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Learning Objectives

1 More data manipulation with dplyr

2 Practice evaluating causal identification strategies in published
papers
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R.A. Fisher’s Irises

R.A. Fisher published a paper in 1936 using data on the length and
width of the petals and sepals of a sample of irises. The data is
now a common R example dataset.

(Flower above is not an iris)
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Three species of irises
Photos from Wikipedia

Setosa Virginica Versicolor
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Explore and load the iris data

See where this comes from:
https://stat.ethz.ch/R-manual/R-devel/library/

datasets/html/iris.html

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa
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Iris goal 1

Goal: Plot the distribution of sepal lengths and petal lengths in
the data, by species
Steps:

1 select the variables of interests

2 melt the data so that the lengths are stored in a single column

3 ggplot the density plot, using fill to distinguish the petal vs.
sepal

4 facet wrap to separate by species
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Start with the data frame

Code Output

iris

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa
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Select the variables of interest
Reference:
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Code Output

iris %>%

select(Sepal.Length,

Sepal.Width,

Species)

Sepal.Length Sepal.Width Species

1 5.1 3.5 setosa

2 4.9 3.0 setosa

3 4.7 3.2 setosa

4 4.6 3.1 setosa

5 5.0 3.6 setosa

6 5.4 3.9 setosa
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Melt so that the variable to be plotted is in one column
Reference: http://seananderson.ca/2013/10/19/reshape.html

Code Output

iris %>%

select(Sepal.Length,

Sepal.Width,

Species) %>%

melt(id.vars = "Species")

Species variable value

1 setosa Sepal.Length 5.1

2 setosa Sepal.Length 4.9

3 setosa Sepal.Length 4.7

4 setosa Sepal.Length 4.6

5 setosa Sepal.Length 5.0

6 setosa Sepal.Length 5.4
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Plot the density
Reference: http://docs.ggplot2.org/current/

Code Output

iris %>%

select(Sepal.Length,

Sepal.Width,

Species) %>%

melt(id.vars = "Species") %>%

ggplot(aes(x = value,

fill = variable)) +

geom_density(alpha = .2)
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Facet by species
Reference: http://docs.ggplot2.org/current/

Code Output

iris %>%

select(Sepal.Length,

Sepal.Width,

Species) %>%

melt(id.vars = "Species") %>%

ggplot(aes(x = value,

fill = variable)) +

geom_density(alpha = .2) +

facet_wrap(~Species,

ncol = 1)
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Iris goal 2

Goal: Compare length vs. width, within strata defined by

species AND

petal/sepal

Tepal

Species Petal Sepal

Setosa Mean(L - W) Mean(L - W)
Versicolor Mean(L - W) Mean(L - W)
Virginica Mean(L - W) Mean(L - W)

Table: Structure of the goal data table
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Iris goal 2

Goal: Compare length vs. width, within strata defined by

species AND

petal/sepal

Steps:

1 mutate the iris data to add an id number to the rows

2 melt the data so that the lengths are stored in a single column

3 separate the petal/sepal and length/width into two variables

4 spread the data wider so that length and width are each variables

5 mutate the data to calculate the difference in length and width

6 group by species and type

7 summarize to calculate the mean difference within each group

8 select the variables for our table

9 spread them out to make a nice table
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Making a table
Start with a data frame

Code Output

iris

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa
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Making a table
Add id number. Reference:
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Code Output

iris %>%

mutate(idnum = 1:nrow(iris))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species idnum

1 5.1 3.5 1.4 0.2 setosa 1

2 4.9 3.0 1.4 0.2 setosa 2

3 4.7 3.2 1.3 0.2 setosa 3

4 4.6 3.1 1.5 0.2 setosa 4

5 5.0 3.6 1.4 0.2 setosa 5

6 5.4 3.9 1.7 0.4 setosa 6
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Making a table
Melt to make the data long. Reference:
http://seananderson.ca/2013/10/19/reshape.html

