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Where We’ve Been and Where We’re Going...

Last Week
I causal inference with unmeasured confounding

This Week
I Monday:

F panel data
F diff-in-diff
F fixed effects

I Wednesday:
F Q&A
F fun With
F wrap-Up

The Following Week
I break!

Long Run
I probability → inference → regression → causality

Questions?
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Gameplan

Presentations

Wednesday’s Class

Final Exam
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1 Differencing Models

2 Fixed Effects

3 Random Effects

4 (Almost) Twenty Questions

5 Fun with Comparative Case Studies

6 Fun with Music Lab

7 Concluding Thoughts for the Course
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Motivation

Relationship between democracy and infant mortality?

Compare levels of democracy with levels of infant mortality, but. . .

Democratic countries are different from non-democracies in ways that
we can’t measure?

I they are richer or developed earlier
I provide benefits more efficiently
I possess some cultural trait correlated with better health outcomes

If we have data on countries over time, can we make any progress in
spite of these problems?
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Ross data

## cty_name year democracy infmort_unicef

## 1 Afghanistan 1965 0 230

## 2 Afghanistan 1966 0 NA

## 3 Afghanistan 1967 0 NA

## 4 Afghanistan 1968 0 NA

## 5 Afghanistan 1969 0 NA

## 6 Afghanistan 1970 0 215
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Notation for panel data

Units, i = 1, . . . , n

Time, t = 1, . . . ,T

Slightly different focus than clustered data we covered earlier

I Panel: we have repeated measurements of the same units
I Clustering: units are clustered within some grouping.
I The main difference is what level of analysis we care about (individual,

city, county, state, country, etc).

Time is a typical application, but applies to other groupings:

I counties within states
I states within countries
I people within countries, etc.
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Nomenclature

Panel data: large n, relatively short T

Time series, cross-sectional (TSCS) data: smaller n, large T

We are primarily going to focus on similarities today but there are
some differences.
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Model

yit = x′itβ + ai + uit

xit is a vector of covariate (possibly time-varying)

ai is an unobserved time-constant unit effect (“fixed effect”)

uit are the unobserved time-varying “idiosyncratic” errors

vit = ai + uit is the combined unobserved error:

yit = x′itβ + vit
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Pooled OLS

Pooled OLS: pool all observations into one regression

Treats all unit-periods (each it) as an iid unit.

Has two problems:

1 Heteroskedasticity (see clustering from diagnostics week)
2 Possible violation of zero conditional mean errors

Both problems arise out of ignoring the unmeasured heterogeneity
inherent in ai
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Pooled OLS with Ross data

pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur),

data = ross)

summary(pooled.mod)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.76405 0.34491 28.31 <2e-16 ***

## democracy -0.95525 0.06978 -13.69 <2e-16 ***

## log(GDPcur) -0.22828 0.01548 -14.75 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.7948 on 646 degrees of freedom

## (5773 observations deleted due to missingness)

## Multiple R-squared: 0.5044, Adjusted R-squared: 0.5029

## F-statistic: 328.7 on 2 and 646 DF, p-value: < 2.2e-16
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Unmeasured heterogeneity

Assume that zero conditional mean error holds for the idiosyncratic
error:

E[uit |X] = 0

But time-constant effect, ai , is correlated with the X:

E[ai |X] 6= 0

Example: democratic institutions correlated with unmeasured aspects
of health outcomes, like quality of health system or a lack of ethnic
conflict.

Ignore the heterogeneity  correlation between the combined error
and the independent variables:

E[vit |X] = E[ai + uit |X] 6= 0

Pooled OLS will be biased and inconsistent because zero conditional
mean error fails for the combined error.
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First differencing

First approach: compare changes over time as opposed to levels

Intuitively, the levels include the unobserved heterogeneity, but
changes over time should be free of this heterogeneity

Two time periods:
yi1 = x′i1β + ai + ui1

yi2 = x′i2β + ai + ui2

Look at the change in y over time:

∆yi = yi2 − yi1

= (x′i2β + ai + ui2)− (x′i1β + ai + ui1)

= (x′i2 − x′i1)β + (ai − ai ) + (ui2 − ui1)

= ∆x′iβ + ∆ui
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First differences model

∆yi = ∆x′iβ + ∆ui

Coefficient on the levels xit is the same as the coefficient on the
changes ∆xi

fixed effect/unobserved heterogeneity, ai drops out (depends on
time-constancy!)

