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Today’s Agenda

Introducing dplyr for data cleaning and manipulation
Studentized residuals
Non-linearity and generalized additive models
Identifying extreme values

Three types of extreme values
Leverage, Cook’s distance

Robust estimation
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Split-Apply-Combine2

Data analysis using Split-Apply-Combine strategy:
break up large problem into smaller, more manageable pieces

ex: cleaning data, sub-group analysis
operate on each piece independently

ex: summary statistics, model estimation
put the pieces back togther

ex: plotting results, table of aggregate statistics,

dplyr and ggplot() are both based around the
split-apply-combine concept.

2Wickham, Hadley. "The split-apply-combine strategy for data analysis."
Journal of Statistical Software 40.1 (2011): 1-29.
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dplyr Cheat Sheet

dplyr cheatsheet: https://www.rstudio.com/wp-content/
uploads/2015/02/data-wrangling-cheatsheet.pdf

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
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Learning about distribution of errors through residuals

Assumption is about unobserved u = y − Xβ
We can only observe residuals, û = y − Xβ̂
If distribution of residuals ≈ distribution of errors, we
could check residuals
But this is actually not true—the distribution of the residuals
is complicated

To understand the relationship between residuals and errors, we
need to derive the distribution of the residuals.
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Hat matrix

Define matrix H = X (X′X)−1 X′

û = y − Xβ̂

= y − X
(
X′X

)−1 X′y
≡ y −Hy
= (I−H)y

H is the hat matrix because it puts the “hat” on y:

ŷ = Hy

H is an n × n symmetric matrix
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Relating the residuals to the errors

û = (I−H)(y)

= (I−H)(Xβ + u)
= (I−H)Xβ + (I−H)u

= IXβ − X
(
X′X

)−1 X′Xβ + (I−H)u
= Xβ − Xβ + (I−H)u
= (I−H)u

Residuals û are a linear function of the errors, u
For instance,

û1 = (1− h11)u1 −
n∑

i=2

h1iui

Note that the residual is a function of all of the errors
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Distribution of the residuals

E[û] = (I−H)E[u] = 0

Var[û] = σ2
u(I−H)

The variance of the ith residual ûi is V [ûi ] = σ2(1− hii ), where hii
is the ith diagonal element of the matrix H (called the hat value).
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Distribution of the Residuals

Notice in contrast to the unobserved errors, the estimated residuals
1 are not independent (because they must satisfy the two

constraints
∑n

i=1 ûi = 0 and
∑n

i=1 ûixi = 0)
2 do not have the same variance. The variance of the residuals

varies across data points V [ûi ] = σ2(1− hii ), even though the
unobserved errors all have the same variance σ2

These properties can obscure the true patterns in the error
distribution, and thus are inconvenient for our diagnostics.
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Standardized Residuals

Let’s address the second problem (unequal variances) by
standardizing ûi , i.e., dividing by their estimated standard
deviations.

This produces standardized (or “internally studentized”) residuals:

û′i =
ûi

σ̂
√
1− hii

where σ̂2 is our usual estimate of the error variance.
The standardized residuals are still not ideal, since the numerator
and denominator of û′i are not independent. This makes the
distribution of û′i nonstandard.
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Studentized residuals

If we remove observation i from the estimation of σ, then we can
eliminate the dependence and the result will have a standard
distribution.

estimate residual variance without residual i :

σ̂2
−i =

u′u− u2
i /(1− hii )

n − k − 2

Use this i-free estimate to standardize, which creates the
studentized residuals:

û∗i =
ûi

σ̂−i
√
1− hii

If the errors are Normal, the studentized residuals follow a t
distribution with (n − k − 2) degrees of freedom.
Deviations from t =⇒ violation of Normality
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Generalized Additive Models (GAM)

