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Where We’ve Been and Where We’re Going...

Last Week
I Intro and Class Overview

This Week+
I Theories of inference
I Likelihood Estimation
I Simulation

Next Week+
I Generalized Linear Models

Long Run
I likelihood → GLMs → advanced methods
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Followup

Questions?

Replication Stories?

How is Perusall working for everyone?

Problem Set Plan

Note that today we will be discussing things that border on
philosophy. Thus it is particularly important that you ask questions.
Often the simplest questions are the most profound!
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1 History

2 Likelihood Inference

3 Bayesian Inference

4 Neyman-Pearson

5 Likelihood Example

6 Properties and Tests

7 Simulation

8 Fun With Bayes
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Historical Backdrop

We start with the fundamental question of how to learn from
experience

This isn’t a question with easy answers despite the fact that humans
do it all the time.

We’ve been using algorithms of various sorts for a long time, least
squares dates back to Legendre and Gauss 1795-1805.

While an algorithm tells us what to compute and provides a summary
of the data, inference answers the question of why we are doing
something (i.e. what properties it has).

For our purposes the central question of inference will be, how do we
assess the accuracy of an estimate?
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Historical Backdrop: Frequentist Thought

Starting around 1900, a group of statisticians including Fisher,
Hotelling, Neyman and Pearson provide an answer to the question of
how we think about estimator accuracy: frequentism

At the times you had very few data points which were typically
collected in laborious experiments. Thus we want a maximally
efficient analysis method.

Frequentism is based on a clever intellectual pivot: we treat the
probabilistic accuracy of the estimator as the accuracy of the
estimate.

Thus we attribute to a single number, the probabilistic properties of
the estimator. (maybe it should have been called behaviorism!)

We often talk about this as frequentists posing the question: ’what
would happen if we reran the same situation over and over again?’

Why is this hard? Well we need to calculate properties of an estimator
obtained from a true distribution F even though F is unknown.
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Historical Backdrop: Bayesian Approaches
In Soc500 we implicitly worked in the frequentist domain: we talked
about bias and variance and considered repeated trials.

An alternative view is Bayesian where we treat the data as fixed and
the parameter as varying.
Efron and Hastie (2016) describe frequentism and Bayesianism as
orthogonal because they both start with a family of probability
distributions but then proceed to reason over different dimensions

Bayesian inference proceeds vertically given x ; frequentist inference
proceeds horizontally given µ (Efron and Hastie 2016)
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Likelihood

We will spend the majority of our time on Fisher’s Maximum
Likelihood Theory.

ML dominated the twentieth century for a few reasons:
I It easily generates estimators: one theory provides us an estimator for

almost every situation which is generally not true of other frequentist
approaches.

I these approaches have excellent frequentist properties: they tend to be
nearly unbiased and be reasonably efficient.

I the estimators have a bayesian interpretation.

We will also see that likelihood lends itself nicely to situations where
we care a lot about the outcome rather than the coefficients
themselves.

For those interested Stigler’s “The epic story of maximum likelihood”
is a fantastic account of the history of the idea.
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A Perspective on a Historical Arc (Efron and Hastie 2016)

Stewart (Princeton) Inference Feb 13 9 / 97



The Problem of Inference

1. Probability:
P(y |M) = P(known|unknown)

2. The goal of inverse probability:

P(M|y) = P(unknown|known)

3. A more reasonable, limited goal. Let M = {M∗, θ}, where M∗ is
assumed & θ is to be estimated:

P(θ|y ,M∗) ≡ P(θ|y)
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The Problem of Inference

4. Bayes Theorem:

P(θ|y) =
P(θ, y)

P(y)
[Defn. of conditional probability]

=
P(θ)P(y |θ)

P(y)
[P(AB) = P(B)P(A|B)]

=
P(θ)P(y |θ)∫
P(θ)P(y |θ)dθ

[P(A) =

∫
P(AB)dB]

5. If we knew the right side, we could compute the inverse probability.

6. We will discuss two alternative interpretations of this theorem.
Likelihood and Bayesian

7. In both, P(y |θ) is a traditional probability density

8. The two differ on what is fixed and what is random
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Interpretation 1: The Likelihood Theory of Inference

1. R.A. Fisher’s idea

2. θ is fixed and y is random

3. Let:

k(y) ≡ P(θ)∫
P(θ)P(y |θ)dθ

=⇒ P(θ|y) =
P(θ)P(y |θ)∫
P(θ)P(y |θ)dθ

= k(y)P(y |θ)

4. Define K (y) as an unknown function of y with θ fixed at its true value

5. ; the likelihood theory of inference has four axioms: the 3 probability
axioms plus the likelihood axiom:

L(θ|y) ≡ k(y)P(y |θ)

∝ P(y |θ)

6. L(θ|y) is a function: for y fixed at the observed values, it gives the
“likelihood” of any value of θ.
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Interpretation 1: The Likelihood Theory of Inference

7. Typically we assume independence in the observations to get
L(θ|y) ∝

∏N
i=1 P(yi |θ)

8. Likelihood: a relative measure of uncertainty, changing with the data

9. Comparing the value of L(θ|y) for different θ values in one data set y is
meaningful.

10. Comparing values of L(θ|y) across data sets is meaningless. (just as
you can’t compare R2 values across equations with different dependent
variables.)

11. The likelihood principle: the data only affect inferences through the
likelihood function

Stewart (Princeton) Inference Feb 13 14 / 97



Interpretation 1: The Likelihood Theory of Inference

7. Typically we assume independence in the observations to get
L(θ|y) ∝

∏N
i=1 P(yi |θ)

8. Likelihood: a relative measure of uncertainty, changing with the data

9. Comparing the value of L(θ|y) for different θ values in one data set y is
meaningful.

10. Comparing values of L(θ|y) across data sets is meaningless. (just as
you can’t compare R2 values across equations with different dependent
variables.)

