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Brandon Stewart1
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March 27- April 5, 2017

1The EM section draws on some slides from Justin Grimmer, Patrick Lam and
generations of teaching assistants for Gov2001 at Harvard. The missing data section
draws heavily on slides from Gary King. The measurement error section draws heavily on
slides from Matt Blackwell.
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Readings

Monday (Mixture Models)

I Imai, Kosuke, and Dustin Tingley. ”A statistical method for empirical testing of
competing theories.” American Journal of Political Science 56.1 (2012): 218-236.

I Bishop, Christopher. Pattern Recognition and Machine Learning (2006). Chapter
9.1-9.2

I Garip, Filiz. ”Discovering diverse mechanisms of migration: The Mexico-US Stream
1970-2000.” Population and Development Review 38.3 (2012): 393-433. (Optional)

Wednesday (EM)

I Bishop, Christopher. Pattern Recognition and Machine Learning (2006). Chapter 9
(Optional)

Monday (Missing Data)

I King, Gary; James Honaker; Ann Joseph; Kenneth Scheve. 2001. “Analyzing
Incomplete Political Science Data: An Alternative Algorithm for Multiple
Imputation,” American Political Science Review 95, 1 (March 2001): 49-69.

I James Honaker and Gary King. “What to do about Missing Values in Time Series
Cross-Section Data,” American Journal of Political Science 54, 2 (April, 2010):
561-581 (Optional)

Wednesday (Missing Data)

I Blackwell, Matthew, James Honaker, and Gary King. 2014. “A Unified Approach to
Measurement Error and Missing Data: Overview, Details and Extensions”
Sociological Methods and Research (Optional)
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1 Mixture Models
Basic Mixtures
Application: Mixtures as Preprocessing
Application: Mixture of Regressions

2 Expectation Maximization
EM for Probit Regression
EM for Gaussian Mixtures
EM in General

3 Missing Data
Motivating Example
Overview and Assumptions
Existing Heuristics
Application Specific Approaches
Multiple Imputation
The Full Amelia Scheme

4 Measurement Error

5 Appendix: Additional Details and Examples
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Old Faithful

Old Faithful Eruption Times

Eruption Length
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Old Faithful

How do we summarize? No handy distribution

We can try fitting a normal but the fit is poor

If you squint, it looks like two different normals
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Mixture Models

Mixtures allow us to represent a more complex data generating
process

Working backwards, we want two normal distributions. Let’s
introduce zi ∈ {1, 2} to indicate which normal distribution
observation i comes from.

When zi = 1 we see p(yi |zi = 1) ∼ N (µ1, σ
2
1)

When zi = 2 we see p(yi |zi = 2) ∼ N (µ2, σ
2
2)

To complete the model we give zi a distribution zi ∼Bernoulli(π)

Our goal is to estimate µ1, µ2, σ
2
1, σ

2
2, π

However, we don’t observe zi , this is a type of missing data.
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Mixture Models

Old Faithful Eruption Times
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Mixture Models

Notice that we don’t need the z variable indicators at all, they are
just a convenience for specifying the model

We can write the log likelihood as

` =
∑
i

(
log

(∑
k

πkN (xi |µk , σ2
k)

))

This is hard to solve due to the summation inside the log

By introducing the missing variables z , we make it easier to estimate
the parameters. This is called data augmentation.

This problem was easy because the components are well separated.
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A Harder Problem

Student Heights

Height in cm
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Some distributions have less clear separation
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A Harder Problem

Height by Sex
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Bimodality here arises due to gender
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The mixture model sort of captures this
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The true distributions are more peaked with fatter tails
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A Harder Problem

Probabilities of Membership in Cluster 1 By Sex

Probability
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One component captures all the women but also many men

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 9 / 200



Multiple Dimensions

This strategy also works in more than one dimension

Now the cluster indicator indexes a multivariate distribution

This fits the data reasonable well
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Multiple Dimensions
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The Gist of Computation

(a)−2 0 2
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From Bishop (2006) Chapter 9
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The Gist of Computation

(f)
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Mixture Models Can Have Many Components
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Mixture Models Can Have Many Components

(a)
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Imagine we draw from data with a 3 component mixture
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Mixture Models Can Have Many Components

(b)
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We observe only the data without the labels
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Mixture Models Can Have Many Components

(c)
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But we can still infer the components well
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Basic Mixtures

Simple mixture models can be a useful way to model complicated
distributions

We saw a heuristic version of the computation, it is a form of a
general algorithm called Expectation Maximization (EM) which will
be useful in many contexts

Estimation leverages the idea of data augmentation which also shows
up in a number of areas of computational statistics

The mixture model framework can also be used in various other
models

For example, Latent Class Analysis is a mixture of multinomials model
commonly used to analyze surveys
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Two Applications

Garip (2012) “Discovering Diverse Mechanisms of Migration: The
Mexico-U.S. Stream 1970-2000”

Imai and Tingley (2012) “A Statistical Method for Empirical Testing
of Competing Theories”

Two articles motivated from a common methodological place

Both use mixtures in the context of regression
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Multiple Mechanisms of Migration

Massey et al (1993, 1994, 1998) argue that multiple mechanisms
drive migrants. There can be migrants who are income-maximizing
and those attracted by family. These are not mutually exclusive.

Massey and Espinosa (1997) test in the Mexico-U.S. setting by
putting a bunch of variables in a regression to see which best
predicted the outcome.

This treats explanations as competing and thus is inconsistent with
the theory (which says different migrants can be motivated by
different things).

Instead we would prefer to identify the unknown groups of migrants
who are best explained by each theory.

We are interested in heterogeneity which is masked by missing groups.
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Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:

1 the relevant attributes
2 an algorithm
3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:

1 the relevant attributes
2 an algorithm
3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:

1 the relevant attributes
2 an algorithm
3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:

1 the relevant attributes
2 an algorithm
3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:
1 the relevant attributes

2 an algorithm
3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:
1 the relevant attributes
2 an algorithm

3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:
1 the relevant attributes
2 an algorithm
3 a similarity measure

4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:
1 the relevant attributes
2 an algorithm
3 a similarity measure
4 number of clusters or mixture components

5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:
1 the relevant attributes
2 an algorithm
3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Garip (2012)

Garip (2012) uses the Mexican Migration Project data and discovers
four types of migrants.

The approach is algorithmic rather than probabilistic, i.e. the task is
framed as an optimization problem rather than a data generating
process.

Each type of identified migrant has a distinct configuration of
individual, household and community characteristics

Garip (2012) outlines the steps in cluster analysis as choosing:
1 the relevant attributes
2 an algorithm
3 a similarity measure
4 number of clusters or mixture components
5 validation strategy

After dividing the units, separate regressions are estimated for each
cluster.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 16 / 200



Details

Garip (2012) uses an iterative clustering algorithm related to k-means
which minimizes the sum of distances between data points and a
cluster center.

What do algorithmic methods like k-means assume about the data?

k-means assumes a distance metric and an objective function. This
has a close connection to a probabilistic model. Different
assumptions, but same underlying idea.

