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1These slides are heavily influenced by Gary King with some material from Teppei
Yamamoto, Patrick Lam and Yuri Zhukov. Some individual vignettes are built from the
collective effort of generations of teaching fellows for Gov2001 at Harvard.
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Binary Outcomes

Binary outcome variable:

Yi ∈ {0, 1}

Examples in social science: numerous!

I Turnout (1 = vote; 0 = abstain)

I Education (1 = completed hs; 0 = dropped out)

I Conflict (1 = civil war; 0 = no civil war)

I Eviction (1 = evicted; 0 = not evicted)

I etc. etc.
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How Do We Model a Binary Outcome Variable?

For a continuous outcome variable, we model the

conditional expectation

function with predictors Xi :

E(Yi | Xi ) = X>i β (linear regression)

When Yi is binary, E(Yi | Xi ) = Pr(Yi = 1 | Xi )

Thus, we model the conditional probability of Yi = 1:

Pr(Yi = 1 | Xi ) = g(X>i β)

There are many possible binary outcome models, depending on the
choice of g(·)
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Linear Probability Model (LPM)

The simplest choice: g(X>i β) = X>i β

This gives the linear probability model (LPM):

Pr(Yi = 1 | Xi ) = X>i β

or equivalently

Yi ∼ Bernoulli(πi )

πi = X>i β

Advantages:
I Easy to estimate: Regress Yi on Xi

I Easy to interpret: β = ATE if Xi ∈ {0, 1} and exogenous

Disadvantages:
I Estimated probability can go outside of [0, 1]
I Always heteroskedastic
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Logit and Probit Models

Want: 0 ≤ g(X>i β) ≤ 1 for any Xi

Solution: Use a CDF

πi = g(X>i β) = F (X>i β)

Note: F is not the CDF of Yi , which is

Bernoulli
(using a CDF is just a convenient way to ensure 0 ≤ πi ≤ 1)

Logit: Logistic CDF (a.k.a. inverse logit function)

πi = logit−1(X>i β) ≡
exp(X>i β)

1 + exp(X>i β)
=

1

1 + exp(−X>i β)

Probit: Standard normal CDF

πi = Φ(X>i β)
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Binary Variable Regression Models

The logistic regression (or “logit”) model:

1 Stochastic component:

Yi ∼ YBern(yi |πi ) = πyii (1− πi )1−yi =

{
πi for y = 1

1− πi for y = 0

2 Systematic Component:

Pr(Yi = 1|β) ≡ E (Yi ) ≡ πi =
1

1 + e−xiβ

3 Yi and Yj are independent ∀ i 6= j , conditional on X

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 8 / 242



Binary Variable Regression Models

The logistic regression (or “logit”) model:

1 Stochastic component:

Yi ∼ YBern(yi |πi ) = πyii (1− πi )1−yi =

{
πi for y = 1

1− πi for y = 0

2 Systematic Component:

Pr(Yi = 1|β) ≡ E (Yi ) ≡ πi =
1

1 + e−xiβ

3 Yi and Yj are independent ∀ i 6= j , conditional on X

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 8 / 242



Binary Variable Regression Models

The logistic regression (or “logit”) model:

1 Stochastic component:

Yi ∼ YBern(yi |πi ) = πyii (1− πi )1−yi =

{
πi for y = 1

1− πi for y = 0

2 Systematic Component:

Pr(Yi = 1|β) ≡ E (Yi ) ≡ πi =
1

1 + e−xiβ

3 Yi and Yj are independent ∀ i 6= j , conditional on X

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 8 / 242



Binary Variable Regression Models

The logistic regression (or “logit”) model:

1 Stochastic component:

Yi ∼ YBern(yi |πi ) = πyii (1− πi )1−yi =

{
πi for y = 1

1− πi for y = 0

2 Systematic Component:

Pr(Yi = 1|β) ≡ E (Yi ) ≡ πi =
1

1 + e−xiβ

3 Yi and Yj are independent ∀ i 6= j , conditional on X

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 8 / 242



Binary Variable Regression Models

The logistic regression (or “logit”) model:

1 Stochastic component:

Yi ∼ YBern(yi |πi ) = πyii (1− πi )1−yi =

{
πi for y = 1

1− πi for y = 0

2 Systematic Component:

Pr(Yi = 1|β) ≡ E (Yi ) ≡ πi =
1

1 + e−xiβ

3 Yi and Yj are independent ∀ i 6= j , conditional on X

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 8 / 242



Binary Variable Regression Models

The logistic regression (or “logit”) model:

1 Stochastic component:

Yi ∼ YBern(yi |πi ) = πyii (1− πi )1−yi =

{
πi for y = 1

1− πi for y = 0

2 Systematic Component:

Pr(Yi = 1|β) ≡ E (Yi ) ≡ πi =
1

1 + e−xiβ

3 Yi and Yj are independent ∀ i 6= j , conditional on X

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 8 / 242



Binary Variable Regression Models

The probability density of all the data:

P(y |π) =
n∏

i=1

πyii (1− πi )1−yi

The log-likelihood:

ln L(π|y) =
n∑

i=1

{yi lnπi + (1− yi ) ln(1− πi )}

=
n∑

i=1

{
−yi ln

(
1 + e−xiβ

)
+ (1− yi ) ln

(
1− 1

1 + e−xiβ

)}

= −
n∑

i=1

ln
(

1 + e(1−2yi )xiβ
)
.

What do we do with this?
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i=1

{yi lnπi + (1− yi ) ln(1− πi )}

=
n∑

i=1

{
−yi ln

(
1 + e−xiβ

)
+ (1− yi ) ln

(
1− 1

1 + e−xiβ

)}

= −
n∑

i=1

ln
(

1 + e(1−2yi )xiβ
)
.

What do we do with this?
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Interpreting Functional Forms

Running Example is logit:

πi =
1

1 + e−xiβ

Methods:

1. Graphs.

(a) Can use desired instead of observed X ’s
(b) Can try entire surface plot for a small number of X ’s
(c) Marginal effects: Can hold “other variables” constant at their means, a

typical value, or at their observed values
(d) Average effects: compute effects for every observation and average
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Interpreting Functional Forms

2. Fitted Values for selected combinations of X ’s, or “typical” people or
types:

Sex Age Home Income Pr(vote)

Male 20 Chicago $33,000 0.20
Female 27 New York City $43,000 0.28
Male 50 Madison, WI $55,000 0.72

...

We may also want to include uncertainty (fundamental and estimation
uncertainty)
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Interpreting Functional Forms

3. First Differences (called Risk Differences in epidemiology)

(a) Define Xs (starting point) and Xe (ending point) as k × 1 vectors of
values of X . Usually all values are the same but one.

(b) First difference = g(Xe , β̂)− g(Xs , β̂)
(c) D = 1

1+e−Xe β̂
− 1

1+e−Xs β̂

(d) Better (and necessary to compute se’s): do by simulation (we’ll repeat
the details soon)

Variable From To FirstDifference

Sex Male → Female .05
Age 65 → 75 −.10
Home NYC → Madison, WI .26
Income $35,000 → $75, 000 .14
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Interpreting Functional Forms

4. Derivatives (i.e. a source of heuristics for talks)

∂πi
∂Xj

=
∂ 1

1+e−Xβ

∂Xj
= β̂j π̂i (1− π̂i )

(a) Max value of logit derivative: β̂ × 0.5(1− 0.5) = β̂/4

(b) Max value for probit [πi = Φ(Xiβ)] derivative: β̂ × 0.4
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Latent Variable Interpretation

Logit models can also be interpreted in terms of a latent variable Y ∗i

Let

Yi =

{
1 if Y ∗i > 0
0 if Y ∗i ≤ 0

Y ∗i = X>i β + εi where E(εi ) = 0

This is also called a random utility model, where

I Y ∗i : Utility from choosing Yi = 1 instead of Yi = 0
I X>i β: Systematic component of utility
I εi : Stochastic (random) component of utility

Make distributional assumptions about εi :

I εi
i.i.d.∼ Logistic =⇒ Logit
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Latent Variable: Walkthrough

Let Y ∗ be a continuous unobserved variable. Health, propensity to vote,
etc.

A model:

Y ∗i ∼ P(y∗i |µi )
µi = xiβ

with observation mechanism:

yi =

{
1 y∗ ≤ τ if i is alive

0 y∗ > τ if i is dead

Since Y ∗ is unobserved anyway, define the threshold as τ = 0. (Plus the
same independence assumption, which from now on is assumed implicit.)
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Same Logit Model, Different Justification and
Interpretation

1. If Y ∗ is observed and P(·) is normal, this is a regression.

2. If only yi is observed, and Y ∗ is standardized logistic (which looks close
to the normal),

P(y∗i |µi ) = STL(y∗|µi ) =
exp(y∗i − µi )

[1 + exp(y∗i − µi )]2

then we get a logit model.
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Same Logit Model, Different Justification and
Interpretation

