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Where We've Been and Where We're Going...

o Last Week
> a week long respite

This Week
» Monday

* introduction
» Wednesday

* probabilistic infrastructure

@ Next Week
» likelihood inference

@ Long Run
» likelihood — GLMs — advanced methods

Questions?
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» Rebecca Johnson
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Welcome and Introductions

@ Soch04: Advanced Social Statistics
@ Your Preceptors

» Rebecca Johnson
» lan Lundberg

@ Any newcomers?
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° Welcome

e Followup
© syllabus

@ Replication Project

© Stochastic and Systematic
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| got the sense that the true test of the final was a philosophical point:
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Interesting Comments on the Final

| got the sense that the true test of the final was a philosophical point:
we were asked not just to recall and apply the many concepts we
learned, but to dwell on the complexities of applying quantitative
methods to study the real world, and the persnickety (and probably
omnipresent) situation of when the numbers look right but the
substantive takeaway is wrong.
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Interesting Comments on the Final

| got the sense that the true test of the final was a philosophical point:
we were asked not just to recall and apply the many concepts we
learned, but to dwell on the complexities of applying quantitative
methods to study the real world, and the persnickety (and probably
omnipresent) situation of when the numbers look right but the
substantive takeaway is wrong. | wondered what you were trying to
show us by constantly having us discover that respected and published
studies were, if not flawed, then at least imperfect. And what does it
really mean for a study to be imperfect?
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Interesting Comments on the Final

| got the sense that the true test of the final was a philosophical point:
we were asked not just to recall and apply the many concepts we
learned, but to dwell on the complexities of applying quantitative
methods to study the real world, and the persnickety (and probably
omnipresent) situation of when the numbers look right but the
substantive takeaway is wrong. | wondered what you were trying to
show us by constantly having us discover that respected and published
studies were, if not flawed, then at least imperfect. And what does it
really mean for a study to be imperfect? | spent a lot of time on some
low point value questions, like fixing the nonlinearity in problem 1. And
because of the more philosophical thing | mentioned above, | was never
really sure whether | had the right answer to something, or whether we
were meant to be sure...
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Interesting Comments on the Final

| got the sense that the true test of the final was a philosophical point:
we were asked not just to recall and apply the many concepts we
learned, but to dwell on the complexities of applying quantitative
methods to study the real world, and the persnickety (and probably
omnipresent) situation of when the numbers look right but the
substantive takeaway is wrong. | wondered what you were trying to
show us by constantly having us discover that respected and published
studies were, if not flawed, then at least imperfect. And what does it
really mean for a study to be imperfect? | spent a lot of time on some
low point value questions, like fixing the nonlinearity in problem 1. And
because of the more philosophical thing | mentioned above, | was never
really sure whether | had the right answer to something, or whether we
were meant to be sure...

| will add though that after reviewing for and taking the final | have
new doubts that | did not have during the semester. | am sure my
classmates feel the same. It'd be great if we could review them in the
Spring at some point.
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@ Be ready to spend a lot of time
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@ Be ready to spend a lot of time

@ Definitely take it! And be prepared to set aside a lot of time for it.
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@ Be ready to spend a lot of time
@ Definitely take it! And be prepared to set aside a lot of time for it.

@ Ask questions if you don't know what's going on!
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Advice from you to you

Be ready to spend a lot of time
Definitely take it! And be prepared to set aside a lot of time for it.

Ask questions if you don’t know what's going on!

Study hard, work hard, review the slides.
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Advice from you to you

Be ready to spend a lot of time

Definitely take it! And be prepared to set aside a lot of time for it.
Ask questions if you don’t know what's going on!

Study hard, work hard, review the slides.

Investing a considerable amount of time in getting familiar with R and
its various tools will pay off in the long run!
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Advice from you to you

Be ready to spend a lot of time
Definitely take it! And be prepared to set aside a lot of time for it.
Ask questions if you don't know what's going on!

Study hard, work hard, review the slides.

Investing a considerable amount of time in getting familiar with R and
its various tools will pay off in the long run!

Go over the lecture slides each week. This can be hard when you feel
like you're threaded water and just staying afloat, but | wish | had
done this regularly.
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Advice from you to you

Be ready to spend a lot of time

Definitely take it! And be prepared to set aside a lot of time for it.
Ask questions if you don't know what's going on!

