
More than 2 \\
Children
\end{tabular} & \begin{tabular}{l} 
Multiple Second \\
Birth (Twins)
\end{tabular} \\
\hline \begin{tabular}{l} 
Angrist and Evans \\
(1998)
\end{tabular} & Earnings & \begin{tabular}{l} 
More than 2 \\
Children
\end{tabular} & \begin{tabular}{l} 
First Two Children \\
are Same Sex
\end{tabular} \\
\hline Levitt (1997) & Crime Rates & \begin{tabular}{l} 
Number of \\
Policemen
\end{tabular} & Mayoral Elections \\
\hline \begin{tabular}{l} 
Angrist and Krueger \\
(1991)
\end{tabular} & Earnings & Years of Schooling & Quarter of Birth \\
\hline Angrist (1990) & Earnings & Veteran Status & \begin{tabular}{l} 
Vietnam Draft \\
Lottery
\end{tabular} \\
\hline \begin{tabular}{l} 
Miguel, Satyanath \\
and Sergenti (2004)
\end{tabular} & Civil War Onset & Current Institutions & \begin{tabular}{l} 
Settler Mortality in \\
Colonial Times
\end{tabular} \\
\hline \begin{tabular}{l} 
Acemoglu, Johnson \\
and Robinson (2001)
\end{tabular} & \begin{tabular}{l} 
Economic \\
performance
\end{tabular} & Religiosity & GDP per capita \\
\hline \begin{tabular}{l} 
Cleary and Barro \\
(2006)
\end{tabular} & \begin{tabular}{l} 
Distance from \\
Equator
\end{tabular} \\
\hline
\end{tabular}

\section*{Is the LATE useful?}
- Once we allow for heterogeneous effects, all we can estimate with IV is the effect of treatment among compliers.

\section*{Is the LATE useful?}
- Once we allow for heterogeneous effects, all we can estimate with IV is the effect of treatment among compliers.
- This is an unknown subset of the data.

\section*{Is the LATE useful?}
- Once we allow for heterogeneous effects, all we can estimate with IV is the effect of treatment among compliers.
- This is an unknown subset of the data.
- Treated units are a mix of always takers and compliers.
- Control units are a mix of never takers and compliers.

\section*{Is the LATE useful?}
- Once we allow for heterogeneous effects, all we can estimate with IV is the effect of treatment among compliers.
- This is an unknown subset of the data.
- Treated units are a mix of always takers and compliers.
- Control units are a mix of never takers and compliers.
- Without further assumptions, \(\tau_{\text {LATE }} \neq \tau_{A T E}\).

\section*{Is the LATE useful?}
- Once we allow for heterogeneous effects, all we can estimate with IV is the effect of treatment among compliers.
- This is an unknown subset of the data.
- Treated units are a mix of always takers and compliers.
- Control units are a mix of never takers and compliers.
- Without further assumptions, \(\tau_{\text {LATE }} \neq \tau_{\text {ATE }}\).
- Complier group depends on the instrument \(\rightsquigarrow\) different IVs will lead to different estimands.

\section*{Is the LATE useful?}
- Once we allow for heterogeneous effects, all we can estimate with IV is the effect of treatment among compliers.
- This is an unknown subset of the data.
- Treated units are a mix of always takers and compliers.
- Control units are a mix of never takers and compliers.
- Without further assumptions, \(\tau_{\text {LATE }} \neq \tau_{\text {ATE }}\).
- Complier group depends on the instrument \(\rightsquigarrow\) different IVs will lead to different estimands.
- How much we care largely depends on our theory and what the instrument is.

\section*{Is the LATE useful?}
- Once we allow for heterogeneous effects, all we can estimate with IV is the effect of treatment among compliers.
- This is an unknown subset of the data.
- Treated units are a mix of always takers and compliers.
- Control units are a mix of never takers and compliers.
- Without further assumptions, \(\tau_{\text {LATE }} \neq \tau_{\text {ATE }}\).
- Complier group depends on the instrument \(\rightsquigarrow\) different IVs will lead to different estimands.
- How much we care largely depends on our theory and what the instrument is.
- The traditional framework "cheats" by assuming that the effect is constant, so it is the same for compliers and non-compliers.

\section*{Randomized trials with one-sided noncompliance}
- Will the LATE ever be equal to a usual causal quantity?

\section*{Randomized trials with one-sided noncompliance}
- Will the LATE ever be equal to a usual causal quantity?
- When non-compliance is one-sided, then the LATE is equal to the ATT.

\section*{Randomized trials with one-sided noncompliance}
- Will the LATE ever be equal to a usual causal quantity?
- When non-compliance is one-sided, then the LATE is equal to the ATT.
- Think of a randomized experiment:
- Randomized treatment assignment \(=\) instrument \(\left(Z_{i}\right)\)
- Non-randomized actual treatment taken \(=\) treatment \(\left(D_{i}\right)\)

\section*{Randomized trials with one-sided noncompliance}
- Will the LATE ever be equal to a usual causal quantity?
- When non-compliance is one-sided, then the LATE is equal to the ATT.
- Think of a randomized experiment:
- Randomized treatment assignment \(=\) instrument \(\left(Z_{i}\right)\)
- Non-randomized actual treatment taken \(=\) treatment \(\left(D_{i}\right)\)
- One-sided noncompliance: only those assigned to treatment (control) can actually take the treatment (control). Or
\[
D_{i}(0)=0 \forall i \leadsto \operatorname{Pr}\left[D_{i}=1 \mid Z_{i}=0\right]=0
\]

\section*{Randomized trials with one-sided noncompliance}
- Will the LATE ever be equal to a usual causal quantity?
- When non-compliance is one-sided, then the LATE is equal to the ATT.
- Think of a randomized experiment:
- Randomized treatment assignment \(=\) instrument \(\left(Z_{i}\right)\)
- Non-randomized actual treatment taken \(=\) treatment \(\left(D_{i}\right)\)
- One-sided noncompliance: only those assigned to treatment (control) can actually take the treatment (control). Or
\[
D_{i}(0)=0 \forall i \rightsquigarrow \operatorname{Pr}\left[D_{i}=1 \mid Z_{i}=0\right]=0
\]
- Maybe this is because only those treated actually get pills or only they are invited to the job training location.

\section*{Randomized trials with one-sided noncompliance}
- Will the LATE ever be equal to a usual causal quantity?
- When non-compliance is one-sided, then the LATE is equal to the ATT.
- Think of a randomized experiment:
- Randomized treatment assignment \(=\) instrument \(\left(Z_{i}\right)\)
- Non-randomized actual treatment taken \(=\) treatment \(\left(D_{i}\right)\)
- One-sided noncompliance: only those assigned to treatment (control) can actually take the treatment (control). Or
\[
D_{i}(0)=0 \forall i \leadsto \operatorname{Pr}\left[D_{i}=1 \mid Z_{i}=0\right]=0
\]
- Maybe this is because only those treated actually get pills or only they are invited to the job training location.
- Note: this can be very difficult to do practically in many settings.

\section*{Benefits of one-sided noncompliance}

One-sided noncompliance \(\rightsquigarrow\) no "always-takers" and since there are no defiers,
- Treated units must be compliers.
- ATT is the same as the LATE.

\section*{Benefits of one-sided noncompliance}

One-sided noncompliance \(\rightsquigarrow\) no "always-takers" and since there are no defiers,
- Treated units must be compliers.
- ATT is the same as the LATE.

\section*{Proof.}
\[
\begin{aligned}
E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]= & \mathbb{E}\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i} \mid Z_{i}=1\right]-\mathbb{E}\left[Y_{i}(0) \mid Z_{i}=0\right] \\
& (\text { exclusion restriction }+ \text { one-sided noncompliance }) \\
= & \mathbb{E}\left[Y_{i}(0) \mid Z_{i}=1\right]+E\left[\left(Y_{i}(1)-Y_{i}(0)\right) D_{i} \mid Z_{i}=1\right]-\mathbb{E}\left[Y_{i}(0) \mid Z_{i}=0\right] \\
= & \mathbb{E}\left[Y_{i}(0)\right]+\mathbb{E}\left[\left(Y_{i}(1)-Y_{i}(0)\right) D_{i} \mid Z_{i}=1\right]-\mathbb{E}\left[Y_{i}(0)\right] \\
& (\text { randomization }) \\
= & \mathbb{E}\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=1, Z_{i}=1\right] \operatorname{Pr}\left[D_{i}=1 \mid Z_{i}=1\right] \\
& (\text { law of iterated expectations }+ \text { binary treatment }) \\
= & \mathbb{E}\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=1\right] \operatorname{Pr}\left[D_{i}=1 \mid Z_{i}=1\right] \\
& \text { (one-sided noncompliance) }
\end{aligned}
\]

Noting that \(\operatorname{Pr}\left[D_{i}=1 \mid Z_{i}=0\right]=0\), then the Wald estimator is just the ATT:
\(\frac{E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]}{\operatorname{Pr}\left[D_{i}=1 \mid Z_{i}=1\right]}=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=1\right]\) Thus, under the additional assumption of one-sided compliance, we can estimate the ATT using the usual IV approach

\section*{Example: The Vietnam Draft Lottery (Angrist (1990))}

\section*{Example: The Vietnam Draft Lottery (Angrist (1990))}
- Effect of military service on civilian earnings

