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Potential outcomes Algorithm Sample split Regularization + confounding

Note: These slides assume
randomized treatment assignment
until the section labeled
“confounding.”
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Causal inference: A missing data problem

Potential employment

Education Treated No job training  Job training Treatment effect

ID X; W, Y;(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 1 1
2 High school 1 0 1 1
3 College 0 1 1 0
4 College 1 1 1 0
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Causal inference: A missing data problem

Potential employment

Education Treated No job training  Job training Treatment effect

ID X; W, Y;(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 1 ? 1 ?
3 College 0 1 ? ?
4 College 1 ? 1 ?

If W; L {Y;(0), Y;(1)}, then

= Yiw=1 — Viw=o
—1-05

=05

I
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Causal inference: A missing data problem

Potential employment

Education Treated No job training  Job training Treatment effect

ID Xi Wi Yi(0) Yi(1) 7 = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 1 ? 1 ?
3 College 0 1 ? ?
4 College 1 ? 1 ?

What if we want to study 7; = f(X;)?
7A—High school = Vi:W;:l,X,v:High school 72—College = \_/i:W,:l,X,':CoIIege
- _i:VV,-:O,Xi:High school - _i:V\/;:O,X/:College
=1-05 =1-1
=05 =0
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1 High school 0 0 ? ?
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Causal inference: A missing data problem

Potential employment

Education Treated No job training  Job training Treatment effect

ID X; W, Y;(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 1 ? 1 ?
3 College 0 1 ? ?
4 College 1 ? 1 ?

What if there are dozens of X variables?
What if X is continuous?

It's hard to know which subgroups of X
might show interesting effect heterogeneity
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Start with a simpler prediction question.

Which subgroups of X have very different
average outcomes?
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Prediction: One tree

MSEo = 2 3°(Y; — Y)? All observations
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Prediction: One tree

MSEo = L 3(Y; — Y)?
MSE1 = 2 32(Yi = Vigertein)?
MSE,; = % Z( - j X; EK(X,IHQ))z

Sample split

Regularization + confounding

All observations

7N

X; < 16

-

X,' <ky

Xi > kg

Xi > 16

N

X,' < ko

BART

Xi > ko
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Prediction: One tree

MSEo = > (Vi — Y)? All observations
MSE1 = 2 37(Yi = Vigerim) X;<16  X;>16
' N
MSEz2 = L 33(Yi = Vierwin)® Xij <ki X >k Xi<ka Xi>ko

Choose ki or k» to minimize MSE,
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Prediction: One tree

MSEo = > (Vi — Y)? All observations
MSE1 = 2 37(Yi = Vigerim) X;<16  X;>16
MSE,; = %Z(Y ijeg(x,mz)) X,' <12 X,' > 12

MSE; Z; =White Z; #White
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Prediction: One tree

MSEo = 2 3°(Y; — Y)? All observations
MSE;1 = 2 3°3(Yi — Vigeriny)’ Xi<16  X;>16
'

MSE, = 2 3°(Vi — ijee(x,mZ)) Xi <12 X; > 12

N
MSE; Z; =White Z; #White

v Y
[ ] [ ]
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Prediction: One tree

MSEo = > (Vi — Y)? All observations
MSE; = £ 3°(Vi — Jxee(x,ml)) X; < 16 X; > 16
'
MSE; = %Z(Y ijee(x,mz)) Xi <12 X; > 12
7N\
MSE; Z; =White Z; #White
v N\
[ ] [ ]
Ay
e o

Could continue until all leaves had only one observation.
Unbiased but uselessly high variance!
Instead, regularize: keep only splits that improve MSE by more than c.
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Prediction: One tree

MSEo = > (Vi — Y)? All observations
MSEl = %Z( - JXEZ(X,||-|1)) X, < ].6 X, Z ]_6
MSE, = 2 3°(Vi — ijee(x,mz)) Xi <12 X; > 12

7N\
MSE; Z; =White Z; #White

Could continue until all leaves had only one observation.
Unbiased but uselessly high variance!
Instead, regularize: keep only splits that improve MSE by more than c.
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Prediction: One tree

MSEo = > (Vi — Y)? All observations

MSE; = £ 3°(Vi — Jxee(x,ml))z X; < 16 X; > 16
'

MSEZ = %Z( - jxeﬁ(x,ﬂ'lz))z X, < 12 X, Z ].2

Could continue until all leaves had only one observation.
Unbiased but uselessly high variance!
Instead, regularize: keep only splits that improve MSE by more than c.
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Prediction: One tree

MSEo = 2 3°(Y; — Y)? All observations
MSEI = %Z(Y, — »_/jiijE(Xflnl))z X,‘ < 16 X,' Z ]_6

Could continue until all leaves had only one observation.
Unbiased but uselessly high variance!
Instead, regularize: keep only splits that improve MSE by more than c.