11. The likelihood principle: the data only affect inferences through the
likelihood function

Stewart (Princeton) Inference Feb 13 14 / 97



Interpretation 1: The Likelihood Theory of Inference

7. Typically we assume independence in the observations to get
L(θ|y) ∝

∏N
i=1 P(yi |θ)

8. Likelihood: a relative measure of uncertainty, changing with the data

9. Comparing the value of L(θ|y) for different θ values in one data set y is
meaningful.

10. Comparing values of L(θ|y) across data sets is meaningless. (just as
you can’t compare R2 values across equations with different dependent
variables.)

11. The likelihood principle: the data only affect inferences through the
likelihood function

Stewart (Princeton) Inference Feb 13 14 / 97



Interpretation 1: The Likelihood Theory of Inference

7. Typically we assume independence in the observations to get
L(θ|y) ∝

∏N
i=1 P(yi |θ)

8. Likelihood: a relative measure of uncertainty, changing with the data

9. Comparing the value of L(θ|y) for different θ values in one data set y is
meaningful.

10. Comparing values of L(θ|y) across data sets is meaningless. (just as
you can’t compare R2 values across equations with different dependent
variables.)

11. The likelihood principle: the data only affect inferences through the
likelihood function

Stewart (Princeton) Inference Feb 13 14 / 97



Interpretation 1: The Likelihood Theory of Inference

7. Typically we assume independence in the observations to get
L(θ|y) ∝

∏N
i=1 P(yi |θ)

8. Likelihood: a relative measure of uncertainty, changing with the data

9. Comparing the value of L(θ|y) for different θ values in one data set y is
meaningful.

10. Comparing values of L(θ|y) across data sets is meaningless. (just as
you can’t compare R2 values across equations with different dependent
variables.)

11. The likelihood principle: the data only affect inferences through the
likelihood function

Stewart (Princeton) Inference Feb 13 14 / 97



Visualizing the Likelihood

For algebraic simplicity and numerical stability, we use the
log-likelihood (the shape changes, but the max is in the same place)

If θ has one element, we can plot:

The full likelihood curve is a Summary Estimator. The likelihood
principle means that once this is plotted, we can discard the data (if
the model is correct!).

A one-point summary at the maximum is the MLE

Uncertainty of point estimate: curvature at the maximum
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Logarithm review!

Logs turn exponentiation into multiplication and multiplication into
summation.

I log(A× B) = log(A) + log(B)
I log(A/B) = log(A)− log(B)
I log(Ab) = b × log(A)
I log(e) = ln(e) = 1
I log(1) = 0

Notational note: log in math is almost always used as short-hand for
the natural log (ln) as opposed to the base-10 log.
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Example 1: Bernoulli Trials

Suppose that we observe a sample of independentally and identically
distributed observations that are Bernoulli distributed,

Yi ∼ Bernoulli(π)

- Recall

Bernoulli(π) = πYi (1− π)1−Yi

- Y = (Y1,Y2, . . . ,Yn)

- Yi = 1 or Yi = 0
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Example 1: Bernoulli Trials

L(π|Y ) ∝ f (Y |π)

=
n∏

i=1

f (Yi |π)

=
n∏

i=1

πYi (1− π)1−Yi

= π
∑n

i=1 Yi (1− π)n−
∑n

i=1 Yi

We’ll work with the natural logarithm of the likelihood,

log L(π|Y ) ≡ `(π|Y ) =
n∑

i=1

Yi log π + (n −
n∑

i=1

Yi ) log(1− π) + c

For a fixed set of observations, what does this look like?
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Example 1: Bernoulli Trials: Simulated Example
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Uncertainty About Mode
π∗ = Y maximizes L(π|Y ).

How much uncertainty is there about this
maximum?

Q. Which log-likelihood function contains more information?:

θ

l 1
(θ

|Y
)

θ

l 2
(θ

|Y
)

Second derivative captures this curvature
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Interpretation 2: The Bayesian Theory of Inference

Rev. Thomas Bayes’ idea published after his death by Richard Price
as part of a proof of the existence of God

Recall:

P(θ|y) =
P(θ, y)

P(y)
[Defn. of conditional probability]

=
P(θ)P(y |θ)

P(y)
[P(AB) = P(B)P(A|B)]

=
P(θ)P(y |θ)∫
P(θ)P(y |θ)dθ

[P(A) =

∫
P(AB)dB]

∝ P(θ)P(y |θ)

P(θ|y) the posterior density

P(y |θ) the traditional probability (∝ likelihood)

P(y) a constant, computable

P(θ), the prior density — the way Bayes differs from likelihood
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What is the prior density, P(θ)?

1. A probability density that represents all prior evidence about θ.

2. An opportunity: a way of getting other information outside the data set
into the model

3. An annoyance: the “other information” is required

4. A philosophical assumption that nonsample information should matter
(as it always does) and be formalized and included in all inferences.
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Principles of Bayesian analysis

1. All unknown quantities (θ, Y ) are treated as random variables and have
a joint probability distribution.

2. All known quantities (y) are treated as fixed.

3. If we have observed variable B and unobserved variable A, then we are
usually interested in the conditional distribution of A, given B:
P(A|B) = P(A,B)/P(B)

4. If variables A and B are both unknown, then the distribution of A alone
is P(A) =

∫
P(A,B)dB =

∫
P(A|B)P(B)dB.

Stewart (Princeton) Inference Feb 13 24 / 97



Principles of Bayesian analysis

1. All unknown quantities (θ, Y ) are treated as random variables and have
a joint probability distribution.

2. All known quantities (y) are treated as fixed.

3. If we have observed variable B and unobserved variable A, then we are
usually interested in the conditional distribution of A, given B:
P(A|B) = P(A,B)/P(B)

4. If variables A and B are both unknown, then the distribution of A alone
is P(A) =

∫
P(A,B)dB =

∫
P(A|B)P(B)dB.

Stewart (Princeton) Inference Feb 13 24 / 97



Principles of Bayesian analysis

1. All unknown quantities (θ, Y ) are treated as random variables and have
a joint probability distribution.

2. All known quantities (y) are treated as fixed.

3. If we have observed variable B and unobserved variable A, then we are
usually interested in the conditional distribution of A, given B:
P(A|B) = P(A,B)/P(B)

4. If variables A and B are both unknown, then the distribution of A alone
is P(A) =

∫
P(A,B)dB =

∫
P(A|B)P(B)dB.

