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Logistics

Reactions to the problem set?
Solutions will be posted at 11:00
New problem set is out. Any questions so far?
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Today’s Tasks

Review material presented in lecture
sampling
estimators (and their properties)
CLT, t-distribution
confidence intervals

Cover computational examples
rnorm(), pnorm(), qnorm()
drawing random samples
generating CIs
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The Big Picture

In studying the world, we usually run into the following challenge:
There’s some quantity of interest we want to know about a
population, the estimand, which we consider to have a "true"
value
e.g. what’s the average height of a penguin?
Ideally, we’d like to collect information on every member of the
population. But usually, that’s not possible. Instead we collect
data on a random sample drawn from the population.
e.g. measure the heights of a random sample of penguins
This week is about understanding how to infer the "true"
population-level distribution from the data we do have in a
sample
e.g. by calculating the mean height of penguins in our sample
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An Overview

Population Distribution 
Y ~ ?(μ, σ2)

Estimand /Parameter
μ, σ2

Sample

(Y1, Y2,…,YN)

Estimator/Statistic

ĝ(Y1, Y2,…,YN)

Estimate
ĝ(Y1 = y1,Y2 = y2 , … , YN = yN)
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Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the
unobserved population distribution, which can be characterized
by parameters.

Estimands are the parameters that we aim to estimate. Often
written with greek letters (e.g. µ, θ, population mean) :
1
N

∑N
i=1 yi

Estimators are functions of sample data (i.e. statistics)
which we use to learn about the estimands. Often denoted
with a “hat” (e.g. µ̂, θ̂)

Estimates are particular values of estimators that are realized
in a given sample (e.g. sample mean)
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Clarifying Notation and Terms You’ll Encounter

Estimand / Population Parameter (Theoretical)
Population mean: µ = E [X ] = 1

N

∑N
i=1 Xi

Population variance:
σ2 = E [(X − E (X ))2] = 1

N

∑N
i=1(Xi − µ)2

Estimator (Links Data to Estimand)
Estimator for population mean: µ̂
Estimator for population variance: σ̂2

Estimate (Calculated from a Given Sample), e.g.
Sample mean: X n = x1+x2+...+xn

n = 1
n

∑n
i=1 xi

Sample variance: s2
n = 1

n−1

∑n
i=1(xi − X n)

2
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Sampling Distribution

Consider using the sample mean as an estimator for the "true"
mean: µ̂ = X n:

Usually we only ever observe one sample of size n - so we get
one value of X n

But consider the hypothetical case that we got 10,000 random
samples of size n. By random chance, the samples may look
different from each other. Each sample would have its own X n

The sampling distribution of X n gives the probability density
of he possible values of X n
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Sampling Distribution of the Sample Mean

Example:
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Other estimators (e.g. sample variance) also have sampling
distributions.
We can describe sampling distributions in terms of their center (i.e.
mean) and spread (i.e. standard error).
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The Central Limit Theorem

The Central Limit Theorem tells us something cool about sample
means (X n).
From the lecture slides, as n increases, the sampling distribution of
X n becomes more bell-shaped. This is the basic implication of the
Central Limit Theorem:

If X1, . . . ,Xn ∼i .i .d .?(µ, σ
2) and n is large, then

X n ∼approx N(µ,
σ2

n
)

so
X n−µ
σ/
√
n
∼ N(0, 1)
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Population vs. Sampling Distribution
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t-distribution

When does the t-distribution come in handy?
Note the the CLT kicks in asymptotically (as n →∞)
t-distribution useful when we have smaller sample sizes

X − µ
s√
n

∼
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t-distribution

Since we have to estimate σ, the
distribution of X−µ

s√
n

is still

bell-shaped but has fatter tails.

As the sample size increases, our
estimates of σ improve and
extreme values of X−µ

s√
n

become

less likely.

Eventually the t distribution
converges to the standard normal.
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Summary of Properties of Estimators

Concept Criteria Intuition
Unbiasedness E [µ̂] = µ Right on average

Efficiency V [µ̂1] < V [µ̂2] Low variance

Consistency µ̂n
p→ µ Converge to estimand as n→∞

Asymptotic Normality µ̂n
approx.∼ N(µ, σ

2

n ) Approximately normal in large n



Logistics Agenda Samples Estimator Properties Confidence Intervals Fulton Data

Confidence Intervals

Recall from CLT that X n−µ
σ/
√
n
∼ N(0, 1)

P

(
− z ≤ µ̂− µ

ŜE [µ̂]
≤ z

)
= (1− α)%

What is the formula for two-sided confidence intervals?

[X n − zα/2
s√
n
,X n + zα/2

s√
n
]

How do we find za/2? qnorm() : F−1(p)
Returns z value at which CDF of Standard Normal equals p
What is the width of the confidence interval? 2 ∗ zα/2 s√

n
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Confidence Intervals

What about one-sided confidence intervals?

An 100(1-α)% upper (one-sided) confidence bound

X n + zα
s√
n

An 100(1-α)% lower (one-sided) confidence bound

X n − zα
s√
n
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Fulton Data

Election data from Fulton County, Georgia, aggregated to the
precinct level

Table: Fulton Election Data

Variable Description

precint precint id
turnout voter turnout rate
black percent Black
sex percent Female
age mean age
dem turnout in democratic primary
rep turnout in republican primary
urban is the precinct in Atlanta
school school polling location
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Questions?
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