3. The derivation:

Pr(Yi = 1|µi ) = Pr(Y ∗i ≤ 0)

=

∫ 0

−∞
STL(y∗i |µi )dy∗i

= Fstl(0|µi ) [the CDF of the STL]

= [1 + exp(−Xiβ)]−1

The same functional form!
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The Probit Model

4. For the Probit Model, we modify:

P(y∗i |µi ) = N(y∗i |µi , 1)

with the same observation mechanism, implying

Pr(Yi = 1|µ) =

∫ 0

−∞
N(y∗i |µi , 1)dy∗i = Φ(Xiβ)

5. =⇒ interpret β as regression coefficients of Y ∗ on X : β̂1 is what
happens to Y ∗ on average (or µi ) when X1 goes up by one unit,
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An Econometric Interpretation: Utility Maximization

Let UD
i be the utility for the Democratic candidate;

and UR
i be the utility for the Republican candidate.

Assume UD
i and UR

i are independent

Assume Uk
i ∼ P(Uk

i |ηki ) for k = {D,R}.
Let Y ∗ ≡ UD

i − UR
i and apply the same interpretation as above: If

y∗ > 0, choose the Democrat, otherwise, choose the Republican.

If P(·) is normal, we get a Probit model

If P(·) is generalized extreme value, we get logit.
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Comparing LPM, Logit, and Probit
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LPM goes outside of [0, 1] for extreme values of Xi

LPM underestimates the marginal effect near center and overpredicts near
extremes

Logit has slightly fatter tails than probit, but no practical difference

Note that β̂ are completely different between the models
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How Not to Present Statistical Results

1. This one is typical of current practice, not that unusual.

2. What do these numbers mean?

3. Why so much whitespace? Can you connect cols A and B?
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How Not to Present Statistical Results

4. What does the star-gazing add?

5. Can any be interpreted as causal estimates?

6. Can you compute a quantity of interest from these numbers?
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Interpretation and Presentation

1. Statistical presentations should

(a) Convey numerically precise estimates of the quantities of substantive
interest,

(b) Include reasonable measures of uncertainty about those estimates,
(c) Require little specialized knowledge to understand.
(d) Include no superfluous information, long lists of coefficients no one

understands, star gazing, etc.

2. For example: Other things being equal, an additional year of education
would increase your annual income by $1,500 on average, plus or minus
about $500.

3. Your work should satisfy a reader who hasn’t taken this course
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Reading

King, Tomz, Wittenberg, “Making the Most of Statistical Analyses:
Improving Interpretation and Presentation” American Journal of
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Hamner and Kalkan (2013). Behind the Curve: Clarifying the Best
Approach to Calculating Predicted Probabilities and Marginal Effects
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Quantities of Interest

How to interpret β in binary outcome models?
I In LPM, β is the marginal effect (βj = ∂E [Yi | X ] /∂Xij)

I In logit, β is the log odds ratio

βj = log

{
Pr(Yi = 1 | Xij = 1)/Pr(Yi = 0 | Xij = 1)

Pr(Yi = 1 | Xij = 0)/Pr(Yi = 0 | Xij = 0)

}
I In probit, no direct substantive interpretation of β

I In general, it is a bad practice to just present a coefficients table!

I Instead, always try to present your results in terms of an
easy-to-interpret quantity
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Analytic Quantities of Interest

1. Predicted probability when Xi = x :

Pr(Yi = 1 | Xi = x) = π(x)

2. Average Treatment Effect (ATE):
I Given the model, εi is i.i.d.

=⇒ Ti is conditionally ignorable given Wi

I Thus, ATE can be identified as

τ = E [Pr(Yi = 1 | Ti = 1,Wi )− Pr(Yi = 1 | Ti = 0,Wi )]

= E [π(Ti = 1,Wi )− π(Ti = 0,Wi )]

where E is taken with respect to both ε and W
3. Marginal effects: For a continuous predictor Xij ,

∂E[Yi | X ]

∂Xij
=

{
βj · logit−1(X>i β)

(
1− logit−1(X>i β)

)
(for logit)

βj · φ(X>i β) (for probit)

Note: Depends on all Xi , so must pick a particular value
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where E is taken with respect to both ε and W
3. Marginal effects: For a continuous predictor Xij ,

∂E[Yi | X ]

∂Xij
=

{
βj · logit−1(X>i β)

(
1− logit−1(X>i β)

)
(for logit)

βj · φ(X>i β) (for probit)