Stewart (Princeton) Inference Feb 13 24 / 97



Principles of Bayesian analysis

1. All unknown quantities (θ, Y ) are treated as random variables and have
a joint probability distribution.

2. All known quantities (y) are treated as fixed.

3. If we have observed variable B and unobserved variable A, then we are
usually interested in the conditional distribution of A, given B:
P(A|B) = P(A,B)/P(B)

4. If variables A and B are both unknown, then the distribution of A alone
is P(A) =

∫
P(A,B)dB =

∫
P(A|B)P(B)dB.

Stewart (Princeton) Inference Feb 13 24 / 97



Principles of Bayesian analysis

1. All unknown quantities (θ, Y ) are treated as random variables and have
a joint probability distribution.

2. All known quantities (y) are treated as fixed.

3. If we have observed variable B and unobserved variable A, then we are
usually interested in the conditional distribution of A, given B:
P(A|B) = P(A,B)/P(B)

4. If variables A and B are both unknown, then the distribution of A alone
is P(A) =

∫
P(A,B)dB =

∫
P(A|B)P(B)dB.

Stewart (Princeton) Inference Feb 13 24 / 97



The posterior density, P(θ|y)

Like L, it’s a summary estimator

Unlike L, it’s a real probability density, from which we can derive
probabilistic statements (via integration)

To compare across applications or data sets, you may need different
priors. So, the posterior is also relative, just like likelihood.

Bayesian inference obeys the likelihood principle: the data set only
affects inferences through the likelihood function

If P(θ) = 1, i.e., is uniform in the relevant region, then
L(θ|y) = P(θ|y).
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Being a Bayesian

If P(θ) is diffuse, differences from likelihood are minor, but numerical
stability (and “identification”) is improved

Philosophical differences from likelihood: Huge

Practical differences when we can compute both: often Minor (unless
the prior matters)

Advantages: more information produces more efficiency;

Few fights now between Bayesians and likelihoodists

In general simple computation is easier under MLE, complex
computation is dramatically easier under Bayes (the more
parameters- the more you should think about Bayes).

A perspective of growing importance is empirical Bayes which we will
discuss later in the semester.
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A 3rd Theory: Neyman-Pearson Hypothesis Testing

1 Huge fights between these folks and the {Bayesians, Likelihoodists}
2 Strict but arbitrary distinction: null H0 vs alternative H1 hypotheses

3 All tests are “under” (i.e., assuming) H0

For example, is β = 0 in E (Y ) = β0 + βX?

H0: β = 0 vs. H1: β > 0

Choose Type I error, probability of deciding H1 is right when H0 is
really true: say α = 0.05

(Type II error, the power to detect H1 if it is true, is a consequence of
choosing an estimator, not an ex ante decision like choosing α.)

Assume n is large enough for the CLT to kick in

Then b|(β = 0) ∼ N(0, σ2
b)

or

(TS)β|(β = 0) ≡ b − β
σ̂b

≡ b

σ̂b
∼ N(0, 1).
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Neyman-Pearson Hypothesis Testing

Derive critical value, CV , e.g., the right tail:∫ ∞
(CV )

N(b|0, σ2
b)db = α

This means in principle: write your prospectus, plan your experiment,
report the CV , and write your concluding chapter (loosely as follows):

Decision =

{
β > 0 (I was right) if (TS) > (CV )

β = 0 (I was wrong) if (TS) ≤ (CV )

And then collect your data. You may not revise your hypothesis or
your theory. When is this good?
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Neyman-Pearson Hypothesis Testing

In this example, (TS) < (CV ) and so we conclude that we can’t
reject β = 0.

What’s our best guess? We don’t have one- it is a decision.

Decision will be wrong 5% of the time; what about this time?

What about when n is large or under control of the investigator?

In practice, hypothesis testing is used with p-values:

The probability
under the null of getting a value as weird or weirder than the value we
got — the area to the right of the realized value of (TS).

Is this really our quantity of interest?
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What is the right theory of inference?

1. Likelihood?

Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood?

Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes?

Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?

Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators?

Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory?

Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory?

Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics?

Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics?

Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?

Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference?

etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. No

ne of these.
3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. None

of these.
3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. None of

these.
3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. None of these.

3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. None of these.
3. The right theory of inference:

pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. None of these.
3. The right theory of inference: pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



What is the right theory of inference?

1. Likelihood? Bayes? Neyman-Pearson?
Criteria estimators? Finite or asymptotic based theory? Decision
theory? Nonparametrics? Semiparametrics? Conditional inference?
Superpopulation-based inference? etc.

2. None of these.
3. The right theory of inference: pragmatism

4. Methods for applied researchers: either useful or irrelevant → learn
something then validate it.

Stewart (Princeton) Inference Feb 13 31 / 97



Unification of Theories of Inference

Can’t bank on agreement on normative issues!

Even if there is agreement, it won’t hold or shouldn’t

Alternative convergence is occurring: different methods giving the
same result.

I Likelihood or Bayes with careful goodness of fit checks
I Various types of robust or semi-parametric methods
I Matching for use as preprocessing for parametric analysis
I Some models with highly flexible functional forms

The key: No assumptions can always be trusted;

all theories of
inference condition on assumptions and so data analysts always
struggle trying to understand and check them

This motivates different views of the core material such as agnostic
and robust statistics.
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This motivates different views of the core material such as agnostic
and robust statistics.
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A Simple Likelihood Model: Stylized Normal, no X

The model:

1. Yi ∼ fstn(yi |µi ), normal stochastic component

2. µi = β, a constant systematic component (no covariates)

3. Yi and Yj are independent ∀ i 6= j .

Derive the full probability density of all observations, Pr(data|model)
(Recall: if A and B are independent, P(AB) = P(A)P(B)):

P(y |µ) ≡ P(y1, . . . , yn|µ1, . . . , µn) =
n∏

i=1

fstn(yi |µi )

=
n∏

i=1

(2π)−1/2 exp

(
−(yi − µi )

2

2

)
reparameterizing with µi = β:

P(y |β) ≡ P(y1, . . . , yn|β) =
n∏

i=1

(2π)−1/2 exp

(
−(yi − β)2

2

)
• What can you do with this probability density?
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Stylized Normal Likelihood Function

The likelihood of β (conditional on the model) having generated the data
we observe.

