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Simulation is used to:

1 Solve probability problems

2 Evaluate estimators

3 Calculate features of probability densities

4 Transform statistical results into quantities of interest

5 Get the right answer: students get the right answer far more
frequently by using simulation than math
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What is simulation?

Survey Sampling Simulation

1. Learn about a population
by taking a random sample
from it

1. Learn about a distribu-
tion by taking random draws
from it

2. Use the random sample
to estimate a feature of the
population

2. Use the random draws to
approximate a feature of the
distribution

3. The estimate is arbitrarily
precise for large n

3. The approximation is ar-
bitrarily precise for large M

4. Example: estimate the
mean of the population

4. Example: Approximate
the mean of the distribution
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Monty Hall’s Let’s Make a Deal

You have a choice among 3 doors. Behind a random door is a car; behind the other two
are goats. You choose one at random. Monty peeks behind the other two doors and
opens the one (or one of the two) with the goat and asks if you’d like to switch your
door for the other door that hasn’t been opened yet. Should you switch?

sims <- 1000

WinNoSwitch <- 0

WinSwitch <- 0

doors <- c(1, 2, 3)

for (i in 1:sims) {

WinDoor <- sample(doors, 1)

choice <- sample(doors, 1)

if (WinDoor == choice) # no switch

WinNoSwitch <- WinNoSwitch + 1

doorsLeft <- doors[doors != choice] # switch

if (any(doorsLeft == WinDoor))

WinSwitch <- WinSwitch + 1

}

cat("Prob(Car | no switch)=", WinNoSwitch/sims, "\n")

cat("Prob(Car | switch)=", WinSwitch/sims, "\n")
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Let’s Make a Deal

Pr(car|No Switch) Pr(car|Switch)
.324 .676
.345 .655
.320 .680
.327 .673
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Computing Probabilities from PDFs

Required for a PDF:
Denoted: P(y)

1 P(y) ≥ 0 for every y

2
∑

y P(y) = 1

or∫∞
−∞ P(y)dy = 1

Probability Calculations:

Pr(a ≤ Y ≤ b) =
∫ b
a P(y)dy

For discrete: Pr(y) = P(y)

For continuous: Pr(y) = 0
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What you should know about every pdf

The assignment of a probability or probability density to every
conceivable value of Yi

The first principles

How to use the final expression (but not necessarily the full derivation)

How to simulate from the density

How to compute features of the density such as its “moments”

How to verify that the final expression is indeed a proper density
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Uniform Density on the interval [0, 1]

First Principles about the process that generates Yi is such that

Yi falls in the interval [0, 1] with probability 1:
∫ 1
0 P(y)dy = 1

Pr(Y ∈ (a, b)) = Pr(Y ∈ (c , d)) if a < b, c < d , and b − a = d − c .

Is it a pdf? How do you know?

How to simulate?

runif(1000)
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Bernoulli pmf

First principles about the process that generates Yi :

I Yi has 2 mutually exclusive outcomes; and
I The 2 outcomes are exhaustive

In this simple case, we will compute features analytically and by
simulation.

Mathematical expression for the pmf

I Pr(Yi = 1|πi ) = πi , Pr(Yi = 0|πi ) = 1− πi
I The parameter π happens to be interpretable as a probability
I =⇒ Pr(Yi = y |πi ) = πy

i (1− πi )1−y

I Alternative notation: Pr(Yi = y |πi ) = Bernoulli(y |πi ) = fb(y |πi )
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Mathematical expression for the pmf
I Pr(Yi = 1|πi ) = πi , Pr(Yi = 0|πi ) = 1− πi
I The parameter π happens to be interpretable as a probability

I =⇒ Pr(Yi = y |πi ) = πy
i (1− πi )1−y
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Features of the Bernoulli: analytically

Expected value:

E (Y ) =
∑
all y

yP(y)

= 0 Pr(0) + 1 Pr(1)

= π

Variance:

V (Y ) = E [(Y − E (Y ))2] (The definition)

= E (Y 2)− E (Y )2 (An easier version)

= E (Y 2)− π2 (An easier version)

How do we compute E (Y 2)?
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Expected values of functions of random variables

E [g(Y )] =
∑
all y

g(y)P(y)

or

E [g(Y )] =

∫ ∞
−∞

g(y)P(y)

For example,

E (Y 2) =
∑
all y

y2P(y)

= 02 Pr(0) + 12 Pr(1)

= π
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Variance of the Bernoulli (uses above results)

V (Y ) = E [(Y − E (Y ))2] (The definition)

= E (Y 2)− E (Y )2 (An easier version)

= π − π2

= π(1− π)

Think about where the maximum is. Does it accord with your intuition?
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How to Simulate from the Bernoulli with parameter π

take one draw u from a uniform density on the interval [0,1]

Set π to a particular value

Set y = 1 if u < π and y = 0 otherwise

In R:

sims <- 1000 # set parameters

bernpi <- 0.2

u <- runif(sims) # uniform sims

y <- as.integer(u < bernpi)

y # print results

Running the program gives:

0 0 0 1 0 0 1 1 0 0 1 1 1 0 ...