Study hard, work hard, review the slides.

Investing a considerable amount of time in getting familiar with R and
its various tools will pay off in the long run!
Go over the lecture slides each week. This can be hard when you feel

like you're threaded water and just staying afloat, but | wish | had
done this regularly.

@ It's challenging but very doable and rewarding if you put the time in.
There are plenty of resources to take advantage of for help.
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Advice from you to you

Be ready to spend a lot of time
Definitely take it! And be prepared to set aside a lot of time for it.
Ask questions if you don't know what's going on!

Study hard, work hard, review the slides.

Investing a considerable amount of time in getting familiar with R and
its various tools will pay off in the long run!
Go over the lecture slides each week. This can be hard when you feel

like you're threaded water and just staying afloat, but | wish | had
done this regularly.

@ It's challenging but very doable and rewarding if you put the time in.
There are plenty of resources to take advantage of for help.

Take it, you won't regret it!
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° Welcome

e Followup
© syllabus

@ Replication Project

© Stochastic and Systematic
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» Inference: Using facts you know to learn about facts you don’t know
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@ Specific statistical methods for many research problems

» How to learn (or create) new methods
» Inference: Using facts you know to learn about facts you don’t know

@ How to write a publishable scholarly paper
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What's this course about?

@ Specific statistical methods for many research problems

» How to learn (or create) new methods
» Inference: Using facts you know to learn about facts you don’t know

@ How to write a publishable scholarly paper

@ All the practical tools of research — theory, applications, simulation,
programming, word processing, plumbing, whatever is useful
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What's this course about?

Specific statistical methods for many research problems

» How to learn (or create) new methods
» Inference: Using facts you know to learn about facts you don’t know

How to write a publishable scholarly paper

All the practical tools of research — theory, applications, simulation,
programming, word processing, plumbing, whatever is useful

@ ~ QOutline and class materials:
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What's this course about?

Specific statistical methods for many research problems

» How to learn (or create) new methods
» Inference: Using facts you know to learn about facts you don’t know

How to write a publishable scholarly paper

All the practical tools of research — theory, applications, simulation,
programming, word processing, plumbing, whatever is useful

@ ~» Qutline and class materials:
» The syllabus gives topics, not a strict weekly plan.
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What's this course about?

Specific statistical methods for many research problems

» How to learn (or create) new methods
» Inference: Using facts you know to learn about facts you don’t know

How to write a publishable scholarly paper

All the practical tools of research — theory, applications, simulation,
programming, word processing, plumbing, whatever is useful

@ ~ QOutline and class materials:

» The syllabus gives topics, not a strict weekly plan.
» We will go as fast as possible subject to everyone following along
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What's this course about?

Specific statistical methods for many research problems

» How to learn (or create) new methods
» Inference: Using facts you know to learn about facts you don’t know

How to write a publishable scholarly paper

All the practical tools of research — theory, applications, simulation,
programming, word processing, plumbing, whatever is useful

@ ~ QOutline and class materials:

» The syllabus gives topics, not a strict weekly plan.
» We will go as fast as possible subject to everyone following along
» We cover different amounts of material each week
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» Readings (via Perusall which we will return to)
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» Some key mid-point assignments along the way
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» Readings (via Perusall which we will return to)
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» Long tradition of these being published from similar classes
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> First reading: “Publication, Publication” will help
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Modes of Learning

© Weekly assignments
» Readings (via Perusall which we will return to)
» Problem Sets (likely 8 in total)

@ One “publishable” coauthored paper.
» Long tradition of these being published from similar classes
» Some key mid-point assignments along the way
> First reading: “Publication, Publication” will help
> You won't be alone: you'll work with each other and us
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» Some key mid-point assignments along the way

> First reading: “Publication, Publication” will help

> You won't be alone: you'll work with each other and us

© Participation and collaboration:
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Modes of Learning

© Weekly assignments
» Readings (via Perusall which we will return to)
» Problem Sets (likely 8 in total)
@ One “publishable” coauthored paper.
» Long tradition of these being published from similar classes
» Some key mid-point assignments along the way
> First reading: “Publication, Publication” will help
> You won't be alone: you'll work with each other and us
© Participation and collaboration:
» Come to precept and office hours
» Collaborate for problem sets
» Ask questions
» Build class camaraderie: prepare, participate, help others
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Modes of Learning

© Weekly assignments
» Readings (via Perusall which we will return to)
» Problem Sets (likely 8 in total)

@ One “publishable” coauthored paper.