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species"))

idnum Species variable value

1 1 setosa Sepal.Length 5.1

2 2 setosa Sepal.Length 4.9

3 3 setosa Sepal.Length 4.7

4 4 setosa Sepal.Length 4.6

5 5 setosa Sepal.Length 5.0

6 6 setosa Sepal.Length 5.4
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Making a table
Separate type and measure. Reference:
https://blog.rstudio.org/2014/07/22/introducing-tidyr/

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.")

idnum Species Type Measure value

1 1 setosa Sepal Length 5.1

2 2 setosa Sepal Length 4.9

3 3 setosa Sepal Length 4.7

4 4 setosa Sepal Length 4.6

5 5 setosa Sepal Length 5.0

6 6 setosa Sepal Length 5.4
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Making a table
Spread to make wide. Reference:
https://blog.rstudio.org/2014/07/22/introducing-tidyr/

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value)

idnum Species Type Length Width

1 1 setosa Petal 1.4 0.2

2 1 setosa Sepal 5.1 3.5

3 2 setosa Petal 1.4 0.2

4 2 setosa Sepal 4.9 3.0

5 3 setosa Petal 1.3 0.2

6 3 setosa Sepal 4.7 3.2
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Making a table
Mutate to make a difference variable. Reference:
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width)

idnum Species Type Length Width difference

1 1 setosa Petal 1.4 0.2 1.2

2 1 setosa Sepal 5.1 3.5 1.6

3 2 setosa Petal 1.4 0.2 1.2

4 2 setosa Sepal 4.9 3.0 1.9

5 3 setosa Petal 1.3 0.2 1.1

6 3 setosa Sepal 4.7 3.2 1.5
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Making a table
Group by species and type, summarize to get mean, sd, and n in each group. Reference:
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width) %>%

group by(Species,Type) %>%

summarize(mean difference = mean(difference),

sd difference = sd(difference),

count = n())

Source: local data frame [6 x 5]

Groups: Species [3]

Species Type mean_difference sd_difference count

(fctr) (chr) (dbl) (dbl) (int)

1 setosa Petal 1.216 0.1706650 50

2 setosa Sepal 1.578 0.2636401 50

3 versicolor Petal 2.934 0.3372215 50

4 versicolor Sepal 3.166 0.4410609 50

5 virginica Petal 3.526 0.5313863 50

6 virginica Sepal 3.614 0.5664101 50
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Making a table
Select the variables of interest. Reference:
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width) %>%

group by(Species,Type) %>%

summarize(mean difference = mean(difference),

sd difference = sd(difference),

count = n()) %>%

select(mean difference, Species, Type)

mean_difference Species Type

(dbl) (fctr) (chr)

1 1.216 setosa Petal

2 1.578 setosa Sepal

3 2.934 versicolor Petal

4 3.166 versicolor Sepal

5 3.526 virginica Petal

6 3.614 virginica Sepal
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Making a table
spread to make the data wide for a pretty table. Reference:
https://blog.rstudio.org/2014/07/22/introducing-tidyr/

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width) %>%

group by(Species,Type) %>%

summarize(mean difference = mean(difference),

sd difference = sd(difference),

count = n()) %>%

select(mean difference, Species, Type) %>%

spread(Type, mean difference)

Source: local data frame [3 x 3]

Groups: Species [3]

Species Petal Sepal

(fctr) (dbl) (dbl)

1 setosa 1.216 1.578

2 versicolor 2.934 3.166

3 virginica 3.526 3.614
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Making a figure
Going back a few steps

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width) %>%

group by(Species,Type) %>%

summarize(mean difference = mean(difference),

sd difference = sd(difference),

count = n())

Source: local data frame [6 x 5]

Groups: Species [3]

Species Type mean difference sd difference count

(fctr) (chr) (dbl) (dbl) (int)

1 setosa Petal 1.216 0.1706650 50

2 setosa Sepal 1.578 0.2636401 50

3 versicolor Petal 2.934 0.3372215 50

4 versicolor Sepal 3.166 0.4410609 50

5 virginica Petal 3.526 0.5313863 50

6 virginica Sepal 3.614 0.5664101 50
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Making a figure
Using geom bar. Reference: http://docs.ggplot2.org/current/