In practice, can use rbinom(size=1)
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Binomial Distribution

First principles:

N iid Bernoulli trials, y1, . . . , yN

The trials are independent

The trials are identically distributed

We observe Y =
∑N

i=1 yi

Density:

P(Y = y |π) =

(
N

y

)
πy (1− π)N−y

Explanation:(N
y

)
because (1 0 1) and (1 1 0) are both y = 2.

πy because y successes with π probability each (product taken due to
independence)

(1− π)N−y because N − y failures with 1− π probability each

Mean E (Y ) = Nπ

Variance V (Y ) = π(1− π)/N.
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How to simulate from the Binomial distribution

To simulate from the Binomial(π; N):

I Simulate N independent Bernoulli variables, Y1, . . . ,YN , each with
parameter π

I Add them up:
∑N

i=1 Yi

I rbinom() (which can also be used for Bernoulli)

What can you do with the simulations?
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Where to get uniform random numbers

Random is not haphazard (e.g., Benford’s law)

Random number generators are perfectly predictable (what?)

We use pseudo-random numbers which have (a) digits that occur
with 1/10th probability, (b) no time series patterns, etc.

How to create real random numbers?

In the midrange future we might be using quantum computers for this.

Stewart (Princeton) Basics Feb 8 18 / 39
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Discretization for random draws from discrete pmfs

Divide up PDF into a grid

Approximate probabilities by trapezoids

Map [0,1] uniform draws to the proportion area in each trapezoid

Return midpoint of each trapezoid

More trapezoids ; better approximation

(Works for a few dimensions, but infeasible for many)
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Inverse CDF: drawing from arbitrary continuous pdfs

From the pdf f (Y ), compute the cdf:
Pr(Y ≤ y) ≡ F (y) =

∫ y
−∞ f (z)dz

Define the inverse cdf F−1(y), such that F−1[F (y)] = y

Draw random uniform number, U

Then F−1(U) gives a random draw from f (Y ).
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Using Inverse CDF to Improve Discretization Method

Refined Discretization Method:

I Choose interval randomly as above (based on area in trapezoids)
I Draw a number within each trapezoid by the inverse CDF method

applied to the trapezoidal approximation.

Drawing random numbers from arbitrary multivariate densities: now
an enormous literature

Also a decent literature on drawing samples with different
speed/accuracy tradeoffs

Stewart (Princeton) Basics Feb 8 21 / 39



Using Inverse CDF to Improve Discretization Method

Refined Discretization Method:

I Choose interval randomly as above (based on area in trapezoids)
I Draw a number within each trapezoid by the inverse CDF method

applied to the trapezoidal approximation.

Drawing random numbers from arbitrary multivariate densities: now
an enormous literature

Also a decent literature on drawing samples with different
speed/accuracy tradeoffs

Stewart (Princeton) Basics Feb 8 21 / 39



Using Inverse CDF to Improve Discretization Method

Refined Discretization Method:
I Choose interval randomly as above (based on area in trapezoids)

I Draw a number within each trapezoid by the inverse CDF method
applied to the trapezoidal approximation.

Drawing random numbers from arbitrary multivariate densities: now
an enormous literature

Also a decent literature on drawing samples with different
speed/accuracy tradeoffs

Stewart (Princeton) Basics Feb 8 21 / 39



Using Inverse CDF to Improve Discretization Method

Refined Discretization Method:
I Choose interval randomly as above (based on area in trapezoids)
I Draw a number within each trapezoid by the inverse CDF method

applied to the trapezoidal approximation.

Drawing random numbers from arbitrary multivariate densities: now
an enormous literature

Also a decent literature on drawing samples with different
speed/accuracy tradeoffs

Stewart (Princeton) Basics Feb 8 21 / 39



Using Inverse CDF to Improve Discretization Method

Refined Discretization Method:
I Choose interval randomly as above (based on area in trapezoids)
I Draw a number within each trapezoid by the inverse CDF method

applied to the trapezoidal approximation.

Drawing random numbers from arbitrary multivariate densities: now
an enormous literature

Also a decent literature on drawing samples with different
speed/accuracy tradeoffs

Stewart (Princeton) Basics Feb 8 21 / 39



Using Inverse CDF to Improve Discretization Method

Refined Discretization Method:
I Choose interval randomly as above (based on area in trapezoids)
I Draw a number within each trapezoid by the inverse CDF method

applied to the trapezoidal approximation.