Now if E[uit |X] = 0, then, E[∆ui |∆X ] = 0 and zero conditional mean
error holds.

No perfect collinearity: xit has to change over time for some units

Differencing will reduce the variation in the independent variables and
increase standard errors
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First differences in R
library(plm)

fd.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c("id", "year"), model = "fd")

summary(fd.mod)

## Oneway (individual) effect First-Difference Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = "fd", index = c("id", "year"))

##

## Unbalanced Panel: n=166, T=1-7, N=649

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.9060 -0.0956 0.0468 0.1410 0.3950

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## (intercept) -0.149469 0.011275 -13.2567 < 2e-16 ***

## democracy -0.044887 0.024206 -1.8544 0.06429 .

## log(GDPcur) -0.171796 0.013756 -12.4886 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 23.545

## Residual Sum of Squares: 17.762

## R-Squared : 0.24561

## Adj. R-Squared : 0.24408

## F-statistic: 78.1367 on 2 and 480 DF, p-value: < 2.22e-16
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Differences-in-differences

Often called “diff-in-diff”, it is a special kind of FD model

Let xit be an indicator of a unit being “treated” at time t.

Focus on two-periods where:

I xi1 = 0 for all i
I xi2 = 1 for the “treated group”

Here is the basic model:

yit = β0 + δ0dt + β1xit + ai + uit

dt is a dummy variable for the second time period

I d2 = 1 and d1 = 0

β1 is the quantity of interest: it’s the effect of being treated
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Diff-in-diff mechanics

Let’s take differences:

(yi2 − yi1) = δ0 + β1(xi2 − xi1) + (ui2 − ui1)

δ0: the difference in the average outcome from period 1 to period 2 in
the untreated group

(xi2 − xi1) = 1 only for the treated group

(xi2 − xi1) = 0 only for the control group

β1 represents the additional change in y over time (on top of δ0)
associated with being in the treatment group.
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Graphical Representation: Difference-in-Differences
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E [Y1(1)− Y0(1)|D = 1]

where we define D = 1 when xi2 − xi1 = 1 and 0 otherwise
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Identification with Difference-in-Differences

Identification Assumption (parallel trends)

E [Y0(1)− Y0(0)|D = 1] = E [Y0(1)− Y0(0)|D = 0]

Identification Result

Given parallel trends the ATT is identified as:

E [Y1(1)− Y0(1)|D = 1] =
{
E [Y (1)|D = 1]− E [Y (1)|D = 0]

}
−

{
E [Y (0)|D = 1]− E [Y (0)|D = 0]

}
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Identification with Difference-in-Differences

Identification Assumption (parallel trends)

E [Y0(1)− Y0(0)|D = 1] = E [Y0(1)− Y0(0)|D = 0]

Proof.
Note that the identification assumption implies
E [Y0(1)|D = 0] = E [Y0(1)|D = 1]− E [Y0(0)|D = 1] + E [Y0(0)|D = 0]
plugging in we get

{E [Y (1)|D = 1]− E [Y (1)|D = 0]} − {E [Y (0)|D = 1]− E [Y (0)|D = 0]}
= {E [Y1(1)|D = 1]− E [Y0(1)|D = 0]} − {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
= {E [Y1(1)|D = 1]− (E [Y0(1)|D = 1]− E [Y0(0)|D = 1] + E [Y0(0)|D = 0])}
− {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
= E [Y1(1)− Y0(1)|D = 1] + {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
− {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
= E [Y1(1)− Y0(1)|D = 1]

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 19 / 98



Diff-in-diff interpretation

Key idea: comparing the changes over time in the control group to
the changes over time in the treated group.

The differences between these differences is our estimate of the causal
effect:

β1 = ∆y treated −∆y control

Why more credible than simply looking at the treatment/control
differences in period 2?