Garip (2012) uses the “city block” or Manhattan distance which
minimizes L1 distance rather than the Euclidean distance
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Connections: k-means and Gaussian Mixtures

We started class with the example of a mixture model with Normally
distributed components, often called a Gaussian Mixture Model
(GMM)

k-means typically minimizes the L2 (Euclidean distance) which shares
the squared-loss objective with the Gaussian distribution.

We can obtain a correspondence between the two using
small-variance asymptotics. As the covariances of the Gaussian go to
zero, the EM algorithm for the GMM ; k-means (Banerjee et al
2005, Kulis and Jordan 2012).

There is often a correspondence between probabilistic models and
popular distance-based algorithms.

This emphasizes the connections between an assumptions about a
distance or loss function and an assumption about the model.
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zero, the EM algorithm for the GMM ; k-means (Banerjee et al
2005, Kulis and Jordan 2012).

There is often a correspondence between probabilistic models and
popular distance-based algorithms.
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Results

Discovers four clusters and labels them: Income Maximizers, Risk
Diversifiers, Network Migrants, Urban Migrants

Estimates regressions for each of the four groups separately.

Examines temporal trends for each (e.g. income maximizers come in
early 1970s but decline over time).

Finds that time trends in migrant types track closely with the
introduction of new theory, i.e. theory describes the dominant
empirical trend at the time of introduction.

Big advance in our understanding with a data-driven approach!
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Next Steps

Garip (2012) uses clustering as a tool for discovery.

Can the tool (clustering and regressing) be refined further?
Is there a tool that. . .

incorporates uncertainty in the clustering

does not encourage equal-sized clusters

explicitly clusters heterogeneity in migrant mechanisms instead of
heterogeneity in migrant characteristics.

Is there a model optimized for finding heterogeneous mechanisms?
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Mixtures of Regressions

Like Garip (2012), Imai and Tingley (2012) criticize the competing
variable regression approach to theory testing.

Imai and Tingley turn to mixtures of regressions, each observation is
explained by one of K regression models (or more generally all
observations are defined by a common set of weights π).

Each of these regressions can have the same or different sets of
explanatory variables.

Thus we have the log-likelihood

` =
N∑
i=1

log

(
K∑

k=1

πk fk(Yi |Xi , θk)

)
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The Applied Problem

Hiscox (2002) wants to explain legislative voting on trade bills

Two canonical theories:

I Stolper-Samuelson (SS) ; factor owners will support trade
liberalization

I Ricardo-Viner (RV) ; exporting sectors will support trade liberalization

Hiscox (2002) hypothesis that voting explained on the factor
specificity in the U.S. economy at that time

Test by dividing up data in time and shows that liberalization best
accounted for by SS when specificity is low, reverse for RV

Any one division in time open to critique- can we do better?
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Testing Competing Theories

We can now specify a mixture of two regressions, one for each theory
(RV and SS)

To test Hiscox theory that the choice is driven by factor specificity, we
can parameterize the indicator Zi as:

P(Zi = m|Wi ) = πm(Wi , ψm)

After fitting the model we know how well each theory predicts each
observation, as well as what covariates are associated with that theory
choice

They find that evidence for Hiscox’s hypothesis is fairly weak and
more data is necessary for a strong test.

They also find more interpretable results with all coefficients in the
expected directions from the theory
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Pitfalls in Mixture Modeling

Discovered groups don’t necessarily correspond to a desired latent
indicator (e.g. the height example)

The models are not identified due to label-switching

Even beyond label-switching, the likelihoods have multiple local
maxima

Estimation is difficult and the likelihood can have infinite spikes

It is difficult to choose the number of clusters/components
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The Promise of Mixture Modeling

We can discover latent groups giving us new theoretical insights,
methods to test theories, and discovery of heterogeneity

Mixtures are more flexible models of complex distributions

The mixture infrastructure is modular and can be plugged into many
other model setups
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Overview

Expectation-Maximization (EM) is a very general algorithm for
maximizing a likelihood in the presence of missing data

Often we use it when the missingness comes from data augmentation
where we introduce a latent variable to make computation more
straightforward

Core Idea:
I if we knew the latent variable estimating the model parameters would

be easy,
I if we knew the model parameters estimating the latent variables would

be easy.

EM has two steps which are iterated:
I E-Step: update the latent variables by taking the expectation
I M-Step: update the model parameters by maximizing the complete

data likelihood

We will step through a few cases to see how this works.
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Review of the Probit Latent Regression Formulation

Let Y ∗i ∼ P(y∗i |µi ) where µi = Xiβ and assume that we only observe

Yi =

{
1 if y∗i ≥ τ
0 if y∗i < τ

For the probit model, P(·) = N (µi , σ
2). Typically assume that τ = 0 and

σ = 1 in order to fit the model.
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The Intuition

What if we observed Y ∗i ?

Y ∗i = Xβ + εi

How do we estimate β?

β̂ = (X ′X )−1X ′Y ∗

But oh yeah, we don’t know Y ∗i
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The Intuition

What if we knew β?

Y ∗i = Xiβ + εi

We still wouldn’t know Y ∗i but we could calculate E (Y ∗i |yi ,Xi , β)

E (Y ∗i |yi ,Xi , β) = E (Xiβ + εi |yi ,Xi , β)

= E (Xiβ|yi ,Xi , β) + E (εi |yi ,Xi , β)

= Xiβ + E (εi |yi ,Xi , β)

We’ll come back to that last part in a second.
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The Intuition

This suggests an iterative procedure where we make up some data (called
data augmentation). So we start with some plausible initial values of β
which we will call βt .

1 E-Step Take the expectation of the latent variable conditional on the
current value of the parameters to impute the missing data.
y∗,ti = E (Y ∗i |yi ,Xi , β

t)

2 M-Step Maximize the complete data log-likelihood.
β(t+1) = (X ′X )−1X ′y∗,t .

3 Increment until convergence.
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The EM Algorithm

This is called the EM (Expectation-Maximization) Algorithm. It is due to
Dempster, Laird and Rubin 1977.

Some Useful Facts:

1 This is a mode finding algorithm so it will retrieve the exact
maximum likelihood estimates.

2 Each step will generate a higher (or constant) likelihood.

3 It is guaranteed to converge under very general conditions.
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The EM Algorithm for the Probit Case
So we know our algorithm has two major steps. But what are they?

