# Precept 8: Diagnostics, presenting results, and causal inference 

Soc 500: Applied Social Statistics

Ian Lundberg<br>Princeton University

November 10, 2016

## Learning Objectives

(1) Review Problem Set 6
(2) Prepare for Problem Set 8
(3) Causal inference
(4) Power analysis
(5) Visualization example in R

## Residual plots: Linearity and homoskedasticity

- On the homework, there was some confusion about how to interpret a residual plot to evaluate the linearity and homoskedasticity assumptions
- These are assumptions: they are almost never $100 \%$ true in practice. But often they are reasonable enough to yield a useful model.
- If linearity is violated, the mean of the residuals will show a pattern with the fitted values (i.e. the trend line should be above 0 in some places and below 0 in others)
- If homoskedasticity is violated, the spread of the residuals around that mean will vary with the predicted values.
- These are distinct assumptions; though one plot tells you about both, they are not mechanically linked.


## Violation of linearity

I generated some data that violates linearity:

$$
Y=X-X^{2}+u, u \sim N(0,2)
$$

Simulated data for linear model


## Violation of linearity

Then I fit a model that is linear in $X$ to this data.

$$
Y=\beta_{0}+\beta_{1} X+v
$$

The residual plot is below. It shows nonlinearity.
Residual plot for linear model


## Violation of linearity

Then I fit a model that includes a quadratic in $X$.

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+v
$$

The residual plot is below. Linearity appears satisfied!
Residual plot for linear model with squared term


## Violation of homoskedasticity

I generated some data that violates homoskedasticity (the error variance depends on $X$ ):

$$
Y=X+u, u \sim N(0,|X|)
$$

Simulated data with heteroskedasticity


## Violation of homoskedasticity

Then I fit a linear model.

$$
Y=\beta_{0}+\beta_{1} X+v
$$

The residual plot is below. The error variance is related to the fitted values - homoskedasticity is volated!

Residual plot for linear model with heteroskedasticity


## Interpreting interactions

Suppose

- $Y$ is earnings
- $Z$ is an indicator for getting a college degree
- $X$ is years since completing schooling.

What is wrong with this model?

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X Z+u
$$

## Interpreting interactions

Suppose

- $Y$ is earnings
- $Z$ is an indicator for getting a college degree
- $X$ is years since completing schooling.

Consider the model:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} Z+\beta_{3} X Z+u
$$

(1) How do we interpret $\beta_{3}$ ?
(2) What is the association between years since completed schooling and earnings, among those without a college degree?
(3) What is the association between years since completed schooling and earnings, among those with a college degree?

## Marginal "effects"

Consider the model

$$
Y=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}+u
$$

The marginal "effect" of $X$ on $Y$ is defined to be the association between $X$ and $Y$ holding the other variables constant. It is also the partial derivative:

$$
\frac{\partial Y}{\partial X}=\beta_{1}+Z \beta_{3}
$$

If $Z$ is binary, this says that,

- when $Z=0$, the association between $X$ and $Y$ is $\beta_{1}$
- when $Z=1$, the association between $X$ and $Y$ is $\beta_{1}+\beta_{3}$


## Marginal "effects"

$$
\begin{gathered}
Y=\beta_{0}+X \beta_{1}+Z \beta_{2}+X Z \beta_{3}+u \\
\frac{\partial Y}{\partial X}=\beta_{1}+Z \beta_{3}
\end{gathered}
$$

What is the variance of the marginal effect?

$$
\begin{aligned}
\operatorname{Var}\left(\frac{\partial Y}{\partial X}\right) & =\operatorname{Var}\left(\hat{\beta}_{1}+Z \hat{\beta}_{3}\right) \\
& =\operatorname{Var}\left(\hat{\beta}_{1}\right)+Z^{2} \operatorname{Var}\left(\hat{\beta}_{3}\right)+2 Z \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)
\end{aligned}
$$

If this model is fit using the $\operatorname{lm}()$ function, we can use vcov(fit) to extract the variance covariance matrix that has these variance and covariance elements.

## Marginal "effects"

Similarly, consider a model with a quadratic term:

$$
Y=\beta_{0}+X \beta_{1}+X^{2} \beta_{2}+u
$$

What is the marginal "effect" of $X$ ? What is its variance?

$$
\frac{\partial Y}{\partial X}=\beta_{1}+2 X \beta_{2}
$$

$$
\begin{aligned}
\operatorname{Var}\left(\frac{\partial Y}{\partial X}\right) & =\operatorname{Var}\left(\hat{\beta}_{1}+2 X \hat{\beta}_{2}\right) \\
& =\operatorname{Var}\left(\hat{\beta}_{1}\right)+(2 X)^{2} \operatorname{Var}\left(\hat{\beta}_{2}\right)+2 * 2 X * \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)
\end{aligned}
$$

## Plotting marginal effects

Given estimated coefficients, we could plot the marginal effect of $X$ on $Y$ as a function of $X$

Scatter plot with quadratic fit


Marginal effect from quadratic fit


## Visualizing marginal effects

(guidelines from lecture slides)
Visualizations should:
(a) Convey numerically precise estimates of the quantities of greatest substantive interest,
(b) Include reasonable measures of uncertainty about those estimates,
(c) Require little specialized knowledge to understand, and
(d) Include no superfluous information, no long lists of coefficients no one understands, no star gazing, etc.