BART
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Prediction: One tree

(YI - »/j:xj-el(x,-|l'll))2

Partition 1 € P =) {111 ={x:x <16}, lo ={xi: x; > 16}}

Regularization + confounding

All observations

7N

X; < 16 X; > 16

N /

Leaves

BART
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BART
MSEo = 1 3°(V; = Y)?

All observations
MSEL = £ 520V~ Vicrin

7N
Xi <16

X; > 16
Partition 1 € P =—) {1:1 ={x:x <16}, bb={x:x > 16}}

N /

Prediction rule for new x:

Leaves
(ﬂ(X) = VJ:XJEK(M”D
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Prediction: One tree

MSEo = 2 3°(Y; — Y)? All observations
MSEI = %Z(Y, — »_/J'ZXJ'E@(X,'lnl))Z X,‘ < 16 X,' Z ]_6

Partition 1 € P =) {11'1 ={x:x <16}, lo ={xi: x; > 16}}

N /

Leaves
Prediction rule for new x:

(ﬂ(X) = VJ:XJEE(XW))

Could we use this method to find causal effects 7(x)
that are heterogeneous between leaves?

] = =
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Causal tree: What's different?

@ We do not observe the ground truth
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o One sample to estimate leaf effects
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Causal tree: What's different?

@ We do not observe the ground truth
@ Honest estimation:

o One sample to choose partition

o One sample to estimate leaf effects

Why is the split critical?

Fitting both on the training sample risks overfitting: Estimating
many “heterogeneous effects” that are really just noise
idiosyncratic to the sample.

BART
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Causal tree: What's different?

@ We do not observe the ground truth
@ Honest estimation:

o One sample to choose partition

o One sample to estimate leaf effects

Why is the split critical?

Fitting both on the training sample risks overfitting: Estimating
many “heterogeneous effects” that are really just noise
idiosyncratic to the sample.

We want to search for true heterogeneity, not noise.
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Sample splitting

MSE criterion Authors add

e €s — 1 n €s
MSE (S, S5, M) = 759 > {(Y,- — (X S M) - Y?
jieSte

Note: The authors include the final Y? term to simplify the math; it just shifts
the estimator by a constant.
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Sample splitting

MSE criterion Authors add

e €s — 1 n €s
MSE (S, S5, M) = 759 > {(Y,- — (X S M) - Y?
jieSte

EMSE,, (M) = Egte gest [MSE#(Ste, se, n)}

Note: The authors include the final Y? term to simplify the math; it just shifts
the estimator by a constant.
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MSE criterion Authors add

e es — 1 ~ es
MSE (57,51 = s 3 { - a0 s=mP - V7
ieSte

EMSE,, (M) = Egte gest [MSE#(Ste, Sest, n)}

Honest criterion: Maximize

This is S* in the classical approach

v
QH(T(') = —Este75£75tr [MSEH(Ste, 5e5t7 W(Str)):|

where 7 : RPT1 — P is a function that takes a training sample
St € RP*! and outputs a partition M € P.

Note: The authors include the final Y? term to simplify the math; it just shifts
the estimator by a constant.



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

Analytic estimator for EMSE,, (1) (p. 7356)

Goal: Estimate expected MSE using only the
training sample.

This will be used to place splits when training a tree.
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Analytic estimator for EMSE,, (1) (p. 7356)

2
—EMSE, (M) = —Este ses {(y — (X | ==, n)) - Y?

2
= — Este‘sesl |:<Y, - ,U,(X,' | ﬂ) —+ /L(X,' I I'I) — ﬂ(X, ‘ SESt7 n)) _ \/I_Z

2
= —Egee ges {(Y — (X | n)) — Y2

- ]Este _Gest

2= 06 1)) (w06 1) = 0% | sesf’ﬂ))}
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Analytic estimator for EMSE,, (1) (p. 7356)

Expected mean squared error for a partition I
+ 2
—EMSE, (M) = —Este ses {(y — (X | ==, n)) - Y?

2
= — Este‘sesl |:<Y, - ,U,(X,' | ﬂ) —+ /L(X,' I I'I) — ﬂ(X, ‘ S<55t7 n)) _ \/I_Z

2
= —Egee ges {(Y — (X | n)) — Y2

- ]Este _Gest

2= 06 1)) (w06 1) = 0% | sest’ﬂ))}
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Analytic estimator for EMSE,, (1) (p. 7356)

Expected mean squared error for a partition I
+ 2
—EMSE, (M) = —Este ses {(y — (X | ==, n)) - Y?
T

Over estimation sets used to estimate the leaf-specific /i and test sets to evaluate those

2
= — Este‘sesl |:<Y, - ,U,(X,' | ﬂ) —+ /L(X,' I I'I) — ﬂ(X, ‘ S<55t7 n)) _ \/I_Z

2
= —Egee ges {(Y — (X | n)) — Y2

- ]Este _Gest

2= 06 1)) (w06 1) = 0% | sest’ﬂ))}
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Analytic estimator for EMSE,, (1) (p. 7356)

BART

v
—EMSE, (M) =

Expected mean squared error for a partition I

Prediction based on S from the leave £(X;) containing X;
xS 2
—Esgte gest (Y,- — (X | S, I'I))