1 Posit some initial values of βt

2 Calculate the E (Y ∗i |yi ,Xi , β
t)

E (Y ∗
i |yi ,Xi , β

t) = E (Xiβ
t + εi |yi ,Xi , β)

= Xiβ
t + E (εi |yi ,Xi , β)

= Xiβ
t +

(
−φi (−Xiβ

t)

Φi (−Xiβt)

)(1−yi )( φi (−Xiβ
t)

(1− Φi (−Xiβt))

)yi

3 Calculate the estimate for βt+1 using the complete data.

β̂(t+1) = (X ′X )−1X ′E (Y ∗i |yi ,Xi , β
t)

4 Repeat Steps 2-3 Until Convergence.

Note that the E (εi ) is related to the truncated normal, because we have
information about the sign from yi .
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The EM Algorithm

Note that this is a really high-level, heuristic view of EM. The steps are
always the same though:

1 Identify the latent variables Z and the parameters θ.

2 Identify the target density (called the Q function)

Q(θ, θ(t)) =

∫
p(Z |θ(t),Y )log p(Z ,Y |θ)dZ

3 E-step: compute Z (t) = E (Z |θ(t),Y )

4 M-step: maximize the complete data log-likelihood.
θ(t+1) = argmax

θ
Q(θ, θt)

5 Assess convergence either by changes in parameters or the
log-likelihood.
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Example 2: Mixtures

Single distribution data generating process:

x i ∼ Distribution(parameters)

Mixture of distribution data generating process:

z i |π ∼ Multinomial(1,π)

x i |zik = 1 ∼ Distribution(parametersk)

In words:

Draw a cluster label

Given distribution, draw realization
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Gaussian Mixture

z i |π ∼ Multinomial(1,π)

x i |zik = 1,µk ,Σk ∼ Normal(µk ,Σk)

This leads to the likelihood:

p(x) =
∑
z

p(z)p(x |z)

=
K∑

k=1

πkN (x |µk ,Σk)
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Algorithm for the Gaussian Mixture

1) Initialize parameters µt ,Σt , πt

2) Expectation step: compute ‘responsibilities’ p(z i |µt ,Σt ,πt ,X ) ; r ti

rik =
πkN (xi |µk ,Σk)∑
k ′ πk ′N (xi |µk ′ ,Σk ′)

3) Maximization step: maximize with respect to µ,Σ and π:

Ez [log p(x, z |µk ,Σk ,π)] = Ez

[
log

(
N∏
i=1

K∏
k=1

π
znk
k N (xn|µk ,Σk )znk

)]

= Ez

[
N∑

n=1

K∑
k=1

znk [log πkN (xn|µk ,Σk )]

]

Obtain µt+1
k ,Σt+1

k , πt+1

4) Assess change in the log-likelihood
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The EM Algorithm in Words

Consider a model for observed data x that is accompanied by a latent z . A
model with parameters θ describes the joint distribution of x and z , as
p(x , z |θ).

Under the maximum likelihood framework we want to find θ which
maximizes:

p(x |θ) =

∫
p(x , z |θ)dz

We assume that maximizing the likelihood isn’t easy but we can find θ to
maximize p(x , z |θ) for known x , z .

We know x and so we plug in our best guess of z , the expectation.
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The EM Algorithm in Math

1) Initialize parameters θt

2) E step: Using the current value of the parameter θ compute the
expected value of the log-likelihood with respect to the conditional
distribution of Z |X

Q(θ|θt) = EZ |X ,θt [logp(X ,Z |θ)] (4)

3) M step: maximize the Q function:

θ(t+1) = argmax
θ

Q(θ|θt) (5)

4) Assess change in the log likelihood, iterate 2-3 as necessary
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EM Summary

Expectation-Maximization is a very general algorithm that can solve
many optimization problems

Works with missing data or latent variables

Will play a key role in discussion of missing data

Many variants for dealing with complicated Q functions etc.

Related to many approaches in Bayesian computing.
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The Slovenian Plebiscite (Rubin, Stern and Vehovar, 1995)

In 1990, the Government of Slovenia (at that point, one of several
republics within Yugoslavia) administered a poll to determine the extent of
support for an upcoming plebiscite on Slovenian independence.

Passage of the plebiscite required that at least 50% of eligible Slovenian
voters both turn out and vote for independence.

Here are the survey results (n = 2074):

Independence
Attendance Yes No DK

Yes 1439 78 159
No 16 16 32
DK 144 54 136
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Quantities of Interest

We might assume that all of the “don’t know” folks do in fact have some
intentions. We are interested in the proportion of the population in each
of the four groups.

Independence
Attendance Yes No

Yes θ11 θ12

No θ21 θ22

Here the first subscript refers to the attendance question and the second
to the independence question.
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Some Possible Estimates

Our quantity of interest is the proportion of individuals in the population
who both support independence and will attend the plebiscite.

There are a
few possible estimators:

1. Deletion estimator: the proportion is θ̂11 = 1439
1439+78+16+16 = .929.

Strongly assume that people who “don’t know” will change their
preferences to reflect those who do.

2. Conservative estimator: assume that people answering “don’t know”
are simply trying to avoid revealing an unpopular opinion, so
θ̂11 = 1439

1549+525 = .6938.

3. Make some other set of behavioral assumptions about the different
missingness blocs.

4. Imputation estimator: assert that the missingness is determined only
by the observed values and then attempt to impute the missing data.
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Imputation

Here’s the data again, with the proportion of observed data filled in.

Independence
Attendance Yes No DK

Yes 1439 (.928) 78 (.050) 159
No 16 (.010) 16 (.010) 32
DK 144 54 136
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Imputation

Well, among fully observed individuals we can see that .928
.928+.050 = .949 of

the A-Y folks will vote I-Y.

So we might guess the same for those who
didn’t answer the independence question.

E [A−Y, I−Y′s among A−Y, I−DK′s] = 159 ∗ .949 = 150.87.

This means that the expected number of I-N votes among A-Y,I-DK is
now 159− 150.87 = 8.13.

We can do exactly the same set of calculations for the other three “don’t
know” groups to impute the missing data.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 48 / 200



Imputation

Well, among fully observed individuals we can see that .928
.928+.050 = .949 of

the A-Y folks will vote I-Y. So we might guess the same for those who
didn’t answer the independence question.

E [A−Y, I−Y′s among A−Y, I−DK′s] = 159 ∗ .949 = 150.87.

This means that the expected number of I-N votes among A-Y,I-DK is
now 159− 150.87 = 8.13.

We can do exactly the same set of calculations for the other three “don’t
know” groups to impute the missing data.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 48 / 200



Imputation

Well, among fully observed individuals we can see that .928
.928+.050 = .949 of

the A-Y folks will vote I-Y. So we might guess the same for those who
didn’t answer the independence question.

E [A−Y, I−Y′s among A−Y, I−DK′s] = 159 ∗ .949 = 150.87.

This means that the expected number of I-N votes among A-Y,I-DK is
now 159− 150.87 = 8.13.

We can do exactly the same set of calculations for the other three “don’t
know” groups to impute the missing data.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 48 / 200



Imputation

Well, among fully observed individuals we can see that .928
.928+.050 = .949 of

the A-Y folks will vote I-Y. So we might guess the same for those who
didn’t answer the independence question.

E [A−Y, I−Y′s among A−Y, I−DK′s] = 159 ∗ .949 = 150.87.

This means that the expected number of I-N votes among A-Y,I-DK is
now 159− 150.87 = 8.13.

We can do exactly the same set of calculations for the other three “don’t
know” groups to impute the missing data.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 48 / 200



Imputation

Well, among fully observed individuals we can see that .928
.928+.050 = .949 of

the A-Y folks will vote I-Y. So we might guess the same for those who
didn’t answer the independence question.

E [A−Y, I−Y′s among A−Y, I−DK′s] = 159 ∗ .949 = 150.87.

This means that the expected number of I-N votes among A-Y,I-DK is
now 159− 150.87 = 8.13.

We can do exactly the same set of calculations for the other three “don’t
know” groups to impute the missing data.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 48 / 200



Imputation: An Updated Sense of the Proportions?

Independence
Attendance Yes No

Yes 1439 + 150.87 + 142.42 78 + 8.12 + 44.81
.896 .066

No 16 + 16 + 1.58 16 + 16 + 9.19
.017 .020

Table: Imputations for I-DK’s in red; imputations based on A-DK’s in blue.