» Long tradition of these being published from similar classes
» Some key mid-point assignments along the way

> First reading: “Publication, Publication” will help

> You won't be alone: you'll work with each other and us

© Participation and collaboration:

» Come to precept and office hours

» Collaborate for problem sets

» Ask questions

» Build class camaraderie: prepare, participate, help others

@ Help us help you.

Stewart (Princeton) Intro Feb 6

9/36



Course strategy

Stewart (Princeton) Intro



Course strategy

@ We could teach you the latest and greatest methods,
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@ We could teach you the latest and greatest methods, but when you
graduate they will be old

@ We could teach you all the methods that might prove useful during
your career,
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Course strategy

@ We could teach you the latest and greatest methods, but when you
graduate they will be old

@ We could teach you all the methods that might prove useful during
your career, but when you graduate you will be old

@ Instead, we teach you the fundamentals, the underlying theory of
inference, from which statistical models are developed:
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inference, from which statistical models are developed:
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Course strategy

@ We could teach you the latest and greatest methods, but when you
graduate they will be old

@ We could teach you all the methods that might prove useful during
your career, but when you graduate you will be old

@ Instead, we teach you the fundamentals, the underlying theory of
inference, from which statistical models are developed:

» We will reinvent existing methods by creating them from scratch.
» We will learn: its easy to invent new methods too, when needed.
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Course strategy

@ We could teach you the latest and greatest methods, but when you
graduate they will be old

@ We could teach you all the methods that might prove useful during
your career, but when you graduate you will be old

@ Instead, we teach you the fundamentals, the underlying theory of
inference, from which statistical models are developed:
» We will reinvent existing methods by creating them from scratch.
» We will learn: its easy to invent new methods too, when needed.
» The fundamentals help us pick up new methods created by others.
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Course strategy

@ We could teach you the latest and greatest methods, but when you
graduate they will be old

@ We could teach you all the methods that might prove useful during
your career, but when you graduate you will be old

@ Instead, we teach you the fundamentals, the underlying theory of
inference, from which statistical models are developed:

» We will reinvent existing methods by creating them from scratch.
» We will learn: its easy to invent new methods too, when needed.
» The fundamentals help us pick up new methods created by others.

@ This helps us separate the conventions from underlying statistical
theory.
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Perusall Example
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The Evolving Role of Reading

@ Reading is much more essential this semester.
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@ Reading is much more essential this semester.

@ Understanding statistics reading is a bit of a challenge at times.
Biggest advice: don't skip the equations.
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@ Understanding statistics reading is a bit of a challenge at times.
Biggest advice: don't skip the equations.

@ Ask for help on Perusall if you don’t understand pieces.
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The Evolving Role of Reading

@ Reading is much more essential this semester.

@ Understanding statistics reading is a bit of a challenge at times.
Biggest advice: don't skip the equations.

@ Ask for help on Perusall if you don’t understand pieces.

o We will still cover everything in class, but the reading will be
important for complementing your understanding.
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Help

@ Participate in Collaborative Annotation, Piazza, Precept, Office Hours
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Help

@ Participate in Collaborative Annotation, Piazza, Precept, Office Hours
° In—ter—rupt me as often as necessary

@ (Got a dumb question? Assume you are the smartest person in class
and you eventually will be!)
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Help

@ Participate in Collaborative Annotation, Piazza, Precept, Office Hours
° In—ter—rupt me as often as necessary

@ (Got a dumb question? Assume you are the smartest person in class
and you eventually will be!)
@ When are Brandon's office hours?

Stewart (Princeton) Intro Feb 6 14 / 36



Help

@ Participate in Collaborative Annotation, Piazza, Precept, Office Hours
° In—ter—rupt me as often as necessary

@ (Got a dumb question? Assume you are the smartest person in class
and you eventually will be!)
@ When are Brandon's office hours?