\section*{Example: The Vietnam Draft Lottery (Angrist (1990))}
- Effect of military service on civilian earnings
- Simple comparison between Vietnam veterans and non-veterans are likely to be a biased measure

\section*{Example: The Vietnam Draft Lottery (Angrist (1990))}
- Effect of military service on civilian earnings
- Simple comparison between Vietnam veterans and non-veterans are likely to be a biased measure
- Angrist (1990) used draft-eligibility, determined by the Vietnam era draft lottery, as an instrument for military service in Vietnam

\section*{Example: The Vietnam Draft Lottery (Angrist (1990))}
- Effect of military service on civilian earnings
- Simple comparison between Vietnam veterans and non-veterans are likely to be a biased measure
- Angrist (1990) used draft-eligibility, determined by the Vietnam era draft lottery, as an instrument for military service in Vietnam
- Draft eligibility is random and affected the probability of enrollment

\section*{Example: The Vietnam Draft Lottery (Angrist (1990))}
- Effect of military service on civilian earnings
- Simple comparison between Vietnam veterans and non-veterans are likely to be a biased measure
- Angrist (1990) used draft-eligibility, determined by the Vietnam era draft lottery, as an instrument for military service in Vietnam
- Draft eligibility is random and affected the probability of enrollment
- Estimate suggest a \(15 \%\) negative effect of veteran status on earnings in the period 1981-1984 for white veterans born in 1950-51; although the estimators are quite imprecise

\section*{Example: The Vietnam Draft Lottery (Angrist (1990))}
- Effect of military service on civilian earnings
- Simple comparison between Vietnam veterans and non-veterans are likely to be a biased measure
- Angrist (1990) used draft-eligibility, determined by the Vietnam era draft lottery, as an instrument for military service in Vietnam
- Draft eligibility is random and affected the probability of enrollment
- Estimate suggest a \(15 \%\) negative effect of veteran status on earnings in the period 1981-1984 for white veterans born in 1950-51; although the estimators are quite imprecise
- This is only identified for compliers (i.e. those who if draft eligible would serve but otherwise would not)

\section*{Wald Estimates for Vietnam Draft Lottery (Angrist (1990))}


\section*{Estimating the Size of the Complier Group}

\section*{Estimating the Size of the Complier Group}
- Since we never observe both potential treatment assignments for the same unit, we cannot identify individual units as compliers

\section*{Estimating the Size of the Complier Group}
- Since we never observe both potential treatment assignments for the same unit, we cannot identify individual units as compliers
- However, we can easily identify the proportion of compliers in the population using the first stage effect:

\section*{Estimating the Size of the Complier Group}
- Since we never observe both potential treatment assignments for the same unit, we cannot identify individual units as compliers
- However, we can easily identify the proportion of compliers in the population using the first stage effect:
\[
\begin{aligned}
P\left(D_{1}>D_{0}\right) & =E\left[D_{1}-D_{0}\right]=E\left[D_{1}\right]-E\left[D_{0}\right] \\
& =E[D \mid Z=1]-E[D \mid Z=0]
\end{aligned}
\]

\section*{Estimating the Size of the Complier Group}
- Since we never observe both potential treatment assignments for the same unit, we cannot identify individual units as compliers
- However, we can easily identify the proportion of compliers in the population using the first stage effect:
\[
\begin{aligned}
P\left(D_{1}>D_{0}\right) & =E\left[D_{1}-D_{0}\right]=E\left[D_{1}\right]-E\left[D_{0}\right] \\
& =E[D \mid Z=1]-E[D \mid Z=0]
\end{aligned}
\]
- Using a similar logic we can identify the proportion of compliers among the treated or controls only.

\section*{Estimating the Size of the Complier Group}
- Since we never observe both potential treatment assignments for the same unit, we cannot identify individual units as compliers
- However, we can easily identify the proportion of compliers in the population using the first stage effect:
\[
\begin{aligned}
P\left(D_{1}>D_{0}\right) & =E\left[D_{1}-D_{0}\right]=E\left[D_{1}\right]-E\left[D_{0}\right] \\
& =E[D \mid Z=1]-E[D \mid Z=0]
\end{aligned}
\]
- Using a similar logic we can identify the proportion of compliers among the treated or controls only. For example:
\[
P\left(D_{1}>D_{0} \mid D=1\right)=\frac{P(Z=1)(E[D \mid Z=1]-E[D \mid Z=0])}{P(D=1)}
\]

\section*{Estimating the Size of the Complier Group}
- Since we never observe both potential treatment assignments for the same unit, we cannot identify individual units as compliers
- However, we can easily identify the proportion of compliers in the population using the first stage effect:
\[
\begin{aligned}
P\left(D_{1}>D_{0}\right) & =E\left[D_{1}-D_{0}\right]=E\left[D_{1}\right]-E\left[D_{0}\right] \\
& =E[D \mid Z=1]-E[D \mid Z=0]
\end{aligned}
\]
- Using a similar logic we can identify the proportion of compliers among the treated or controls only. For example:
\[
P\left(D_{1}>D_{0} \mid D=1\right)=\frac{P(Z=1)(E[D \mid Z=1]-E[D \mid Z=0])}{P(D=1)}
\]
- Note: this estimate is pinned down entirely by the assumptions of monotonicity and exogeneity

\section*{Estimating the Size of the Complier Group}
- Since we never observe both potential treatment assignments for the same unit, we cannot identify individual units as compliers
- However, we can easily identify the proportion of compliers in the population using the first stage effect:
\[
\begin{aligned}
P\left(D_{1}>D_{0}\right) & =E\left[D_{1}-D_{0}\right]=E\left[D_{1}\right]-E\left[D_{0}\right] \\
& =E[D \mid Z=1]-E[D \mid Z=0]
\end{aligned}
\]
- Using a similar logic we can identify the proportion of compliers among the treated or controls only. For example:
\[
P\left(D_{1}>D_{0} \mid D=1\right)=\frac{P(Z=1)(E[D \mid Z=1]-E[D \mid Z=0])}{P(D=1)}
\]
- Note: this estimate is pinned down entirely by the assumptions of monotonicity and exogeneity
- Abadie (2003) shows how to use covariate information to calculate other characteristics of the complier group (kappa weighting)

\section*{Size of Complier Group}

Table 4.4.2
Probabilities of compliance in instrumental variables studies
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Source \\
(1)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Endogenous Variable (D) \\
(2)
\end{tabular}} & \multirow[b]{2}{*}{Instrument ( z ) (3)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Sample \\
(4)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
\[
P[\mathrm{D}=1]
\] \\
(5)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
First Stage,
\[
P\left[\mathrm{D}_{1}>\mathrm{D}_{0}\right]
\] \\
(6)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
\[
P[\mathrm{z}=1]
\] \\
(7)
\end{tabular}} & \multicolumn{2}{|l|}{Compliance Probabilities} \\
\hline & & & & & & & \[
\left.P\left[\mathrm{D}_{1}>\mathrm{D}_{0} \mid \mathrm{D}\right) \mathrm{D}=1\right]
\] & \[
\begin{gathered}
P\left[\mathrm{D}_{1}>\mathrm{D}_{0} \mid \mathrm{D}=0\right] \\
(9)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{Angrist (1990)} & Veteran status & Draft eligibility & White men born in 1950 & . 267 & . 159 & . 534 & . 318 & . 101 \\
\hline & & & Non-white men born in 1950 & . 163 & . 060 & . 534 & . 197 & . 033 \\
\hline \multirow[t]{2}{*}{Angrist and Evans
(1998)} & More than two children & Twins at second birth & Married women aged 21-35 with two or more children in 1980 & . 381 & . 603 & . 008 & . 013 & . 966 \\
\hline & & First two children are same sex & & . 381 & . 060 & . 506 & . 080 & . 048 \\
\hline Angrist and Krueger (1991) & High school graduate & Third- or fourthquarter birth & Men born between 1930 and 1939 & . 770 & . 016 & . 509 & . 011 & . 034 \\
\hline Acemoglu and Angrist (2000) & High school graduate & State requires 11 or more years of school attendance & White men aged 40-49 & .617 & . 037 & . 300 & . 018 & . 068 \\
\hline
\end{tabular}

Notes: The table computes the absolute and relative size of the complier population for a number of instrumental variables. The first stage, reported in column 6 , gives the absolute size of the complier group. Columns 8 and 9 show the size of the complier population relative to the treated and untreated populations.

\section*{Falsification tests}

- The exclusion restriction cannot be tested directly, but it can be falsified.

\section*{Falsification tests}

- The exclusion restriction cannot be tested directly, but it can be falsified.
- Falsification test Test the reduced form effect of \(Z_{i}\) on \(Y_{i}\) in situations where it is impossible or extremely unlikely that \(Z_{i}\) could affect \(D_{i}\).

\section*{Falsification tests}

- The exclusion restriction cannot be tested directly, but it can be falsified.
- Falsification test Test the reduced form effect of \(Z_{i}\) on \(Y_{i}\) in situations where it is impossible or extremely unlikely that \(Z_{i}\) could affect \(D_{i}\).
- Because \(Z_{i}\) can't affect \(D_{i}\), then the exclusion restriction implies that this falsification test should have 0 effect.

