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Note: These slides assume
randomized treatment assignment

until the section labeled
“confounding.”
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Causal inference: A missing data problem

Potential employment

Education Treated No job training Job training Treatment effect

ID Xi Wi Yi (0) Yi (1) τi = Yi (1)− Yi (0)

1 High school 0 0 1 1

2 High school 1 0 1 1

3 College 0 1 1 0

4 College 1 1 1 0

If Wi ⊥⊥ {Yi (0),Yi (1)}, then

ˆ̄τ = Ȳi :Wi=1 − Ȳi :Wi=0

= 1− 0.5

= 0.5

What if we want to study τi = f (Xi )?
ˆ̄τHigh school = Ȳi :Wi=1,Xi=High school

− Ȳi :Wi=0,Xi=High school

= 1− 0.5

= 0.5

ˆ̄τCollege = Ȳi :Wi=1,Xi=College

− Ȳi :Wi=0,Xi=College

= 1− 1

= 0

What if there are dozens of X variables?

What if X is continuous?

It’s hard to know which subgroups of X

might show interesting effect heterogeneity
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ˆ̄τHigh school = Ȳi :Wi=1,Xi=High school
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Start with a simpler prediction question.

Which subgroups of X have very different

average outcomes?
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Prediction: One tree

MSE0 = 1
n

∑
(Yi − Ȳ )2 All observations

MSE1 = 1
n

∑
(Yi − Ȳj :xj∈`(xi |Π1))

2 Xi <

k16

Xi ≥

k16

Choose k to minimize MSE1

Xi <

k112

Xi ≥

k112

MSE2 = 1
n

∑
(Yi − Ȳj :xj∈`(xi |Π2))

2

Xi <k2 Xi ≥k2

Choose k1 or k2 to minimize MSE2MSE3 Zi =White Zi 6=White

• •

••
Could continue until all leaves had only one observation.

Unbiased but uselessly high variance!

Instead, regularize: keep only splits that improve MSE by more than c .

{
`1 = {xi : xi < 16}, `2 = {xi : xi ≥ 16}

}
Partition Π ∈ P

Leaves

Prediction rule for new x :

µ̂(x) = Ȳj :xj∈`(xi |Π)

Could we use this method to find causal effects τ̂(x)
that are heterogeneous between leaves?
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µ̂(x) = Ȳj :xj∈`(xi |Π)

Could we use this method to find causal effects τ̂(x)
that are heterogeneous between leaves?



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

Prediction: One tree

MSE0 = 1
n

∑
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(Yi − Ȳj :xj∈`(xi |Π1))

2 Xi <

k

16 Xi ≥

k

16

Choose k to minimize MSE1

Xi <

k1

12 Xi ≥

k1

12MSE2 = 1
n

∑
(Yi − Ȳj :xj∈`(xi |Π2))

2

Xi <k2 Xi ≥k2

Choose k1 or k2 to minimize MSE2

MSE3 Zi =White Zi 6=White

• •

••

Could continue until all leaves had only one observation.

Unbiased but uselessly high variance!

Instead, regularize: keep only splits that improve MSE by more than c .

{
`1 = {xi : xi < 16}, `2 = {xi : xi ≥ 16}

}
Partition Π ∈ P

Leaves

Prediction rule for new x :

µ̂(x) = Ȳj :xj∈`(xi |Π)

Could we use this method to find causal effects τ̂(x)
that are heterogeneous between leaves?



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

Prediction: One tree

MSE0 = 1
n

∑
(Yi − Ȳ )2 All observations

MSE1 = 1
n

∑
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(Yi − Ȳj :xj∈`(xi |Π1))

2 Xi <

k

16 Xi ≥

k

16

Choose k to minimize MSE1Xi <

k1

12 Xi ≥

k1

12MSE2 = 1
n

∑
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MSE0 = 1
n

∑
(Yi − Ȳ )2 All observations

MSE1 = 1
n

∑
(Yi − Ȳj :xj∈`(xi |Π1))

2 Xi <

k

16 Xi ≥

k

16

Choose k to minimize MSE1Xi <

k1

12 Xi ≥

k1

12MSE2 = 1
n

∑
(Yi − Ȳj :xj∈`(xi |Π2))

2 Xi <k2 Xi ≥k2

Choose k1 or k2 to minimize MSE2MSE3 Zi =White Zi 6=White

• •

••
Could continue until all leaves had only one observation.