Which was good in the plots above? How could they be improved?


Marginal effect from quadratic fit


## Exploring causal inference with a running example

Research question
Does college education cause higher earnings?
Potential problems:

- Fundamental problem: We cannot observe both states
- Selection bias: Higher ability people may select into college
- SUTVA violation: Your sister's college education might affect your earnings
- Heterogeneity: Different effects on different people


## Neyman-Rubin Model: Potential outcomes

(from lecture slides)

Two possible conditions:

- Treatment condition $T=1$
- Control condition $T=0$

Suppose that we have an individual $i$.
Key assumption: we can imagine a world where individual $i$ is assigned to treatment and control conditions
Potential Outcomes: responses under each condition, $Y_{i}(T)$

- Response under treatment $Y_{i}(1)$
- Response under control $Y_{i}(0)$


## Potential outcomes in our college-earnings example

In our example examining how college affects future earnings, what do the numbers in the table below represent?

|  |  |  |
| :--- | :--- | :--- |
|  | Treatment $\left(Y_{i}(1)\right)$ | Control $\left(Y_{i}(0)\right)$ |
| Person 1 | 45,000 | 32,000 |
| Person 2 | 54,000 | 45,000 |
| Person 3 | 34,000 | 34,000 |

## Potential outcomes in our college-earnings example

- $Y_{i}(1)$ is the earnings person $i$ would make if they attended college
- $Y_{i}(0)$ is that person's potential earnings if they did not attend college
- The individual causal effect is $\tau_{i}=Y_{i}(1)-Y_{i}(0)$

Why can we never estimate $\tau_{i}$ ? Because we can never observe an individual in both the treatment and control states.
This is the fundamental problem of causal inference.

## Fundamental Problem of Causal Inference

Holland 1986: Only one outcome can be observed

|  | Treatment $\left(Y_{i}(1)\right)$ | Control $\left(Y_{i}(0)\right)$ |
| :--- | :--- | :--- |
| Person 1 | 45,000 | 32,000 |
| Person 2 | 54,000 | 45,000 |
| Person 3 | 34,000 | 34,000 |

## Fundamental Problem of Causal Inference

Holland 1986: Only one outcome can be observed

|  | Treatment $\left(Y_{i}(1)\right)$ | Control $\left(Y_{i}(0)\right)$ |
| :--- | :--- | :--- |
| Person 1 | $\boldsymbol{?}$ | 32,000 |
| Person 2 | 54,000 | $?$ |
| Person 3 | 34,000 | $?$ |

## Causal inference with a strong assumption

$$
T \rightarrow Y
$$

- $T$ is the treatment (college education)
- $Y$ is the outcome (earnings)

To make causal inferences, we must assume ignorability:

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i}
$$

Then the population average treatment effect is

$$
\begin{aligned}
\bar{\tau}=E\left[Y_{i}(1)-Y_{i}(0)\right] & =E\left[Y_{i}(1)\right]-E\left[Y_{i}(0)\right] \\
& =E\left[Y_{i}(1) \mid T_{i}=1\right]-E\left[Y_{i}(0) \mid T_{i}=0\right]
\end{aligned}
$$

Meaning, if college education is ignorable with respect to potential earnings, then the average causal effect of college on earnings is just the average earnings difference between the two groups.

## Identification and the role of assumptions

- A causal effect is identified if we could pin it down with an infinite amount of data.
- In any causal study we must state the assumptions under which a causal effect is identified.
- Law of Decreasing Credibility (Manski): The credibility of inference decreases with the strength of the assumptions maintained

Assuming ignorability, the causal effect of college on earnings is identified by the mean difference between the two groups.
But this is a heroic assumption, so inference is not very credible!

## Weakening assumptions as much as possible

- One goal of your work will be to find ways to weaken the needed assumptions.
- Instead of ignorability, let's try conditional ignorability!

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i} \mid X_{i}
$$

But first, let's step into it in the framework of DAGs.

## Causal inference and Directed Acyclic Graphs (DAGs)



- $X$ is a confounder (ability)
- $T$ is the treatment (college education)
- $Y$ is the outcome (earnings)
- Ability causes both college education and earnings.


## Causal inference and Directed Acyclic Graphs (DAGs)



To make causal inferences, we must assume there are no unobserved variables $U$ that cause both $T$ and $Y$, net of $X$. This is the assumption of conditional ignorability:

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i} \mid X_{i}
$$

Once we account for $X$, the treatment $T$ is as-if random. Question: Is this study credible? Why or why not?

## Blocking backdoor paths

Treatment assignment is confounded if there exists an unblocked backdoor path connecting $T$ and $Y$.