L(β|y) = k(y)
n∏

i=1

fstn(yi |β) ∝
n∏

i=1

fstn(yi |β)

=
n∏

i=1

(2π)−1/2 exp

(
−(yi − β)2

2

)
The log-likelihood (Recall: ln(ab) = ln(a) + ln(b)):

ln L(β|y) = ln[k(y)] +
n∑

i=1

ln fstn(yi |β)

= ln[k(y)] +
n∑

i=1

ln[(2π)−1/2]−
n∑

i=1

1

2
(yi − β)2

.
=

n∑
i=1

−1

2
(yi − β)2 = −1

2

n∑
i=1

(yi − β)2
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Log-likelihood interpretation

1. The log-likelihood is quadratic

2. This curve summarizes all information the data gives about β,
assuming the model.

3. The MLE is at the same point as the MVLUE (minimum variance linear
unbiased estimator)

4. The maximum is at the same point as the least squares point

5. No reason to summarize this curve with only the MLE
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Summarizing k-dimensional space

The problem of Flatland

Graphs

The curse of dimensionality

Maximum

The curvature at the maximum
(standard errors, about which
more shortly)
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How to find the maximum?

1 Analytically — often impossible or too hard

I Take the derivative of ln L(θ|y) w.r.t. θ
I Set to 0, substituting θ̂ for θ

∣∣∣∣∂ ln L(θ|y)

∂θ

∣∣∣∣
θ=θ̂

= 0

I If possible, solve for θ, and label it θ̂
I Check the second order condition: see if the second derivative w.r.t. θ

is negative (so its a maximum rather than a minimum)

2 Numerically — let the computer do the work for you

I We’ll show you how in precept
I Most commonly gradient descent
I Not a sharp divide- some analytic work helps numerical optimization
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Example 2: Age distribution of ER visits due to wall
punching

We have a dataset from the U.S. Consumer Product Safety
Commission’s National Electronic Injury Surveillance System (NEISS)
containing data on ER visits in 2014.

Let’s take a look at one injury category – wall punching. We’re
interested in modelling the distribution of the ages of individuals who
visit the ER having punched a wall.

To do this, we write down a probability model for the data.
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Empirical distribution of wall-punching ages

Ages of ER patients who punched a wall in 2014
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A Model for the Data – Log-Normal distribution

We observe n observations of ages, Y = {Y1, . . . ,Yn}.

A normal distribution doesn’t seem like a reasonable model since age
is strictly positive and the distribution is somewhat right-skewed.

But a log-normal might be reasonable!

We assume that each Yi ∼ Log-Normal(µ, σ2), and that each Yi is
independently and identically distributed. (Later we could extend this
model by adding covariates (e.g. µi = Xiβ)).
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Example: Age distribution of ER visits due to wall
punching

The density of the log-normal distribution is given by

f (Yi |µ, σ2) =
1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)

Basically the same as saying ln(Yi ) is normally distributed!
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Writing a likelihood

After writing a probability model for the data, we can write the
likelihood of the parameters given the data

By definition of likelihood

L(µ, σ2|Y) ∝ f (Y|µ, σ2)

Unfortunately, f (Y|µ, σ2) is an n-dimensional density, and n is huge!
How do we simplify this? The i .i .d . assumption lets us factor the
density!

L(µ, σ2|Y) ∝
N∏
i=1

f (Yi |µ, σ2)
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Writing a likelihood

Now we can plug in our assumed density for Y .

L(µ, σ2|Y) ∝
N∏
i=1

1

Yiσ
√

2π
exp

(
− (ln(Yi )− µ)2

2σ2

)

However, if we tried to calculate this in R, the value would be incredibly small! It’s
the product of a bunch of probabilities which are between 0 and 1. Computers
have problems with numbers that small and round them to 0.

It’s also often analytically easier to work with sums over products.

This is why we typically work with the log-likelihood (often denoted `). Because
taking the log is a monotonic transformation, it retains the proportionality!
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Deriving the log-likelihood

`(µ, σ2|Y) = ln

[
N∏
i=1

f (Yi |µ, σ2)

]

= ln

[
N∏
i=1

1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)]

=
N∑
i=1

ln

[
1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)]

=
N∑
i=1

− ln(Yi )− ln(σ)− ln(
√

2π) + ln

[
exp

(
−(ln(Yi )− µ)2

2σ2

)]

=
N∑
i=1

− ln(Yi )− ln(σ)− ln(
√

2π)− (ln(Yi )− µ)2

2σ2
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Deriving the log-likelihood

To simplify further, we can drop multiplicative constants in the
likelihood (additive on the log scale) that are not functions of the the
parameters since that retains proportionality.

=
N∑
i=1

− ln(Yi )− ln(σ)− ln(
√

2π)− (ln(Yi )− µ)2

2σ2
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Plotting the log-likelihood
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Figure: Contour plot of the log-likelihood for different values of µ and σ
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Plotting the likelihood
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Figure: Plot of the log-likelihood for different values of µ and σ
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Plotting the likelihood
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Figure: Plot of the conditional log-likelihood of µ given σ = 2
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Comparing models using likelihood

Example 1: µ = 4, σ = .2: Log-likelihood = −18048.79

Example 2: µ = 3.099, σ = 0.379: Log-likelihood = −4461.054
(actually the MLE)!

Let’s plot the implied distribution of Yi for each parameter set over
the empirical histogram!
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Comparing models using likelihood

Ages of ER patients who punched a wall in 2014
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Figure: Empirical distribution of ages vs. log-normal with µ = 4 and σ = .2
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Finite Sample Properties of the MLE

1 Minimum variance unbiased estimator (MVUE)

I Unbiasedness:

F Definition: E(θ̂) = θ
F Example: E

(
Ȳ
)

=

E
(

1
n

∑n
i=1 Yi

)
= 1

n

∑n
i=1 E(Yi ) = 1

n
nµ = µ

I Minimum variance (“efficiency”)

F Variance to be minimized: V (θ̂)
F Example: V

(
Ȳ
)

=

V
(

1
n

∑n
i=1 Yi

)
= 1

n2

∑n
i=1 V (Yi ) = 1

n2 nσ
2 = σ2/n

F There is a lower bound on the variance of consistent estimators: the
Cramer-Rao Lower Bound (CRLB). An MVUE meets that variance.