Unbiased but uselessly high variance!

Instead, regularize: keep only splits that improve MSE by more than c .

{
`1 = {xi : xi < 16}, `2 = {xi : xi ≥ 16}

}
Partition Π ∈ P

Leaves

Prediction rule for new x :

µ̂(x) = Ȳj :xj∈`(xi |Π)

Could we use this method to find causal effects τ̂(x)
that are heterogeneous between leaves?
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Causal tree: What’s different?

1 We do not observe the ground truth

2 Honest estimation:

One sample to choose partition
One sample to estimate leaf effects

Why is the split critical?

Fitting both on the training sample risks overfitting: Estimating
many “heterogeneous effects” that are really just noise
idiosyncratic to the sample.

We want to search for true heterogeneity, not noise.
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Sample splitting

MSEµ(S te, Sest,Π) ≡ 1

#(S te)

∑
i∈S te

{ MSE criterion︷ ︸︸ ︷
(Yi − µ̂(Xi ; S

est,Π))2−
Authors add︷︸︸︷

Y 2
i

}

EMSEµ(Π) ≡ ES te,Sest

[
MSEµ(S te, Sest,Π)

]
Honest criterion: Maximize

QH(π) ≡ −ES te,Sest,S tr

[
MSEµ(S te,Sest, π(S tr))

]This is S tr in the classical approach

where π : Rp+1 → P is a function that takes a training sample
S tr ∈ Rp+1 and outputs a partition Π ∈ P.

Note: The authors include the final Y 2
i term to simplify the math; it just shifts

the estimator by a constant.
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Analytic estimator for EMSEµ(Π) (p. 7356)

Goal: Estimate expected MSE using only the
training sample.

This will be used to place splits when training a tree.
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Analytic estimator for EMSEµ(Π) (p. 7356)

−EMSEµ(Π) = −ES te,Sest

[(
Yi − µ̂(Xi | Sest,Π)

)2

− Y 2
i

]

= − ES te,Sest

[(
Yi − µ(Xi | Π) + µ(Xi | Π)− µ̂(Xi | Sest,Π)

)2

− Y 2
i

]

= −ES te,Sest

[(
Yi − µ(Xi | Π)

)2

− Y 2
i

]

− ES te,Sest

[(
µ(Xi | Π)− µ̂(Xi | Sest,Π)

)2]

− ES te,Sest

[
2

(
Yi − µ(Xi | Π)

)(
µ(Xi | Π)− µ̂(Xi | Sest,Π)

)]

Expected mean squared error for a partition Π

Over estimation sets used to estimate the leaf-specific µ̂ and test sets to evaluate those

Prediction based on Sest from the leave `(Xi ) containing Xi

Add a zero

First term2
Second term2

2(First term)(Second term)A B

E(A) = 0 by assumption

Cov(A, B) = 0 because Yi is from

a sample independent of Sest

Cov(AB) = E(AB)− E(A)E(B)

0 = E(AB)− 0

= 0
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= −E(Yi ,Xi ),Sest

[
(Yi − µ(Xi | Π))2 − Y 2

i

]
− EXi ,Sest

[
(µ̂(Xi | Sest,Π)− µ(Xi | Π))2

]

= −E(Yi ,Xi ),Sest

[
Y 2
i + µ2(Xi | Π)− 2Yiµ(Xi | Π)− Y 2

i

]
− EXi ,Sest

[
(µ̂(Xi | Sest,Π)− µ(Xi | Π))2

]

= − E(Yi ,Xi ),Sest

[
µ2(Xi | Π)− 2µ(Xi | Π)µ(Xi | Π)

]
− EXi ,Sest

[
(µ̂(Xi | Sest,Π)− µ(Xi | Π))2

]

= EXi

[
µ2(Xi | Π)

]
− ESest,Xi

[
V(µ̂(Xi | Sest,Π))

]

Y 2
i terms cancel

E(Yi ,Xi ),Sest(Yi )

= EXi ,Sestµ(Xi | Π)

