Precept 5: Simple OLS
 Soc 500: Applied Social Statistics

Simone Zhang ${ }^{1}$
Princeton University

October 2016
${ }^{1}$ This draws material from Matt Blackwell.

Today's Agenda

- Basic matrix operations
- Review matrix notation for linear regression
- Notation
- OLS estimation
- Variance-covariance matrix
- R-square
- F-test
- Bootstrap

Matrix Notation

- \mathbf{X} is the $n \times(K+1)$ design matrix of independent variables
- $\boldsymbol{\beta}$ be the $(K+1) \times 1$ column vector of coefficients.
- $\mathbf{X} \boldsymbol{\beta}$ will be $n \times 1$:
- We can compactly write the linear model as the following:

$$
\begin{gathered}
\underset{(n \times 1)}{\mathbf{y}}=\underset{(n \times 1)}{\mathbf{X} \boldsymbol{\beta}}+\underset{(n \times 1)}{\mathbf{u}} \\
\underset{(n \times 1)}{\mathbf{y}}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad \underset{(n \times(K+1))}{\mathbf{X}}=\left[\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1 k} \\
1 & x_{21} & \ldots & x_{2 k} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n 1} & \ldots & x_{n k}
\end{array}\right] \quad \underset{((K+1) \times 1)}{\boldsymbol{\beta}}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]
\end{gathered}
$$

OLS Estimator

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

- What's the intuition here?
- "Numerator" $\mathbf{X}^{\prime} \mathbf{y}$: is roughly composed of the covariances between the columns of \mathbf{X} and \mathbf{y}
- "Denominator" $\mathbf{X}^{\prime} \mathbf{X}$ is roughly composed of the sample variances and covariances of variables within \mathbf{X}
- Thus, we have something like:

$$
\widehat{\boldsymbol{\beta}} \approx(\text { variance of } \mathbf{X})^{-1} \text { (covariance of } \mathbf{X} \& \mathbf{y} \text {) }
$$

- This is a rough sketch and isn't strictly true, but it can provide intuition.

Variance-Covariance Matrix

- The homoskedasticity assumption is different: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
- In order to investigate this, we need to know what the variance of a vector is.
- The variance of a vector is actually a matrix:

$$
\operatorname{var}[\mathbf{u}]=\Sigma_{u}=\left[\begin{array}{cccc}
\operatorname{var}\left(u_{1}\right) & \operatorname{cov}\left(u_{1}, u_{2}\right) & \ldots & \operatorname{cov}\left(u_{1}, u_{n}\right) \\
\operatorname{cov}\left(u_{2}, u_{1}\right) & \operatorname{var}\left(u_{2}\right) & \ldots & \operatorname{cov}\left(u_{2}, u_{n}\right) \\
\vdots & & \ddots & \\
\operatorname{cov}\left(u_{n}, u_{1}\right) & \operatorname{cov}\left(u_{n}, u_{2}\right) & \ldots & \operatorname{var}\left(u_{n}\right)
\end{array}\right]
$$

- This matrix is symmetric since $\operatorname{cov}\left(u_{i}, u_{j}\right)=\operatorname{cov}\left(u_{j}, u_{i}\right)$

Matrix Version of Homoskedasticity

- Once again: $\operatorname{var}(\mathbf{u} \mid \mathbf{X})=\sigma_{u}^{2} \mathbf{I}_{n}$
- \mathbf{I}_{n} is the $n \times n$ identity matrix
- Visually:

$$
\operatorname{var}[\mathbf{u}]=\sigma_{u}^{2} \mathbf{I}_{n}=\left[\begin{array}{ccccc}
\sigma_{u}^{2} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{u}^{2} & 0 & \ldots & 0 \\
& & & \vdots & \\
0 & 0 & 0 & \ldots & \sigma_{u}^{2}
\end{array}\right]
$$

- In less matrix notation:
- $\operatorname{var}\left(u_{i}\right)=\sigma_{u}^{2}$ for all i (constant variance)
- $\operatorname{cov}\left(u_{i}, u_{j}\right)=0$ for all $i \neq j$ (implied by iid)

Sampling Variance for OLS Estimates

- Under assumptions $1-5$, the sampling variance of the OLS estimator can be written in matrix form as the following:

$$
\operatorname{var}[\widehat{\boldsymbol{\beta}}]=\sigma_{u}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

- This matrix looks like this:

	$\widehat{\beta}_{0}$	$\widehat{\beta}_{1}$	$\widehat{\beta}_{2}$	\cdots	$\widehat{\beta}_{K}$
$\widehat{\beta}_{0}$	$\operatorname{var}\left[\widehat{\beta}_{0}\right]$	$\operatorname{cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right]$	$\operatorname{cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{2}\right]$	\cdots	$\operatorname{cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{K}\right]$
$\widehat{\beta}_{1}$	$\operatorname{cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{1}\right]$	$\operatorname{var}\left[\widehat{\beta}_{1}\right]$	$\operatorname{cov}\left[\widehat{\beta}_{1}, \widehat{\beta}_{2}\right]$	\cdots	$\operatorname{cov}\left[\widehat{\beta}_{1}, \widehat{\beta}_{K}\right]$
$\widehat{\beta}_{2}$	$\operatorname{cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{2}\right]$	$\operatorname{cov}\left[\widehat{\beta}_{1}, \widehat{\beta}_{2}\right]$	$\operatorname{var}\left[\widehat{\beta}_{2}\right]$	\cdots	$\operatorname{cov}\left[\widehat{\beta}_{2}, \widehat{\beta}_{K}\right]$
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
$\widehat{\beta}_{K}$	$\operatorname{cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{K}\right]$	$\operatorname{cov}\left[\widehat{\beta}_{K}, \widehat{\beta}_{1}\right]$	$\operatorname{cov}\left[\widehat{\beta}_{K}, \widehat{\beta}_{2}\right]$	\cdots	$\operatorname{var}\left[\widehat{\beta}_{K}\right]$

Estimating Error Variance

Note that we never observe the true error variance, σ_{u}^{2}. We can estimate it with the following:

$$
\widehat{\sigma}_{u}^{2}=\frac{\hat{\mathbf{u}}^{\prime} \hat{\mathbf{u}}}{n-(k+1)}
$$

where $\mathrm{n}-(\mathrm{K}+1)=$ residual degrees of freedom and

$$
\widehat{u}^{\prime} \widehat{\mathbf{u}}=(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\prime}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})
$$

Prediction error

- Prediction errors without \mathbf{X} : best prediction is the mean, so our squared errors, or the total sum of squares $\left(S S_{t o t}\right)$ would be:

$$
S S_{t o t}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=(\mathbf{y}-\bar{y})^{\prime}(\mathbf{y}-\bar{y})
$$

- Once we have estimated our model, we have new prediction errors, which are just the sum of the squared residuals or $S S_{\text {res }}$:

$$
S S_{r e s}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}=\widehat{\mathbf{u}}^{\prime} \widehat{\mathbf{u}}
$$

Sum of Squares

Total Prediction Errors

Sum of Squares

Residuals

R-square

- Coefficient of determination or R^{2} :

$$
R^{2}=\frac{S S_{t o t}-S S_{\text {res }}}{S S_{\text {tot }}}=1-\frac{S S_{\text {res }}}{S S_{\text {tot }}}
$$

- This is the fraction of the total prediction error eliminated by providing information in \mathbf{X}.

F Test Procedure

The F statistic can be calculated by the following procedure:
(1) Fit the Unrestricted Model (UR) which does not impose H_{0}
(2) Fit the Restricted Model (R) which does impose H_{0}
(3) From the two results, compute the F Statistic:

$$
F_{0}=\frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-k-1)}
$$

where SSR=sum of squared residuals, $\mathbf{q}=$ number of restrictions, $k=$ number of predictors in the unrestricted model, and $n=\#$ of observations.

Intuition:
increase in prediction error
original prediction error

The Bootstrap

We see a single sample that is a draw from a population:

- There's a true mean loan amount; we only observe one sample Since we cannot resample from the population, we resample from the sample!

Idea: Within a loop, generate a bootstrapped sample:
(1) Sample from $\{1,2, \ldots, N\}$ with replacement
(2) Re-calculate the quantity of interest on each bootstrapped sample
(3) Resampling from the sample approximates sampling again from the full population (giving us a sense of the sampling distribution)
(Thanks to Ted Enamorado for sharing slides on bootstrapping)

Bootstrap: Intuition

Bootstrapped Resampling of X

Simple Example with Sample Means

Let $X_{i}=\{3,7,9,11,150\}$

Bootstrapped Samples:

					$\bar{X}_{\text {boot }}$	
X $_{\text {boot, } 1}$	3	3	9	11	3	5.8
X $_{\text {boot, } 1}$	7	150	11	7	11	37.2
X $_{\text {boot,1 }}$	11	9	9	7	3	7.8

Bootstrapped Standard Error

- Bootstrapped Standard Error $\operatorname{sd}\left(\bar{X}_{\text {boot }}\right)$
- Bootstrapped Confidence Interval:

Take the 2.5% and 97.5% quantiles of $\bar{X}_{\text {boot }}$

Questions?