Unmeasured reasons why the treated group has higher or lower
outcomes than the control group

 bias due to violation of zero conditional mean error
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Example: Lyall (2009)
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Example: Lyall (2009)

Does Russian shelling of villages cause insurgent attacks?

attacksit = β0 + β1shellingit + ai + uit

We might think that artillery shelling by Russians is targeted to places
where the insurgency is the strongest

That is, part of the village fixed effect, ai might be correlated with
whether or not shelling occurs, xit

This would cause our pooled estimates to be biased

Instead Lyall takes a diff-in-diff approach: compare attacks over time
for shelled and non-shelled villages:

∆attacksi = β0 + β1∆shellingi + ∆ui

Counterintuitive findings: shelled villages experience a 24% reduction
in insurgent attacks relative to controls.
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Example: Card and Krueger (2000)

Do increases to the minimum wage depress employment at fast-food
restaurants?

employmentit = β0 + β1minimum wageit + ai + uit

Each i here is a different fast food restaurant in either New Jersey or
Pennsylvania

Between t = 1 and t = 2 NJ raised its minimum wage

Employment in fast food might be driven by other state-level policies
correlated with minimum wage

Diff-in-diff approach: regress changes in employment on store being in
NJ

∆employmenti = β0 + β1NJi + ∆ui

NJi indicates which stores received the treatment of a higher
minimum wage at time period t = 2
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Parallel Trends?
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Longer Trends in Employment (Card and Krueger 2000)

First two vertical lines indicate the dates of the Card-Krueger survey. October 1996 line is the
federal minimum wage hike which was binding in PA but not NJ
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Threats to identification

Treatment needs to be independent of the idiosyncratic shocks:

E[(ui2 − ui1)|xi2] = 0

Variation in the outcome over time is the same for the treated and
control groups

Non-parallel dynamics such as Ashenfelter’s dip: people who enroll in
job training programs see their earnings decline prior to that training
(presumably why they are entering)

In the Lyall paper, it might be the case that insurgent attacks might
be falling in places where there is shelling because rebels attacked in
those areas and have moved on.

Could add covariates, sometimes called “regression diff-in-diff”

yi2 − yi1 = δ0 + z′iτ + β(xi2 − xi1) + (ui2 − ui1)
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Concluding Thoughts on Panel Differencing Models

Useful toolkit for leveraging panel data

Be cautious of assumptions required

Always think through “what is the counterfactual” or “what variation
lets me identify this effect”

Parallel trends assumptions are most likely to hold over a shorter
time-window. Methods primarily helpful for short, one-shot style
effects

On Wednesday we will discuss a diff-in-diff approach where we don’t
have a good counterfactual unit.
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1 Differencing Models

2 Fixed Effects

3 Random Effects

4 (Almost) Twenty Questions

5 Fun with Comparative Case Studies

6 Fun with Music Lab

7 Concluding Thoughts for the Course
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Fixed effects models

Fixed effects model: alternative way to remove unmeasured
heterogeneity

Focuses on within-unit comparisons: changes in yit and xit relative to
their within-group means

First note that taking the average of the y ’s over time for a given unit
leaves us with a very similar model:

y i =
1

T

T∑
t=1

[
x′itβ + ai + uit

]

=

(
1

T

T∑
t=1

x′it

)
β +

1

T

T∑
t=1

ai +
1

T

T∑
t=1

uit

= x′iβ + ai + ui

Key fact: mean of the time-constant ai is just ai
This regression is sometimes called the “between regression”
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Within transformation

The “fixed effects,” “within,” or “time-demeaning” transformation is
when we subtract off the over-time means from the original data:

(yit − y i ) = (x′it − x′i )β + (uit − ui )

If we write ÿit = yit − y i , then we can write this more compactly as:

ÿit = ẍ′itβ + üit
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Fixed effects with Ross data

fe.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross, index = c("id", "year"),

model = "within")

summary(fe.mod)

## Oneway (individual) effect Within Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = "within", index = c("id", "year"))

##

## Unbalanced Panel: n=166, T=1-7, N=649

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.70500 -0.11700 0.00628 0.12200 0.75700

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## democracy -0.143233 0.033500 -4.2756 2.299e-05 ***

## log(GDPcur) -0.375203 0.011328 -33.1226 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 81.711

## Residual Sum of Squares: 23.012

## R-Squared : 0.71838

## Adj. R-Squared : 0.53242

## F-statistic: 613.481 on 2 and 481 DF, p-value: < 2.22e-16
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Strict exogeneity

FE models are valid if E[u|X] = 0: all errors are uncorrelated with
covariates in every period:

E[üit |Ẍ] = E[uit |Ẍ]− E[ui |Ẍ] = 0− 0 = 0

This is because the composite errors, üit are function of the errors in
every time period through the average, ui

This rules out, for instance, lagged dependent variables, since yi ,t−1

has to be correlated with ui ,t−1. Thus it can’t be a covariate for yit .