They have µ̂2 here but I think they are wrong

I think

X

Athey & Imbens 2016, p. 7356
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−EMSEµ(Π) = EXi

[
µ2(Xi | Π)

]
− ESest,Xi

[
V(µ̂(Xi | Sest,Π))

]

−EMSEµ(Π) = EXi

[
µ2(Xi | Π)

]
− ESest,Xi

[
V(µ̂(Xi | Sest,Π))

]
−EMSEµ(Π) = EXi

[
µ2(Xi | Π)

]
− ESest,Xi

[
V(µ̂(Xi | Sest,Π))

]
−EMSEµ(Π) = EXi

[
µ2(Xi | Π)

]
− ESest,Xi

[
V(µ̂(Xi | Sest,Π))

]

Estimate with V̂
(
µ̂(x | Sest,Π)

)
≡ S2

Str (`(x |Π))

Nest(`(x |Π))

ÊXi

[
V̂Sest

(
µ̂(Xi | Sest,Π)

)
| i ∈ S te

]
=
∑
`

p`
S2
S tr(`)

Nest(`)

(assuming ≈ equal leaf sizes) ≈
∑
`

1

#`

S2
S tr(`)

Nest/#`

=
1

Nest

∑
`∈Π

S2
S tr(`)

V(µ̂ | x ,Π) = E(µ̂2 | x ,Π)−
[
E(µ̂ | x ,Π)

]2

S2
S tr(`(x | Π))

Ntr(`(x | Π))
≈ µ̂2(x | S trΠ)− µ2(x | Π)

µ2(x | Π) ≈ µ̂2(x | S tr,Π)−
S2
S tr(`(x | Π))

Ntr(`(x | Π))

ÊXi
(µ2(Xi | Π)) ≈ 1

Ntr

∑
i∈S tr

µ̂2(xi | S tr,Π)−
∑
`

1

#`

S2
S tr(`)

Ntr/#`

=
1

Ntr

∑
i∈S tr

µ̂2(xi | S tr,Π)− 1

Ntr

∑
`

S2
S tr(`)

−ÊMSEµ(S tr,Nest,Π) =
1

Ntr

∑
i∈S tr

µ̂2(Xi | S tr,Π)− 1

Ntr

∑
`∈Π

S2
S tr(`)

− 1

Nest

∑
`∈Π

S2
S tr(`)

=
1

Ntr

∑
i∈S tr

µ̂2(Xi | S tr,Π)︸ ︷︷ ︸
Conventional CART criterion

−
(

1

Ntr
+

1

Nest

)∑
`∈Π

S2
S tr(`)︸ ︷︷ ︸

Uncertainty about leaf means
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ÊXi
(µ2(Xi | Π)) ≈ 1

Ntr

∑
i∈S tr

µ̂2(xi | S tr,Π)−
∑
`

1

#`

S2
S tr(`)

Ntr/#`

=
1

Ntr

∑
i∈S tr

µ̂2(xi | S tr,Π)− 1

Ntr

∑
`

S2
S tr(`)
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ÊXi

[
V̂Sest

(
µ̂(Xi | Sest,Π)

)
| i ∈ S te

]
=
∑
`

p`
S2
S tr(`)

Nest(`)

(assuming ≈ equal leaf sizes) ≈
∑
`

1

#`

S2
S tr(`)

Nest/#`

=
1

Nest

∑
`∈Π

S2
S tr(`)

V(µ̂ | x ,Π) = E(µ̂2 | x ,Π)−
[
E(µ̂ | x ,Π)

]2

S2
S tr(`(x | Π))

Ntr(`(x | Π))
≈ µ̂2(x | S trΠ)− µ2(x | Π)

µ2(x | Π) ≈ µ̂2(x | S tr,Π)−
S2
S tr(`(x | Π))

Ntr(`(x | Π))
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ÊXi

[
V̂Sest

(
µ̂(Xi | Sest,Π)

)
| i ∈ S te

]
=
∑
`

p`
S2
S tr(`)

Nest(`)

(assuming ≈ equal leaf sizes) ≈
∑
`

1

#`

S2
S tr(`)

Nest/#`

=
1

Nest

∑
`∈Π

S2
S tr(`)