2
-
Over estimation sets used to estimate the leaf-specific /i and test sets to evaluate those

2
= — Egte gest [(Y, — (X | 1)+ p(X; | 1) = A(Xi | S*=t, I'I)) -

2
Este'sest |:<Y, - M(X,' | I'I)> -

Y2

i

Y2

i

- ]Este | Gest

[m]

2= 06 1)) (w06 1) = 0% | sest’ﬂ))}

=
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Analytic estimator for EMSE,, (1) (p. 7356)

2
—EMSE, (M) = —Egee sex {(y — A(X; | s=t, )

_ yl,2
Add a zero

Lo
— Egte gest [(YI 1

Xi [ 1)+ p(X; | T

2
a0 | s=m) - v?
2
Este gest {(Y — (X | n)) — Y2

- ]Este | Gest

2<y, (| n)) (u(x,- M) — A | 5%, ﬂ))}

[m]

=

BART
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Analytic estimator for EMSE,, (1) (p. 7356)

Regularization + confounding

BART

2
—EMSE, (M) = —Egte ges [(Y, — (X | S, r|)>

—y?

i

First term?

2
—Egte gest |:<Y, — M(X,' | I'I)> — YiZ

2
= — Egte gest [(Y, — (X | T+ (G| ) — (X | S*5, I_I)) VS

Second term?

— ]Este ,Sest

(11— x| SE“AH))T

2(First term)(Second term)
- IES(E,SES(

2<y, (| n)) (u(x,- M) — A | 5%, ﬂ))]

[m]

=
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2
—EMSE, (M) = —Egte ges {(y, — (X | S, n))

—y?

i

2
— Egte gest [(YI — (Xi | T+ (X | 1) = (X | S, ”)) -y

2
Este gest {(Y — (X | r|)> — Y2
E(A) = 0 by assumption

— Esgte gest
Cov(A, B) = 0 because Y; is from

a sample independent of St

(117 20x | smﬂ)ﬂ

A

Cov(AB) = E(AB) — E(A)E(B) _ Ege gen
0= E(AB) — 0

[m]

B
2<y, e n)) (u(x,- m - age] 5= ﬂ))}

=
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Analytic estimator for EMSE,, (1) (p. 7356)

2
—EMSE, (M) = —Este ses {(y — (X | ==, n)) - Y?

2
= — Egte gest [(Y, — (X | T+ (G| ) — (X | S*5, |—|>> _ Yiz

2
= —Egee ges {(Y — (X | n)) — Y2

E(A) = 0 by assumption
— Esgte gest
Cov(A, B) = 0 because Y; is from

(101 = x| smﬂ)ﬂ
A =0

{
w(X; | M) — pcx; | S*=, |_|)>:|

a sample independent of St

Cov(AB) = E(AB) — E(A)E(B)
0= E(AB) — 0

- ]Esce _Gest
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= —E(v, x5 [(Y,- — (X | M) — »/,2]

B (106 | 571 = | M)

= “Epy,x).5m [YF 06| ) — 2Y5(X; | 1) — vﬁ]

B s [(ﬁ(x,- | 5% — (X | n)f]

= — By, x)se [;ﬁ(x,- [ ) = 2u(X; | M)u(X; | n)}
CExse [(ﬂ(xf | 5% — (X | n))?]

=Ex,

4206 )] = s [ 1006 | 5%%.1)

Athey & Imbens 2016, p. 7356




Intro

Potential outcomes Algorithm

Sample split

Regularization + confounding BART
= —E(v, x5 [(Y,- — (X | M) — »/,2]
B (A0 | %) < (x| )R]

/ Y? terms cancel ~
= ~Evix), 5= [

Y2+ u(Xi | ) = 2Yip(X; | 1) = V7

}
B (A0 | %) = x| )]

= — By, x)se [;ﬁ(x,- [ ) = 2u(X; | M)u(X; | n)}
—Mmew%mwmmﬂ

=Ex,

4206 )] = s [ 1006 | 5%%.1)

Athey & Imbens 2016, p. 7356
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= Exysn |00 - 7]
— Ex; e [(g(x,- | S%, 1) — u(X; | M))?

Ev x),5=(i)
/ = Ex; sep(Xi | 1)
— —Epy, x5 [y,? (X | 1) = 2Yi(X; | 1) -

a
B (A0 | %) = x| )]

= — By, x)se [;ﬁ(x,- [ ) = 2u(X; | M)u(X; | n)}
CExse [(ﬂ(xf | 5% — (X | n))?]