We have made a guess of missing values based on estimates of population
parameters θ. What would be a suitable next step?
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Iteration

We can now use our updated (and, in fact, improved) estimate of the
population proportions in order to re-impute the missing data using the
same approach as before.

Once we have updated our best guess of how the various DK people will
vote, then we can re-estimate the population proportions.

We can iterate this approach until our estimates of the population
proportions converge to a stable maximum.
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Iterations

Here are the trace plots showing how the estimates of the θ evolve
through the iterations:

iteration
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A Final Estimate

After running the algorithm for 30 iterations, the final estimate for θ11 was
θ̂11 = .892.

Recall that our original deletion estimator estimate was .928.

Two weeks after this survey was conducted the plebiscite was held, and it
turned out that 88.5% of eligible voters turned out and voted for
independence.

Neat!
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Missing Data Overview

Missing data is a common problem in applied work

Most of the solutions will turn on assumptions about the mechanism
that drives the missingness, much as our discussion of causal
inference turned on our ability to describe the assignment mechanism

There are many biased or inefficient missing data practices:
I making up numbers e.g. changing an opinion question to “don’t know”
I listwise deletion e.g. most widely used and statistical software default
I indicator variables e.g. including a dummy variable for missing

observations
I many other ad hoc approaches

There are three general approaches:
I Imputation: methods for filling in values
I Sensitivity: tests for variation in results
I Bounds: determining the range of possible values under different

missingness strategies

We will (mostly) focus on imputation
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The Goal of Missing Data Analysis is Population Inference

Missing data is a nuisance for applied work and it is easy to lose sight
of the ultimate goal

We want to make a population inference, not to estimate, predict or
recover missing observations.

Even though we may occasionally check our procedures this way, our
goal isn’t really to reproduce the results of the complete data analysis

Mean imputation (replacing missing data with the population mean)
may be reasonably predictive of the missing data by some metric, but
it distorts the variances and covariances which are key to inference.

In this sense- we cannot really separate the missing data procedure
from the inferential goal of the analysis
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Missingness Notation

D =



1 2.5 432 0
5 3.2 543 1
2 7.4 219 1
6 1.9 234 1
3 1.2 108 0
0 7.7 95 1

 , M =



1 1 1 1
1 1 1 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 1 1


Dmis = missing elements in D (in Red)
Dobs = observed elements in D

; Missing elements must exist (what’s your view on the National Helium
Reserve?)

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 56 / 200



Missingness Notation

D =



1 2.5 432 0
5 3.2 543 1
2 7.4 219 1
6 1.9 234 1
3 1.2 108 0
0 7.7 95 1

 , M =



1 1 1 1
1 1 1 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 1 1



Dmis = missing elements in D (in Red)
Dobs = observed elements in D

; Missing elements must exist (what’s your view on the National Helium
Reserve?)

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 56 / 200



Missingness Notation

D =



1 2.5 432 0
5 3.2 543 1
2 7.4 219 1
6 1.9 234 1
3 1.2 108 0
0 7.7 95 1

 , M =



1 1 1 1
1 1 1 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 1 1


Dmis = missing elements in D (in Red)

Dobs = observed elements in D

; Missing elements must exist (what’s your view on the National Helium
Reserve?)

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 56 / 200



Missingness Notation

D =



1 2.5 432 0
5 3.2 543 1
2 7.4 219 1
6 1.9 234 1
3 1.2 108 0
0 7.7 95 1

 , M =



1 1 1 1
1 1 1 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 1 1


Dmis = missing elements in D (in Red)
Dobs = observed elements in D

; Missing elements must exist (what’s your view on the National Helium
Reserve?)

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 56 / 200



Missingness Notation

D =



1 2.5 432 0
5 3.2 543 1
2 7.4 219 1
6 1.9 234 1
3 1.2 108 0
0 7.7 95 1

 , M =



1 1 1 1
1 1 1 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 1 1


Dmis = missing elements in D (in Red)
Dobs = observed elements in D

; Missing elements must exist (what’s your view on the National Helium
Reserve?)

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 56 / 200



What Can Be Learned With Minimal Assumptions

We will introduce a powerful set of assumptions which suggest
alternate strategies

To motivate these assumptions, let’s consider what can be learned
with very few assumptions using the framework of sharp Manski
bounds (see e.g. Aronow and Miller Chapter 4)

Assumptions: Yi is bounded with support [a, b] and we assume stable
outcomes Y ∗i = YiMi + (NA)(1−Mi ) which simply suggests that the
Yi is stable (e.g. regardless of how the question is asked or who
responded).

We obtain sharp bounds for E [Y ] by first plugging in a for all missing
values to get the lower bound, followed by plugging in b for all
missing values to get the upper bound.

This leaves our quantity set identified as opposed to our usual point
identified, without further assumptions we can do no better.

This only works with bounded support and becomes much harder
with missingness on many variables
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Possible Further Assumptions

You can predict
Assumption Acronym M with:

Missing Completely At Random MCAR —
Missing At Random MAR Dobs

Nonignorable NI Dobs & Dmis

• Reasons for the odd terminology are historical.
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Missingness Assumptions, again

1. MCAR: Coin flips determine whether to answer survey questions (naive)

P(M|D) = P(M)

2. MAR: missingness is a function of measured variables (empirical)

P(M|D) ≡ P(M|Dobs ,Dmis) = P(M|Dobs)

I e.g., Independents are less likely to answer vote choice question (with
PID measured)

I e.g., Some occupations are less likely to answer the income question
(with occupation measured)

3. NI: missingness depends on unobservables (fatalistic)

I P(M|D) doesn’t simplify
I e.g., censoring income if income is > $100K and you can’t predict high

income with other measured variables
I Adding variables to predict income can change NI to MAR
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Existing General Purpose Missing Data Methods

Fill in or delete the missing data, and then act as if there were no missing
data. None work in general under MAR.

Methods which discard data

1. Listwise Deletion (aka complete case)
empirically RMSE is 1 SE off if MCAR holds; biased under MAR

2. Pairwise Deletion
assumes MCAR; can have numerical stability problems

3. Available Case (aka using only completely observed variables)
induces omitted variable bias

4. Nonresponse Weighting (including HT weights, Hajek weights)
unbiased and consistent but inefficient and high variability in small
samples
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Simple approaches which retain all the data

5. Mean Imputation
severely distorts distribution, pulls correlations to zero

6. Best guess imputation or logical rules
depends on guesser/logic

7. Indicator for Continuous Variable (aka dummy for missingness)
biased on other predictors, can include interactions between indicators
and other predictors which leads to complete case style behavior

8. “Missing” Category for Categorical Variable
simple and often useful but differential rates in how missingness spreads
over categories could cause bias
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Random Imputation for one variable

9. Simple Random Imputation
ignores useful information, helpful as a starting point

10. Hot Deck Imputation (aka matching imputation)
consistent but otherwise bad: inefficient, standard errors wrong
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11. ŷ Regression Imputation (aka regression deterministic)
optimistic: scatter when observed, perfectly linear when unobserved;
SEs too small

12. ŷ + ε regression imputation (aka regression predictive)
assumes no estimation uncertainty, does not help for scattered
missingness
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11. ŷ Regression Imputation (aka regression deterministic)
optimistic: scatter when observed, perfectly linear when unobserved;
SEs too small
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Application-specific Methods for Missing Data

1. Base inferences on the likelihood function or posterior distribution, by
conditioning on observed data only, P(θ|Yobs).