V(µ̂ | x ,Π) = E(µ̂2 | x ,Π)−
[
E(µ̂ | x ,Π)

]2

S2
S tr(`(x | Π))

Ntr(`(x | Π))
≈ µ̂2(x | S trΠ)− µ2(x | Π)

µ2(x | Π) ≈ µ̂2(x | S tr,Π)−
S2
S tr(`(x | Π))

Ntr(`(x | Π))
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Honest inference for treatment effects

Note: We still assume
randomized

treatment assignment
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Honest inference for treatment effects

Population-average potential outcomes within leaves:

µ(w , x | Π) ≡ E
[
Yi (w) | Xi ∈ `(x | Π)

]

Average causal effect:

τ(x | Π) ≡ E
[
Yi (1)− Yi (0) | Xi ∈ `(x | Π)

]
= µ(1, x | Π)− µ(0, x | Π)τ(x | Π) ≡ E

[
Yi (1)− Yi (0) | Xi ∈ `(x | Π)

]
= µ(1, x | Π)− µ(0, x | Π)

Average effect evaluated at (potentially moderating)
covariate value x

τ(x | Π) ≡ E
[
Yi (1)− Yi (0) | Xi ∈ `(x | Π)

]
= µ(1, x | Π)− µ(0, x | Π)

Difference in potential outcomes

τ(x | Π) ≡ E
[
Yi (1)− Yi (0) | Xi ∈ `(x | Π)

]
= µ(1, x | Π)− µ(0, x | Π)

Among observations in the leaf `

τ(x | Π) ≡ E
[
Yi (1)− Yi (0) | Xi ∈ `(x | Π)

]
= µ(1, x | Π)− µ(0, x | Π)

Compact notation
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Estimate:

µ̂(w , x | S ,Π) ≡ 1
#({i∈Sw :Xi∈`(x |Π)})

∑
i∈Sw :Xi∈`(x |Π) Y

obs
i

MSE for treatment effects:

MSEτ (S te,Sest,Π) ≡ 1
#(S te)

∑
i∈S te

{(
τi − τ̂(Xi | Sest,Π)

)2

− τ2
i

}

Challenge! τi is never observed.



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

Estimate:

µ̂(w , x | S ,Π) ≡ 1
#({i∈Sw :Xi∈`(x |Π)})

∑
i∈Sw :Xi∈`(x |Π) Y

obs
i

MSE for treatment effects:

MSEτ (S te,Sest,Π) ≡ 1
#(S te)

∑
i∈S te

{(
τi − τ̂(Xi | Sest,Π)

)2

− τ2
i

}

MSEτ (S te,Sest,Π) ≡ 1
#(S te)

∑
i∈S te

{(
τi − τ̂(Xi | Sest,Π)

)2

− τ2
i

}

Challenge! τi is never observed.



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

Estimate:

µ̂(w , x | S ,Π) ≡ 1
#({i∈Sw :Xi∈`(x |Π)})

∑
i∈Sw :Xi∈`(x |Π) Y

obs
i

MSE for treatment effects:

MSEτ (S te,Sest,Π) ≡ 1
#(S te)

∑
i∈S te

{(
τi − τ̂(Xi | Sest,Π)

)2

− τ2
i

}

Challenge! τi is never observed.



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

Adapt EMSEµ to estimate EMSEτ

−ÊMSEµ(S tr,Nest,Π) =
1

Ntr

∑
i∈S tr

µ̂2(Xi | S tr,Π)︸ ︷︷ ︸
Conventional CART criterion

−
(

1

Ntr
+

1

Nest

)∑
`∈Π

S2
S tr(`)︸ ︷︷ ︸

Uncertainty about leaf means

−ÊMSEτ (S tr,Nest,Π) =
1

Ntr

∑
i∈S tr

τ̂2(Xi | S tr,Π)︸ ︷︷ ︸
Variance of treatment
effects across leaves

−
(

1

Ntr
+

1

Nest

)∑
`∈Π

(S2
S tr

treat
(`)

p
+

S2
S tr

control
(`)

1− p

)
︸ ︷︷ ︸

Uncertainty about leaf treatment effects

Prefers leaves with

heterogeneous effects

Prefers leaves with good fit

(leaf-specific effects

estimated precisely)
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Four partitioning estimators
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1. Causal trees