\section*{Falsification tests}

- The exclusion restriction cannot be tested directly, but it can be falsified.
- Falsification test Test the reduced form effect of \(Z_{i}\) on \(Y_{i}\) in situations where it is impossible or extremely unlikely that \(Z_{i}\) could affect \(D_{i}\).
- Because \(Z_{i}\) can't affect \(D_{i}\), then the exclusion restriction implies that this falsification test should have 0 effect.
- Nunn \& Wantchekon (2011): use distance to coast as an instrument for Africans, use distance to the coast in an Asian sample as falsification test.

\section*{Nunn \& Wantchekon falsification test}

Table 7-Reduced Form Relationship between the Distance from the Coast and Trust within Africa and Asia
\begin{tabular}{lcccccc}
\hline \hline & \multicolumn{4}{c}{ Trust of local government council } \\
\cline { 2 - 4 } \cline { 5 - 6 } & \multicolumn{3}{c}{ Afrobarometer sample } & & \multicolumn{2}{c}{ Asiabarometer sample } \\
\cline { 2 - 3 } \cline { 5 - 6 } & \((1)\) & \((2)\) & & \((3)\) & \((4)\) \\
\hline Distance from the coast & \(0.00039^{* * *}\) & \(0.00031^{* * *}\) & & -0.00001 & 0.00001 \\
& \((0.00009)\) & \((0.00008)\) & & \((0.00010)\) & \((0.00009)\) \\
Country fixed effects & Yes & Yes & & Yes & Yes \\
Individual controls & No & Yes & & No & Yes \\
Number of observations & 19,913 & 19,913 & & 5,409 & 5,409 \\
Number of clusters & 185 & 185 & & 62 & 62 \\
\(R^{2}\) & 0.16 & 0.18 & & 0.19 & 0.22 \\
\hline
\end{tabular}

Notes: The table reports OLS estimates. The unit of observation is an individual. The dependent variable in the Asiabarometer sample is the respondent's answer to the question: "How much do you trust your local government?" The categories for the answers are the same in the Asiabarometer as in the Afrobarometer. Standard errors are clustered at the ethnicity level in the Afrobarometer regressions and at the location (city) level in the Asiabarometer and the WVS samples. The individual controls are for age, age squared, a gender indicator, education fixed effects, and religion fixed effects.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.

\section*{Other Extensions to IV}
- Multiple instruments

\section*{Other Extensions to IV}
- Multiple instruments
- Covariates and conditional ignorability

\section*{Other Extensions to IV}
- Multiple instruments
- Covariates and conditional ignorability
- Overidentification tests (in constant effects)

\section*{Other Extensions to IV}
- Multiple instruments
- Covariates and conditional ignorability
- Overidentification tests (in constant effects)
- Compliance modeling for weak instruments (see Fun With Weak Instruments)

\section*{Other Extensions to IV}
- Multiple instruments
- Covariates and conditional ignorability
- Overidentification tests (in constant effects)
- Compliance modeling for weak instruments (see Fun With Weak Instruments)
- Conditional effects and causal interaction models

\section*{Classical Vs. Modern Instrumental Variables}

\section*{Classical Vs. Modern Instrumental Variables}
- We dropped the constant effects assumption, which is usually unrealistic.

\section*{Classical Vs. Modern Instrumental Variables}
- We dropped the constant effects assumption, which is usually unrealistic.
- We added a weaker monotonicity assumption.

\section*{Classical Vs. Modern Instrumental Variables}
- We dropped the constant effects assumption, which is usually unrealistic.
- We added a weaker monotonicity assumption.
- We defined a set of subpopulations: compilers, always-takers, never-takers, defiers

\section*{Classical Vs. Modern Instrumental Variables}
- We dropped the constant effects assumption, which is usually unrealistic.
- We added a weaker monotonicity assumption.
- We defined a set of subpopulations: compilers, always-takers, never-takers, defiers
- We clarify that the effects are identified only for a particular subpopulation - the "complier" subpopulation.

\section*{Classical Vs. Modern Instrumental Variables}
- We dropped the constant effects assumption, which is usually unrealistic.
- We added a weaker monotonicity assumption.
- We defined a set of subpopulations: compilers, always-takers, never-takers, defiers
- We clarify that the effects are identified only for a particular subpopulation - the "complier" subpopulation. (if constant effects happen to hold, effects for compliers are by definition same as for entire population.)

\section*{Concluding Thoughts on Instrumental Variables}

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results
- Enormous care is required in the interpretation

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results
- Enormous care is required in the interpretation
- Questions to Always Ask

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results
- Enormous care is required in the interpretation
- Questions to Always Ask
(1) is the instrument weak?
(does \(Z\) predict \(D\) )

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results
- Enormous care is required in the interpretation
- Questions to Always Ask
(1) is the instrument weak?
(does \(Z\) predict \(D\) )
(2) is the instrument exogenous?
(does \(\left.\operatorname{Cov}\left[u_{1}, Z\right]=0\right]\) )

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results
- Enormous care is required in the interpretation
- Questions to Always Ask
(1) is the instrument weak?
(does \(Z\) predict \(D\) )
(2) is the instrument exogenous?
(does \(\left.\operatorname{Cov}\left[u_{1}, Z\right]=0\right]\) )
(3) does the exclusion restriction hold?
(is there a path from \(Z\) to \(Y\) not through \(D\) )

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results
- Enormous care is required in the interpretation
- Questions to Always Ask
(1) is the instrument weak?
(does \(Z\) predict \(D\) )
(2) is the instrument exogenous?
(does \(\left.\operatorname{Cov}\left[u_{1}, Z\right]=0\right]\) )
(3) does the exclusion restriction hold?
(is there a path from \(Z\) to \(Y\) not through \(D\) )
(4) do we believe monotonicity?
(5) do the assumptions identify an effect for the subpopulation of interest?

\section*{Concluding Thoughts on Instrumental Variables}
- Strong assumptions but powerful results
- Enormous care is required in the interpretation
- Questions to Always Ask
(1) is the instrument weak?
(does \(Z\) predict \(D\) )
(2) is the instrument exogenous?
(does \(\left.\operatorname{Cov}\left[u_{1}, Z\right]=0\right]\) )
(3) does the exclusion restriction hold?
(is there a path from \(Z\) to \(Y\) not through \(D\) )
(4) do we believe monotonicity?
(5) do the assumptions identify an effect for the subpopulation of interest?
- Be sure to evaluate all conditions and remember randomization of \(Z\) does not guarantee the exclusion restriction.
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables
(4) Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix

\section*{Regression Discontinuity}
- A different strategy where the core intuition is that identification comes in a discontinuity in treatment assignment

\section*{Regression Discontinuity}
- A different strategy where the core intuition is that identification comes in a discontinuity in treatment assignment
- A widely applicable strategy in rule-based systems or allocations of limited resources (e.g. administrative programs, elections, admission systems)

\section*{Regression Discontinuity}
- A different strategy where the core intuition is that identification comes in a discontinuity in treatment assignment
- A widely applicable strategy in rule-based systems or allocations of limited resources (e.g. administrative programs, elections, admission systems)
- It is a fairly old idea, generally credited to education research by Thistlethwaite and Campbell 1960 but with a dynamic and interesting recent history (Hahn et al 2001 and Lee 2008 were big jumps forward).

\section*{Setup}
- The basic idea behind RDDs:

\section*{Setup}
- The basic idea behind RDDs:
- \(X_{i}\) is a forcing variable.

\section*{Setup}
- The basic idea behind RDDs:
- \(X_{i}\) is a forcing variable.
- Treatment assignment is determined by a cutoff in \(X_{i}\).
\[
D_{i}=1\left\{X_{i}>c\right\} \text { so } D_{i}= \begin{cases}D_{i}=1 & \text { if } X_{i}>c \\ D_{i}=0 & \text { if } X_{i}<c\end{cases}
\]

\section*{Setup}
- The basic idea behind RDDs:
- \(X_{i}\) is a forcing variable.
- Treatment assignment is determined by a cutoff in \(X_{i}\).
\[
D_{i}=1\left\{X_{i}>c\right\} \text { so } D_{i}= \begin{cases}D_{i}=1 & \text { if } X_{i}>c \\ D_{i}=0 & \text { if } X_{i}<c\end{cases}
\]
- \(X_{i}\) can be related to the potential outcomes and so comparing treated and untreated units does not provide causal estimates

\section*{Setup}
- The basic idea behind RDDs:
- \(X_{i}\) is a forcing variable.
- Treatment assignment is determined by a cutoff in \(X_{i}\).
\[
D_{i}=1\left\{X_{i}>c\right\} \text { so } D_{i}= \begin{cases}D_{i}=1 & \text { if } X_{i}>c \\ D_{i}=0 & \text { if } X_{i}<c\end{cases}
\]
- \(X_{i}\) can be related to the potential outcomes and so comparing treated and untreated units does not provide causal estimates
- assume relationship between \(X\) and the potential outcomes \(Y_{1}\) and \(Y_{0}\) is smooth around the threshold \(\rightsquigarrow\) discontinuity created by the treatment to estimate the effect of \(D\) on \(Y\) at the threshold

\section*{Graphical Illustration}


\section*{Graphical Illustration}


\section*{Graphical Illustration}


\section*{Design}
- Sharp RD: treatment assignment is a deterministic function of the forcing variable and the threshold.