I If there is a MVUE, ML will find it (although there may be no unbiased
estimator that meets CRLB.)

I If there isn’t one, ML will still usually find a good estimator

2 Invariance to Reparameterization

I Estimate σ with σ̂ and calculate σ̂2 or estimate σ̂2: both are MLEs
I Not true for other methods of inference: e.g. ȳ is an unbiased estimate

of µ. What is an unbiased estimate of 1/µ? E (1/ȳ) 6= 1/E (ȳ).

3 Invariance to sampling plans
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of µ. What is an unbiased estimate of 1/µ? E (1/ȳ) 6= 1/E (ȳ).
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of µ. What is an unbiased estimate of 1/µ? E (1/ȳ) 6= 1/E (ȳ).
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of µ. What is an unbiased estimate of 1/µ? E (1/ȳ) 6= 1/E (ȳ).
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3 Invariance to sampling plans

Stewart (Princeton) Inference Feb 13 54 / 97



Finite Sample Properties of the MLE

1 Minimum variance unbiased estimator (MVUE)
I Unbiasedness:

F Definition: E(θ̂) = θ
F Example: E

(
Ȳ
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Ȳ
)

= V
(

1
n

∑n
i=1 Yi

)
= 1

n2

∑n
i=1 V (Yi ) = 1

n2 nσ
2 = σ2/n

F There is a lower bound on the variance of consistent estimators: the
Cramer-Rao Lower Bound (CRLB). An MVUE meets that variance.

I If there is a MVUE, ML will find it (although there may be no unbiased
estimator that meets CRLB.)

I If there isn’t one, ML will still usually find a good estimator

2 Invariance to Reparameterization

I Estimate σ with σ̂ and calculate σ̂2 or estimate σ̂2: both are MLEs
I Not true for other methods of inference: e.g. ȳ is an unbiased estimate
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of µ. What is an unbiased estimate of 1/µ? E (1/ȳ) 6= 1/E (ȳ).
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Asymptotic Properties of the MLE

1 Consistency (from the Law of Large Numbers). As n→∞, the
sampling distribution of the MLE collapses to a spike over the
parameter value

2 Asymptotic normality (from the central limit theorem):

I As n→∞, the distribution of MLE/se(MLE) converges to a Normal.
I Why do we care? If N is large enough, the asymptotic distribution is a

good approximation in finite samples

3 Asymptotic efficiency. The MLE contains as much information as can
be packed into a point estimator.
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Sampling distributions of the MLE: CLT vs LLN
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Uncertainty: Likelihood Ratios for nested models

L∗ is the likelihood value for the unrestricted model

L∗R is the likelihood value for the (nested) restricted model

=⇒ L∗ ≥ L∗R =⇒ L∗R
L∗ ≤ 1

This is a direct generalization of F -tests that we learned about in
regression.
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Meaning of the likelihood ratio

Substantively, its the ratio of 2 traditional probabilities:

L(θ1|y) ∝ k(y)P(y |θ1)

L(θ2|y) ∝ k(y)P(y |θ2)

L(θ1|y)

L(θ2|y)
=

k(y)

k(y)

P(y |θ1)

P(y |θ2)

=
P(y |θ1)

P(y |θ2)

Statistically (from the Neyman-Pearson Hypothesis Testing viewpoint), let

R = −2 ln

(
L∗R
L∗

)
= 2(ln L∗ − ln L∗R)

Then, under the null of no difference between the 2 models,

R ∼ fχ2 (r |m)

where r is the observed value of R and m is the number of restricted
parameters.
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Meaning of the likelihood ratio

If restrictions have no effect, E (R) = m.

So only if r >> m will the test parameters be clearly different from
zero.

Disadvantage: Too many likelihood ratio tests may be required to
test all points of interest

Thus, it might be nice to have a summary of uncertainty for every
parameter separately ; standard errors
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Standard Errors

1. Instead of (a) plotting the entire likelihood hyper-surface or (b) computing numerous
likelihood ratio tests, we can summarize the all info about the curvature near the
maximum with one number

2. We will use the normal likelihood to approximate all likelihoods

3. (one justification) as n→∞, likelihoods become normal.

4. Reformulate the normal (not stylized) likelihood with E(Y ) = µi = β:

L(β|y) ∝
n∏

i=1

N(yi |µi , σ
2)

=
n∏

i=1

(2πσ2)−1/2 exp

(
−(yi − µi )

2

2σ2

)

=
n∏

i=1

(2πσ2)−1/2 exp

(
−(yi − β)2

2σ2

)
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Justifying Standard Errors

ln L(β|y) = −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − β)2

= −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(y 2
i − 2yiβ + β2)

=

(
−n

2
ln(2πσ2)−

∑n
i=1 y

2
i

2σ2

)
+

(∑n
i=1 yi

σ2

)
β +

(−n
2σ2

)
β2

= a + bβ + cβ2, A quadratic equation

5.
( −n

2σ2

)
is the degree of curvature. Curvature is larger when:

I n is large
I σ2 is small

6. For normal likelihood,
( −n

2σ2

)
is a summary. The bigger the (negative) number. . .

I the better
I the more information exists in the MLE
I the larger the likelihood ratio would be in comparing the MLE with any

other parameter value.
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Standard Errors

7. When the log-likelihood is not normal, we’ll use the best quadratic approximation to
it. Under the normal,

∂2 ln L(β|y)

∂β∂β′
=
−n
σ2

More generally, this second derivative will give us a way to compute the coefficient
on the squared term.

8. We invert the curvature to provide a statistical interpretation:

V̂ (θ̂) =

[
−∂

2 ln L(θ|y)

∂θ∂θ′

]−1

θ=θ̂

=

 σ̂2
1 σ̂12 . . .

σ̂21 σ̂2
2 . . .

...
...