Degrees of freedom: nT − n − k − 1, which accounts for within
transformation
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every time period through the average, ui

This rules out, for instance, lagged dependent variables, since yi ,t−1

has to be correlated with ui ,t−1. Thus it can’t be a covariate for yit .

Degrees of freedom: nT − n − k − 1, which accounts for within
transformation

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 35 / 98



Strict exogeneity

FE models are valid if E[u|X] = 0: all errors are uncorrelated with
covariates in every period:
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Fixed effects and time-invariant covariates

What if there is a covariate that doesn’t vary over time?

Then xit = x i and ẍit = 0 for all periods t.

If the time-demeaned covariate is always 0, then it will be perfectly
collinear with the intercept violate full rank. R/Stata and the like will
drop it from the regression.

Basic message: any time-constant variable gets “absorbed” by the
fixed effect

Can include interactions between time-constant and time-varying
variables, but lower order term of the time-constant variables get
absorbed by fixed effects too
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Time-constant variables

Pooled model with a time-constant variable, proportion Islamic:

library(lmtest)

p.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,

data = ross, index = c("id", "year"), model = "pooling")

coeftest(p.mod)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.30607817 0.35951939 28.6663 < 2.2e-16 ***

## democracy -0.80233845 0.07766814 -10.3303 < 2.2e-16 ***

## log(GDPcur) -0.25497406 0.01607061 -15.8659 < 2.2e-16 ***

## islam 0.00343325 0.00091045 3.7709 0.0001794 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Time-constant variables

FE model, where the islam variable drops out, along with the
intercept:

fe.mod2 <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,

data = ross, index = c("id", "year"), model = "within")

coeftest(fe.mod2)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.129693 0.035865 -3.6162 0.0003332 ***

## log(GDPcur) -0.379997 0.011849 -32.0707 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Appendix: Relating to PO Model Setup

Units i = 1, . . . ,N

Time periods t = 1, . . . ,T with T ≥ 2,

Yit , Dit are the outcome and treatment for unit i in period t We have
a set of covariates in each period, as well,

Covariates Xit , causally “prior” to Dit .

Dt

Xt

Yt

Ui = unobserved, time-invariant unit effects (causally prior to
everything)

History of some variable: D it = (D1, . . . ,Dt).

Entire history: D i = D iT
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Appendix: Relating to PO Model Assumptions

Potential outcomes: Yit(1) = Yit(dt = 1) is the potential outcome
for unit i at time t if they were treated at time t.

I Here we focus on contemporaneous effects, Yit(dt = 1)− Yit(dt = 0)
I Harder when including lags of treatment, Yit(dt = 1, dt−1 = 1)

Consistency for each time period:

Yit = Yit(1)Dit + Yit(0)(1− Dit)

Strict ignorability: potential outcomes are independent of the entire
history of treatment conditional on the history of covariates and the
time-constant heterogeneity:

Yit(d)⊥⊥D i |X i ,Ui
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Appendix: Relating to PO Model

Assume that the CEF for the mean potential outcome under control
is:

E[Yit(0)|X i ,Ui ] = X ′itβ + Ui

And then assume a constant treatment effects:

E[Yit(1)|X i ,Ui ] = E[Yit(0)|X i ,Ui ] + τ

With consistency and strict ignorability, we can write this as a CEF of
the observed outcome:

E[Yit |X i ,D i ,Ui ] = X ′itβ + τDit + Ui
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Appendix: Relating to PO Model

We can now write the observed outcomes in a traditional regression
format:

Yit = X ′itβ + τDit + Ui + εit

Here, the error is similar to what we had for regression:

εit ≡ Yit(0)− E[Yit(0)|X i ,Ui ]

In traditional FE models, we skip potential outcomes and rely on a
strict exogeneity assumption:

E[εit |X i ,D i ,Ui ] = 0
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Appendix: Relating to PO Model: Strict ignorability vs
strict exogeneity

Yit(d)⊥⊥D i |X i ,Ui

Easy to show to that strict ignorability implies strict exogeneity:

E[εit |X i ,D i ,Ui ] = E [(Yit(0)− E[Yit(0)|X i ,Ui ]) |X i ,D i ,Ui ]

= E[Yit(0)|X i ,D i ,Ui ]− E[Yit(0)|X i ,Ui ]

= E[Yit(0)|X i ,Ui ]− E[Yit(0)|X iT ,Ui ]

= 0
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Least squares dummy variable

As an alternative to the within transformation, we can also include a
series of n − 1 dummy variables for each unit:

yit = x′itβ + d1iα1 + d2iα2 + · · ·+ dniαn + uit

Here, d1i is a binary variable which is 1 if i = 1 and 0 otherwise—just
a unit dummy.