Drawing random numbers from arbitrary multivariate densities: now
an enormous literature

Also a decent literature on drawing samples with different
speed/accuracy tradeoffs

Stewart (Princeton) Basics Feb 8 21 / 39



1 Simulation

2 Useful Distributions

3 Concluding Thoughts

4 Appendix: More Probability Distributions

Stewart (Princeton) Basics Feb 8 22 / 39



1 Simulation

2 Useful Distributions

3 Concluding Thoughts

4 Appendix: More Probability Distributions

Stewart (Princeton) Basics Feb 8 22 / 39



Normal Distribution

Many different first principles

A common one is the central limit theorem

The univariate normal density (with mean µi , variance σ2)

N(yi |µi , σ2) = (2πσ2)−1/2 exp

(
−(yi − µi )2

2σ2

)

The stylized normal: fstn(yi |µi ) = N(y |µi , 1)

fstn(y |µi ) = (2π)−1/2 exp

(
−(yi − µi )2

2

)

The standardized normal: fsn(yi ) = N(yi |0, 1) = φ(yi )

fsn(yi ) = (2π)−1/2 exp

(
−y2i

2

)
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Multivariate Normal Distribution

Let Yi ≡ {Y1i , . . . ,Yki} be a k × 1 vector, jointly random:

Yi ∼ N(yi |µi ,Σ)

where µi is k × 1 and Σ is k × k . For k = 2,

µi =

(
µ1i
µ2i

)
Σ =

(
σ21 σ12
σ12 σ22

)

Mathematical form:

N(yi |µi ,Σ) = (2π)−k/2|Σ|−1/2 exp

[
−1

2
(yi − µi )′Σ−1(yi − µi )

]

Simulating once from this density produces k numbers. Special
algorithms are used to generate normal random variates (in R,
mvrnorm(), from the MASS library).
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Multivariate Normal Distribution

Moments: E (Y ) = µi , V (Y ) = Σ, Cov(Y1,Y2) = σ12 = σ21.

Corr(Y1,Y2) = σ12
σ1σ2

Marginals:

N(Y1|µ1, σ21) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

N(yi |µi ,Σ)dy2dy3 · · · dyk
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Truncated bivariate normal examples (for βb and βw)
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Parameters are µ1, µ2, σ1, σ2, and ρ.
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Key Concepts

stochastic and systematic components.

simulation as an important tool.

some basic distributions and what we should know about them.

a preview of how these pieces fit together for generalized linear models

By Next Wednesday: Read UPM Chapter 4

Stewart (Princeton) Basics Feb 8 27 / 39



Key Concepts

stochastic and systematic components.

simulation as an important tool.

some basic distributions and what we should know about them.

a preview of how these pieces fit together for generalized linear models

By Next Wednesday: Read UPM Chapter 4

Stewart (Princeton) Basics Feb 8 27 / 39



Key Concepts

stochastic and systematic components.

simulation as an important tool.

some basic distributions and what we should know about them.

a preview of how these pieces fit together for generalized linear models

By Next Wednesday: Read UPM Chapter 4

Stewart (Princeton) Basics Feb 8 27 / 39



Key Concepts

stochastic and systematic components.

simulation as an important tool.

some basic distributions and what we should know about them.

a preview of how these pieces fit together for generalized linear models

By Next Wednesday: Read UPM Chapter 4

Stewart (Princeton) Basics Feb 8 27 / 39



Key Concepts

stochastic and systematic components.

simulation as an important tool.

some basic distributions and what we should know about them.

a preview of how these pieces fit together for generalized linear models

By Next Wednesday: Read UPM Chapter 4

Stewart (Princeton) Basics Feb 8 27 / 39



Key Concepts

stochastic and systematic components.

simulation as an important tool.

some basic distributions and what we should know about them.

a preview of how these pieces fit together for generalized linear models

By Next Wednesday: Read UPM Chapter 4

Stewart (Princeton) Basics Feb 8 27 / 39



1 Simulation

2 Useful Distributions

3 Concluding Thoughts

4 Appendix: More Probability Distributions

Stewart (Princeton) Basics Feb 8 28 / 39



1 Simulation

2 Useful Distributions

3 Concluding Thoughts

4 Appendix: More Probability Distributions

Stewart (Princeton) Basics Feb 8 28 / 39



Beta (continuous) density

Used to model proportions.

We’ll use it first to generalize the Binomial distribution

y falls in the interval [0,1]

Takes on a variety of flexible forms, depending on the parameter
values:
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Standard Parameterization

Beta(y |α, β) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1

where, Γ(x) is the gamma function:

Γ(x) =

∫ ∞
0

zx−1e−zdz

For integer values of x , Γ(x + 1) = x! = x(x − 1)(x − 2) · · · 1.