» Come whenever you like; if you can't find me or I'm in a meeting, come
back or email any time
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Topics

@ Week 1: Introduction and Theories of Inference
Week 2: Maximum Likelihood Inference

Week 3: Qois and Binary Outcome Models
Week 4: Generalized Linear Models, Probit/Logit
Week 5: Ordered DVs, Zero Inflation

Week 6: Event Counts and Duration Modeling
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Topics
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@ Week 2: Maximum Likelihood Inference

@ Week 3: Qois and Binary Outcome Models

@ Week 4: Generalized Linear Models, Probit/Logit

@ Week 5: Ordered DVs, Zero Inflation

@ Week 6: Event Counts and Duration Modeling

@ Week 7: Mixture Models and Expectation Maximization
@ Week 8: Missing Data
o Week 9: Model Dependence and Matching
@ Week 10: Mediation Analysis
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Topics

@ Week 1: Introduction and Theories of Inference
Week 2: Maximum Likelihood Inference
Week 3: Qois and Binary Outcome Models
Week 4: Generalized Linear Models, Probit/Logit
Week 5: Ordered DVs, Zero Inflation
Week 6: Event Counts and Duration Modeling

Week 8: Missing Data

Week 9: Model Dependence and Matching
Week 10: Mediation Analysis

Week 11: Regularization and Hierarchical Models

°
°
°
°
°
@ Week 7: Mixture Models and Expectation Maximization
°
°
°
°
@ Week 12: Multilevel and Hierarchical Modeling
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Why a Replication Project?

@ A great way to get into writing, publishing research.

@ Helps you see the literature in a new way

@ Prepares you for the 2nd year empirical paper (For Soc grad students)
o Enforces better replicability practices
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Why Replicability?

@ Changes in living standard after
divorce

» for women declines 73%
» for men increases 42%

@ ASA Book Award in 1986 THE UNEXHECTED
@ Between 1986 and 1993, cited SOCIAL r\ND
in 348 social science articles and FC( INOMIC
250 law review articles (( )\\[ ”l [\L[\‘
o Between 1086 and 1993, cited FOR WOMEN
in 24 legal cases and by the
Supreme Court

® e to changes in divorce low in - TSNy R IANV SN VAT

California
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Revisited

A RE-EVALUATION OF THE ECONOMIC
CONSEQUENCES OF DIVORCE"

Richard R. Peterson

Social Science Research Council

Over the last 20 years, researchers have focused considerable attention on
the economic consequences of divorce. One book, Weitzman’s The Divorce
Revolution (1985), reports a 73 percent decline in women’s standard of liv-
ing after divorce and a 42 percent increase in men’s standard of living. These
percentages, based on data from a 1977-1978 Los Angeles sample, are sub-
stantially larger than those from other studies. I replicate The Divorce
Revolution’s analysis and demonstrate that the estimates reported in the
book are inaccurate. This reanalysis, which uses the same sample and mea-
sures of economic well-being as The Divorce Revolution, produces estimates
of a 27 percent decline in women’s standard of living and a 10 percent in-
crease in men’s standard of living after divorce. I discuss the implications of
these results for debates about divorce law reform.
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Revisited

“First, let me begin with Peterson’s implied question: Was this responsible
research and did | meet professional standards in analyzing these data?”
(Weitzman, 1996)
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Revisited

“...Changes to the original raw data file resulting from this data cleaning
process were made by a series of programming statements on a master
SPSS system file. The raw data file that is stored at the Murray Center is
the original 'dirty data’ file and does not include these cleaning
changes...” (Weitzman, 1996)
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Revisited

“Unfortunately, the original cleaned master SPSS system file no longer
exists. | assumed it was being copied and reformatted as | moved for job
changes and fellowships from the project's original offices in Berkeley to
Stanford (in 1979), then to Princeton (in 1983), back to Stanford (in
1984) and then to Harvard (in 1986). With each move, new programmers
worked on the files to accommodate different computer systems.”
(Weitzman,1996)
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Revisited

“Before | left Stanford | instructed my programmers to prepare all my data
files for archiving. | know now (but did not know then) that the original
master SPSS system file that | used for my book had been lost or
damaged at some point and was not included among these files. The
SPSS system file that | thought was the master SPSS system file was the
result of the merging of many smaller subfiles that had been created for
specific analyses. It later became apparent that a programming error had
been made, and the subfiles were not “keyed” correctly: Not all of the
data from each individual respondent were matched on the appropriate
case ID number, and data from different respondents were merged under
the same case ID. At present it is not possible to disentangle exactly what
mismatch occurred for any specific respondent.” (Weitzman, 1996)
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Revisited