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width) %>%

group by(Species,Type) %>%

summarize(mean difference = mean(difference),

sd difference = sd(difference),

count = n()) %>%

ggplot(aes(x = Type,

fill = Species)) +

geom bar(stat = "identity", position = "dodge")
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Making a figure
Adding error bars. Reference: http://docs.ggplot2.org/current/

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width) %>%

group by(Species,Type) %>%

summarize(mean difference = mean(difference),

sd difference = sd(difference),

count = n()) %>%

ggplot(aes(x = Type,

y = mean difference,

ymin = mean difference -

qnorm(.975) * sd difference /

sqrt(count),

ymax = mean difference +

qnorm(.975) * sd difference /

sqrt(count),

fill = Species)) +

geom bar(stat = "identity", position = "dodge") +

geom errorbar(position = "dodge")
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Making a figure
Add titles. We’re finished! Reference: http://docs.ggplot2.org/current/

Code Output

iris %>%

mutate(idnum = 1:nrow(iris)) %>%

melt(id = c("idnum","Species")) %>%

separate(col = "variable",

into = c("Type","Measure"),

sep = "\.") %>%

spread(key = Measure, value = value) %>%

mutate(difference = Length - Width) %>%

group by(Species,Type) %>%

summarize(mean difference = mean(difference),

sd difference = sd(difference),

count = n()) %>%

ggplot(aes(x = Type,

y = mean difference,

ymin = mean difference -

qnorm(.975) * sd difference /

sqrt(count),

ymax = mean difference +

qnorm(.975) * sd difference /

sqrt(count),

fill = Species)) +

geom bar(stat = "identity", position = "dodge") +

geom errorbar(position = "dodge") +

ylab("Mean length - width") +

ggtitle("Mean difference within strata")
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Slight shift of focus

We’ve been doing lots of Applied Social Statistics.

Let’s do some Applied Social Statistics!
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Causal inference examples

We will walk through examples of causal social science papers that
assume observed confounding. For each paper, we will:

Draw the DAG

Define the potential outcomes: Yi (0),Yi (1)

Discuss potential violations of the identifying assumptions.

Conclude: Do we buy it?
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Example 1: An ethnographic experiment

Duneier, Mitchell. 2001. Sidewalk. New York: Farrar, Straus, and
Giroux.

Ethnographic study of book vendors in Greenwich Village in
NYC.

Duneier noticed that black vendors were pushed around by
police officers.

Question: Does a vendors race and legal knowledge affect
how the police treat him?

Approach: A creative small-scale experiment.
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NYC street vendors
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Duneier 2001: The treated situation
Selections from p. 266-272
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Duneier 2001: Stating confounders
Selections from p. 266-272
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Duneier 2001: Control
Selections from p. 266-272
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Potential outcomes

Units of analysis are interactions with police

Sample size is 2, but 2 high-quality observations

Treatment: Vendor is a black male Greenwich Village
bookseller.

Control: Vendor is Mitch Duneier who explicitly defends his
rights
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Example 2: Occupational attainment model

Blau, Peter Michael, and Otis Dudley Duncan. 1967. The
American Occupational Structure. New York: Wiley.

Research question: How does family background affect the
educational and occupational attainment of the next
generation?

Method: Linear structural equation models, which were the
precursor to DAGs
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Example 2: Blau-Duncan (1967) status attainment model
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What to condition on for the effect of..

1 first job on occ. in 1962?

2 respondent’s education on first job?
3 respondent’s education on occ. in 1962?
4 father’s occupation/education on son’s occupation in 1962?
5 If we condition on respondent’s education and first job, will

father’s education be associated with son’s occupation in
1962?

Answers:
1 Respondent’s education, father’s occupation
2 father’s occupation is sufficient
3 father’s occupation is sufficient
4 No conditioning needed! But I doubt the DAG holds.
5 No. But only because the DAG assumes the unobserved

influences are uncorrelated!
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Blau-Duncan assumptions
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Side note - incredible pre-analysis plan (p. 18)
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Example 3: Bringing in aspirations

Sewell, William H., Archibald O. Haller, and Alejandro Portes.
1969. “The Educational and Early Occupational Attainment
Process.” American Sociological Review 34 (1): 82?92.
doi:10.2307/2092789.