Non-integer values of x produce a continuous interpolation. In R or gauss:
gamma(x);

Intuitive? The moments help some:

E (Y ) = α
(α+β)

V (Y ) = αβ
(α+β)2(α+β+1)
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Alternative parameterization

Set µ = E (Y ) = α
(α+β) and µ(1−µ)γ

(1+γ) = V (Y ) = αβ
(α+β)2(α+β+1)

, solve for α

and β and substitute in.

Result:

beta(y |µ, γ) =
Γ
(
µγ−1 + (1− µ)γ−1

)
Γ (µγ−1) Γ [(1− µ)γ−1]

yµγ
−1−1(1− y)(1−µ)γ

−1−1

where now E (Y ) = µ and γ is an index of variation that varies with µ.

Reparameterization like this will be key throughout the course.
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Beta-Binomial

Useful if the binomial variance is not approximately π(1− π)/N.

How to simulate

(First principles are easy to see from this too.)

Begin with N Bernoulli trials with parameter πj , j = 1, . . . ,N (not
necessarily independent or identically distributed)

Choose µ = E (πj) and γ

Draw π̃ from Beta(π|µ, γ) (without this step we get Binomial draws)

Draw N Bernoulli variables z̃j (j = 1, . . . ,N) from Bernoulli(zj |π̃)

Add up the z̃ ’s to get y =
∑N

j z̃j , which is a draw from the
beta-binomial.
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Beta-Binomial Analytics

Recall:

Pr(A|B) =
Pr(AB)

Pr(B)
=⇒ Pr(AB) = Pr(A|B) Pr(B)

Plan:

Derive the joint density of y and π. Then

Average over the unknown π dimension

Hence, the beta-binomial (or extended beta-binomial):

BB(yi |µ, γ) =
∫ 1

0

Binomial(yi |π)× Beta(π|µ, γ)dπ

=

∫ 1

0

P(yi , π|µ, γ)dπ

=
N!

yi !(N − yi )!

yi−1∏
j=0

(µ+ γj)

N−yi−1∏
j=0

(1− µ+ γj)
N−1∏
j=0

(1 + γj)
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Poisson Distribution

Begin with an observation period:

All assumptions are about the events that occur between the start
and when we observe the count. The process of event generation is
assumed not observed.

0 events occur at the start of the period

Only observe number of events at the end of the period

No 2 events can occur at the same time

Pr(event at time t | all events up to time t − 1) is constant for all t.
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Poisson Distribution

First principles imply:
I

Poisson(y |λ) =

{
e−λλyi

yi !
for yi = 0, 1, . . .

0 otherwise

I E (Y ) = λ
I V (Y ) = λ
I That the variance goes up with the mean makes sense, but should they

be equal?
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Poisson Distribution

If we assume Poisson dispersion, but Y |X is over-dispersed, standard
errors are too small.

If we assume Poisson dispersion, but Y |X is under-dispersed,
standard errors are too large.

How to simulate? We’ll use canned random number generators.
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Gamma Density

Used to model durations and other nonnegative variables

We’ll use first to generalize the Poisson

Parameters: φ > 0 is the mean and σ2 > 1 is an index of variability.

Moments: mean E (Y ) = φ > 0 and

variance V (Y ) = φ(σ2 − 1)

gamma(y |φ, σ2) =
yφ(σ

2−1)−1−1e−y(σ
2−1)−1

Γ[φ(σ2 − 1)−1](σ2 − 1)φ(σ2−1)−1
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Negative Binomial

Same logic as the beta-binomial generalization of the binomial

Parameters φ > 0 and dispersion parameter σ2 > 1

Moments: mean E (Y ) = φ > 0 and

variance V (Y ) = σ2φ

Allows over-dispersion: V (Y ) > E (Y ).

As σ2 → 1, NegBin(y |φ, σ2)→ Poisson(y |φ) (i.e., small σ2 makes
the variation from the gamma vanish)

How to simulate (and first principles)

Choose E (Y ) = φ and σ2

Draw λ̃ from gamma(λ|φ, σ2).

Draw Y from Poisson(y |λ̃), which gives one draw from the negative
binomial.
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Negative Binomial Derivation

Recall:

Pr(A|B) =
Pr(AB)

Pr(B)
=⇒ Pr(AB) = Pr(A|B)Pr(B)

NegBin(y |φ, σ2) =

∫ ∞
0

Poisson(y |λ)× gamma(λ|φ, σ2)dλ

=

∫ ∞
0

P(y , λ|φ, σ2)dλ

=
Γ
(

φ
σ2−1 + yi

)
yi !Γ

(
φ

σ2−1

) (
σ2 − 1

σ2

)yi (
σ2
) −φ

σ2−1
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