Gives the exact same estimates/standard errors as with
time-demeaning

Advantage: easy to implement in R

Disadvantage: computationally difficult with large N, since we have
to run a regression with n + k variables.
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Example with Ross data

library(lmtest)

lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) +

as.factor(id), data = ross)

coeftest(lsdv.mod)[1:6,]

coeftest(fe.mod)[1:2,]

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 13.7644887 0.26597312 51.751427 1.008329e-198

## democracy -0.1432331 0.03349977 -4.275644 2.299393e-05

## log(GDPcur) -0.3752030 0.01132772 -33.122568 3.494887e-126

## as.factor(id)AGO 0.2997206 0.16767730 1.787485 7.448861e-02

## as.factor(id)ALB -1.9309618 0.19013955 -10.155498 4.392512e-22

## as.factor(id)ARE -1.8762909 0.17020738 -11.023558 2.386557e-25

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.1432331 0.03349977 -4.275644 2.299393e-05

## log(GDPcur) -0.3752030 0.01132772 -33.122568 3.494887e-126
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Applying Fixed Effects

We can use fixed effects for other data structures to restrict
comparisons to within unit variation

I Matched pairs
F Twin fixed effects to control for unobserved effects of family

background

I Cluster fixed effects in hierarchical data
F School fixed effects to control for unobserved effects of school
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Problems that (even) fixed effects do not solve

yit = xitβ + ci + εit , t = 1, 2, ...,T

Where yit is murder rate and xit is police spending per capita

What happens when we regress y on x and city fixed effects?

I β̂FE inconsistent unless strict exogeneity conditional on ci holds
F E [εit |xi1, xi2, ..., xiT , ci ] = 0, t = 1, 2, ...,T
F implies εit uncorrelated with past, current, and future regressors

Most common violations:

1 Time-varying omitted variables
F economic boom leads to more police spending and less murders
F can include time-varying controls, but avoid post-treatment bias

2 Simultaneity
F if city adjusts police based on past murder rate, then spendingt+1 is

correlated with εt (since higher εt leads to higher murder rate at t)
F strictly exogenous x cannot react to what happens to y in the past or

the future!

Fixed effects do not obviate need for good research design!
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Fixed effects versus first differences

Key assumptions:

I Strict exogeneity: E [uit |X, ai ] = 0
I Time-constant unmeasured heterogeneity, ai

Together =⇒ fixed effects and first differences are unbiased and
consistent

With T = 2 the estimators produce identical estimates

So which one is better when T > 2? Which one is more efficient?

uit uncorrelated  FE is more efficient

uit = ui ,t−1 + eit with eit iid (random walk)  FD is more efficient.

In between, not clear which is better

Large differences between FE and FD should make us worry about
assumptions
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1 Differencing Models

2 Fixed Effects

3 Random Effects

4 (Almost) Twenty Questions

5 Fun with Comparative Case Studies

6 Fun with Music Lab

7 Concluding Thoughts for the Course
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Random effects model

yit = x′itβ + ai + uit

Key difference: E [ai |X] = E [ai ] = 0

We also assume that ai are iid and independent of the uit

Like with clustering, we can treat vit = ai + uit as a combined error
that satisfies zero conditional mean error:

E [ai + uit |X] = E [ai |X] + E [uit |X] = 0 + 0 = 0
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Quasi-demeaned data

Random effects models usually transform the data via what is called
quasi-demeaning or partial pooling:

yit − θy i = (x′it − θx′i ) + (vit − θv i )

Here θ is between zero and one, where θ = 0 implies pooled OLS and
θ = 1 implies fixed effects. Doing some math shows that

θ = 1−
[
σ2
u/(σ2

u + Tσ2
a)
]1/2

the random effect estimator runs pooled OLS on this model replacing
θ with an estimate θ̂.
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Example with Ross data

re.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur),

data = ross, index = c("id", "year"), model = "random")

coeftest(re.mod)[1:3,]

coeftest(fe.mod)[1:2,]

coeftest(pooled.mod)[1:3,]

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.3128677 0.25500821 48.284202 1.610504e-216

## democracy -0.1917958 0.03395696 -5.648203 2.431253e-08

## log(GDPcur) -0.3609269 0.01100928 -32.783891 1.458769e-139

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.1432331 0.03349977 -4.275644 2.299393e-05