\section*{Design}
- Sharp RD: treatment assignment is a deterministic function of the forcing variable and the threshold.
- Key assumption: no compliance problems (deterministic)

\section*{Design}
- Sharp RD: treatment assignment is a deterministic function of the forcing variable and the threshold.
- Key assumption: no compliance problems (deterministic)
- At the threshold, \(c\), we only see treated units and below the threshold \(c-\varepsilon\), we only see control values:
\[
\begin{aligned}
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c\right)=1 \\
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c-\varepsilon\right)=0
\end{aligned}
\]

\section*{Design}
- Sharp RD: treatment assignment is a deterministic function of the forcing variable and the threshold.
- Key assumption: no compliance problems (deterministic)
- At the threshold, \(c\), we only see treated units and below the threshold \(c-\varepsilon\), we only see control values:
\[
\begin{aligned}
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c\right)=1 \\
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c-\varepsilon\right)=0
\end{aligned}
\]
- Intuitively, we are interested in the discontinuity in the outcome at the discontinuity in the treatment assignment.

\section*{Design}
- Sharp RD: treatment assignment is a deterministic function of the forcing variable and the threshold.
- Key assumption: no compliance problems (deterministic)
- At the threshold, \(c\), we only see treated units and below the threshold \(c-\varepsilon\), we only see control values:
\[
\begin{aligned}
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c\right)=1 \\
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c-\varepsilon\right)=0
\end{aligned}
\]
- Intuitively, we are interested in the discontinuity in the outcome at the discontinuity in the treatment assignment.
- We want to investigate the behavior of the outcome around the threshold: \(\lim _{x \downarrow c} E\left[Y_{i} \mid X_{i}=x\right]-\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]\)

\section*{Design}
- Sharp RD: treatment assignment is a deterministic function of the forcing variable and the threshold.
- Key assumption: no compliance problems (deterministic)
- At the threshold, \(c\), we only see treated units and below the threshold \(c-\varepsilon\), we only see control values:
\[
\begin{aligned}
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c\right)=1 \\
& \mathbb{P}\left(D_{i}=1 \mid X_{i}=c-\varepsilon\right)=0
\end{aligned}
\]
- Intuitively, we are interested in the discontinuity in the outcome at the discontinuity in the treatment assignment.
- We want to investigate the behavior of the outcome around the threshold: \(\lim _{x \downarrow c} E\left[Y_{i} \mid X_{i}=x\right]-\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]\)
- Under certain assumptions, this quantity identifies the ATE at the threshold: \(\tau_{S R D}=E\left[Y_{i}(1)-Y_{i}(0) \mid X_{i}=c\right]\)

\section*{Identification}

\section*{Identification Assumption}
(1) \(Y_{1}, Y_{0} \Perp D \mid X\) (trivially met)
(2) \(0<P(D=1 \mid X=x)<1\) (always violated in Sharp RDD)
(3) \(E\left[Y_{1} \mid X, D\right]\) and \(E\left[Y_{0} \mid X, D\right]\) are continuous in \(X\) around the threshold \(X=c\) (individuals have imprecise control over \(X\) around the threshold)

\section*{Identification Result}

The treatment effect is identified at the threshold as:
\[
\begin{aligned}
\alpha_{S R D D} & =E\left[Y_{1}-Y_{0} \mid X=c\right] \\
& =E\left[Y_{1} \mid X=c\right]-E\left[Y_{0} \mid X=c\right] \\
& =\lim _{x \downarrow c} E\left[Y_{1} \mid X=x\right]-\lim _{x \uparrow c} E\left[Y_{0} \mid X=x\right]
\end{aligned}
\]

Without further assumptions \(\alpha_{S R D D}\) is only identified at the threshold.

\section*{Extrapolation and smoothness}
- Remember the quantity of interest here is the effect at the threshold:
\[
\begin{aligned}
\tau_{S R D} & =E\left[Y_{i}(1)-Y_{i}(0) \mid X_{i}=c\right] \\
& =E\left[Y_{i}(1) \mid X_{i}=c\right]-E\left[Y_{i}(0) \mid X_{i}=c\right]
\end{aligned}
\]

\section*{Extrapolation and smoothness}
- Remember the quantity of interest here is the effect at the threshold:
\[
\begin{aligned}
\tau_{S R D} & =E\left[Y_{i}(1)-Y_{i}(0) \mid X_{i}=c\right] \\
& =E\left[Y_{i}(1) \mid X_{i}=c\right]-E\left[Y_{i}(0) \mid X_{i}=c\right]
\end{aligned}
\]
- But we don't observe \(E\left[Y_{i}(0) \mid X_{i}=c\right]\) ever due to the design, so we're going to extrapolate from \(E\left[Y_{i}(0) \mid X_{i}=c-\varepsilon\right]\).

\section*{Extrapolation and smoothness}
- Remember the quantity of interest here is the effect at the threshold:
\[
\begin{aligned}
\tau_{S R D} & =E\left[Y_{i}(1)-Y_{i}(0) \mid X_{i}=c\right] \\
& =E\left[Y_{i}(1) \mid X_{i}=c\right]-E\left[Y_{i}(0) \mid X_{i}=c\right]
\end{aligned}
\]
- But we don't observe \(E\left[Y_{i}(0) \mid X_{i}=c\right]\) ever due to the design, so we're going to extrapolate from \(E\left[Y_{i}(0) \mid X_{i}=c-\varepsilon\right]\).
- Extrapolation, even at short distances, requires smoothness in the functions we are extrapolating.

\section*{What can go wrong?}

\section*{What can go wrong?}
- If the potential outcomes change at the discontinuity for reasons other than the treatment, then smoothness will be violated.

\section*{What can go wrong?}
- If the potential outcomes change at the discontinuity for reasons other than the treatment, then smoothness will be violated.
- For instance, if people sort around threshold, then you might get jumps other than the one you care about.

\section*{What can go wrong?}
- If the potential outcomes change at the discontinuity for reasons other than the treatment, then smoothness will be violated.
- For instance, if people sort around threshold, then you might get jumps other than the one you care about.
- If things other than the treatment change at the threshold, then that might cause discontinuities in the potential outcomes.

\section*{Example: Electronic Voting (Hidalgo 2012)}


Figure 6: The effect of electronic voting on the percent of null and blank votes. Each dot is a polling station. Polling stations to the left of the vertical black line used paper ballots and polling stations to the right used electronic voting. The black horizontal line is the conditional mean of the outcome estimated with a loess regression.

\section*{Other Recent RDD Examples}
- class size on student achievement
- Angrist and Lavy 1999
- wage increase on performance of mayors

Ferraz and Finan 2011; Gagliarducci and Nannicini 2013
- colonial institutions on development outcomes

Dell 2009
- length of postpartum hospital stays on mother and infant mortality

Almond and Doyle 2009
- naturalization on political integration of immigrants

Hainmueller and Hangartner 2015
- financial aid offers on college enrollment

Van der Klaauw 2002
- access to Angel funding on growth of start-ups

Kerr, Lerner and Schoar 2010
- RDD that exploits "close" elections is workhorse model for electoral research:

Lee, Moretti and Butler 2004, DiNardo and Lee 2004, Hainmueller and Kern 2008, Leigh 2008,
Pettersson-Lidbom 2008, Broockman 2009, Butler 2009, Dal Bó, Dal Bó and Snyder 2009, Eggers and Hainmueller 2009, Ferreira and Gyourko 2009, Uppal 2009, 2010, Cellini, Ferreira and Rothstein 2010, Gerber and Hopkins 2011, Trounstine 2011, Boas and Hidalgo 2011, Folke and Snyder Jr. 2012, and Gagliarducci and Paserman 2012

\section*{General estimation strategy}
- The main goal in RD is to estimate the limits of various CEFs such as:
\[
\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]
\]

\section*{General estimation strategy}
- The main goal in RD is to estimate the limits of various CEFs such as:
\[
\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]
\]
- It turns out that this is a hard problem because we want to estimate the regression at a single point and that point is a boundary point.

\section*{General estimation strategy}
- The main goal in RD is to estimate the limits of various CEFs such as:
\[
\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]
\]
- It turns out that this is a hard problem because we want to estimate the regression at a single point and that point is a boundary point.
- As a result, the usual kinds of nonparametric estimators perform poorly (polynomials and kernels are particularly bad)

\section*{General estimation strategy}
- The main goal in RD is to estimate the limits of various CEFs such as:
\[
\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]
\]
- It turns out that this is a hard problem because we want to estimate the regression at a single point and that point is a boundary point.
- As a result, the usual kinds of nonparametric estimators perform poorly (polynomials and kernels are particularly bad)
- In general, we are going to have to choose some way of estimating the regression functions around the cutpoint.

\section*{General estimation strategy}
- The main goal in RD is to estimate the limits of various CEFs such as:
\[
\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]
\]
- It turns out that this is a hard problem because we want to estimate the regression at a single point and that point is a boundary point.
- As a result, the usual kinds of nonparametric estimators perform poorly (polynomials and kernels are particularly bad)
- In general, we are going to have to choose some way of estimating the regression functions around the cutpoint.
- Using the entire sample on either side will obviously lead to bias because those values that are far from the cutpoint are clearly different than those nearer to the cutpoint.

\section*{General estimation strategy}
- The main goal in RD is to estimate the limits of various CEFs such as:
\[
\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]
\]
- It turns out that this is a hard problem because we want to estimate the regression at a single point and that point is a boundary point.
- As a result, the usual kinds of nonparametric estimators perform poorly (polynomials and kernels are particularly bad)
- In general, we are going to have to choose some way of estimating the regression functions around the cutpoint.
- Using the entire sample on either side will obviously lead to bias because those values that are far from the cutpoint are clearly different than those nearer to the cutpoint.
- \(\rightarrow\) restrict our estimation to units close to the threshold.