=Ex,

4206 )] = s [ 1006 | 5%%.1)

Athey & Imbens 2016, p. 7356

Regularization + confounding

BART
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— IE)(;,SES(

= “Epy,x).5e [(Y,- (X M) - YF}

(A S — (X | n))Z]

= By 5o | Y2 4206 1) = 2300 [ 1) - V7]
B s [(ﬁ(x,- | 5% — (X | n))2]

= — E(Y’)X’)"sesl |:

W20 | 1) — 2u(X; | (X | n)}
Eyse [(ﬁ(x,- 5% — (X | ﬂ))ﬂ

They have [l2 here but | think they are wrong

I think d
=Ex, | u2(X; | n)] — Ege x, {V(ﬁ(X; | St n))}

Athey & Imbens 2016, p. 7356

Regularization + confounding

N

BART
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[m]

—EMSE, (M) = Ex, [,uZ(X,- | I'I)] — Esgest x; [V(ﬂ(X,— | S5, 1))

=




Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

A 2 X
Estimate with V(ﬁ(x | Sest, ﬂ)> = %

—EMSE, (M) = Ex, [,B(X,- | n)] — Egest x. {V(Q(X,- | 5%, 1))
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2 %
Estimate with V( (x| =, ﬂ)> S %

~ ~ . e 5 tr e
EX/ |:V5est (ﬂ(X, | SeSt, I'I)) | ieSt :| Z eNist( )

~EMSE, (1) = Ex, |10 | )| ~ Bsesg | V(3(X, | S=.1)

BART
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2 %
Estimate with V( (x| =, ﬂ)> S %

~ ~ . e 5 tr e
EX/ |:V5est (ﬂ(X, | SeSt, I'I)) | ieSt :| Z eNist( )

1 Sstl'

(assuming =~ equal leaf sizes) Z 20 Nest /0

—EMSE,(N) = Ex, [;B(X,- | I'I)] — Egest x; {V(ﬁ(Xi | S, n))]
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2 %
Estimate with V( (x| =, ﬂ)> S %

. T S2.(¢
Ex, [Vsest <g(x,- | SeSt,I'I)) |ie 5“‘-} Z P2 ()

N est

1 Sstl'
FHONest /40

1
= est Z S5«(0)

Len

(assuming =~ equal leaf sizes) E

—EMSE,(N) = Ex, [;B(X,- | I'I)] — Egest x; {V(ﬁ(Xi | S, n))]
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[m]

—EMSE,, (M) = Ex, [,uz(X,- \ I'I)] — Esgest x; [V(ﬂ(X,— | S5, 1))

=
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2
V(i | x M) = EGi2 | x, 1) - [E(ﬂ %, n)}

—EMSE,, (M) = Ex, [,uz(X,- \ I'I)] — Esgest x; [V(ﬂ(X,— | S5, 1))

[m]

=
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V(i | x. 1) = B(2 | x.11) - [E(ﬂ %, n)}
(U0 M) _ o
NE(E(x | 1))

(x | S"T) = p®(x | M)

—EMSE, (M) = Ex, [,ﬁ(x,- | n)] — Egest x, {V(/D(X,- | St )

=] 5
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W ) =B ) - B xm)]

5§tr((€((x\l'l)))) ~ 2(x | STM) = pP(x [ 1)
Nt (0 x ’ Mn
SZ.(¢(x | M)

2X %A2X tr _
20 M) = 20| S M) = T

—EMSE, (M) = Ex, [,ﬂ(x,- | n)] — Egest x, {V(/D(X,- | St )
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W ) =B ) - B xm)]

ST _ o gy 2y
Ntr((x“-l)) (‘5 ) M( ||_|)

2(y ~ 12(x | St _ 5§n(f(x | 1))

1 5 tr
Ex,(u?(Xi | 1)) t,Z *(x | §™. 1) Z#Mf,/#f

ieStr

—EMSE,(N) = Ex, [,ﬂ(x,- | I'I)] — Egest x, {V(/AI(X/ | S, ”))}

BART
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V(i | x, M) = E(32 | 1) - [E(ﬁ %, n)}

L) < e 57— 20
2(y ~ 12(x | St _ 5§n(f(x | 1))
(20| M = 20 | 571) — et L)

1 5 tr
Ex,(u?(Xi | 1)) t,Z *(x | §™. 1) Z#Mf,/#f

ieStr

Ntr Z Str TNt Z 55"

ieStr

—EMSE,(N) = Ex, [,ﬂ(x,- | I'I)] — Egest x, {V(/AJ(XI | S, ”))}

BART
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BART

_EMSEH(SH Nest I-l

Ntr Z

(x| sT,n
jestr

- Z S2.(0)
en
1 .
T st Z Ssu (¢
Len

—EMSE,,(M) = Ex; [uz(Xf | ﬂ)] —Esestx{ (A(X; | S, 1))

= 5
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—EMSE,,(S', Nt M) = e >R | stn) - e Z S2.(0)
ieStr Len
1 5
e > S
en

ieStr

o A0 | S -

Conventional CART criterion

Nest Z 55"

Len

Uncertainty about leaf means

—EMSE,(N) = Ex, [,E(X,- | I'I)] —Esm_x{ (A(X; | & ”))}

[m]

=

BART
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Honest inference for treatment effects

Note: We still assume
randomized
treatment assignment

BART
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Honest inference for treatment effects