## log(GDPcur) -0.3752030 0.01132772 -33.122568 3.494887e-126

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.7640482 0.34490999 28.30898 2.881836e-115

## democracy -0.9552482 0.06977944 -13.68954 1.222538e-37

## log(GDPcur) -0.2282798 0.01548068 -14.74611 1.244513e-42

More general random effects models using lmer() from the lme4

package
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Fixed effects versus random effects

Random effects:

I Can include time-constant variables
I Corrects for clustering/heteroskedasticity
I Requires xit uncorrelated with ai

Fixed effects:

I Can’t include time-constant variables
I Corrects for clustering
I Doesn’t correct for heteroskedasticity (can use cluster-robust SEs)
I xit can be arbitrarily related to ai

Wooldridge: “FE is almost always much more convincing than RE for
policy analysis using aggregated data.”

Correlated random effects: allows for some structured dependence
between xit and ai
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Fixed and Random Effects

We are just scratching the surface here.

Next semester we will cover more complicated hierarchical models

Although often presented as a method for causal inference, fixed
effects can make for some counter-intuitive interpretations: see Kim
and Imai (2016) on fixed effects for causal inference.

Particularly when “two-way” fixed effects are used (e.g. time and
country fixed effects) it becomes difficult to tell what the
counterfactual is.

We have essentially not talked at all about temporal dynamics which
is another important area for research with non-short time intervals.
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Next Class

Send me questions or write them on cards!
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Where We’ve Been and Where We’re Going...

Last Week
I causal inference with unmeasured confounding

This Week
I Monday:

F panel data
F diff-in-diff
F fixed effects

I Wednesday:
F Q&A
F fun With
F wrap-Up

The Following Week
I break!

Long Run
I probability → inference → regression → causality

Questions?
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1 Differencing Models

2 Fixed Effects

3 Random Effects

4 (Almost) Twenty Questions

5 Fun with Comparative Case Studies

6 Fun with Music Lab

7 Concluding Thoughts for the Course
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Q: What conditions do we need to infer causality?

A: An identification strategy and an estimation strategy.
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Identification Strategies in This Class

Experiments (randomization)

Selection on Observables (conditional ignorability)

Natural Experiments (quasi-randomization)

Instrumental Variables (instrument + exclusion restriction)

Regression Discontinuity (continuity assumption)

Difference-in-Differences (parallel trends)

Fixed Effects (time-invariant unobserved heterogeneity, strict
ignorability)

Essentially everything assumes: consistency/SUTVA (essentially: no
interference between units, variation in the treatment is irrelevant).
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Some Estimation Strategies

Regression (and relatives)

Stratification

Matching (next semester)

Weighting (next semester)

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 60 / 98



Some Estimation Strategies

Regression (and relatives)

Stratification

Matching (next semester)

Weighting (next semester)

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 60 / 98



Some Estimation Strategies

Regression (and relatives)

Stratification

Matching (next semester)

Weighting (next semester)

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 60 / 98



Some Estimation Strategies

Regression (and relatives)

Stratification

Matching (next semester)

Weighting (next semester)

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 60 / 98



Q: Why is heteroskedasticity a problem?

A: It keeps us from getting easy standard errors.
Sometimes it can cause poor finite sample estimator
performance.
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Derivation of Variance under Homoskedasticity

β̂ = (X′X)
−1

X′y

= (X′X)
−1

X′(Xβ + u)

= β + (X′X)
−1

X′u

V [β̂|X] = V [β|X] + V [(X′X)
−1

X′u|X]

= V [(X′X)
−1

X′u|X]

= (X′X)
−1

X′V [u|X]((X′X)
−1

X′)′ (note: X nonrandom |X)

= (X′X)
−1

X′V [u|X]X (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2 (X′X)
−1

Replacing σ2 with our estimator σ̂2 gives us our estimator for the (k + 1)× (k + 1)
variance-covariance matrix for the vector of regression coefficients:

V̂ [β̂|X] = σ̂2 (X′X)
−1
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Q: Power Analysis?

A: Useful for planning experiments and for assessing
plausibility of seeing an effect after the fact (retrospective
power analysis). Relies on knowledge of some things we

don’t know.
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Q: “If we use fixed effects, aren’t we explaining away the
thing we care about?”