Ian's informal definition: Imagine the arrows are rivers. An unblocked backdoor path is one in which you can
(1) Start at $T$
(2) Swim upstream to some point (or walk out the back door)
(3) Then swim downstream to $Y$ (or walk around the house)

Conditioning on $X$ is like building a dam or locking the back door: you block the path

## Blocking backdoor paths: College and earnings

What do we need to include to block all backdoor paths between college and earnings?


Ability, parents' income, parents' education, extended family who pay for college and help you find a job, neighborhood characteristics that affect high school quality and also the availability of local jobs, ... lots of things!

## Non-causal paths: Part 2

Now consider this graph. Is there an unblocked backdoor path from $T$ to $Y$ ?


Remember, an unblocked backdoor path is one in which you can
(1) Start at $T$
(2) Swim upstream to some point
(3) Then swim downstream to $Y$

No need to condition! $X_{2}$ already blocks this path. it is a collider.

## Colliders: Be careful!


$Y$ is a collider. $X_{1}$ and $X_{2}$ are not associated, but they are when we hold $Y$ constant.
What situations might produce this?

- $X_{1}$ being in a car accident. $X_{2}$ is having cancer. $Y$ is being in a hospital.
- $X_{1}$ is living in a warm climate. $X_{2}$ is being an elite swimmer. $Y$ is going swimming in January.
- $X_{1}$ is family income. $X_{2}$ is religiosity. $Y$ attendance at a Catholic high school.


## Colliders: When drawing a DAG helps

Example extended from Elwert \& Winship 2014

Hypothetical substantive question:
Does acting ability causally affect the probability of marriage?
Hypothetical approach: Estimate on a sample of Hollywood actors and actresses.
We want to estimate:
Acting ability $\longrightarrow$ Marriage
Should we worry about this design? It depends on our theory about how these variables are related. We can argue about identification with a DAG.

## Colliders: When drawing a DAG helps

Example extended from Elwert \& Winship 2014

Suppose working in Hollywood is a function of two factors: acting ability and beauty. In the general population, these two are uncorrelated. However, among those who work in Hollywood, those who are bad at acting must be beautiful.

## True DAG

Acting ability


Beauty

## Conditional on Hollywood

Acting ability


## Colliders: When drawing a DAG helps

Example extended from Elwert \& Winship 2014

This is an example of conditioning on a collider! We induce a negative association between acting ability and beauty. Acting ability


Under the assumptions above, our results are driven by collider conditioning!

## Stable Unit Treatment Value Assumption (SUTVA)

(1) There is only one version of the treatment, not $T_{1}, T_{2}$
(2) Potential outcomes depend only on my treatment status $(Y(1)$, not $Y(1,0,0,1,0, \ldots, 0,1)$ or $Y(\boldsymbol{T}))$ (no interference)

In our college-earnings example, what would violate each of these assumptions?
(1) Elite college (Princeton) might be a different treatment from public universities. Only one treatment allowed.
(2) My sister's college education might affect my earnings. Interference not allowed.

## Definitions of treatment effects

Average treatment effect (ATE): Average over the whole population

$$
E\left[Y_{i}(1)-Y_{i}(0)\right]
$$

Average treatment effect on the treated (ATT): Average among those who take the treatment

$$
E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=1\right]
$$

Average treatment effect on the control (ATC): Average among those who do not take the treatment

$$
E\left[Y_{i}(1)-Y_{i}(0) \mid D_{i}=0\right]
$$

We could define an average treatment effect for any subpopulation of interest.

## Definitions of treatment effects

In the case of college education and earnings,

- the ATT is the effect of college among those who attend
- the ATC is the effect among those who do not attend
- the ATE is the average effect over the whole population

In what situations might we care about each one?

## Immutable characteristics

from lecture slides

There are three problems with race as a treatment in the causal inference sense
(1) Race cannot be manipulated

- without the capacity to manipulate the question is arguably ill-posed and the estimand is unidentified
(2) Everything else is post-treatment
- everything else comes after race which is perhaps unsatisfying
- this also presumes we are only interested in the total effect
(3) Race is unstable
- there is substantial variance across treatments which is a SUTVA violation


## Objections to potential outcomes

(Morgan and Winship concluding chapter)

- Cannot be used for nonmanipulable causes
- but we can get at related things other ways
- Appropriate for effects of causes, not causes of effects
- but we have to start with small steps before reaching for grand claims
- Relies on metaphysical quantities that cannot be observed
- but we try to get at these with as minimal assumptions as possible


## Concepts with which we want you to feel comfortable:

- Regression diagnostics and presentation
- Residual plots and assumptions
- Interpreting interactions
- Marginal effects
- Causal inference
- Potential outcomes
- Identification vs. estimation
- Assumptions and the Law of Decreasing Credibility
- DAGs
- Blocking backdoor paths
- Recognizing confounders and colliders
- SUTVA and interference
- ATE, ATT, ATC