Split by

−ÊMSEτ (S tr,Nest,Π) =
1

Ntr

∑
i∈S tr

τ̂2(Xi | S tr,Π)︸ ︷︷ ︸
Variance of treatment
effects across leaves

−
(

1

Ntr
+

1

Nest

)∑
`∈Π

(S2
S tr

treat
(`)

p
+

S2
S tr

control
(`)

1− p

)
︸ ︷︷ ︸

Uncertainty about leaf treatment effects

Prefers leaves with

heterogeneous effects

Prefers leaves with good fit

(leaf-specific effects

estimated precisely)

Benefit: Prioritizes heterogeneity (τ̂ varies a lot) and fit
(within-leaf precision)

Drawback: Cannot be done with off-the-shelf CART methods
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2. Transformed outcome trees

Transform the outcome

Y ∗i = Yi
Wi − p

p(1− p)
→ E(Y ∗i | Xi = x) = τ(x)

E(Y ∗i ) = E
[
Yi

Wi − p

p(1− p)

]
= E

[
Yi

Wi

p(1− p)

]
− E

[
Yi

p

p(1− p)

]
= E

[
Yi (1)

Wi

p(1− p)

]
− E

[(
Yi (1)Wi + Yi (0)(1−Wi )

)
p

p(1− p)

]
= Yi (1)

1

p(1− p)
E[Wi ]− Yi (1)

p

p(1− p)
E[Wi ]− Yi (0)

p

p(1− p)
E[1−Wi ]

= Yi (1)
1− p

p(1− p)
E[Wi ]− Yi (0)

p

p(1− p)
E[1−Wi ]

= Yi (1)
p(1− p)

p(1− p)
− Yi (0)

p(1− p)

p(1− p)

= Yi (1)− Yi (0) = τi
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2. Transformed outcome trees

Benefit: Can use off-the-shelf CART methods for prediction

Drawbacks: Inefficient. Treatment is ignored after
transforming outcome.
If within a leaf W̄ 6= p (by chance), then sample average
within leaf is a poor estimator of τ̂ .
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3. Fit-based trees

Replace

MSEµ(S te,Sest,Π) ≡ 1

#(S te)

∑
i∈S te

{
(Yi − µ̂(Xi ; S

est,Π))2 − Y 2
i

}
with the fit-based split rule

MSEµ,W (S te,Sest,Π) ≡
∑
i∈S te

{
(Yi − µ̂w (WiXi ; S

est,Π))2 − Y 2
i

}
which loss by model fit within each leaf: the difference from the
expected value for the treatment group of observation i .

Benefit: Prefers splits that lead to better fit.

Drawback: Does not prefer splits that lead to variation in
treatment effects.

Zeileis et al. 2008



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

4. Squared T-statistic trees

Split based on:

T 2 ≡ N
(ȲL−ȲR)

2

S2/NL+S2/NR

τ̂ in left leaf in right leaf

Benefit: Prefers splits that lead to variation in treatment effects.

Drawback: Missed opportunity to improve fit: ignores useful splits
between leaves with similar treatment effects but very different
average values.

Su et al. 2009
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From trees to forests: Double-sample trees

An individual tree can be noisy. Instead, we might fit a forest.

1 Draw a sample of size s

2 Split into an I and J sample.

3 Grow a tree on the J sample

4 Estimate leaf-specific τ̂` using the I sample

Repeat many times.

Advantages of forests:

Consistent for true τ(x)

Asymptotic normality

Asymptotic variance is
estimable

Why double-sample forests:

Advantage: Trees search for
heterogeneous effects

Disadvantage: Requires
sample splitting

Wager & Athey 2017
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From trees to forests: Propensity trees

An individual tree can be noisy. Instead, we might fit a forest.

1 Draw a sample of size s
2 Grow a tree on the J sample to predict W

– Each leaf must have at least k observations of each treatment
class

3 Estimate τ̂` on each leaf

Repeat many times.