2. E.g., models of censoring, truncation, etc.

3. Optimal theoretically, if specification is correct

4. Not robust (i.e., sensitive to distributional assumptions), a problem if
model is incorrect

5. Often difficult practically

6. Very difficult with missingness scattered through X and Y
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How to create application-specific methods?

1. We observe M always. Suppose we also see all the contents of D.

2. Then the likelihood is

P(D,M|θ, γ) = P(D|θ)P(M|D, γ),

the likelihood if D were observed, and the model for missingness.

I If D and M are observed, when can we drop P(M|D, γ)?
I Stochastic and parametric independence

3. Suppose now D is observed (as usual) only when M is 1.
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4. Then the likelihood integrates out the missing observations

P(Dobs ,M|θ, γ) =

∫
P(D|θ)P(M|D, γ)dDmis

and if assume MAR (D and M are stochastically and parametrically
independent), then

= P(Dobs |θ)P(M|Dobs , γ),

∝ P(Dobs |θ)

because P(M|Dobs , γ) is constant w.r.t. θ

5. Without the MAR assumption, the missingness model can’t be
dropped; it is NI (i.e., you can’t ignore the model for M)

6. Specifying the missingness mechanism is hard. Little theory is available

7. NI models (Heckman, many others) haven’t always done well when
truth is known
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Strong General Purpose Missing Data Methods

Maximum Likelihood

I idea: maximize the observed log-likelihood
I missingness model and analysis model are combined
I great performance under MAR if data generating process is correct

Doubly Robust Weighting

I idea: combine weighting and regression imputation by reweighting on
the residual

I requires a model for the missingness propensity score and the
regression imputation model

I consistent if either of the above models is correct.

Multiple Imputation

I idea: compute several completed datasets
I decouples analysis from the missingness model
I what we will talk about primarily today
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1 Mixture Models
Basic Mixtures
Application: Mixtures as Preprocessing
Application: Mixture of Regressions

2 Expectation Maximization
EM for Probit Regression
EM for Gaussian Mixtures
EM in General

3 Missing Data
Motivating Example
Overview and Assumptions
Existing Heuristics
Application Specific Approaches
Multiple Imputation
The Full Amelia Scheme

4 Measurement Error

5 Appendix: Additional Details and Examples
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Multiple Imputation

Point estimates are consistent, efficient, and the standard errors are right.
To compute:

1. Impute m values for each missing element

(a) Imputation method assumes MAR
(b) Uses a model with stochastic and systematic components
(c) Produces independent imputations
(d) (We’ll give you a model to impute later)

2. Create m completed data sets

(a) Observed data are the same across the data sets
(b) Imputations of missing data differ

i. Cells we can predict well don’t differ much
ii. Cells we can’t predict well differ a lot

3. Run whatever statistical method you would have with no missing data
for each completed data set
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4. Overall Point estimate: average individual point estimates, qj

(j = 1, . . . ,m):

q̄ =
1

m

m∑
j=1

qj

Standard error: use Rubin’s Rule:

SE(q)2 = mean(SE2
j ) + variance(qj) (1 + 1/m)

= within + between

Last piece vanishes as m increases

5. Easier by simulation: draw 1/m sims from each data set of the QOI,
combine (i.e., concatenate into a larger set of simulations), and make
inferences as usual.
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A General Model for Imputations

1. If data were complete, we could use (it’s deceptively simple):

L(µ,Σ|D) ∝
n∏

i=1

N(Di |µ,Σ) (a multivariate normal)

2. With missing data, this becomes:

L(µ,Σ|Dobs) ∝
n∏

i=1

∫
N(Di |µ,Σ)dDmis

=
n∏

i=1

N(Di,obs |µobs ,Σobs)

since marginals of MVN’s are normal.

3. Simple theoretically: merely a likelihood model for data (Dobs ,M) and same
parameters as when fully observed (µ,Σ).

4. Difficult computationally: Di,obs has different elements observed for each i and
so each observation is informative about different pieces of (µ,Σ).
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5. Difficult Statistically: number of parameters increases quickly in the number of
variables (p, columns of D):

parameters = parameters(µ) + parameters(Σ)

= p + p(p + 1)/2 = p(p + 3)/2.

E.g., for p = 5, parameters= 20; for p = 40 parameters= 860 (Compare to n.)

6. More appropriate models, such as for categorical or mixed variables, are harder
to apply and do not usually perform better than this model (If you’re going to
use a difficult imputation method, you might as well use an
application-specific method. The goal is an easy-to-apply, generally applicable,
method even if 2nd best.)

7. For social science survey data, which mostly contain ordinal scales, this is a
reasonable choice for imputation, even though it may not be a good choice for
analysis.
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How to create imputations from this model

1. E.g., suppose D has only 2 variables, D = {X ,Y }
2. X is fully observed, Y has some missingness.

3. Then D = {Y ,X} is bivariate normal:

D ∼ N(D|µ,Σ)

= N

[(
Y
X

) ∣∣∣∣ (µyµx
)
,

(
σy σxy
σxy σx

)]

4. Conditionals of bivariate normals are normal:

Y |X ∼ N (y |E (Y |X ),V (Y |X ))

E (Y |X ) = µy + β(X − µx) (a regression of Y on all other X ’s!)

β = σxy/σx

V (Y |X ) = σy − σ2
xy/σx
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5. To create imputations:

(a) Estimate the posterior density of µ and Σ

i. Could do the usual: maximize likelihood, assume CLT applies, and draw
from the normal approximation. (Hard to do, and CLT isn’t a good
asymptotic approximation due to large number of parameters.)

ii. We will improve on this shortly

(b) Draw µ and Σ from their posterior density
(c) Compute simulations of E (Y |X ) and V (Y |X ) deterministically
(d) Draw a simulation of the missing Y from the conditional normal

6. In this simple example (X fully observed), this is equivalent to
simulating from a linear regression of Y on X ,

ỹi = xi β̃ + ε̃i ,

with estimation and fundamental uncertainty

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 77 / 200



5. To create imputations:
(a) Estimate the posterior density of µ and Σ

i. Could do the usual: maximize likelihood, assume CLT applies, and draw
from the normal approximation. (Hard to do, and CLT isn’t a good
asymptotic approximation due to large number of parameters.)

ii. We will improve on this shortly

(b) Draw µ and Σ from their posterior density
(c) Compute simulations of E (Y |X ) and V (Y |X ) deterministically
(d) Draw a simulation of the missing Y from the conditional normal

6. In this simple example (X fully observed), this is equivalent to
simulating from a linear regression of Y on X ,
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(d) Draw a simulation of the missing Y from the conditional normal

6. In this simple example (X fully observed), this is equivalent to
simulating from a linear regression of Y on X ,

ỹi = xi β̃ + ε̃i ,

with estimation and fundamental uncertainty
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EMB: EM With Bootstrap

Randomly draw n obs (with replacement) from the data

Use EM to estimate β and Σ in each (for estimation uncertainty)

Impute Dmis from each from the model (for fundamental uncertainty)

Lightning fast; works with very large data sets

Basis for Amelia II
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Multiple Imputation: Amelia Style

incomplete data?
? ?