Population-average potential outcomes within leaves:

p(w,x | =E|Y;(w) | X; € £(x | M)
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Population-average potential outcomes within leaves:

x| M) = B[ Yi(w) | X, € 10 1)
Potential outcome for \
Averaged over controls
treatment w
(heterogeneous by X;)

X; in the leaf
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Honest inference for treatment effects

Population-average potential outcomes within leaves:
x| ) = Yi(w) | ;€ £0x [ 1)
Average causal effect:

T | M) =E|Yi(1) = Yi(0) [ X; Ef(XI"')} = (L, x [ 1) = p(0, x | 1)
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Honest inference for treatment effects

Population-average potential outcomes within leaves:
x| ) = Yi(w) | ;€ £0x [ 1)
Average causal effect:

(x| ) EE[Yf(l) CYH0) | X € £(x | n)} — (Lx | 1) — p0,x | T)

\

Average effect evaluated at (potentially moderating)
covariate value x
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Honest inference for treatment effects

Population-average potential outcomes within leaves:
p(w,x | M) = EI:Y,'(W) | Xi € (x| I_I)}
Average causal effect:
7l 1) = B[ V(1) = i(0) | % € fx | )] = x| 1) = x| 1)

T~

Difference in potential outcomes
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Honest inference for treatment effects

Population-average potential outcomes within leaves:
p(w,x | M) = EI:Y,'(W) | Xi € (x| I_I)}
Average causal effect:
T(x[M) =E|Yi(1) = Yi(0) [ Xi € (x| ”)} = p(1,x | 1) = (0, x [ 1)

T

Among observations in the leaf ¢
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Honest inference for treatment effects

Population-average potential outcomes within leaves:
p(w,x | M) = EI:Y,'(W) | Xi € (x| I_I)}
Average causal effect:
T(x [ M) =E|Yi(1) = Yi(0) [ Xi € (x| ”)} = p(1,x | 1) = (0, x [ 1)

/

Compact notation
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Estimate:

ﬂ(WaX | 57 ﬂ) = #({ieSW:)%,-eé(xm)}) ZieSW:X,-eé(xm) YiObs
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Estimate:

N _ 1 b
ilw, x| 5.1 = gres,xermy 2iesaxieuxin) Yo
MSE for treatment effects:

2
MSE, (5%, St N) = #(lste) Y icste { (7‘; — (X | S, I'I)> - 7',2}
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Estimate:

N _ 1 b
ilw, x| 5.1 = gres,xermy 2iesaxieuxin) Yo
MSE for treatment effects:

2
MSE, (5%, St N) = #(lste) Y icste { (7‘; — (X | S, I'I)> - 7‘,2}

Challenge! 7; is never observed.
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Adapt EMSE,, to estimate EMSE,

— 1 . 1 1
—EMSE, (8", N, 1) = Nt Z A | S, m) — (W + Nest) Z $5:(0)
iest Len
Conventional CART criterion Uncertainty about leaf means

_EMSE, (S*, Nt 1) = - 32X | sv.m)

Ntr
ieStr

Variance of treatment
effects across leaves

11 S& (O S& (0)
— N + Z Streat + Scontrol
Ntr J\/est p 1— p

Len

Uncertainty about leaf treatment effects
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Adapt EMSE,, to estimate EMSE,

_ 1 . 1 1
—EMSE, (S", N, 1) =~ >~ (X | $*. 1) — (/Tt + Nest) S s2(0)
ieStr Len
Conventional CART criterion Uncertainty about leaf means
_— 1 R
—EMSE, (S, Nt ) = e > A2 | s, n)
iestr
/ Variance of treatment
. effects across leaves
Prefers leaves with ) ) Ségeat( 0 Sgggm. ()
heterogeneous effects “\ v + Nest Z P + 1-p

Len

Uncertainty about leaf treatment effects
Prefers leaves with good fit
(leaf-specific effects

estimated precisely)
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Four partitioning estimators
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1. Causal trees

Split by
— 1 ~
—EMSE(S", N, M) = £ >~ #%(X; | S7.1)
N ieStr
Prefers leaves with Variance of treatment

effects across leaves
1,1 S 551, (0)
Nt + NJest Z p + 1—p
Len

(|eaf-5PeCifIC effects Uncertainty about leaf treatment effects

estimated precisely)

heterogeneous effects

Prefers leaves with good fit (

o Benefit: Prioritizes heterogeneity (7 varies a lot) and fit
(within-leaf precision)
o Drawback: Cannot be done with off-the-shelf CART methods
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2. Transformed outcome trees

Transform the outcome

W;—p

Y = Yim = E(Y] | Xi = x) = 7(x)
s
:E[Yip(lv? P)] 7E{YIP(1P— P)}

—E[ (OF p)} E[(v.-(l)vmw,-(())(lfvm)ﬁ]

_ 1 P B — Y0P EH— W
Y(l)( )E[W] ()p(1fp)]E[W'] YI(O)p(lfp)lE[l Wi
_v —Pp 1_y. P W
=Yi(1) (1 )E[ Wil - Yi(0 )p(l_p)E[l Wi
p(l—p) p(1—p)
= Ying p(1—p) Yi(0 )p(l—p)