Recall the linear model,

yi = β0 + x1iβ1 + x2iβ2 + x3iβ3 + ui

For GAMs, we maintain additivity, but instead of imposing linearity
we allow flexible functional forms for each explanatory variable,
where s1(·), s2(·), and s3(·) are smooth functions that are
estimated from the data:

yi = β0 + s1(x1i ) + s2(x2i ) + s3(x3i ) + ui



dplyr Studentized Residuals Generalized Additive Models Extreme values

Generalized Additive Models (GAM)

yi = β0 + s1(x1i ) + s2(x2i ) + s3(x3i ) + ui

GAMS are semi-parametric, they strike a compromise between
nonparametric methods and parametric regression

sj(·) are usually estimated with locally weighted regression
smoothers or cubic smoothing splines (but many approaches are
possible)

They do NOT give you a set of regression parameters β̂. Instead one
obtains a graphical summary of how E [Y |X,X2, ...,Xk ] varies with
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Three types of extreme values

1 Outlier: extreme in the y direction
2 Leverage point: extreme in one x direction
3 Influence point: extreme in both directions
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Outlier definition
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An outlier is a data point with very large regression errors, ui
Very distant from the rest of the data in the y-dimension
Increases standard errors (by increasing σ̂2)
No bias if typical in the x ’s
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Leverage point definition
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Values that are extreme in the x direction
That is, values far from the center of the covariate distribution
Decrease SEs (more X variation)
No bias if typical in y dimension
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Leverage Points: Hat values

To measure leverage in multivariate data we will go back to the hat matrix H:

ŷ = Xβ̂ = X
(
X′X

)−1 X′y = Hy

H is n × n, symmetric, and idempotent. It generates fitted values as follows:

ŷi = h′iy =
[
hi,1 hi,2 · · · hi,n

]


y1

y2
...
yn

 =
n∑

j=1

hi,jyj

Therefore,

hij dictates how important yj is for the fitted value ŷi (regardless of the
actual value of yj , since H depends only on X)

The diagonal entries hii =
∑n

j=1 h
2
ij , so they summarize how important yi

is for all the fitted values. We call them the hat values or leverages and a
single subscript notation is used: hi = hii

Intuitively, the hat values measure how far a unit’s vector of
characteristics xi is from the vector of means of X

Rule of thumb: examine hat values greater than 2(k + 1)/n
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Influence points
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An influence point is one that is both an outlier (extreme in
X ) and a leverage point (extreme in Y ).
Causes the regression line to move toward it (bias?)
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Detecting Influence Points/Bad Leverage Points

Influence Points:
Influence on coefficients = Leverage × Outlyingness

More formally: Measure the change that occurs in the slope
estimates when an observation is removed from the data set.
Let

Dij = β̂j − β̂j(−i), i = 1, . . . , n, j = 0, . . . , k

where β̂j(−i) is the estimate of the jth coefficient from the
same regression once observation i has been removed from the
data set.

Dij is called the DFbeta, which measures the influence of
observation i on the estimated coefficient for the jth
explanatory variable.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale Dij by
the estimated standard error of the coefficients:

D∗ij =
β̂j − β̂j(−i)
ŜE−i (β̂j)

where D∗ij is called DFbetaS.

D∗ij > 0 implies that removing observation i decreases the
estimate of βj → obs i has a positive influence on βj .
D∗ij < 0 implies that removing observation i increases the
estimate of βj → obs i has a negative influence on βj .
Values of |D∗ij | > 2/

√
n are an indication of high influence.

In R: dfbetas(model)
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Summarizing Influence across All Coefficients

Leverage tells us how much one data point affects a single
coefficient.

A number of summary measures exist for influence of data points
across all coefficients, all involving both leverage and outlyingness.

A popular measure is Cook’s distance:

Di =
û′2i

k + 1
× hi

1− hi

where û′i is the standardized residual and hi is the hat value.
It can be shown that Di is a weighted sum of k + 1 DFbetaS’s
for observation i
In R, cooks.distance(model)
D > 4/(n − k − 1) is commonly considered large

The influence plot: the studentized residuals plotted against the
hat values, size of points proportional to Cook’s distance.
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Questions?
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