“When | could not replicate the analyses in my book with what | had
mistakenly assumed was the archived master SPSS system file, | hired an
independent consultant, Professor Angela Aidala from Columbia
University, to help me untangle what had happened. She reviewed all of
the project files, documentation, and codebooks, as well as the available
data and programming files to determine a possible computational error in
the standard of living statistic. But she could not do this without an
accurate data file to work with. We then went back to the original
questionnaires and recoded a random sample of about 25 percent of the
cases. There were so many discrepancies between the questionnaires and
the 'dirty data’ raw data file, and between the questionnaires and the
mismatched SPSS system file, that we finally abandoned the effort and left
a warning to all future researchers that both files at the Murray Center
were so seriously flawed that they could not be used. It was a very sad,
time consuming, and frustrating experience.”
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Revisited

Here's a good rule of thumb: If you are trying to solve a problem, and
there are multi-billion dollar firms whose entire business model depends on
the solving the same problem, you might want to figure out what the
experts do and see if you can't learn something from it. (Gentkow and
Shapiro 2014)
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How to get started?

@ Start by reading “Publication, Publication”
gking.harvard.edu/files/gking/files/paperspub.pdf
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@ Start by reading “Publication, Publication”
gking.harvard.edu/files/gking/files/paperspub.pdf

@ Peruse the additional notes at http://gking.harvard.edu/papers

@ Find a partner
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gking.harvard.edu/files/gking/files/paperspub.pdf
http://gking.harvard.edu/papers

How to get started?

@ Start by reading “Publication, Publication”
gking.harvard.edu/files/gking/files/paperspub.pdf

@ Peruse the additional notes at http://gking.harvard.edu/papers
@ Find a partner

@ Start looking for data!
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http://gking.harvard.edu/papers

Additional Things to Do

@ Signup for Perusall
@ Readings for Next Monday: pg 6-58 of UPM
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° Welcome

e Followup
© syllabus

@ Replication Project

© Stochastic and Systematic
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Statistical Models: Variable Definitions

@ Dependent (or “outcome”) variable

» Yisnx1l

> yi, a number (after we know it)

> Y;, a random variable (before we know it)

» Commonly misunderstood: a “dependent variable” can be
* a column of numbers in your data set
* the random variable for each unit /.

o Explanatory variables

LTS

» aka “covariates,” “independent,” or “exogenous” variables

» X = {x;} is n x k (observations by variables)
» A set of columns (variables): X = {xy...,x}
» Row (observation) i: x; = {xj1, ..., X}

>

X is fixed (not random).
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Understanding the Alternative Regression Notation

Distribution for observation i Randomly drawn

realization for i
/\ Y4

M
/\ Y,
M2
/\ Y3
'8
/\ y
e

where u;j = X;f.
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Understanding the Alternative Regression Notation

Distribution for observation i Randomly drawn

realization for i
/\ Y4

M
/\ Y,
M2
/\ Y3
'8
/\ y
e

where u;j = X;f.
A Test: Is a histogram of y a test of normality?
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Y; ~ f(0;, ) stochastic
0; = g(Xi, B) systematic

where

Y; random outcome variable
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Generalized Alternative Notation

Yi ~ f(0;, ) stochastic
0; = g(Xi, B) systematic
where
Y; random outcome variable
f(-) probability density
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Generalized Alternative Notation

0; a systematic feature of the density that varies over i

Yi ~ £(0,)
0/ = g(Xia /B)
where
Y; random outcome variable
f(+) probability density
Stewart (Princeton) Intro
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Generalized Alternative Notation
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0; = g(Xi, B) systematic
where
Y; random outcome variable
f(+) probability density
0; a systematic feature of the density that varies over i
« ancillary parameter (feature of the density constant over /)
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Generalized Alternative Notation

Y: ~ f(0;, ) stochastic
0; = g(Xi, ) systematic

where
Y; random outcome variable

f(+) probability density

0; a systematic feature of the density that varies over i
« ancillary parameter (feature of the density constant over /)

g(+) functional form
X; explanatory variables
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Generalized Alternative Notation

Y: ~ f(0;, ) stochastic
0; = g(Xi, ) systematic

where
Y; random outcome variable

f(+) probability density

0; a systematic feature of the density that varies over i

« ancillary parameter (feature of the density constant over /)

g(+) functional form
X; explanatory variables

[ effect parameters
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Y~ (0;,«) stochastic
0; = g(Xi, ) systematic

@ Estimation uncertainty: Lack of knowledge of 3 and «. Vanishes as n
gets larger.
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Y~ (0;,«) stochastic
0; = g(Xi, ) systematic

@ Estimation uncertainty: Lack of knowledge of 3 and «. Vanishes as n
gets larger.