. . .


I Statistical interpretation: variance and covariance across repeated samples
I Works in general for a k-dimensional θ vector
I Can be computed numerically
I Known as the variance matrix, or variance-covariance matrix, or covariance matrix

9. This is an estimate of a quadratic approximation to the log-likelihood.
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MLE Under Misspecification

When the model is correct, MLE is asymptotically the best estimator
(asymptotically: consistent, unbiased, efficient)

Can we say what happens when the model is wrong? i.e. what
happens if we estimate f (Y |θ) but the true DGP is g(Y |θ)

Our MLE is inconsistent plimn→∞θ̂ = θ∗ 6= θ

θ∗ minimizes the Kullback-Leibler (KL) divergence between f and g
defined as:

E [log g(Y |θ)− log f (Y |θ)]

We call this the quasi-maximum likelihood estimator.

In certain settings we can still prove the point estimate is consistent
and derive consistent estimators of the sampling variance
(heteroskedasticity and serial correlation in normal model, clustering
in logit and probit models, overdispersion in GLMs)
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Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,

I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,

I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,

I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,

I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,

I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,
I The standardized sampling distribution of θ̂ becomes normal.

I the quadratic approximation implied (from the second derivative of the
log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,
I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,
I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,
I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)

I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,
I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.

I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



Simulation for any ML Model

If the model is correct, a consistent point estimate of θ is the MLE, θ̂.

True variance of the sampling distribution of θ̂: V (θ̂)

Estimate of V (θ̂): V̂ (θ̂), the inverse of the negative of the matrix of
second derivatives of ln L(θ|y), evaluated at θ̂.

As n gets large,
I The standardized sampling distribution of θ̂ becomes normal.
I the quadratic approximation implied (from the second derivative of the

log-likelihood) improves

To simulate θ,

I we’ll draw from the multivariate normal: θ̃ ∼ N
(
θ̂, V̂ (θ̂)

)
I This is an asymptotic approximation and can be wrong sometimes.
I We’ll discuss later how how to improve the approximation.

Stewart (Princeton) Inference Feb 13 65 / 97



ML Example: k Parameters, including an Ancillary
Parameter, with Simulation to Interpret.

Forecasting Presidential Elections.

The Data
i U.S. state, for i = 1, . . . , 50
t election year, for t = 1948, 1952, . . . , 2012
yit Democratic fraction of the two-party vote
Xit a list of covariates (economic conditions, polls, home state, etc)
Xi ,2016 the same covariates as Xit but measured in 2016
Ei The number of electoral college votes for each state in 2016
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The Model

1. Yit ∼ N(µit , σ
2).

2. µit = xitβ, where xit is a vector of explanatory variables and a constant

3. Yit and Yi ′t′ are independent ∀ i 6= i ′ and t 6= t ′, conditional on X .

The Likelihood Model for the ith observation

L(µit , σ|yit) ∝ N(yit |µit , σ2)

= (2πσ2)−1/2e
−(yit−µit )2

2σ2
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Likelihood model for all n observations

L(β, σ2|y) ∝
n∏

i=1

T∏
t=1

fN(yit |µit , σ
2)

ln L(β, σ2|y)
.

=
n∑

i=1

T∑
t=1

ln fN(yit |µit , σ
2)

=
n∑

i=1

T∑
t=1

{
−1

2
ln(2πσ2)− (yit − µit)

2

2σ2

}

=
n∑

i=1

T∑
t=1

−1

2
ln(2π) +

n∑
i=1

T∑
t=1

−1

2

[
lnσ2 +

(yit − µit)
2

σ2

]
.

=
n∑

i=1

T∑
t=1

−1

2

[
lnσ2 +

(yit − µit)
2

σ2

]

=
n∑

i=1

T∑
t=1

−1

2

[
lnσ2 +

(yit − Xitβ)2

σ2

]
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Estimation

k : number of explanatory variables

Reparameterize on the unbounded scale; use: σ2 = eγ

Let θ = {β, γ}, a k + 2× 1 vector.

Maximize the likelihood; save θ̂ = {β̂, γ̂}.
Compute and save V̂ (θ̂), which is k + 2× k + 2
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R Code for the Log-Likelihood

Mathematical Form:

ln L(β, σ2|y) =
n∑

i=1

T∑
t=1

−1

2

[
lnσ2 +

(yit − Xitβ)2

σ2

]
An R function:

ll.normal <- function(par, X, Y) {

X <- as.matrix(cbind(1, X))

beta <- par[1:ncol(X)]

sigma2 <- exp(par[ncol(X) + 1])

-1/2 * sum( log(sigma2) + ((Y - X %*% beta)^2)/sigma2 )

}

Calling it:

ll.normal(c(2,1,2,1,33,4,3.2),x,y)

ll.normal(c(2,1,2,1,33,4,3.7),x,y)

ll.normal(c(2,1,2,1,33,4,3.5),x,y)
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Quantities of Interest

(Reasons we care about the regression coefficients:

None

)

The posterior distribution of electoral college delegates for the
Democrat.

Expected number of electoral college delegates for the Democrat.

Probability that the Democratic candidate gets more than∑n
i=1 Ei/n > 0.5 proportion of electoral college delegates.
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Predictive distribution of electoral college delegates in 2016

Goal: Simulations of Ei in each state

Should we allocate Ei using the point estimate ŷi ,2016 winner in each
state?
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Predictive distribution of electoral college delegates in 2016

Goal: Simulations of Ei in each state

Draw many simulations of yi ,2016 (ỹi ,2016) from its approximate
posterior distribution for U.S. state i ,
P(yi ,2016|yit , t < 2016;Xit′ , t

′ ≤ 2016), i.e. P(unknown|data).
(Details shortly.)

For each simulation of state i , if yi ,2016 > 0.5 the Democrat “wins”
Ẽi electoral college delegates; otherwise, the Democrat gets 0.

Add the number of electoral college delegates the Democrat wins in
the entire country by adding simulated winnings from each state.

Repeat Steps 1–3 M = 1, 000 times, and plot a histogram of the
results.
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How to draw simulations of yi ,2016?