=Yi()-Yi(0) =7
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2. Transformed outcome trees

o Benefit: Can use off-the-shelf CART methods for prediction

o Drawbacks: Inefficient. Treatment is ignored after

transforming outcome.
If within a leaf W # p (by chance), then sample average
within leaf is a poor estimator of 7.
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3. Fit-based trees

Replace

1
MSE (5%, 1) = s 3 {0 s 5= )2 - v2
with the fit-based split rule

MSEM,W(Ste7 SeSta I—I) = Z {()/I - /:\LW(VVI'XI; SeSta n))2 - )/12}

icSte
which loss by model fit within each leaf: the difference from the
expected value for the treatment group of observation .
Benefit: Prefers splits that lead to better fit.

Drawback: Does not prefer splits that lead to variation in
treatment effects.
Zeileis et al. 2008
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4. Squared T-statistic trees

Split based on:

7 in left Ieaf\ in right leaf
2 _ y_(N=Ye)’
T = NemTs2/ms

Benefit: Prefers splits that lead to variation in treatment effects.

Drawback: Missed opportunity to improve fit: ignores useful splits
between leaves with similar treatment effects but very different
average values.

Su et al. 2009



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

From trees to forests: Double-sample trees

An individual tree can be noisy. Instead, we might fit a forest.

@ Draw a sample of size s
@ Split into an Z and J sample.
® Grow a tree on the J sample

@ Estimate leaf-specific 7y using the Z sample

Repeat many times.

Advantages of forests: Why double-sample forests:
o Consistent for true 7(x) o Advantage: Trees search for
o Asymptotic normality heterogeneous effects
o Asymptotic variance is o Disadvantage: Requires
estimable sample splitting

Wager & Athey 2017
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From trees to forests: Propensity trees

An individual tree can be noisy. Instead, we might fit a forest.

@ Draw a sample of size s
@ Grow a tree on the J sample to predict W
— Each leaf must have at least k observations of each treatment
class

@ Estimate 7y on each leaf

Repeat many times.

Advantages of forests: Why propensity forests:

o Consistent for true 7(x) o Advantage: Can use full

o Asymptotic normality sample

o Asymptotic variance is o Disadvantage: Does not
estimable search for heterogeneous
effects

Wager & Athey 2017
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Summary of causal trees and forests

o There is no ground truth: We never observe 7;
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Summary of causal trees and forests

o There is no ground truth: We never observe 7;
o Causal trees search for leaves with

o heterogeneous effects across leaves
o precisely-estimated leaf effects
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Summary of causal trees and forests

o There is no ground truth: We never observe 7;
o Causal trees search for leaves with

o heterogeneous effects across leaves
o precisely-estimated leaf effects

o Require extra sample splitting
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Summary of causal trees and forests

©

There is no ground truth: We never observe 7;
Causal trees search for leaves with

o heterogeneous effects across leaves
o precisely-estimated leaf effects

©

©

Require extra sample splitting

o Work well with randomized treatments.
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Summary of causal trees and forests

©

There is no ground truth: We never observe 7;
Causal trees search for leaves with

o heterogeneous effects across leaves
o precisely-estimated leaf effects

©

©

Require extra sample splitting

Work well with randomized treatments.
With selection on observables, the general recommendation is
propensity forests
o Maximizes the goal of addressing confounding by ignoring
heterogeneous effects when choosing splits

©

©
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Summary of causal trees and forests

©

There is no ground truth: We never observe 7;
Causal trees search for leaves with

o heterogeneous effects across leaves
o precisely-estimated leaf effects

©

©

Require extra sample splitting
Work well with randomized treatments.
With selection on observables, the general recommendation is
propensity forests
o Maximizes the goal of addressing confounding by ignoring
heterogeneous effects when choosing splits

o Generalized random forests also perform well (Athey, Tibshirani,
& Wager 2017)

©

©
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Summary of causal trees and forests

©

There is no ground truth: We never observe 7;
Causal trees search for leaves with

o heterogeneous effects across leaves
o precisely-estimated leaf effects

©

©

Require extra sample splitting
Work well with randomized treatments.

With selection on observables, the general recommendation is
propensity forests
o Maximizes the goal of addressing confounding by ignoring
heterogeneous effects when choosing splits
o Generalized random forests also perform well (Athey, Tibshirani,
& Wager 2017)
o But “the challenge in using adaptive methods. . .is that
selection bias can be difficult to quantify” (Wager & Athey p.
24).

©

©
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If treatment is not randomized

Causal trees find heterogeneous effects but
cannot guarantee that confounding is
addressed.

Next we focus on
why high-dimensional confounding is hard
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Why aren't causal trees guaranteed to address
confounding?

Plan
@ What does address confounding? Standardization
@ Why is tree-based standardization biased? Regularization
@ Is there anything we can do? Chernozhukov et al.