?
?

?
? ?

?
?

?
?

?

bootstrap

bootstrapped data

imputed datasets
EM

analysis

combination

final results
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What Can Go Wrong and What to Do

Inference is learning about facts we don’t have with facts we have; we
assume the 2 are related!

Imputation and analysis are estimated separately ; robustness
because imputation affects only missing observations. High
missingness reduces the property.

Include at least as much information in the imputation model as in
the analysis model: all vars in analysis model; others that would help
predict (e.g., All measures of a variable, post-treatment variables)

Fit imputation model distributional assumptions by transformation to
unbounded scales:

√
counts, ln(p/(1− p)), ln(money), etc.

Code ordinal variables as close to interval as possible.
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What Can Go Wrong and What to Do (continued)

Represent severe nonlinear relationships in the imputation model with
transformations or added quadratic terms.

If imputation model has as much information as the analysis model,
but the specification (such as the functional form) differs, CIs are
conservative (e.g., ≥ 95% CIs)

When imputation model includes more information than analysis
model, it can be more efficient than the “optimal” application-specific
model (known as “super-efficiency”)

Bad intuitions

I If X is randomly imputed why no attenuation (the usual consequence
of random measurement error in an explanatory variable)?

I If X is imputed with information from Y , why no endogeneity?
I Answer to both: the draws are from the joint posterior and put back

into the data. Nothing is being changed.
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What Does AMELIA II Do?

The AMELIA II algorithm begins by assuming that the functional form of
the complete data is multivariate normal:

(y ,X ) ∼ MVN(µ,Σ).

Let’s define (y,X) = D to simplify the notation.

Once again this gives us two full conditionals for our unknowns
(µ,Σ,Dmis):

1. p(DMis |µ,Σ,DObs)

2. L(µ,Σ|DObs ,DMis)

The EM algorithm in this case involves selecting an initial value for (µ,Σ),
using that value to impute the missing data, and then re-estimating (µ,Σ)
based on the (now-complete) data.
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The Multiple Imputation Scheme

incomplete data

imputed datasets

imputation

analysis

separate results

combination

final results
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Multiple Imputation

REGRESSION
To preserve the relationships in the data.

SIMULATION
To reflect the uncertainty of our imputation.
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How to Impute

y = X β̂ + ε

REGRESSION

ε̂ ∼ N (0, σ̂2
Xmis)β̂ ∼ N (β, v̂ar(β̂)) SIMULATION
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i = X obs
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Patterns of Missingness

year country GDP infl trade population
1 1972 Burkina Faso 377 -2.92 29.69 5848380
2 1973 Burkina Faso 376 7.60 31.31 5958700
3 1974 Burkina Faso 393 NA NA 6075700
4 1975 Burkina Faso 416 18.76 40.11 6202000
5 1976 Burkina Faso 435 NA 37.76 6341030
6 1977 Burkina Faso 448 29.99 41.11 6486870

infl = β0 + β1 · GDP + β2 · population + ε
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Any β is just (µ,Σ)

If X ∼ N (µ,Σ), we can recover any regression from the vector of
means and the covariance matrix.

Thus, we need (µ,Σ|X obs).
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A complicated likelihood

L(µ,Σ|Dobs) ∝
n∏

i=1

N (Dobs
i |µobs

i ,Σobs
i )
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The EM algorithm

Turn a hard problem into a repeated easy problem.

1 Use current estimates of (µ,Σ) to estimate X mis.

2 Use those estimates of X mis and X obs to get a new estimate of (µ,Σ).

3 Iterate until convergence.

(µt ,Σt)

E[X mis
t+1]

(µt+1,Σt+1)

X obs

E[X mis
t+2]

(µt+2,Σt+2)

X obs
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Simulation

X mis
i︸︷︷︸

missing values in row i

= X obs
i β︸ ︷︷ ︸

observed values in row i

+ ε︸︷︷︸
N (0,σ2)

EM is a tool for REGRESSION. In order to SIMULATE, we need...

1 a Normal approximation.

2 importance sampling.

3 a bootstrap-based approach.
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How to Impute

X mis
i = X obs

i β̂ + ε̂

EM

ε̂ ∼ N (0, σ̂2
Xmis)β̂ ∼ N (β, v̂ar(β̂)) SIMULATION
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How to Impute

X mis
i = X obs

i β̂ + ε̂

EM

ε̂ ∼ N (0, σ̂2
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How to Impute

X mis
i︸︷︷︸

missing values
in row i

= X obs
i︸︷︷︸

observed values
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How to Impute

We will impute a missing value by drawing from a Normal distribution
centered around what its predicted by a regression of that variable on
the available data in that observation.

A hard part is the regression, as we have to run a regression for every
missing value in every pattern of missingness.

This could be a lot of regressions, depending on the data.
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The Amelia Scheme
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The Amelia approach

1 Draw a sample of size n with replacement, X ∗.

2 Run the EM algorithm on X ∗ the bootstrapped data to get estimates
(µ̂∗, Σ̂∗).

3 Use (µ̂∗, Σ̂∗) to impute the original data, X .

4 Iterate m times.
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Assumptions and Estimators for Missing Data

It is important to distinguish the estimator from the assumptions
necessary to identify the model

Assumptions are typically some form of ignorability (MCAR, MAR,
NMAR) and cannot be directly checked

It is often more feasible to check for errors in estimation where we
typically assume:

I sample is large enough for ML estimate to be approximately unbiased
and normally distributed

I parametric likelihood model is a decent approximation to the complete
likelihood

Recent work on diagnostics for multiple imputation provides us a
place to start

Not really covered here but see the Amelia vignette and the Su et al
paper.
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Example Amelia Diagnostics
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Example Amelia Diagnostics
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Example Amelia Diagnostics
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Final Thoughts on Missing Data

There is a bit of a goldilocks region here- too few observations and it
doesn’t matter, too many and it will give crazy answers

Overimputing and observed vs. imputed distributions are helpful
diagnostics but there are no hard and fast rules

As per usual, domain knowledge here is key. The missing data
literature just helps you apply that domain knowledge
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1 Mixture Models
Basic Mixtures
Application: Mixtures as Preprocessing
Application: Mixture of Regressions

2 Expectation Maximization
EM for Probit Regression
EM for Gaussian Mixtures
EM in General

3 Missing Data
Motivating Example
Overview and Assumptions
Existing Heuristics
Application Specific Approaches
Multiple Imputation
The Full Amelia Scheme

4 Measurement Error

5 Appendix: Additional Details and Examples
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Measurement Error or,
How Amelia Solves All Your Problems

Blackwell, Matthew, James Honaker, and Gary King. “Multiple Overim-
putation: A Unified Approach to Measurement Error and Missing Data.”
Sociological Methods and Research 2015.
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Three New Things