\section*{General estimation strategy}
- The main goal in RD is to estimate the limits of various CEFs such as:
\[
\lim _{x \uparrow c} E\left[Y_{i} \mid X_{i}=x\right]
\]
- It turns out that this is a hard problem because we want to estimate the regression at a single point and that point is a boundary point.
- As a result, the usual kinds of nonparametric estimators perform poorly (polynomials and kernels are particularly bad)
- In general, we are going to have to choose some way of estimating the regression functions around the cutpoint.
- Using the entire sample on either side will obviously lead to bias because those values that are far from the cutpoint are clearly different than those nearer to the cutpoint.
- \(\rightarrow\) restrict our estimation to units close to the threshold.
- Local linear regression is a good way to go: see rdrobust package in R (Calonico et al 2015)

\section*{Misconceptions}

\section*{Misconceptions}
- Continuity of the potential outcomes does not imply local randomization

\section*{Misconceptions}
- Continuity of the potential outcomes does not imply local randomization
- This has caused a lot of confusion in the literature particularly in testing with background covariates

\section*{Misconceptions}
- Continuity of the potential outcomes does not imply local randomization
- This has caused a lot of confusion in the literature particularly in testing with background covariates
- Local statistical independence does not imply exclusion restriction (i.e. forcing variable not directly affecting the outcome)

\section*{Misconceptions}
- Continuity of the potential outcomes does not imply local randomization
- This has caused a lot of confusion in the literature particularly in testing with background covariates
- Local statistical independence does not imply exclusion restriction (i.e. forcing variable not directly affecting the outcome)
- If you are doing an RDD: be sure to do balance checks and sensitivity checks (read-up on best practices first!)

\section*{Local Randomization vs. Continuity (Sekhon and Titiunik 2016)}

Figure 1: Two Scenarios with Randomly Assigned Score


\section*{Fuzzy RD}
- With fuzzy RD, the treatment assignment is no longer a deterministic function of the forcing variable, but there is still a discontinuity in the probability of treatment at the threshold:

\section*{Assumption FRD}
\[
\lim _{x \downarrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right] \neq \lim _{x \uparrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right]
\]

\section*{Fuzzy RD}
- With fuzzy RD, the treatment assignment is no longer a deterministic function of the forcing variable, but there is still a discontinuity in the probability of treatment at the threshold:

\section*{Assumption FRD}
\[
\lim _{x \downarrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right] \neq \lim _{x \uparrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right]
\]
- In the sharp RD, this is also true, but it further required the jump in probability to be from 0 to 1 .

\section*{Fuzzy RD}
- With fuzzy RD, the treatment assignment is no longer a deterministic function of the forcing variable, but there is still a discontinuity in the probability of treatment at the threshold:

\section*{Assumption FRD}
\[
\lim _{x \downarrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right] \neq \lim _{x \uparrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right]
\]
- In the sharp RD, this is also true, but it further required the jump in probability to be from 0 to 1 .
- Fuzzy RD is often useful when the a threshold encourages participation in program, but does not actually force units to participate.

\section*{Fuzzy RD}
- With fuzzy RD, the treatment assignment is no longer a deterministic function of the forcing variable, but there is still a discontinuity in the probability of treatment at the threshold:

\section*{Assumption FRD}
\[
\lim _{x \downarrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right] \neq \lim _{x \uparrow c} \operatorname{Pr}\left[D_{i}=1 \mid X_{i}=x\right]
\]
- In the sharp RD, this is also true, but it further required the jump in probability to be from 0 to 1 .
- Fuzzy RD is often useful when the a threshold encourages participation in program, but does not actually force units to participate.
- Sound familiar? Fuzzy RD is just IV!

\section*{Fuzzy RD is IV}
- Forcing variable is an instrument: affects \(Y_{i}\), but only through \(D_{i}\) (at the threshold)

\section*{Fuzzy RD is IV}
- Forcing variable is an instrument: affects \(Y_{i}\), but only through \(D_{i}\) (at the threshold)
- Let \(D_{i}(x)\) be the potential value of treatment when we set the forcing variable to \(x\), for some small neighborhood around \(c\).

\section*{Fuzzy RD is IV}
- Forcing variable is an instrument: affects \(Y_{i}\), but only through \(D_{i}\) (at the threshold)
- Let \(D_{i}(x)\) be the potential value of treatment when we set the forcing variable to \(x\), for some small neighborhood around \(c\).
- \(D_{i}(x)=1\) if unit \(i\) would take treatment when \(X_{i}\) was \(x\)

\section*{Fuzzy RD is IV}
- Forcing variable is an instrument: affects \(Y_{i}\), but only through \(D_{i}\) (at the threshold)
- Let \(D_{i}(x)\) be the potential value of treatment when we set the forcing variable to \(x\), for some small neighborhood around \(c\).
- \(D_{i}(x)=1\) if unit \(i\) would take treatment when \(X_{i}\) was \(x\)
- \(D_{i}(x)=0\) if unit \(i\) would take control when \(X_{i}\) was \(x\)

\section*{Fuzzy RD assumptions}

\section*{Assumption 2: Monotoncity}

There exists \(\varepsilon\) such that \(D_{i}(c+e) \geq D_{i}(c-e)\) for all \(0<e<\varepsilon\)

\section*{Fuzzy RD assumptions}

\section*{Assumption 2: Monotoncity}

There exists \(\varepsilon\) such that \(D_{i}(c+e) \geq D_{i}(c-e)\) for all \(0<e<\varepsilon\)
No one is discouraged from taking the treatment by crossing the threshold.

\section*{Fuzzy RD assumptions}

\section*{Assumption 2: Monotoncity}

There exists \(\varepsilon\) such that \(D_{i}(c+e) \geq D_{i}(c-e)\) for all \(0<e<\varepsilon\)
No one is discouraged from taking the treatment by crossing the threshold.
Assumption 3: Local Exogeneity of Forcing Variable
In a neighborhood of \(c\),
\[
\left\{\tau_{i}, D_{i}(x)\right\} \Perp X_{i}
\]

\section*{Fuzzy RD assumptions}

\section*{Assumption 2: Monotoncity}

There exists \(\varepsilon\) such that \(D_{i}(c+e) \geq D_{i}(c-e)\) for all \(0<e<\varepsilon\)
No one is discouraged from taking the treatment by crossing the threshold.
Assumption 3: Local Exogeneity of Forcing Variable
In a neighborhood of \(c\),
\[
\left\{\tau_{i}, D_{i}(x)\right\} \Perp X_{i}
\]

Basically, in an \(\varepsilon\)-ball around \(c\), the forcing variable is randomly assigned.

\section*{Example: Early Release Program (HDC)}
- Prison system in many countries is faced with overcrowding and high recidivism rates after release.

\section*{Example: Early Release Program (HDC)}
- Prison system in many countries is faced with overcrowding and high recidivism rates after release.
- Early discharge of prisoners on electronic monitoring has become a popular policy

\section*{Example: Early Release Program (HDC)}
- Prison system in many countries is faced with overcrowding and high recidivism rates after release.
- Early discharge of prisoners on electronic monitoring has become a popular policy
- Difficult to estimate impact of early release program on future criminal behavior: best behaved inmates are usually the ones to be released early

\section*{Example: Early Release Program (HDC)}
- Prison system in many countries is faced with overcrowding and high recidivism rates after release.
- Early discharge of prisoners on electronic monitoring has become a popular policy
- Difficult to estimate impact of early release program on future criminal behavior: best behaved inmates are usually the ones to be released early
- Marie (2008) considers Home Detention Curfew (HDC) scheme in England and Wales:

\section*{Example: Early Release Program (HDC)}
- Prison system in many countries is faced with overcrowding and high recidivism rates after release.
- Early discharge of prisoners on electronic monitoring has become a popular policy
- Difficult to estimate impact of early release program on future criminal behavior: best behaved inmates are usually the ones to be released early
- Marie (2008) considers Home Detention Curfew (HDC) scheme in England and Wales:
- Fuzzy RDD: Only offenders sentenced to more than three months (88 days) in prison are eligible for HDC, but not all those with longer sentences are offered HDC

\section*{Example: Early Release Program (HDC)}

Table 2: Descriptive Statistics for Prisoners Released by Length of Sentence and HDC and Non HDC Discharges and +/-7 Days Around Discontinuity Threshold
\begin{tabular}{|l|c|c|c|}
\hline & \multicolumn{4}{l|}{} \\
\hline Panel A - Released +/- 7 Days of 3 Months (88 Days) Cut-off: \\
\hline Discharge Type & Non HDC & HDC & Total \\
\hline Percentage Female & 10.5 & 9.7 & 10.3 \\
\hline Mean Age at Release & 28.9 & 30.7 & 29.3 \\
\hline Percentage Incarcerated for Violence & 19.8 & 18.2 & 19.4 \\
\hline Mean Number Previous Offences & 9.5 & 5.7 & 8.7 \\
\hline Recidivism within 12 Months & 54.6 & 28.1 & 48.8 \\
\hline Sample Size & 18,928 & 5,351 & 24,279 \\
\hline \multicolumn{4}{|l|}{} \\
\hline Panel B - Released +/- 7 Days of 3 Months (88 Days) Cu-off: & \\
\hline Day of Release around Cut-off & -7 Days & +7 Days & Total \\
\hline Percentage Female & 11 & 10.2 & 10.3 \\
\hline Mean Age at Release & 28.8 & 29.4 & 29.3 \\
\hline Percentage Incarcerated for Violence & 17.1 & 19.7 & 19.4 \\
\hline Mean Number Previous Offences & 9.1 & 8.6 & 8.7 \\
\hline Recidivism within 12 Months & 56.8 & 47.9 & 48.8 \\
\hline Percentage Released on HDC & 0 & 24.4 & 22 \\
\hline Sample Size & 2,333 & 21,946 & 24,279 \\
\hline
\end{tabular}