1. Choose values of explanatory variables. In this case, Xi ,2016

2. Simulate estimation uncertainty:

I Draw θ from its sampling distribution, N(θ̂, V̂ (θ̂)). Label the random
draw θ̃ = {β̃, γ̃}.

I Pull out β̃ and save.
I Pull out γ̃, ”un-reparameterize”, and save σ̃2 = e γ̃

3. Compute the simulated systematic component:

µ̃it = Xi ,2016β̃

4. Add fundamental uncertainty: draw ỹi ,2016 ∼ N(µ̃i ,2016, σ̃
2)
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2)

Stewart (Princeton) Inference Feb 13 74 / 97



How to draw simulations of yi ,2016?

1. Choose values of explanatory variables. In this case, Xi ,2016

2. Simulate estimation uncertainty:
I Draw θ from its sampling distribution, N(θ̂, V̂ (θ̂)). Label the random

draw θ̃ = {β̃, γ̃}.
I Pull out β̃ and save.

I Pull out γ̃, ”un-reparameterize”, and save σ̃2 = e γ̃

3. Compute the simulated systematic component:

µ̃it = Xi ,2016β̃

4. Add fundamental uncertainty: draw ỹi ,2016 ∼ N(µ̃i ,2016, σ̃
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How to do it with a LS Regression Program

1. Run lm of yit on Xit and get β̂ and V (β̂)

2. Draw β randomly from its sampling distribution, N(β|β̂,V (β̂)). Label
the random draw β̃.

3. Draw σ2 from its sampling distribution, 1/χ2(σ̂2,N − k), labeling it σ̃2

4. Either:

I Draw εit from N(0, σ̃2), label it ε̃it and compute: ỹi,2016 = X̃i,2016β̃ + ε̃it
I Or, in our preferred notation, draw ỹi,2016 from N(Xi,2016β̃, σ̃

2)
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2)

Stewart (Princeton) Inference Feb 13 75 / 97



How to do it with a LS Regression Program

1. Run lm of yit on Xit and get β̂ and V (β̂)

2. Draw β randomly from its sampling distribution, N(β|β̂,V (β̂)). Label
the random draw β̃.

3. Draw σ2 from its sampling distribution, 1/χ2(σ̂2,N − k), labeling it σ̃2

4. Either:

I Draw εit from N(0, σ̃2), label it ε̃it and compute: ỹi,2016 = X̃i,2016β̃ + ε̃it
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2)

Stewart (Princeton) Inference Feb 13 75 / 97



How to do it with a LS Regression Program

1. Run lm of yit on Xit and get β̂ and V (β̂)

2. Draw β randomly from its sampling distribution, N(β|β̂,V (β̂)). Label
the random draw β̃.

3. Draw σ2 from its sampling distribution, 1/χ2(σ̂2,N − k), labeling it σ̃2

4. Either:
I Draw εit from N(0, σ̃2), label it ε̃it and compute: ỹi,2016 = X̃i,2016β̃ + ε̃it
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Actual Results for 1992

(calculated before the election by Gelman and King)

(actual results: 69%)
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Variance Function Models

1. Yit ∼ N(yit |µit , σ2
it)

2. µit = xitβ, where xit is a vector of explanatory variables and a constant

3. σ2
it = exp(zitγ), where zit is a vector of explanatory variables possibly

overlapping xit

4. Yit and Yi ′t′ are independent ∀ i 6= i ′ and t 6= t ′, conditional on X and
Z .

The log-likelihood:

ln L(β, σ2|y) =
n∑

i=1

T∑
t=1

−1

2

[
lnσ2 +

(yit − Xitβ)2

σ2

]

=
n∑

i=1

T∑
t=1

−1

2

[
zitγ +

(yit − Xitβ)2

exp(zitγ)

]
• For what applications would this model be informative?
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An Outline of the Research Process

1. These figures are always wild simplifications.

2. Items are roughly in order.

3. You can start at any point.

4. Don’t miss any parts.
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Speculation Time!

Likelihood dominated the 20th century. If I had to prognosticate, I
would guess that empirical Bayes will dominate the 21st century.

Empirical Bayes provides us with ways to share information from
similar cases.

The analyst’s job becomes to specify what cases are similar.

Thus empirical bayes utilizes indirect evidence which is often what we
have available in an era of bigger and bigger datasets.

We will talk about this more in the last couple of weeks.
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1 History

2 Likelihood Inference

3 Bayesian Inference

4 Neyman-Pearson

5 Likelihood Example

6 Properties and Tests

7 Simulation

8 Fun With Bayes
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Probability

Everyone agrees on the axioms of probability. . .

1 Pr(an event in the event space) is greater than, or equal to, zero.

- Pr(E ) ≥ 0

e.g. Pr(you are pregnant) is at least zero.

2 Pr(an event in sample space) is 1.

- Pr(ω) = 1

e.g. a coin will come down ‘heads’ or ‘tails’. . . not ‘sausages’

3 sum of the probability of mutually exclusive events is equal to the
union of the probability of those events:

- Pr(E1
⋃
E2
⋃
. . .) =

∑
Pr(Ei )

e.g. when rolling a die, the probability of a 3 or 5 is just 1
6 + 1

6
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They don’t agree on the nature of probability.

1 for frequentists, probability refers to a long run, limiting frequency:

I relative frequency: probability is the number of successes (heads) out
of the number of trials (coin flips).

I that is, Pr(X = heads) ≈ nx
n = Pr(x), where nx number of trials in

which x occurs, n is number of trials.

I more controversially: for infinite number of trials, the relative frequency
converges to the probability itself

I that is, Pr(x) = limn→∞
nx
n . (appeal to ∞ is not uncontroversial)

I we say heads or tails are equally likely because equal proportions are
what we observe in (very) large number of trials.

I “objective”, dominant paradigm in statistics, and cheerleaders incl
Fischer.
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But. . .

1 we could view probability as subjective . . .

I probability as a personal belief: it need not be constant across all
people at all times (cf. frequentist)

I connected to the idea of a wager: your willingness to bet (possibly your
own money!) on an outcome.

I more objective/axiomatic approaches require that the various beliefs
are not contradictory (e.g. transitivity).