@ Fundamental uncertainty: Represented by the stochastic component.
Exists no matter what the researcher does; no matter how large n is.
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Forms of Uncertainty

Y~ (0;,«) stochastic
0; = g(Xi, ) systematic

@ Estimation uncertainty: Lack of knowledge of 3 and «. Vanishes as n
gets larger.

@ Fundamental uncertainty: Represented by the stochastic component.
Exists no matter what the researcher does; no matter how large n is.

o (A Test: If you know the model, is R? = 17?)
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Systematic Components: Examples

Q o

@ E(Y))=pi=XiB=Po+ b1 Xei+ -+ BiXui
° Pr(Y,-:l)EW,-:He%XiB

V(Y = 0,-2 = X
Interpretation:
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Systematic Components: Examples

Q o

® E(Yi)=pi=Xif= o+ BiXti+ -+ BiXui
° Pr(Y,-:l)EW,-:He%XiB
o V(Y)) =02 =eF

Interpretation:
» Each is a class of functional forms
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Systematic Components: Examples

Q Q
X X =

o E(Y;)=pi=XiB=Po+ Br1Xei+ -+ BiXi
(] Pr(Y’Zl)EF’Zl-&-e%X:ﬂ

o V(Y)) =02 =eF

@ Interpretation:

» Each is a class of functional forms
» Set 3 and it picks out one member of the class
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Systematic Components: Examples

Q [¢]

o E(Y))=pi=XiB=PBo+ B1Xti+ -+ BuXui
° Pr(Y,-zl)Eﬂ,-:lJre%xlﬂ

o V(Y)=0?= NP

@ Interpretation:

» Each is a class of functional forms
» Set 3 and it picks out one member of the class
» (3 in each is an “effect parameter” vector, with different meaning
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Systematic Components: Examples

o We will:
» Assume a class of functional forms (called link functions) from theory
(each form is flexible and maps out many potential relationships)
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Systematic Components: Examples
o We will:

» Assume a class of functional forms (called link functions) from theory
(each form is flexible and maps out many potential relationships)
» Estimate g from data to choose a member of the class

» Be uncertain (Because of sampling, measurement, & fundamental
uncertainties) about:
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Systematic Components: Examples
o We will:

» Assume a class of functional forms (called link functions) from theory
(each form is flexible and maps out many potential relationships)
» Estimate g from data to choose a member of the class
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Systematic Components: Examples

o We will:
» Assume a class of functional forms (called link functions) from theory
(each form is flexible and maps out many potential relationships)
» Estimate [ from data to choose a member of the class
» Be uncertain (Because of sampling, measurement, & fundamental
uncertainties) about:
* the family ~ model dependence
* the member of the chosen family ~» sampling error
@ If we choose the family of functional forms wrong, we:
» Have specification error, and potentially bias
> Still get the best [linear,logit,etc] approximation to the correct
functional form.
» May be close or far from the truth:

actual

best linear

best linear approx M
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@ Normal — continuous, unimodal, symmetric, unbounded

@ Log-normal — continuous, unimodal, skewed, bounded from below by
zero
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Overview of Stochastic Components

Poisson Distribution

01 234567 89101 121314151617 1818
Number of Occurances
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@ Normal — continuous, unimodal, symmetric, unbounded

@ Log-normal — continuous, unimodal, skewed, bounded from below by
zero

@ Bernoulli — discrete, binary outcomes

@ Poisson — discrete, countably infinite on the nonnegative integers
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Choosing systematic and stochastic components

@ If one is bounded, so is the other

@ If the stochastic component is bounded, the systematic component
must be globally nonlinear (though possibly locally linear)

@ All modeling decisions are about the data generation process — how
the information made its way from the world (including how the world
produced the data) to your data set

e What if we don’t know the DGP (& we usually don't)?