\section*{Example: Early Release Program (HDC)}

Figure 1: Proportion Discharged on HDC by Sentence Length


\section*{Example: Early Release Program (HDC)}

Figure 2: Mean Number of Previous Offence by Sentence Length


\section*{Example: Early Release Program (HDC)}

Figure 4: Recidivism within 1 Year by Sentence Length


\section*{Example: Early Release Program (HDC)}

Table 4: RDD Estimates of HDC Impact on Recidivism - Around Threshold
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Dependent Variable = Recidivism Within 12 Months \\
Estimation on Individuals Discharged +/- 7 Days of 88 Days Threshold
\end{tabular}} \\
\hline & (1) & (2) & (3) \\
\hline \begin{tabular}{l}
Estimated Discontinuity of HDC \\
Participation at Threshold ( \(\mathrm{HDC}^{+}-\mathrm{HDC}^{-}\))
\end{tabular} & \[
\begin{gathered}
.243 \\
(.009)
\end{gathered}
\] & \[
\begin{gathered}
.223 \\
(.009)
\end{gathered}
\] & \[
\begin{gathered}
.243 \\
(.003)
\end{gathered}
\] \\
\hline Estimated Difference in Recidivism Around Threshold ( Rec \(^{+}-\)Rec \(^{-}\)) & \[
\begin{aligned}
& -.089 \\
& (.011)
\end{aligned}
\] & \[
\begin{aligned}
& -.059 \\
& (.009)
\end{aligned}
\] & \[
\begin{aligned}
& -.044 \\
& (.014)
\end{aligned}
\] \\
\hline Estimated Effect of HDC on Recidivism Participation ( \(\mathrm{Rec}^{+}-\mathrm{Rec}^{-}\))/( \(\mathrm{HDC}^{+}-\mathrm{HDC}^{-}\)) & \[
\begin{aligned}
& -.366 \\
& (.044)
\end{aligned}
\] & \[
\begin{gathered}
-.268 \\
(.044)
\end{gathered}
\] & \[
\begin{aligned}
& -.181 \\
& \text { (n.a.) }
\end{aligned}
\] \\
\hline Controls & No & Yes & No \\
\hline PSM & No & No & Yes \\
\hline Sample Size & 24,279 & 24,279 & 24,279 \\
\hline
\end{tabular}

\section*{Example: Teamwork}

- Qualified, Declined Invitation Superforecaster (accepted invitation)

\section*{Treatment}
_ Did Not Qualify for Super-Team Invitation Qualified/Received
Super-Team Invitation

\section*{Regression Discontinuity Conclusions}
- Key idea is to exploit an arbitrary assignment rule to identify a causal quantity.

\section*{Regression Discontinuity Conclusions}
- Key idea is to exploit an arbitrary assignment rule to identify a causal quantity.
- Remember that we are only identifying an effect at the boundary.

\section*{Regression Discontinuity Conclusions}
- Key idea is to exploit an arbitrary assignment rule to identify a causal quantity.
- Remember that we are only identifying an effect at the boundary.
- There are many other nuances to estimation and choosing an appropriate bandwidth for the comparison- be sure to read more before trying this at home.

\section*{Regression Discontinuity Conclusions}
- Key idea is to exploit an arbitrary assignment rule to identify a causal quantity.
- Remember that we are only identifying an effect at the boundary.
- There are many other nuances to estimation and choosing an appropriate bandwidth for the comparison- be sure to read more before trying this at home.
- There is an interesting literature on geographic regression discontinuity designs as well. These are harder but can be useful!

\section*{Conclusion}
- This week we covered approaches to unmeasured confounding

\section*{Conclusion}
- This week we covered approaches to unmeasured confounding
- The trick is to exploit some other feature (No Free Lunch!)

\section*{Conclusion}
- This week we covered approaches to unmeasured confounding
- The trick is to exploit some other feature (No Free Lunch!)
- Now that you have seen a few examples, hopefully you can be on the lookout for your own research.

\section*{Conclusion}
- This week we covered approaches to unmeasured confounding
- The trick is to exploit some other feature (No Free Lunch!)
- Now that you have seen a few examples, hopefully you can be on the lookout for your own research.
- We talked about natural experiments, instrumental variables and regression discontinuity

\section*{Conclusion}
- This week we covered approaches to unmeasured confounding
- The trick is to exploit some other feature (No Free Lunch!)
- Now that you have seen a few examples, hopefully you can be on the lookout for your own research.
- We talked about natural experiments, instrumental variables and regression discontinuity
- Next week we will talk about more designs for unmeasured confounding.

\section*{Next Week}
- Causality with Repeated Data
- Reading
- Angrist and Pishke Chapter 5 Parallel Worlds: Fixed Effects, Differences-in-Differences and Panel Data
- Optional: Imai and Kim "When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data"
- Optional: Angrist and Pishke Chapter 6 Regression Discontinuity Designs
- Optional: Morgan and Winship Chapter 11 Repeated Observations and the Estimation of Causal Effects

\section*{References}
- Abadie, Alberto. "Semiparametric instrumental variable estimation of treatment response models." Journal of econometrics 113, no. 2 (2003): 231-263.
- Angrist, Joshua D., and Jrn-Steffen Pischke. Mostly harmless econometrics: An empiricist's companion. Princeton university press, 2008.
- Morgan, Stephen L., and Christopher Winship. Counterfactuals and causal inference. Cambridge University Press, 2014.
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables
- Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(D) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix

\section*{Fun with Extremists}

\section*{Fun with Extremists}

Hall, Andrew. "What Happens When Extremists Win Primaries?" 2015. American Political Science Review.

I'm grateful to Andy Hall for sharing the following slides with me.

\section*{What are the Effects of Extremists Winning Primaries?}

\section*{What are the Effects of Extremists Winning Primaries?}
"...getting a general-election candidate who can win is the only thing we care about."
-Nat'l Republican Senatorial Committee

VS.
"The road to hell is paved with electable candidates.'
-Conservative Blogger

There is a tradeoff between ideology and electability:

There is a tradeoff between ideology and electability:
- Evaluates how the preferences of primary voters map to legislature.

There is a tradeoff between ideology and electability:
- Evaluates how the preferences of primary voters map to legislature.
- Shows how general elections react to moderates vs. extremists.

\section*{Findings: Elections Strongly Prefer Moderates}

\section*{Findings: Elections Strongly Prefer Moderates}

In the U.S. House, 1980-2010:

\section*{Findings: Elections Strongly Prefer Moderates}

In the U.S. House, 1980-2010:
- Extremist causes 38 percentage-point decrease in win probability on average.

\section*{Findings: Elections Strongly Prefer Moderates}

In the U.S. House, 1980-2010:
- Extremist causes 38 percentage-point decrease in win probability on average.
- On average, roll-call voting farther away from primary voters when they nominate extremists.

\section*{Elections Select Moderate Extremists}

\section*{Elections Select Moderate Extremists}
- Primary voters cannot force in extremists.

\section*{Elections Select Moderate Extremists}
- Primary voters cannot force in extremists.
- House elections choose moderates, but constrained by candidate pool.

\section*{Elections Select Moderate Extremists}
- Primary voters cannot force in extremists.
- House elections choose moderates, but constrained by candidate pool.
- Argument of broader research project: candidate entry key to electing extremist legislators.

\section*{Empirical Approach}

\section*{Empirical Approach}
- Quantity of interest: effect of extremist nominees

\section*{Empirical Approach}
- Quantity of interest: effect of extremist nominees
- Ideal experiment: randomly assign districts extremist or moderate nominees.

\section*{Empirical Approach}
- Quantity of interest: effect of extremist nominees
- Ideal experiment: randomly assign districts extremist or moderate nominees.
- Compare elections and roll-call voting in "treated" districts vs. "control" districts.

\section*{Obstacle to Estimating Effects of Extremist Nominees}

\section*{Obstacle to Estimating Effects of Extremist Nominees}

\section*{Selection Bias.}

\section*{Obstacle to Estimating Effects of Extremist Nominees}

\section*{Selection Bias.}
- Districts choose extremist nominees because they prefer them.

\section*{Close Primaries Offer Variation in Nominee Type}

\section*{Close Primaries Offer Variation in Nominee Type}
- Regression discontinuity design (RDD) in primary elections.

\section*{Close Primaries Offer Variation in Nominee Type}
- Regression discontinuity design (RDD) in primary elections.
- Districts with moderate/extremist nominee otherwise identical in expectation.

\section*{Close Primaries Offer Variation in Nominee Type}
- Regression discontinuity design (RDD) in primary elections.
- Districts with moderate/extremist nominee otherwise identical in expectation.
- Key assumption for RDD: no sorting

\section*{"Extremists" Defined}


Dem Primary
Rep Primary

\section*{"Extremists" Defined}


\section*{"Extremists" Defined}


\section*{"Extremists" Defined}


\section*{"Extremists" Defined}


\section*{"Extremists" Defined}

- Calculate distance between moderate and extremist.