Advantages of forests:

Consistent for true τ(x)

Asymptotic normality

Asymptotic variance is
estimable

Why propensity forests:

Advantage: Can use full
sample

Disadvantage: Does not
search for heterogeneous
effects

Wager & Athey 2017
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Summary of causal trees and forests

There is no ground truth: We never observe τi

Causal trees search for leaves with

heterogeneous effects across leaves
precisely-estimated leaf effects

Require extra sample splitting

Work well with randomized treatments.

With selection on observables, the general recommendation is
propensity forests

Maximizes the goal of addressing confounding by ignoring
heterogeneous effects when choosing splits
Generalized random forests also perform well (Athey, Tibshirani,

& Wager 2017)

But “the challenge in using adaptive methods. . . is that
selection bias can be difficult to quantify” (Wager & Athey p.

24).
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If treatment is not randomized

Causal trees find heterogeneous effects but

cannot guarantee that confounding is

addressed.

Next we focus on

why high-dimensional confounding is hard
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Why aren’t causal trees guaranteed to address
confounding?

Plan

1 What does address confounding? Standardization

2 Why is tree-based standardization biased? Regularization

3 Is there anything we can do? Chernozhukov et al.
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What works: Nonparametric standardization

What if {Yi (0),Yi (1)} 6⊥⊥Wi but {Yi (0),Yi (1)} ⊥⊥Wi | Xi?

We need to estimate τ̂ within each level of Xi .

Potential employment

Education Treated No job training Job training Treatment effect

ID Xi Wi Yi (0) Yi (1) τi = Yi (1)− Yi (0)

1 High school 0 0

2 High school 0 0

3 High school 1 1

4 College 0 1

5 College 1 1

6 College 1 1

ˆ̄τ =
∑

x∈Support of X

P(X = x)

(
Ȳi :Wi=1,Xi=x − Ȳi :Wi=0,Xi=x

)
= P(Xi = High school)

+ P(Xi = College)

=
1

2
+

1

2
= 0.5 + 0 =
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)
= P(Xi = High school)

+ P(Xi = College)

=
1

2
+

1

2
= 0.5 + 0 =



Intro Potential outcomes Algorithm Sample split Regularization + confounding BART

What works: Nonparametric standardization

What if {Yi (0),Yi (1)} 6⊥⊥Wi but {Yi (0),Yi (1)} ⊥⊥Wi | Xi?

We need to estimate τ̂ within each level of Xi .

Potential employment

Education Treated No job training Job training Treatment effect

ID Xi Wi Yi (0) Yi (1) τi = Yi (1)− Yi (0)

1 High school 0 0 ? ?

2 High school 0 0 ? ?

3 High school 1 ? 1 ?

4 College 0 1 ? ?

5 College 1 ? 1 ?

6 College 1 ? 1 ?

ˆ̄τ =
∑

x∈Support of X

P(X = x)

(
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)

= P(Xi = High school)

(
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What works: Nonparametric standardization

But when there are many cells of the covariates Xi ,

nonparametric standardization is
impossible!
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Why is tree-based standardization biased? Regularization

With no regularization, a tree would grow until each leaf was
completely homogenous in Xi .

But this tree would be very noisy! We prune our trees so that
leaves contain more observations.

Treatment effects are more precisely estimated

But treatment effects are biased if there is confounding within
leaves
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Is there anything we can do? Chernozhukov et al.

Outcome equation︷ ︸︸ ︷
Y = Dθ0 + g0(X ) + U

Treatment assignment︷ ︸︸ ︷
D = m0(X ) + V

One might be tempted to estimate ĝ0(X ) by machine learning and
then state:

θ̂0 =
1
n

∑
i∈I Di (Yi − ĝ0(Xi ))

1
n

∑
i∈I D

2
i

This will be biased because the estimator ĝ0 is regularized.

b =
1

E(D2
i )

1√
n

∑
i∈I

Does not have mean 0︷ ︸︸ ︷(
m0(Xi )(g0(Xi )− ĝ0(Xi )

)
+oP(1)

Key: Di is centered at m0(X ) 6= 0. We should recenter Di .
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b =
1

E(D2
i )

1√
n

∑
i∈I

Does not have mean 0︷ ︸︸ ︷(
m0(Xi )(g0(Xi )− ĝ0(Xi )
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Is there anything we can do? Chernozhukov et al.