BART
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What works: Nonparametric standardization

What if {Y;(0), Yi(1)} L W; but {Y;(0), Yi(1)} L W; | X;?



Intro Potential outcomes

What works: Nonparametric standardization

Algorithm

Sample split

Regularization + confounding BART

What if {Y;(0), Yi(1)} L W; but {Y;(0), Yi(1)} L W; | X;?

Potential employment

Education Treated No job training  Job training Treatment effect
ID Xi Wi Yi(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 1 1
2 High school 0 0 1 1
3 High school 1 0 1 1
4 College 0 1 1 0
5 College 1 1 1 0
6 College 1 1 1 0
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What works: Nonparametric standardization

Algorithm

Sample split

Regularization + confounding BART

What if {Y;(0), Yi(1)} L W; but {Y;(0), Yi(1)} L W; | X;?

Potential employment

Education Treated No job training  Job training Treatment effect
ID Xi Wi Yi(0) Yi(1) i = Yi(1) — Yi(0)
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What works: Nonparametric standardization

Algorithm

Sample split

Regularization + confounding BART

What if {Y;(0), Yi(1)} L W; but {Y;(0), Yi(1)} L W; | X;?

We need to estimate 7 within each level of X;.

Potential employment

Education Treated No job training  Job training Treatment effect
ID Xi Wi Yi(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 0 0 ? ?
3 High school 1 ? 1 ?
4 College 0 1 ? ?
5 College 1 ? 1 ?
6 College 1 ? 1 ?
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What works: Nonparametric standardization

=) P(X= X)<YI:W,-:1,X,-:X - Yi:W;:QX,-:x)

xESupport of X

= P(X; = High school) (\_’f;w,:l,x,-:High school — Y7:W/=0,X,—High school)
+ P(X; = College) (\7i:vv,-:1,x,-:t:onege - _i:VV,'ZOA,X,':CO”ege)

1 1
=5(1-0)+5(1-1)=05+0=

Potential employment

Education Treated No job training  Job training Treatment effect

ID Xi Wi Yi(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 0 0 ? ?
3 High school 1 ? 1 ?
4 College 0 1 ? ?
5 College 1 ? 1 ?
6 College 1 ? 1 ?
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What works: Nonparametric standardization

=) P(X= X)<YI:W,-:1,X,-:X - Yi:W;:QX,-:x)

xESupport of X

= P(X; = High school) (VI:W,:I,X;:High school — Yi:WW;=0,X=High school)
+ P(X; = College) (\7i:vv,-:1,x,-:t:onege - _i:VV,'ZOA,X,':CO”ege)

1 1
=510 +5(1-1)=05+0=

Potential employment

Education Treated No job training  Job training Treatment effect

ID Xi Wi Yi(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 0 0 ? ?
3 High school 1 ? 1 ?
4 College 0 1 ? ?
5 College 1 ? 1 ?
6 College 1 ? 1 ?
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What works: Nonparametric standardization

=) P(X= X)<YI:W,-:1,X,-:X - Yi:W;:QX,-:x)

xESupport of X

= P(X; = High school) (\_’f;w,:l,x,-:High school — Yi:WW;=0,X,=High school)
+ P(X; = College) (Vi:VV,-:LX;:CoIIege - _i:VV,-ZOA,X,-:COIIege)

1 1
=5(1-0)+5(1-1)=05+0=

Potential employment

Education Treated No job training  Job training Treatment effect

ID Xi Wi Yi(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 0 0 ? ?
3 High school 1 ? 1 ?
4 College 0 1 ? ?
b College 1 ? 1 ?
6 College 1 ? 1 ?
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What works: Nonparametric standardization

=) P(X= X)<YI:W,-:1,X,-:X - Yi:W;:QX,-:x)

xESupport of X

= P(X; = High school) (%:W,:I,X,-:High school — Y7:W/=0,X,—High school)
+ P(X; = College) (\7i:vv,-:1,x,-:cOnege - _i:VV,'ZOA,X,':CO”ege)

1 1
=5(1-0)+5(1-1)=05+0=05

Potential employment

Education Treated No job training  Job training Treatment effect

ID Xi Wi Yi(0) Yi(1) i = Yi(1) — Yi(0)
1 High school 0 0 ? ?
2 High school 0 0 ? ?
3 High school 1 ? 1 ?
4 College 0 1 ? ?
b College 1 ? 1 ?
6 College 1 ? 1 ?
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What works: Nonparametric standardization

But when there are many cells of the covariates X;,

nonparametric standardization is
impossible!



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

Why is tree-based standardization biased? Regularization

With no regularization, a tree would grow until each leaf was
completely homogenous in X;.

But this tree would be very noisy! We prune our trees so that
leaves contain more observations.

o Treatment effects are more precisely estimated

o But treatment effects are biased if there is confounding within
leaves
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Is there anything we can do? Chernozhukov et al.

Outcome equation Treatment assignment

Y=D0+gX)+U D=m(X)+V

One might be tempted to estimate gp(X) by machine learning and

then state: ) A
o — & Loiez Di(Yi = &o(X0)
%ZIGI Di2
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Is there anything we can do? Chernozhukov et al.