A: We might be worried about this a little bit. In the
causal inference setting we get one thing of interest: the
treatment effect estimate. All the coefficients on our
confounding variables are uninterpretable (at least as
causal estimates). From this perspective fixed effects are
just capturing all that background. That said- strong
assumptions need to hold to not wash away something of
interest.
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Q: “t-value, test statistics, compare with standard error”

A: The first two relate to hypothesis testing. A t-value is a type of test

statistic ( X̄−µ0
S√
n

or β̂−c
ŜE[β̂]

depending on context). A test statistic is a

function of the sample and the null hypothesis value of the parameter.
The standard error is a more general quantity that is the standard

deviation of the sampling distribution of the estimator.
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Q: What is M-bias? Also could you review mechanics of
DAGs, how to follow paths, how to block paths.

A: Sure
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From Confounders to Back-Door Paths

X

T

Z

Y

Identify causal effect of T on Y by conditioning on X , Z or X and Z
We can formalize this logic with the idea of a back-door path
A back-door path is “a path between any causally ordered sequence
of two variables that begins with a directed edge that points to the
first variable.” (Morgan and Winship 2013)
Two paths from T to Y here:

1 T → Y (directed or causal path)
2 T ← X → Z → Y (back-door path)

Observed marginal association between T and Y is a composite of
these two paths and thus does not identify the causal effect of T on Y
We want to block the back-door path to leave only the causal effect
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Colliders and Back-Door Paths

Z

YTV

U

Z is a collider and it lies along a back-door
path from T to Y

Conditioning on a collider on a back-door
path does not help and in fact causes new
associations

Here we are fine unless we condition on Z
which opens a path T ← V ↔ U → Y
(this particular case is called M-bias)

So how do we know which back-door paths
to block?
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D-Separation

Graphs provide us a way to think about conditional independence
statements. Consider disjoint subsets of the vertices A, B and C

A is D-separated from B by C if and only if C blocks every path from
a vertex in A to a vertex in B

A path p is said to be blocked by a set of vertices C if and only if at
least one of the following conditions holds:

1 p contains a chain structure a→ c → b or a fork structure a← c → b
where the node c is in the set C

2 p contains a collider structure a→ y ← b where neither y nor its
descendents are in C

If A is not D-separated from B by C we say that A is D-connected to
B by C
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Backdoor Criterion

Backdoor Criterion for X
1 No node in X is a descendent of T

(i.e. don’t condition on post-treatment variables!)
2 X D-separates every path between T and Y that has an incoming

arrow into T (backdoor path)

In essence, we are trying to block all non-causal paths, so we can
estimate the causal path.
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Backdoor paths and blocking paths

Backdoor path: is a non-causal path from D to Y .

I Would remain if we removed any arrows pointing out of D.

Backdoor paths between D and Y  common causes of D and Y :

D

X

Y

Here there is a backdoor path D ← X → Y , where X is a common
cause for the treatment and the outcome.
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Other types of confounding

D

U X

Y

D is enrolling in a job training program.

Y is getting a job.

U is being motivated

X is number of job applications sent out.

Big assumption here: no arrow from U to Y .
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What’s the problem with backdoor paths?

D

U X

Y

A path is blocked if:

1 we control for or stratify a non-collider on that path OR
2 we do not control for a collider.

Unblocked backdoor paths  confounding.

In the DAG here, if we condition on X , then the backdoor path is
blocked.
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Not all backdoor paths

D

U1

X

Y

Conditioning on the posttreatment covariates opens the non-causal
path.

I  selection bias.
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Don’t condition on post-treatment variables

Every time you do, a puppy cries.
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M-bias

D

U1 U2

X

Y
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D

U1 U2

X

Y
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Examples

●

U1
●

U3

● Z1 ●Z2 ●Z3

●

X
●

Z5
●

Y

●

U9

●

U11

●

Z4

●

U2

●

U5

●

U4

●

U6

●U7

●

U10

●

U8

●● ●●

●● ●●

●●

●●

●●

●●

●●

●●

●●
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Implications (via Vanderweele and Shpitser 2011)

1 Choose all pre-treatment covariates

(would condition on C2 inducing M-bias)

2 Choose all covariates which directly cause the treatment and the outcome

(would leave open a backdoor path A← C3 ← U3 → Y .)
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How often are observational studies used for causal
inference?

All the time (except maybe psychology)
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Can we hear more about your research?

Sure.
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What are your favorite resources for learning tricky
concepts?