Outcome equation︷ ︸︸ ︷
Y = Dθ0 + g0(X ) + U

Treatment assignment︷ ︸︸ ︷
D = m0(X ) + V

1 Split the sample into I and J
2 Estimate ĝ0(X ) using sample J
3 Estimate m̂0(X ) using sample J
4 Orthogonalize D on X (approximately)

V̂ = D − m̂0(X )

5 Estimate the treatment effect

Biased De-biased

θ̂0 =
1
n

∑
i∈I Di (Yi−ĝ0(Xi ))

1
n

∑
i∈I D

2
i

θ̂0 =
1
n

∑
i∈I V̂i (Yi−ĝ0(Xi ))
1
n

∑
i∈I V̂iDi

Chernozhukov et al. 2016
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Bias remaining in de-biased estimator (Chernozhukov et al.)

√
n(θ̂0 − θ0) = a∗ + b∗ + c∗
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Bias remaining in de-biased estimator (Chernozhukov et al.)

√
n(θ̂0 − θ0) = a∗ + b∗ + c∗

a∗ =
1

E(V 2)

1√
n

∑
i∈I

ViUi → N(0,Σ)

Because a∗ converges to mean 0, we don’t worry about it.
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Bias remaining in de-biased estimator (Chernozhukov et al.)

√
n(θ̂0 − θ0) = a∗ + b∗ + c∗

Regularization bias:

b∗ =
1

E(V 2)

1√
n

∑
i∈I

(
m̂0(Xi )−m0(Xi )

)(
ĝ0(Xi )− g0(Xi )

)
Vanishes “under a broad range of data-generating processes.”

Bounded above by

Rate of convergence of
m̂0 → m

Rate of convergence of
ĝ0 → g

√
nn−ψmn−ψg
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Bias remaining in de-biased estimator (Chernozhukov et al.)

√
n(θ̂0 − θ0) = a∗ + b∗ + c∗

An example of the third term in the partially linear model:

c∗ =
1√
n

∑
i∈I

Vi

(
ĝ0(Xi )− g0(Xi )

)
If ĝ0 is estimated on an auxiliary sample J , then Vi and ĝ0(Xi )
will be uncorrelated and E(c∗) = 0.
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BART: Bayesian Additive Regression Trees

Differs from random forests:

Fixed number of trees

Backfits repeatedly over the fixed number of trees

Strong prior encourages shallow trees

Uncertainty comes automatically from posterior samples

Chipman, George, & McCulloch 2010
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BART model

Y =
m∑
j=1

gj(x | Tj ,Mj) + ε

ε ∼ N(0, σ2)

Tj prior

P( Dj = d︸ ︷︷ ︸
Tree depth

) = α(1 + d)−β

Split variable ∼ Uniform(Available variables)

Split value ∼ Uniform(Available split values)

µij | Tj prior

µij︸︷︷︸
Tree i leaf j

∼ N

(
µm, σ

2
µ︸ ︷︷ ︸

Chosen so that
high probability of
E(Y |x)∈(ymin,ymax)

)

σ prior

σ ∼ νλ

χ2
ν

(inverse chi-square)

They recommend {α = .95, β = 2} → 97% of prior probability is
on 4 or fewer terminal nodes.

Chipman, George, & McCulloch 2010
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BART for causal inference

Goal: Model the response surface as a function of treatment and
pre-treatment covariates

1 Fit a flexible model for Y = f (X ,W )
2 Set W = 0 to predict Ŷi (0) for all i
3 Set W = 1 to predict Ŷi (1) for all i
4 Difference to estimate τ̂i
5 Plot effects

Hill 2011
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BART: Benefits and drawbacks

Benefits

Less researcher discretion for tuning parameters

Automatic posterior uncertainty estimates

Drawbacks

Not guaranteed to address confounding due to regularization

No theoretical guarantees of centering over truth

Splitting is based on prediction and is not explicitly optimized
for causal inference within leaves
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Summary

Causal trees can detect high-dimensional covariate-based
treatment effect heterogeneity

Work well with high-order interactions

Causal forests give theoretically valid confidence intervals

Bayesian approaches (BART) are less theoretically verified but
give easy uncertainty

With high-dimensional confounding, all methods are biased
but can be designed to be consistent.
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