1 Measurement error is deeply problematic for political science research
and current approaches are incorrect or unused.

2 Missing data is the limiting, most extreme form of measurement error.

3 We can rework the multiple imputation framework to simultaneously
correct for both missing data and measurement error.
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country polityiv f-house log-gdppc primary
1 BUKINA FASO 5 6 6.23 5.92
2 LIBERIA NA 3 NA NA
3 SIERRA LEONE 3 3 6.60 NA
4 GHANA 9 6 6.86 12.68
5 TOGO NA 5 6.27 17.34
6 CAMEROON 6 5 6.93 15.47
7 NIGERIA 5 7 6.88 17.46
8 GABON 6 8 8.19 16.97
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country polityiv f-house log-gdppc primary
1 BUKINA FASO ≈5 6 6.23 5.92
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One Solution:

Change research agendas

country GDP infl trade population
1 Ghana 377 -2.92 29.69 5848380
2 Ivory Coast 376 7.60 31.31 5958700
3 Kenya 393 8.72 35.22 6075700
4 Nigeria 416 18.76 40.11 6202000
5 Uganda 435 -8.40 37.76 6341030
6 Burkina Faso 448 29.99 41.11 6486870
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The current approaches in the literature

Instrumental variables

Regression calibration

SIMEX

Semiparametric models

Mixture models

Quasi-likelihood models

Denial

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 108 / 200



The current approaches in the literature

Instrumental variables

Regression calibration

SIMEX

Semiparametric models

Mixture models

Quasi-likelihood models

Denial

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 108 / 200



The current approaches in the literature

Instrumental variables

Regression calibration

SIMEX

Semiparametric models

Mixture models

Quasi-likelihood models

Denial

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 108 / 200



The current approaches in the literature

Instrumental variables

Regression calibration

SIMEX

Semiparametric models

Mixture models

Quasi-likelihood models

Denial

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 108 / 200



The current approaches in the literature

Instrumental variables

Regression calibration

SIMEX

Semiparametric models

Mixture models

Quasi-likelihood models

Denial

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 108 / 200



The current approaches in the literature

Instrumental variables

Regression calibration

SIMEX

Semiparametric models

Mixture models

Quasi-likelihood models

Denial

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 108 / 200



The current approaches in the literature

Instrumental variables

Regression calibration

SIMEX

Semiparametric models

Mixture models

Quasi-likelihood models

Denial

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 108 / 200



The current approaches in the literature

Most existing approaches are

application-specific.
model dependent.
difficult to implement.
inapplicable with multiple variables.
invalid with heteroskadastic errors.
unusable with missing data.
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Why is this the state of the art?

It’s easy and tolerated.
But it’s make believe.
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A Brief Review of Measurement Error
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Want to run:

yi = β0 + β1x∗i + εi

Can only run:

yi = α0 + α1xi + νi

Leads to:

ATTENUATION

(No guarantees with more mismeasured variables)
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Want to run:

yi = β0 + β1x∗i + εi

Can only run:

yi = α0 + α1xi + νi

Leads to:

ATTENUATION

(But ONLY in linear models with one bad variable)
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Want to run:

yi = β0 + β1x∗i + β2w∗i + β3z∗i + εi

Can only run:

yi = α0 + α1xi + α2wi + α3zi + νi

Leads to:

UNKNOWN

(No guarantees with more mismeasured variables)
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ATTENUATION
...only guaranteed in the simplest of cases:

linear model
one mismeasured variable

measurement error unrelated to other variables and x∗.
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BIAS FROM MEASUREMENT ERROR
In unpredictable directions with most realistic models.
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The strict dichotomy of data.
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But what is this continuum?
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x∗i=xi + ui

latentobserved error
measurement

∼ui |x∗i N (0,σ2
u )

measurement
error

variance
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Missing data is the most
extreme case of measurement error.
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Multiple imputation:

(fully)

observed

(fully)

missing
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Multiple overimputation:

x∗
i fully observed

partially missing

fully missing

perfectly measured measured with error infinite error
p(xi |x∗

i ) N (x∗
i , 0) N (x∗

i , σ
2
u) N (x∗

i ,∞)
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Multiple Overimputation
extends the multiple imputation framework

to correct for measurement error.
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Missing Data and Measurement Error

missing data +
measurement error +

analysis

APPLICATION-SPECIFIC METHODS:

incomplete
mismeasured

dataset
results

MULTIPLE OVERIMPUTATION:

resultsanalysis
missing data +
measurement

error

incomplete
mismeasured

dataset

HAR
D!

EAS
Y!

ROB
UST

!
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What MO allows you to do:

social science.
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country polityiv f-house log-gdppc primary
1 BUKINA FASO ≈9 6 6.23 5.92
2 LIBERIA NA 3 NA NA
3 SIERRA LEONE ≈3 3 6.60 NA
4 GHANA ≈9 6 6.86 12.68
5 TOGO NA 5 6.27 17.34
6 CAMEROON ≈6 5 6.93 15.47
7 NIGERIA ≈5 7 6.88 17.46
8 GABON ≈6 8 8.19 16.97
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Run whatever analysis model you wanted to run.

(×5)
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But how does it work?
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Let’s look at the extreme case first.
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ARBITRARY PATTERNS OF
MISMEASUREMENT & MISSINGNESS:

country polityiv f-house log-gdppc primary
1 BUKINA FASO 4 ≈6 6.23 5.92
2 LIBERIA NA 3 NA NA
3 SIERRA LEONE 3 3 6.60 NA
4 GHANA ≈9 6 6.86 12.68
5 TOGO NA 5 6.27 17.34
6 CAMEROON ≈6 5 6.93 15.47
7 NIGERIA ≈5 7 ≈6.88 17.46
8 GABON ≈6 8 ≈8.19 ≈16.97
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The Multiple Imputation Scheme

incomplete data

imputed datasets

posterior predictive draws

analysis

separate results

combination

final results
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(1)
Mismeasured at random (MMAR).
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(2)
You have to know how things were mismeasured.
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(2)
You have to know f (xi |x∗i ).
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(3∗)
Measurement error and ideal data are statistically dual.

Stewart (Princeton) Missing Data Mar 27-Apr 5, 2017 166 / 200



OUR SPECIFIC MODEL

xi ∼ N (x∗i , σ
2
u)

measurement error

(yi , x
∗
i ) ∼MVN (µ,Σ)

ideal data
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EM

(µ̂, Σ̂)

x∗impx∗imp, y
mis
imp
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missing
fully

observed
fully

CHOOSE A VALUE OF σ2
u

my variable
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Some simulations.
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Missing Data Measurement Error

20 Years Ago

Today

TAILORED METHODS: TAILORED METHODS:

Model dependent Model dependent

Difficult to implement Difficult to implement

Dubious assumptions Dubious assumptions

MULTIPLE IMPUTATION:

Broadly applicable

Easy to implement

Widely used.

MULTIPLE

OVERIMPUTATION
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How Bad Is Listwise Deletion? Return

Goal: estimate β1, where X2 has λ missing values (y , X1 are fully
observed).

E (y) = X1β1 + X2β2

The choice in real research:

Infeasible Estimator Regress y on X1 and a fully observed X2, and use bI
1,

the coefficient on X1.

Omitted Variable Estimator Omit X2 and estimate β1 by bO
1 , the slope

from regressing y on X1.