I formally capture the belief(s) via a prior: a distribution of probabilities
over the possible events.

I idea will be to update beliefs (about parameter values) on observing
the data

I example: our prior over a coin’s outcomes (Bernoulli process) might be
p = 1

2 or p = 1
3 or p = 1 (‘degenerate’)— we can then conduct our

trials (the tosses themselves). Alternatively, we might have a prior on
the value of some β̂ in a regression.
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Maximum Likelihood

p(θ|y) =
p(y |θ)p(θ)

p(y)

= p(y |θ)k(y)

∝ p(y |θ)

L(θ|y) = p(y |θ)

There is a fixed, true value of θ, and we maximize the likelihood to
estimate θ and make assumptions to generate uncertainty about our
estimate of θ.
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Bayesian

p(θ|y) =
p(y |θ)p(θ)

p(y)

∝ p(y |θ)p(θ)

θ is a random variable.
I θ is stochastic and changes from time to time.
I θ is truly fixed, but we want to reflect our uncertainty about it.

We have a prior subjective belief about θ, which we update with the
data to form posterior beliefs about θ.

The posterior is a probability distribution that must integrate to 1.

The prior is usually a probability distribution that integrates to 1
(proper prior).
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θ as Fixed versus as a Random Variable

Non-Bayesian approach (θ fixed):

Estimate θ with measures of uncertainty (SE, CIs)

95% Confidence Interval: 95% of the time, θ is in the 95% interval
that is estimated each time.

I P(θ ∈ 95% CI) = 0 or 1

P(θ > 2) = 0 or 1

Bayesian approach (θ random):

Find the posterior distribution of θ.

Take quantities of interest from the distribution (posterior mean,
posterior SD, posterior credible intervals)

We can make probability statements regarding θ.
I 95% Credible Interval: P(θ ∈ 95% CI) = 0.95
I P(θ > 2) = (0, 1)
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Critiques

Posterior = Evidence× Prior

NB: Bayesians introduce priors that are not justifiable.
B: Non-Bayesians are just doing Bayesian statistics with uninformative priors, which may
be equally unjustifiable.

NB: Unjustified Bayesian priors are driving the results.
B: Bayesian results ≈ non-Bayesian results as n gets larger (the data overwhelm the
prior).

NB: Bayesian is too hard. Why use it?
B: Bayesian methods allow us to easily estimate models that are too hard to estimate

(cannot computationally find the MLE) or unidentified (no unique MLE exists) with

non-Bayesian methods. Bayesian methods also allow us to incorporate prior/qualitative

information into the model.
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Running a Model

Non-Bayesian:

1 Specify a probability model
(distribution for Y ).

2 Find MLE θ̂ and measures of
uncertainty (SE, CI). Assume θ̂
follows a (multivariate) normal
distribution.

3 Estimate quantities of interest
analytically or via simulation.

Bayesian:

1 Specify a probability model
(distribution for Y and priors
on θ).

2 Solve for posterior and
summarize it (mean, SD,
credible interval, etc.). We can
do both analytically or via
simulation.

3 Estimate quantities of interest
analytically or via simulation.

There is a Bayesian way to do any non-Bayesian parametric model.
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A Simple (Beta-Binomial) Model: The Canonical Example

You flip a coin 82 times 65 are heads. Suppose the coin is heads with
probability π. Estimate π.

We have 82 Bernoulli observations or one observation Y , where

Y ∼ Binomial(n, π)

with n = 82.

Assumptions:

Each flip is a Bernoulli trial.

The coin has the same probability of landing heads each flip .

The outcomes are independent.
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We can use the beta distribution as a prior for π since it has support over
[0,1].

p(π|y) ∝ p(y |π)p(π)

= Binomial(n, π)× Beta(α, β)

=

(
n

y

)
πy (1− π)(n−y) Γ(α + β)

Γ(α)Γ(β)
π(α−1)(1− π)(β−1)

∝ πy (1− π)(n−y)π(α−1)(1− π)(β−1)

p(π|y) ∝ πy+α−1(1− π)n−y+β−1

The posterior distribution is simply a Beta(y + α, n − y + β) distribution.
Effectively, our prior is just adding α− 1 successes and β − 1 failures to
the dataset.

Bayesian priors are just adding pseudo observations to the data.
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Since we know the posterior is a Beta(y + α, n − y + β) distribution, we
can summarize it analytically or via simulation with the following
quantities:

posterior mean

posterior standard deviation

posterior credible intervals (credible sets)

highest posterior density region

Big Point: Bayesian inference necessitates the estimation of distributions
rather than parameters
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In the previous model, we had

Beta(y + α, n − y + β) =
Binomial(n, π)× Beta(α, β)

p(y)

We knew that the likelihood × prior produced something that looked like a
Beta distribution up to a constant of proportionality.

Since the posterior must be a probability distribution, we know that it is a
Beta distribution and we can easily solve for the normalizing constant
(although we don’t need to since we already have the posterior).

When the posterior is the same distribution family as the prior, we have
conjugacy.

Conjugate models are great because we can find the exact posterior, but...
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The Problem

many real posteriors look like this:
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Example of Useful Prior Information: Girosi and King
(2008)
One nice property of Bayesian analysis is that we can incorporate prior
information about almost anything given a little work.

Generally we put prior on the parameter. But what if we don’t know about
the parameter?

In mortality forecasting we know two key things: (1) mortality looks a lot
alike for different causes and (2) it has a distinctive check shape.
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Example: Girosi and King (2008)

This is a tough problem:

Multidimensional Data Structures: 24 causes of death, 17 age groups,
2 sexes, 191 countries, all for 50 annual observations.

One time series analysis for each of 155,856 cross-sections: with 1
minute to analyze each, one run takes 108 days

Explanatory variables:
I Available in many countries: tobacco consumption, GDP, human

capital, trends, fat consumption, total fertility rates, etc.
I Numerous variables specific to a cause, age group, sex, and country
I Most time series are very short. A majority of countries have only a few

isolated annual observations; only 54 countries have at least 20
observations;

All solved using Bayesian Hierarchical Models! (See Demographic
Forecasting and the YourCast package.
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