\section*{"Extremists" Defined}

- Calculate distance between moderate and extremist.
- Use races where distance is at or above the median distance.

\section*{Quick Example: Robbie Wills vs. Joyce Elliott}

Joyce Elliott: -0.33


Robbie Wills: -0.07


\section*{Quick Example: Robbie Wills vs. Joyce Elliott}

Joyce Elliott: -0.33


Robbie Wills: -0.07


\section*{Quick Example: Robbie Wills vs. Joyce Elliott}

Joyce Elliott: -0.33


Robbie Wills: -0.07

- Wills sent out mailer calling Elliott an "extremist" who was "unelectable."

\section*{Quick Example: Robbie Wills vs. Joyce Elliott}

Joyce Elliott: -0.33


Robbie Wills: -0.07

- Wills sent out mailer calling Elliott an "extremist" who was "unelectable."
- Elliott won close runoff primary and lost general election \(62 \%\) to 38\%.

\section*{Estimating the RD: Effects of Extremist Nominations}
\[
Y_{i t}=\beta_{0}+\beta_{1} \text { Extremist Primary } \text { Win }_{i t}+f\left(V_{i t}\right)+\epsilon_{i t}
\]
\(V_{i t} \equiv\) extremist candidate's vote-share winning margin.






Extreme Candidate Primary Election Winning Margin



Extreme Candidate Primary Election Winning Margin


Extreme Candidate Primary Election Winning Margin



Large Electoral Penalty to Nominating Extremist

Large Electoral Penalty to Nominating Extremist


95\% Confidence Intervals From Max of Robust and Conventional Standard Errors

\section*{How Does Penalty to Extremists Affect Roll-Calls?}

\section*{How Does Penalty to Extremists Affect Roll-Calls?}
(1) Penalty makes other party more likely to win seat.

\section*{How Does Penalty to Extremists Affect Roll-Calls?}
- Penalty makes other party more likely to win seat.
(3) Extremist offers more extreme roll-call voting.

\section*{How Does Penalty to Extremists Affect Roll-Calls?}
(1) Penalty makes other party more likely to win seat.
(2) Extremist offers more extreme roll-call voting.

Knowing general election prefers moderates not sufficient to understand tradeoff.

\section*{How Does Penalty to Extremists Affect Roll-Calls?}


\section*{How Does Penalty to Extremists Affect Roll-Calls?}


\section*{How Does Penalty to Extremists Affect Roll-Calls?}


\section*{Effect of Extremists on Roll-Call Voting}


\section*{Effect of Extremists on Roll-Call Voting}


\section*{Summary}

\section*{Summary}
- Primary voters do not make legislature more extreme by forcing in extreme candidates.

\section*{Summary}
- Primary voters do not make legislature more extreme by forcing in extreme candidates.
- The general election is a huge force for moderation.

Elections: A Limited Force For Moderation

\section*{Elections: A Limited Force For Moderation}
- U.S. House elections select "moderate extremists."

\section*{Elections: A Limited Force For Moderation}
- U.S. House elections select "moderate extremists."
- Argument: Differential entry of extremist candidates forces voters to elect extremists.

\section*{Fun With Related Work}

Hall and Snyder. 2013. Candidate Ideology and Electoral Success. Working Paper.

Eggers, Andrew, Anthony Fowler, Jens Hainmueller, Andrew B. Hall, and James M. Snyder, Jr. On the Validity of the Regression Discontinuity Design for Estimating Electoral Effects: Evidence From Over 40,000 Close Races. American Journal of Political Science, 2015.

Hall, Andrew B. "What Happens When Extremists Win Primaries?" American Political Science Review. 2015.
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables
(4) Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(D) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix

\section*{Fun With Weak Instruments}

Ratkovic, Marc, and Yuki Shiraito. Strengthening Weak Instruments by Modeling Compliance. Working Paper.
(Thanks to Yuki Shiraito for sharing these slides with me)

\section*{Example: Endogeneity of Institution and Growth}

\section*{Example: Endogeneity of Institution and Growth}

\section*{Endogeneity Bias}


\section*{Solution of Acemoglu et.al. (2001)}

\section*{Instrumental Variable Analysis}
- Exploiting exogeneity of \(Z_{i}\)


\section*{Solution of Acemoglu et.al. (2001)}

\section*{Instrumental Variable Analysis}
- Exploiting exogeneity of \(Z_{i}\)

- Validity: Settlers chose to build stronger (non-extractive) institutions in places they wanted to live

\section*{Solution of Acemoglu et.al. (2001)}

\section*{Instrumental Variable Analysis}
- Exploiting exogeneity of \(Z_{i}\)

- Validity: Settlers chose to build stronger (non-extractive) institutions in places they wanted to live
- Exclusion: But early settler mortality rate does not affect GDP directly

\section*{Addressing Endogeneity}


\section*{Addressing Endogeneity}


\section*{Problem: Bootstrapped Confidence Interval}


\section*{Problem: Weak Instruments}

\section*{Non-Compliers}

- Non-compliers: For some countries, early settler mortality rate did not affect institutions

\section*{Problem: Weak Instruments}

\section*{Non-Compliers}

- Non-compliers: For some countries, early settler mortality rate did not affect institutions
- Weak Instrument: If many non-compliers in data,
\[
\hat{\beta}_{I V}=\underbrace{\frac{\operatorname{Cov} \widehat{\left(Y_{i}, D_{i}\right)}}{\operatorname{Cov(D_{i},Z_{i})}}}_{\approx 0}
\]

\section*{Problem: Weak Instruments}

\section*{Non-Compliers}

- Non-compliers: For some countries, early settler mortality rate did not affect institutions
- Weak Instrument: If many non-compliers in data,
\[
\hat{\beta}_{I V}=\underbrace{\frac{\operatorname{Cov(Y_{i},D_{i})}}{\operatorname{Cov(D_{i},Z_{i})}}}_{\approx 0}
\]
- Arbitrarily misleading estimates

\section*{Solution: Complier Instrumental Variable Estimation}

\section*{Compliers}


\section*{Solution: Complier Instrumental Variable Estimation}

\section*{Compliers}

- Want to focus on observations where \(Z_{i}\) moves \(D_{i}\), compliers

\section*{Solution: Complier Instrumental Variable Estimation}

Compliers

- Want to focus on observations where \(Z_{i}\) moves \(D_{i}\), compliers
- Can't observe who are compliers

\section*{Solution: Complier Instrumental Variable Estimation}

\section*{Compliers}

- Want to focus on observations where \(Z_{i}\) moves \(D_{i}\), compliers
- Can't observe who are compliers
- Estimate latent variable indicating compliance

\section*{Solution: Complier Instrumental Variable Estimation}

\section*{Compliers}

- Want to focus on observations where \(Z_{i}\) moves \(D_{i}\), compliers
- Can't observe who are compliers
- Estimate latent variable indicating compliance
- Strengthen the instrument through upweighting compliers

\section*{Solution: Complier Instrumental Variable Estimation}

\section*{Compliers}

- Want to focus on observations where \(Z_{i}\) moves \(D_{i}\), compliers
- Can't observe who are compliers
- Estimate latent variable indicating compliance
- Strengthen the instrument through upweighting compliers
- Connect finite mixture modeling of compliance with weak instrument problem (Hirano et.al. 2000)

\section*{IV as Simultaneous Equations}

Standard model
\[
\begin{aligned}
& D_{i}=Z_{i}^{\top} \delta+X_{i}^{\top} \theta+\eta_{i} \quad \text { (First Stage) } \\
& Y_{i}=D_{i}^{\top} \beta+X_{i}^{\top} \gamma+\epsilon_{i} \quad \text { (Second Stage) }
\end{aligned}
\]

\section*{IV as Simultaneous Equations}

Standard model
\[
\begin{aligned}
& D_{i}=Z_{i}^{\top} \delta+X_{i}^{\top} \theta+\eta_{i} \quad \text { (First Stage) } \\
& Y_{i}=D_{i}^{\top} \beta+X_{i}^{\top} \gamma+\epsilon_{i} \quad \text { (Second Stage) }
\end{aligned}
\]
where, for a simple random sample of \(i \in\{1,2, \ldots, N\}\)
- \(Y_{i}\) : Outcome
- \(D_{i}\) : Endogenous
- \(Z_{i}\) : Instrument
- \(X_{i}\) : Covariates
- \(\epsilon_{i}, \eta_{i}\) : Normal errors
- \(\operatorname{Cov}\left(\epsilon_{i}, \eta_{i}\right) \neq 0\)

\section*{CIV as Simultaneous Equations}

CIV model
\[
\begin{aligned}
& \operatorname{Pr}\left(C_{i}=1\right)=\Phi\left(W_{i}^{\top} \alpha\right) \\
& D_{i}= \begin{cases}\delta_{0}^{C}+Z_{i}^{\top} \delta+X_{i}^{\top} \theta+\eta_{i} ; & C_{i}=1 \\
\delta_{0}^{N C}+X_{i}^{\top} \theta+\eta_{i} ; & C_{i}=0\end{cases} \\
& Y_{i}=D_{i}^{\top} \beta+X_{i}^{\top} \gamma+\epsilon_{i}
\end{aligned}
\]