I’ve used the following procedure many times:

1 Identify approx. the best textbook (often can do this
via syllabi hunting)

2 Read the relevant textbook material

3 Derive the equations/math

4 Try to explain it to someone else
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Why would you ever use a linear model instead of
something like GAM that can exactly fit the data?

The linear model has on its side:

Unbiasedness∗

(but perhaps high sampling variability)

Simple Interpretation∗

(but only if a linear approximation is helpful)

Better Sample Complexity∗

(but only by assuming away part of the problem)

Convention∗

(not a good reason per se, but a practical one)
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Why don’t we use maximum likelihood estimation?

We will. Stay tuned for next semester.
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For those of us who are considering taking the course next
semester, will you tell us what the graded components will

be? problem sets? exams? presentations? Thanks!

http://scholar.princeton.edu/bstewart/teaching
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1 Differencing Models

2 Fixed Effects

3 Random Effects

4 (Almost) Twenty Questions

5 Fun with Comparative Case Studies

6 Fun with Music Lab

7 Concluding Thoughts for the Course
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Synthetic Control Methods
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And now a very special Fun With
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Where are you?

You’ve been given a powerful set of tools
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Your New Weapons

Basic probability theory

I Probability axioms, random variables, marginal and conditional
probability, building a probability model

I Expected value, variances, independence
I CDF and PDF (discrete and continuous)

Properties of Estimators

I Bias, Efficiency, Consistency
I Central limit theorem

Univariate Inference

I Interval estimation (normal and non-normal Population)
I Confidence intervals, hypothesis tests, p-values
I Practical versus statistical significance

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 91 / 98



Your New Weapons

Basic probability theory

I Probability axioms, random variables, marginal and conditional
probability, building a probability model

I Expected value, variances, independence
I CDF and PDF (discrete and continuous)

Properties of Estimators

I Bias, Efficiency, Consistency
I Central limit theorem

Univariate Inference

I Interval estimation (normal and non-normal Population)
I Confidence intervals, hypothesis tests, p-values
I Practical versus statistical significance

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 91 / 98



Your New Weapons

Basic probability theory

I Probability axioms, random variables, marginal and conditional
probability, building a probability model

I Expected value, variances, independence
I CDF and PDF (discrete and continuous)

Properties of Estimators

I Bias, Efficiency, Consistency
I Central limit theorem

Univariate Inference

I Interval estimation (normal and non-normal Population)
I Confidence intervals, hypothesis tests, p-values
I Practical versus statistical significance

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 91 / 98



Your New Weapons

Basic probability theory

I Probability axioms, random variables, marginal and conditional
probability, building a probability model

I Expected value, variances, independence
I CDF and PDF (discrete and continuous)

Properties of Estimators

I Bias, Efficiency, Consistency
I Central limit theorem

Univariate Inference

I Interval estimation (normal and non-normal Population)
I Confidence intervals, hypothesis tests, p-values
I Practical versus statistical significance

Stewart (Princeton) Week 12: Repeated Observations December 12 and 14, 2016 91 / 98



Your New Weapons

Simple Regression

I regression to approximate the conditional expectation function
I idea of conditioning
I kernel and loess regressions
I OLS estimator for bivariate regression
I Variance decomposition, goodness of fit, interpretation of estimates,

transformations

Multiple Regression

I OLS estimator for multiple regression
I Regression assumptions
I Properties: Bias, Efficiency, Consistency
I Standard errors, testing, p-values, and confidence intervals
I Polynomials, Interactions, Dummy Variables
I F-tests
I Matrix notation
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Your New Weapons

Diagnosing and Fixing Regression Problems

I Non-normality
I Outliers, leverage, and influence points, Robust Regression
I Non-linearities and GAMs
I Heteroscedasticity and Clustering

Causal Inference

I Frameworks: potential outcomes and DAGs
I Measured Confounding
I Unmeasured Confounding
I Methods for repeated data

And you learned how to use R: you’re not afraid of trying something new!
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I Unmeasured Confounding
I Methods for repeated data
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Using these Tools

So, Admiral Ackbar, now that you’ve learned how to run these regressions
we can just use them blindly, right?
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Beyond Linear Regressions

You need more training
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Beyond Linear Regressions

SOC504: with me again!
we move from guided replication to replication and extension on your
own.

Social Networks (Graduate or Undergraduate) with Matt Salganik
fun with social network analysis!
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Thanks!

Thanks so much for an amazing semester.

Fill out your evaluations!
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