Outcome equation Treatment assignment

Y=Db+gX)+U  D=myX)+V

One might be tempted to estimate gp(X) by machine learning and
then state: ) A
. n EieI Di(Y: — 80(Xi))
= 1
n ZIGI Di2

This will be biased because the estimator g is regularized.

Oo

Does not have mean 0

1 1 o
b= s o7 2 (MO0 - (%)) +or(1)

i€l

BART
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Is there anything we can do? Chernozhukov et al.

Outcome equation Treatment assignment

Y=Db+gX)+U  D=myX)+V

One might be tempted to estimate gp(X) by machine learning and
then state: ) A
fy = > iez Di(Yi — 80(X;))
% ez D7

This will be biased because the estimator g is regularized.

Does not have mean 0

E(lD?) \; ) (’"O(Xi)(go(xi) - éo(Xi)> +op(1)
! ieT

Key: D; is centered at mg(X) # 0. We should recenter D;.
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Is there anything we can do? Chernozhukov et al.

Outcome equation Treatment assignment
- N

Y =Dbo+go(X)+U  D=mp(X)+V

@ Split the sample into Z and J

@ Estimate gy(X) using sample J

@ Estimate mip(X) using sample J

@ Orthogonalize D on X (approximately)

V =D — rip(X)
® Estimate the treatment effect
Biased De-biased
1 A~ 1
) 5 ez Di(Yi—&o(X))) A L ier Vi(Yi—&o(X0)
90_ nZleIDz 90 o IZIEIVD

Chernozhukov et al. 2016
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Bias remaining in de-biased estimator (cherozhukov et al.)

ﬁ(éo—@o) =a*+b"+c*
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Bias remaining in de-biased estimator (cherozhukov et al.)

ﬁ(éo—@o) =a*+b"+c*

11
a*=—— S VU > N(0,%)
E(Wﬁ%

Because a* converges to mean 0, we don't worry about it.
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Bias remaining in de-biased estimator (cherozhukov et al.)

ﬁ(éo—@o) =a*+b"+c*

Regularization bias:

b* = E(iﬂ) \% > (rﬁo(X;) - mo(Xi)> <§0(Xi) - gO(Xi)>

i€eT

Vanishes “under a broad range of data-generating processes.”

Bounded above by

V/an~¥mn Ve

Rate of convergence of / \ Rate of convergence of
Mg — m Bo— 8
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Bias remaining in de-biased estimator (cherozhukov et al.)

ﬁ(éo - 90) =a*+b"+c*
An example of the third term in the partially linear model:
e = = 3 (2%) - X))
=— i| 80(Ai) — 8ol Ai
\/ﬁ i€

If 8o is estimated on an auxiliary sample 7, then V; and go(X;)
will be uncorrelated and E(c*) = 0.
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BART: Bayesian Additive Regression Trees

Differs from random forests:
o Fixed number of trees
o Backfits repeatedly over the fixed number of trees
o Strong prior encourages shallow trees

o Uncertainty comes automatically from posterior samples

Chipman, George, & McCulloch 2010
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BART model

m
Y:ng(x‘ T, Mj) + €

j=1
€~ N(O,(rz)
T; prior
P(Dj=d)=a(l+d)™*
——
Tree depth

Split variable ~ Uniform(Available variables)
Split value ~ Uniform(Available split values)

pij | T prior
2
Iij ~ N( Hm, 0, )
~— N—_——
Tree i leaf j Chosen so that
high probability of
E(Y|x)€(Ymin:Ymax)
o prior
A )
o~ (inverse chi-square)

32
v

They recommend {a = .95, 3 = 2} — 97% of prior probability is
on 4 or fewer terminal nodes.

Chipman, George, & McCulloch 2010
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BART for causal inference

Goal: Model the response surface as a function of treatment and
pre-treatment covariates

@ Fit a flexible model for Y = (X, W)

@ Set W = 0 to predict Y;(0) for all i

@ Set W =1 to predict Y;(1) for all i

@ Difference to estimate 7;

® Plot effects

105
I

75 80 85 90 95
/|
!
)
K‘

1Q at age 3
L1
|
\.
Conditional treatment effects

Number of CDC days (100) Number of CDC days (100)

Hill 2011
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BART: Benefits and drawbacks

Benefits
o Less researcher discretion for tuning parameters
o Automatic posterior uncertainty estimates
Drawbacks
o Not guaranteed to address confounding due to regularization
o No theoretical guarantees of centering over truth

o Splitting is based on prediction and is not explicitly optimized
for causal inference within leaves
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Summary

Causal trees can detect high-dimensional covariate-based
treatment effect heterogeneity

©

©

Work well with high-order interactions
Causal forests give theoretically valid confidence intervals

©

o Bayesian approaches (BART) are less theoretically verified but
give easy uncertainty

©

With high-dimensional confounding, all methods are biased
but can be designed to be consistent.
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