\section*{CIV as Simultaneous Equations}

CIV model
\[
\begin{aligned}
& \operatorname{Pr}\left(C_{i}=1\right)=\Phi\left(W_{i}^{\top} \alpha\right) \\
& D_{i}= \begin{cases}\delta_{0}^{C}+Z_{i}^{\top} \delta+X_{i}^{\top} \theta+\eta_{i} ; & C_{i}=1 \\
\delta_{0}^{N C}+X_{i}^{\top} \theta+\eta_{i} ; & C_{i}=0\end{cases} \\
& Y_{i}=D_{i}^{\top} \beta+X_{i}^{\top} \gamma+\epsilon_{i}
\end{aligned}
\]
(Compliance Model)
(First Stage)
(Second Stage)
where, for a simple random sample of \(i \in\{1,2, \ldots, N\}\)
- \(C_{i}\) : Indicator for complier (unobserved)
- \(W_{i}\) : Covariates for compliance
- \(\Phi:\) Normal CDF
- \(\epsilon_{i}, \eta_{i}\) : Normal errors

\section*{CIV as Simultaneous Equations}

CIV model
\[
\begin{aligned}
& \operatorname{Pr}\left(C_{i}=1\right)=\Phi\left(W_{i}^{\top} \alpha\right) \\
& D_{i}= \begin{cases}\delta_{0}^{C}+Z_{i}^{\top} \delta+X_{i}^{\top} \theta+\eta_{i} ; & C_{i}=1 \\
\delta_{0}^{N C}+X_{i}^{\top} \theta+\eta_{i} ; & C_{i}=0\end{cases} \\
& Y_{i}=D_{i}^{\top} \beta+X_{i}^{\top} \gamma+\epsilon_{i}
\end{aligned}
\]
where, for a simple random sample of \(i \in\{1,2, \ldots, N\}\)
- \(C_{i}\) : Indicator for complier (unobserved)
- \(W_{i}\) : Covariates for compliance
- Ф: Normal CDF
- \(\epsilon_{i}, \eta_{i}\) : Normal errors
- Maximization not straightforward
- Gibbs sampler
- ECM algorithm in paper

\section*{Revisiting Acemoglu, Johnson, and Robinson (2001)}

Causal effect of property rights on economic growth

\section*{Revisiting Acemoglu, Johnson, and Robinson (2001)}

Causal effect of property rights on economic growth
- Outcome: 1995 GDP, logged per capita
- Endogenous variable: Risk of property expropriation
- Instrument: Mortality rate of European colonizers
- Covariates: Latitude (absolute value); former French colony ( \(0 / 1\) ) or British colony ( \(0 / 1\) ); proportion citizens who are Catholic, Muslim, and neither; whether the country has a French legal origin (0/1)
- \(N=64\)

\section*{Revisiting Acemoglu, Johnson, and Robinson (2001)}

Causal effect of property rights on economic growth
- Outcome: 1995 GDP, logged per capita
- Endogenous variable: Risk of property expropriation
- Instrument: Mortality rate of European colonizers
- Covariates: Latitude (absolute value); former French colony ( \(0 / 1\) ) or British colony ( \(0 / 1\) ); proportion citizens who are Catholic, Muslim, and neither; whether the country has a French legal origin (0/1)
- \(N=64\)

CIV for
- Strengthening a weak instrument
- Characterizing compliers

\section*{Causal Estimates}


\section*{Causal Estimates}


\section*{Causal Estimates}


\section*{Compliance, by Colonizer}


\section*{Fun With Conclusion}

\section*{Fun With Conclusion}
- They propose CIV as a solution to the weak instrument problem

\section*{Fun With Conclusion}
- They propose CIV as a solution to the weak instrument problem
- Weak instruments

\section*{Fun With Conclusion}
- They propose CIV as a solution to the weak instrument problem
- Weak instruments
(1) Many non-compliers in data
(2) Arbitrarily misleading estimates

\section*{Fun With Conclusion}
- They propose CIV as a solution to the weak instrument problem
- Weak instruments
(1) Many non-compliers in data
(2) Arbitrarily misleading estimates
- Complier Instrumental Variable estimation

\section*{Fun With Conclusion}
- They propose CIV as a solution to the weak instrument problem
- Weak instruments
(1) Many non-compliers in data
(2) Arbitrarily misleading estimates
- Complier Instrumental Variable estimation
(1) Estimates latent compliance status \(\rightarrow\) Characterize who are the compliers

\section*{Fun With Conclusion}
- They propose CIV as a solution to the weak instrument problem
- Weak instruments
(1) Many non-compliers in data
(2) Arbitrarily misleading estimates
- Complier Instrumental Variable estimation
(1) Estimates latent compliance status \(\rightarrow\) Characterize who are the compliers
(2) Upweights the compliers
\(\rightarrow\) Strengthens the instrument
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables

4 Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(6) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix
(1) Approaches to Unmeasured Confounding
(2) Natural Experiments
(3) Traditional Instrumental Variables
- Fun with Coarsening Bias
(5) Modern Approaches to Instrumental Variables
(D) Regression Discontinuity
(7) Fun with Extremists
(8) Fun With Weak Instruments
(9) Appendix

\section*{Proof of the LATE theorem}
- Under the exclusion restriction and randomization,
\[
\begin{aligned}
E\left[Y_{i} \mid Z_{i}=1\right] & =E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i} \mid Z_{i}=1\right] \\
& =E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}(1)\right]
\end{aligned}
\]
(randomization)
- The same applies to when \(Z_{i}=0\), so we have
\[
E\left[Y_{i} \mid Z_{i}=0\right]=E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}(0)\right]
\]
- Thus, \(E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]=\)
\[
\begin{aligned}
& E\left[\left(Y_{i}(1)-Y_{i}(0)\right)\left(D_{i}(1)-D_{i}(0)\right)\right] \\
= & E\left[\left(Y_{i}(1)-Y_{i}(0)\right)(1) \mid D_{i}(1)>D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)>D_{i}(0)\right] \\
+ & E\left[\left(Y_{i}(1)-Y_{i}(0)\right)(-1) \mid D_{i}(1)<D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)<D_{i}(0)\right]
\end{aligned}
\]

\section*{Proof of the LATE theorem}
- Under the exclusion restriction and randomization,
\[
\begin{aligned}
E\left[Y_{i} \mid Z_{i}=1\right] & =E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i} \mid Z_{i}=1\right] \\
& =E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}(1)\right] \quad \text { (randomization) }
\end{aligned}
\]
- The same applies to when \(Z_{i}=0\), so we have
\[
E\left[Y_{i} \mid Z_{i}=0\right]=E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}(0)\right]
\]
- Thus, \(E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]=\)
\[
\begin{aligned}
& E\left[\left(Y_{i}(1)-Y_{i}(0)\right)\left(D_{i}(1)-D_{i}(0)\right)\right] \\
= & E\left[\left(Y_{i}(1)-Y_{i}(0)\right)(1) \mid D_{i}(1)>D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)>D_{i}(0)\right] \\
+ & E\left[\left(Y_{i}(1)-Y_{i}(0)\right)(-1) \mid D_{i}(1)<D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)<D_{i}(0)\right] \\
= & E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}(1)>D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)>D_{i}(0)\right]
\end{aligned}
\]

\section*{Proof of the LATE theorem}
- Under the exclusion restriction and randomization,
\[
\begin{aligned}
E\left[Y_{i} \mid Z_{i}=1\right] & =E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i} \mid Z_{i}=1\right] \\
& =E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}(1)\right] \quad \text { (randomization) }
\end{aligned}
\]
- The same applies to when \(Z_{i}=0\), so we have
\[
E\left[Y_{i} \mid Z_{i}=0\right]=E\left[Y_{i}(0)+\left(Y_{i}(1)-Y_{i}(0)\right) D_{i}(0)\right]
\]
- Thus, \(E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]=\)
\[
\begin{aligned}
& E\left[\left(Y_{i}(1)-Y_{i}(0)\right)\left(D_{i}(1)-D_{i}(0)\right)\right] \\
= & E\left[\left(Y_{i}(1)-Y_{i}(0)\right)(1) \mid D_{i}(1)>D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)>D_{i}(0)\right] \\
+ & E\left[\left(Y_{i}(1)-Y_{i}(0)\right)(-1) \mid D_{i}(1)<D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)<D_{i}(0)\right] \\
= & E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}(1)>D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)>D_{i}(0)\right]
\end{aligned}
\]
- The third equality comes from monotonicity: with this assumption, \(D_{i}(1)<D_{i}(0)\) never occurs.

\section*{Proof (continued)}
\[
E\left[Y_{i} \mid Z_{i}=1\right]-E\left[Y_{i} \mid Z_{i}=0\right]=E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}(1)>D_{i}(0)\right] \operatorname{Pr}\left[D_{i}(1)>D_{i}(0)\right]
\]
- We can use the same argument for the denominator:
\[
\begin{aligned}
E\left[D_{i} \mid Z_{i}=1\right]-E\left[D_{i} \mid Z_{i}=0\right] & =E\left[D_{i}(1)-D_{i}(0)\right] \\
& =\operatorname{Pr}\left[D_{i}(1)>D_{i}(0)\right]
\end{aligned}
\]
- Dividing these two expressions through gives the LATE.```


[^0]:    ${ }^{1}$ These slides are heavily influenced by Matt Blackwell, Adam Glynn, Jens Hainmueller