Challenged Blau and Duncan

Argued that aspirations of children were an important
pathway linking parental and child attainment

Became known as the Wisconsin model of status attainment
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Example 3: Wisconsin model of status attainment
Sewell, Haller, and Portes (1969), ASR
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Wisconsin model: What to condition on to identify the
effect of...

1 X2 on X1?

2 X5 on X2?

Answers:

1 X5 or X3

2 No conditioning needed!
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Example 4: Heterogeneous effects of college

Brand, Jennie E., and Yu Xie. 2010. “Who Benefits Most from
College? Evidence for Negative Selection in Heterogeneous
Economic Returns to Higher Education.” American Sociological
Review.
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Brand and Xie (2010)

Research question:

Does college affect earnings?
Is the effect moderated by social origin?

Identification strategy: Selection on observables

College Earnings

Social origin
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Theoretically: Why heterogeneous effects?

Question: Can we write the potential outcomes here?
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Ignorability

What is the assumption of ignorability here?
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Conditioning set: Measuring “social origin”

Question: How might the identifying assumptions be violated?
Can we write it in terms of DAGs? Potential outcomes?
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Question: How might the identifying assumptions be violated?
Can we write it in terms of DAGs? Potential outcomes? 47 / 74
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Example 5: Neighborhoods

Wodtke, Geoffrey T., David J. Harding, and Felix Elwert. 2011.
“Neighborhood Effects in Temporal Perspective: The Impact of
Long-Term Exposure to Concentrated Disadvantage on High
School Graduation.” American Sociological Review 76(5):713-736.

Research question: How does long-term exposure to
disadvantaged neighborhoods affect one’s probability of high
school graduation?

Problem: Family income and neighborhood disadvantage
affect each other through childhood
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Wodtke, Harding, and Elwert 2011

We might want to have a bidirectional arrow linking neighborhood
disadvantage and family income.

Neighborhood disadvantage

Family income

High school graduation

Can we write sequentially to avoid the bi-directional edge?
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Neighborhood Effects in Temporal Perspective
Wodtke, Harding, and Elwert 2011 ASR

L = Family income

A = Neighborhood disadvantage

Y = High school graduation

Subscripts = time
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What do you condition on to identify:

1 The effect of A2 on Y ?

2 The effect of A1 on Y ?

Answers:

1 {L2,A1}
2 {L1}
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Neighborhood Effects in Temporal Perspective
Wodtke, Harding, and Elwert 2011 ASR

Key point: We cannot just condition on family income (L) since
part of it is caused by neighborhood disadvantage (A). Nor can we
not condition on it. What to do?
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A challenging identification problem!
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Result from Wodtke, Harding, and Elwert 2011
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Example 6. Wealth and college attainment

Conley, Dalton. 2001. “Capital for College: Parental Assets and
Postsecondary Schooling.” Sociology of Education.

Research question: Does family wealth affect educational
attainment?
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Conditioning set
Conley 2001, Sociology of Education

Can we draw the DAG? What assumptions are made?
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Tying causal inference to big theories
Conley 2001, Sociology of Education
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Example 7: Divorce and child development

Annual Review of Sociology piece summarizes many causal
research designs (it’s a good overview). We will focus on one.
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Example 7: Divorce and child development

Cherlin, Andrew J., Frank F. Furstenberg, Jr., P. Lindsay
Chase-Linsdale, Kathleen E. Kiernan, Philip K. Robins, Donna
Ruane Morrison and Julien O. Teitler. “Longitudinal Studies of
Effects of Divorce on Children in Great Britain and the United
States.” Science 252:1386-1389.
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Cherlin et al. 1991

Research question: Is divorce bad for kids?