Listwise Deletion Estimator Perform listwise deletion on {y ,X1,X2}, and
then estimate β1 as bL

1 , the coefficient on X1 when
regressing y on X1 and X2.
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In the best case scenerio for listwise deletion (MCAR),
should we delete listwise or omit the variable?

Mean Square Error as a measure of the badness of an estimator â of a.

MSE(â) = E [(â− a)2]

= V (â) + [E (â− a)]2

= Variance(â) + bias(â)2

To compare, compute

MSE (bL
1 )−MSE(bO

1 ) =

{
> 0 when omitting the variable is better

< 0 when listwise deletion is better
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Derivation and Implications

MSE(bL
1 )−MSE(bO

1 ) =

(
λ

1− λ
V(bI

1)

)
+ F [V(bI

2)− β2β
′
2]F ′

= (Missingness part) + (Observed part)

1. Missingness part (> 0) is an extra tilt away from listwise deletion

2. Observed part is the standard bias-efficiency tradeoff of omitting
variables, even without missingness

3. How big is λ usually? (from literature review in King et al 2001)

I λ ≈ 1/3 on average in real political science articles
I > 1/2 at the Polmeth Conference
I Larger for authors who work harder to avoid omitted variable bias
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Derivation and Implications

4. If λ ≈ 0.5, the contribution of the missingness (tilting away from
choosing listwise deletion over omitting variables) is

RMSE difference =

√
λ

1− λ
V (bI

1) =

√
0.5

1− 0.5
SE(bI

1) = SE(bI
1)

(The sqrt of only one piece, for simplicity, not the difference.)

5. Result: The point estimate in the average political science article is
about an additional standard error farther away from the truth because
of listwise deletion (as compared to omitting X2 entirely).

6. Conclusion: Listwise deletion is often as bad a problem as the much
better known omitted variable bias — in the best case scenerio (MCAR)
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The Best Case for Listwise Deletion

Listwise deletion is better than MI when all 4 hold:

1 The analysis model is conditional on X (like regression) and
functional form is correct (so listwise deletion is consistent and the
characteristic robustness of regression is not lost when applied to data
with slight measurement error, endogeneity, nonlinearity, etc.).

2 NI missingness in X and no external variables are available that could
be used in an imputation stage to fix the problem.

3 Missingness in X is not a function of Y

4 The n left after listwise deletion is so large that the efficiency loss
does not counter balance the biases induced by the other conditions.

I.e., you don’t trust data to impute Dmis but still trust it to analyze Dobs
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Root Mean Square Error Comparisons
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Each point is RMSE averaged over two regression coefficients in each of
100 simulated data sets. (IP and EMis have the same RMSE, which is
lower than listwise deletion and higher than the complete data; its the
same for EMB.)
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Detailed Example: Support for Perot

1. Research question: were voters who did not share in the economic
recovery more likely to support Perot in the 1996 presidential election?

2. Analysis model: linear regression

3. Data: 1996 National Election Survey (n=1714)

4. Dependent variable: Perot Feeling Thermometer

5. Key explanatory variables: retrospective and propsective evaluations of
national economic performance and personal financial circumstances

6. Control variables: age, education, family income, race, gender, union
membership, ideology

7. Extra variables included in the imputation model to help prediction:
attention to the campaign; feeling thermometers for Clinton, Dole,
Democrats, Republicans; PID; Partisan moderation; vote intention;
martial status; Hispanic; party contact, number of organizations R is a
paying member of, and active member of.

8. Include nonlinear terms: age2
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9. Transform variables to more closely approximate distributional
assumptions: logged number of organizations participating in.

10. Run Amelia to generate 5 imputed data sets.

11. Key substantive result is the coefficient on retrospective economic
evaluations (ranges from 1 to 5):

Listwise deletion .43
(.90)

Multiple imputation 1.65
(.72)

so (5− 1)× 1.65 = 6.6, which is also a percentage of the range of Y .

(a) MI estimator is more efficient, with a smaller SE
(b) The MI estimator is 4 times larger
(c) Based on listwise deletion, there is no evidence that perception of poor

economic performance is related to support for Perot
(d) Based on the MI estimator, R’s with negative retrospective economic

evaluations are more likely to have favorable views of Perot.
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MI in Time Series Cross-Section Data
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Include: (1) fixed effects, (2) time trends, and (3) priors for cells
Read: James Honaker and Gary King, ”What to do About Missing Values
in Time Series Cross-Section Data,”
http://gking.harvard.edu/files/abs/pr-abs.shtml
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Include: (1) fixed effects, (2) time trends, and (3) priors for cells

Read: James Honaker and Gary King, ”What to do About Missing Values
in Time Series Cross-Section Data,”
http://gking.harvard.edu/files/abs/pr-abs.shtml
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MI in Time Series Cross-Section Data
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Include: (1) fixed effects, (2) time trends, and (3) priors for cells
Read: James Honaker and Gary King, ”What to do About Missing Values
in Time Series Cross-Section Data,”
http://gking.harvard.edu/files/abs/pr-abs.shtml
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Imputation one Observation at a time
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Priors on Cell Values

Recall: p(θ|y) = p(θ)
∏n

i=1 Li (θ|y)

take logs: ln p(θ|y) = ln[p(θ)] +
∑n

i=1 ln Li (θ|y)

=⇒ Suppose prior is of the same form, p(θ|y) = Li (θ|y); then its
just another observation: ln p(θ|y) =

∑n+1
i=1 ln Li (θ|y)

Honaker and King show how to modify these “data augmentation
priors” to put priors on missing values rather than on µ and σ (or β).
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Posterior imputation: mean=0, prior mean=5

σ12 = 0.95

−6 −4 −2 0 2 4 6

λ = 0.001

−6 −4 −2 0 2 4 6

σ12 = 0.85

−6 −4 −2 0 2 4 6

λ = 0.1

−6 −4 −2 0 2 4 6

σ12 = 0.5

−6 −4 −2 0 2 4 6

λ = 1

−6 −4 −2 0 2 4 6

σ12 = 0

−6 −4 −2 0 2 4 6

λ = 10

−6 −4 −2 0 2 4 6

Distribution of imputed values for one observation with prior µ= 5

Left column: holds prior N(5, λ) constant (λ = 1) and changes predictive
strength (the covariance, σ12).

Right column: holds predictive strength of data constant (at σ12 = 0.5)
and changes the strength of the prior (λ).
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Model Parameters Respond to Prior on a Cell Value
−
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Prior: p(x12) = N(5, λ). The parameter approaches the theoretical limits
(dashed lines), upper bound is what is generated when the missing value is
filled in with the expectation; lower bound is the parameter when the
model is estimated without priors. The overall movement is small.
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Replication of Baum and Lake; Imputation Model Fit
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Black = observed. Blue circles = five imputations; Bars = 95% CIs
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Listwise Deletion Multiple Imputation

Life Expectancy
Rich Democracies −.072 .233

(.179) (.037)
Poor Democracies −.082 .120

(.040) (.099)
N 1789 5627

Secondary Education
Rich Democracies .948 .948

(.002) (.019)
Poor Democracies .373 .393

(.094) (.081)
N 1966 5627

Replication of Baum and Lake; the effect of being a democracy on life
expectancy and on the percentage enrolled in secondary education (with
p-values in parentheses).
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