» The problem: model dependence
» Our first approach: make “reasonable” assumptions and check fit

(& other observable implications of the assumptions)
> Later:
* Avoid it: relax assumptions
* Detect remaining model dependence
* Remove model dependence: preprocess data
* Characterize behavior under model mispecification

Stewart (Princeton) Intro Feb 6 31/36
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Preview: Generalized Linear Models

@ The models we will learn this semester are created from a choice of
stochastic and systematic components.

@ That is Y; is a (stochastic) function of a systematic component
parameterized by a linear predictor, X,Tﬂ

@ They share many nice properties that let us map insights from regression
onto new models.

@ 3 components of a GLM
@ Systematic component: X,

* Must be a linear function of X;

@ Random component: f(Y;6,a)
* 0 is called the canonical parameter
* «: is called the dispersion parameter

© Link function: g(u;) = X, B where p; = E(Y; | X;)

* Must be monotonic and differentiable wrt w;
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One Step Deeper: Exponential Family

Nearly every distribution we will discuss is in the exponential family. An
exponential family distribution has the density of the following form:

b(0)

fr(y;0,¢) = exp {ye—(—

o e}
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fr(vi0,9) = exp {y—e _( 20)

o e}

Example: Poisson(u):

Pr(Yi=y|u) = exp{ylogu — exp(logpu)—logy!}

= 0 =logu, » =1, a(¢) = ¢, b(0) = exp(), and ¢ = —log y!
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One Step Deeper: Exponential Family

Nearly every distribution we will discuss is in the exponential family. An
exponential family distribution has the density of the following form:

y0 — b(0)

fy(y:0,9) = exp { 200)

+ 0]

Example: Poisson(u):

Pr(Yi=y|p) = exp{ylogu — exp(logpu)— logy!'}
= 0 =logu, » =1, a(¢) = ¢, b(0) = exp(), and ¢ = —log y!
Many other examples, including: Normal, Bernoulli/binomial, Gamma,

multinomial, exponential, negative binomial, beta, uniform, chi-squared,
etc.
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@ Mean is a function of 6 and given by

E(Y) = u = b(0)
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One Step Deeper: Properties of the Exponential Family

@ Mean is a function of 6 and given by

E(Y) = u = b(0)

@ Variance is a function of 8 and ¢ and given by
V(Y) = Vv = b'(0)a(¢)
e Common forms of a(¢): 1 (Poisson, Bernoulli), ¢ (normal, Gamma),
and ¢/w; (binomial)
e b"(0) is called the variance function
@ In the Poisson model, 6; = log 11;, a(¢) = 1 and b(6;) = exp(6;)

= E(Y;) = %99;1') = exp(0;) = pj and V(Y;) = dzdb—e(if’) =exp(0;) = pi
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One Step Deeper: Link Functions

e Link function: g(u;) = X' 8
@ Defines the relationship between X,-Tﬂ and the mean p;

@ Must map the real line onto the possible range of u;
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Link function: g(u;) = X;' 8
Defines the relationship between X,-TB and the mean p;

Must map the real line onto the possible range of y;

Recall that p; = b/(6))
Therefore, 0; is always a (often simple) function of X,.Tﬂ

In particular, when 6; = X,-Tﬁ, the link is called the canonical link
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One Step Deeper: Link Functions

Link function: g(u;) = X;' 8
Defines the relationship between X,-TB and the mean p;

Must map the real line onto the possible range of y;

Recall that p; = b'(6;)

Therefore, 0; is always a (often simple) function of X,.T/B

In particular, when 6; = X,-Tﬁ, the link is called the canonical link
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One Step Deeper: Link Functions

Link function: g(u;) = X;' 8

Defines the relationship between X,-TB and the mean u;

Must map the real line onto the possible range of y;

Recall that p; = b/(6))
Therefore, 6; is always a (often simple) function of X;" 3

In particular, when 6; = X,-Tﬁ, the link is called the canonical link

» In Poisson, 0; = log(u;) = log(exp(X;" 8)) = X; B

1

— exp~ " = log is the canonical link function

Must be monotonic and differentiable

This allows us to express the mean function as: p; = g (X" )
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