Controls: Social class, race, mother employed outside the
home in 1976, outcome measured in 1976

Treatment: Parental divorce in 1976-1981

Outcome: Behavior problems in 1981

Can we draw the DAG? Write the potential outcomes? Critique
the paper?
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A 1991-era way of showing results

How could this figure be improved?
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A 1991-era way of showing results
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Example 8: Heterogeneous treatment effects

Hill, Jennifer. 2011. “Bayesian Nonparametric Modeling for Causal
Inference.” Journal of Computational and Graphical Statistics
20(1):217-240.

This is a paper that looks very hard

There are lots of equations

BUT it’s really just a fancy version of the imputation
estimator Brandon showed on Wednesday!

You already know what you need to understand the key
concepts!
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Substantive question
Hill (2011)

Do home visits and child care promote child cognitive
development?

Sample: Low birth weight, premature infants in 1985

Treatment: Randomly chosen treated infants received home
visits and child care

Outcome: Cognitive test scores

Pretreatment covariates:

Infant characteristics: birth weight, head circumference, weeks
born preterm, birth order, first born, neonatal health index,
sex, twin status
Mother variables in pregnancy: smoked cigarettes, drank
alcohol, took drugs
Mother variables at birth: age, marital status, educational
attainment, whether she worked during pregnancy, whether she
received prenatal care
A few residential location variables
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Heterogeneous effects in terms of potential outcomes

Recall potential outcomes:

Potential outcome under control: Yi (0) = f (Xi )

Potential outcome under control: Yi (1) = g(Xi )

The treatment effect is τi = g(Xi )− f (Xi ) = h(Xi )

All are functions of pre-treatment covariates.
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Imputation approach from lecture
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Visualizing heterogeneous effects
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Defining causal effects with covariate-based heterogeneity
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Example 9: Contagion in social networks

Christakis, Nicholas A., and James H. Fowler. 2007. “The Spread
of Obesity in a Large Social Network over 32 Years.” New England
Journal of Medicine 357(4):370-379.
Also a related book, which is a good read.
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Christakis and Fowler 2007

Research question: Does having obese friends cause you to
become obese?

Sample: Framingham Heart Study, 1971-2003, following
12,067 people

Measured confounders: Ego’s age, sex, education

Lagged dependent variable: obesity at t − 1 (control for U)

Lagged predictor: Alter’s weight at t − 1 (control for
homophily)

Treatment: Alter’s obesity at t + 1

Outcome: Ego’s obesity at t + 1
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Christakis and Fowler 2007: Conclusion

“A person’s chances of becoming obese increased by 57% (95%
confidence interval [CI], 6 to 123) if he or she had a friend who
became obese in a given interval.” (quoted from abstract)
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Regression weighting from lecture
Slide by Brandon Stewart

Wi =
σ2d(Xi )

E [σ2d(Xi )]

Why does OLS weight like this?

OLS is a minimum-variance estimator  more weight to
more precise within-strata estimates.

Within-strata estimates are most precise when the treatment
is evenly spread and thus has the highest variance.

If Di is binary, then we know the conditional variance will be:

σ2d(x) = P(Di = 1 | Xi = x)[1− P(Di = 1 | Xi = x)]

Maximum variance with P[Di = 1|Xi = x ] = 1/2.
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OLS weighting example
Slide by Brandon Stewart

Binary covariate:

P[Xi = 1] = 0.75 P[Xi = 0] = 0.25

P[Di = 1|Xi = 1] = 0.9 P[Di = 1|Xi = 0] = 0.5

σ2d(1) = 0.09 σ2d(0) = 0.25

τ(1) = 1 τ(0) = −1

Implies the ATE is τ = 0.5
Average conditional variance: E[σ2d(Xi )] = 0.13
 weights for Xi = 1 are: 0.09/0.13 = 0.692, for Xi = 0:
0.25/0.13 = 1.92.

τR = E[τ(Xi )Wi ]

= τ(1)W (1)P[Xi = 1] + τ(0)W (0)P[Xi = 0]

= 1× 0.692× 0.75 +−1× 1.92× 0.25

= 0.039
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