Note: Depends on all Xi , so must pick a particular value
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Example: Civil Conflict and Political Instability

Fearon & Laitin (2003):

Yi : Civil conflict

Ti : Political instability

Wi : Geography (log % mountainous)

Estimated model:

̂Pr(Yi = 1 | Ti ,Wi )

= logit−1 (−2.84 + 0.91Ti + 0.35Wi )

Predicted probability:

π̂(Ti = 1,Wi = 3.10) = 0.299

ATE:

τ̂ =
1

n

n∑
i=1

{π̂(1,Wi )− π̂(0,Wi )}

= 0.127
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Example: Civil Conflict and Political Instability

Fearon & Laitin (2003):

Yi : Civil conflict

Ti : Political instability

Wi : Geography (log % mountainous)

Estimated model:

̂Pr(Yi = 1 | Ti ,Wi )

= logit−1 (−2.84 + 0.91Ti + 0.35Wi )

Predicted probability:

π̂(Ti = 1,Wi = 3.10) = 0.299

ATE:

τ̂ =
1

n

n∑
i=1

{π̂(1,Wi )− π̂(0,Wi )}

= 0.127
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Example: Civil Conflict and Political Instability

Fearon & Laitin (2003):

Yi : Civil conflict

Ti : Political instability

Wi : Geography (log % mountainous)

Estimated model:

̂Pr(Yi = 1 | Ti ,Wi )

= logit−1 (−2.84 + 0.91Ti + 0.35Wi )

Predicted probability:

π̂(Ti = 1,Wi = 3.10) = 0.299

ATE:

τ̂ =
1

n

n∑
i=1

{π̂(1,Wi )− π̂(0,Wi )}

= 0.127
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Example: Civil Conflict and Political Instability

Fearon & Laitin (2003):

Yi : Civil conflict

Ti : Political instability

Wi : Geography (log % mountainous)

Estimated model:

̂Pr(Yi = 1 | Ti ,Wi )

= logit−1 (−2.84 + 0.91Ti + 0.35Wi )

Predicted probability:

π̂(Ti = 1,Wi = 3.10) = 0.299

ATE:

τ̂ =
1

n

n∑
i=1

{π̂(1,Wi )− π̂(0,Wi )}

= 0.127

●
●

●

●

●
●
●

●
●

●

●

●

●●
●
●
●
●
●

●

●●

●

●●
●
●●

●

●

●

●
●
●●●●●

●●

●●
●
●

●

●●●●
●

●●

●●●

●●●

●
●●●●●

●
●●
●
●

●

●●
●●

●●
●

●
●
●
●●

●
●●
●●

●

●

●
●

●●
●

●

●
●
●

●

●●

●

●
●

●

●●
●
●

●●

●

●

●

●
●●

●
●

●
●

●

●

●

●●

●
●
●

●●
●●
●
●
●

●●
●

●

●●

●
●
●

●

●
●
●
●

●●

●●

●● ●
●
●●

●●

●

●
●●

●
●
●

●●

●●●
●

●●

●

●

●●

●
●●

●
●●
●

●●

●

●●

●

●●
●
●

●

●

●
●●●
●

●
●●
●

●

●●
●
●

●

●

●

●●
●

●

●
●

●
●
●
●

●

●

●●●

●

●●

●●●●●
●

●
●●●

●

●●

●

●●

●
●

●
●●

●●

●
●●

●
●
●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●●●●
●

●

●

●●●●●●

●

●
●
●●●
●
●

●●

●

●
●
●

●
●

●
●
●

●●●●
●●
●

●
●●●
●●●

●

●
●

●

●
●

●
●●
●

●

●

●
●
●

●

●
●●

●
●
●
●

●●

●

●
●

●●

●

●
●

●

●

●●●

●

●
●

●●

●
●●
●●
●●●
●
●
●
●
●
●

●
●

●
●

●
●

●

●
●●

●

●●

●
●●
●

●
●

●

●●

●●
●

●
●

●
●●

●

●

●

●

●●●

●
●
●

●
●●

●

●
●

●

●●●

●●●
●
●

●●
●
●
●
●

●

●●
●●

●

●

●
●●

●
●

●
●

●●

●
●

●●●
●
●
●

●●●●
●
●

●●●●●●

●

●
●
●

●

●
●

●
●●
●
●
●●
●●

●●
●

●

●

●
●

●
●
●
●
●

●
●●
●

●
●●
●●

●●

●

●

●

●

●●

●
●

●

●

●
●●

●

●
●

●
●●

●
●
●

●

●
●

●
●

●

●

●●

●●

●

●●
●
●
●●
●
●

●

●
●●

●●
●
●

●●

●●
●

●●

●
●●

●
●
●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●

●
●
●

●

●

●

●

●
●●
●●
●
●●

●
●

●●

●●

●
●●

●
●
●

●

●
●●

●
●

●●●

●

●
●
●
●●●

●

●

●●
●

●

●

●
●

●

●

●

●●
●
●●

●

●●
●
●

●

●
●
●●

●
●
●
●
●

●●

●
●●●
●

●
●
●
●

●

●

●●
●

●
●
●

●●

●●
●

●

●

●

●

●

●

●●
●

●

●
●●

●●●
●

●

●

●
●
●
●

●
●●●
●
●

●●

●
●●
●●
●

●

●
●

●
●
●
●
●●
●
●

●

●
●

●

●
●
●
●
●
●

●

●

●●
●
●

●
●●●

●
●●
●
●●

●

●●
●●●

●●●●
●

●

●
●

●
●
●●

●●●
●

●●

●

●
●

●
●●●●
●

●
●
●●●●
●●
●●●
●

●

●

●
●

●●
●
●
●
●

●

●●

●

●
●

●●

●
●

●●

●

●

●
●

●

●●●
●
●●
●●●●
●
●

●●
●

●

●
●
●
●

●●●

●
●●

●●

●

●

●
●

●
●

●●
●
●●

●

●
●

●

●
●●

●
●

●

●

●

●

●●

●
●

●

●●

●

●●●●

●

●

●
●
●

●●

●

●
●

●

●
●

●

●
●

●
●
●
●

●
●●
●●

●

●●

●
●

●

●
●

●
●

●●

●

●

●

●●●

●
●
●●●
●●

●

●
●

●

●
●●

●
●

●

●
●
●

●

●
●
●●
●
●

●
●●●
●
●●

●

●
●

●●
●

●
●

●

●
●

●

●
●

●

●

● ●

●

●
●
●

●

●
●
●●

●

●

●

●●●
●●●●
●

●
●

●

●

●
●

●
●
●
●

●

●
●

●
●●
●

●●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●
●
●
●

●●●

●●

●

●
●●●●

●

●
●●

●

●

●

●●●

●
●
●●●

●

●
●
●

●●
●

●●

●●

●●
●

●

●

●

●
●

●

●●
●

●●●
●
●
●
●

●

●

●

●

●

●
●

●

●
●

●
●●
●
●

●
●
●

●

●●

●
●
●
●

●●

●

●

●
●●

●

●
●
●●●

●

●

●
●●

●
●●●

●
●

●

●●

●

●
●

●
●

●●
●●
●
●●●●

●

●

●
●

●
●
●●

●

●

●

●

●●

●
●●
●

●

●

●

●

●
●
●●
●●

●

●
●

●

●●
●

●
●
●
●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●●

●●●
●●
●
●

●●●

●●
●

●

●
●●

●

●
●

●
●●

●

●

●

●●●

●

●

●●●
●
●

●

●

●
●

●

●
●
●

●●●
●●

●

●
●

●

●

●

●●●

●●●

●
●

●
●●

●

●

●●●●

●

●
●
●●
●●

●
●●

●
●

●

●●
●

●

●
●
●
●●

●

●

●
●
●●

●

●

●●

●

●●
●●

●●

●●
●
●●

●

●

●

●

●
●●

●●●
●
●

●

●

●

●
●

●●

●
●

●●
●

●●

●●

●●

●
●
●
●

●

●

●●
●

●●

●

●

●

●●●

●

●

●●●●●

●
●
●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●
●●
●●●●●

●

●

●●

●
●●

●

●

●●
●●
●
●●●
●

●
●
●
●
●

●●●
●
●

●
●
●

●
●

●
●

●●
●●

●

●

●
●

●

●●

●
●
●●

●

●
●

●
●●

●

●●
●

●

●
●●

●

●

●

●

●●●

●

●
●
●

●
●

●

●

●

●●
●

●
●

●●
●

●
●●
●●

●●●●
●

●
●●
●●

●

●

●
●
●
●

●
●

●

●●

●
●
●
●

●

●
●
●
●

●

●

●

●
●

●

●●
●●●●●
●
●
●●

●●
●●
●
●

●●
●

●

●●

●●●
●
●
●

●●
●●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●
●●
●

●
●
●●

●
●
●●●●

●

●
●●●

●●
●
●

●

●●

●

●

●
●
●
●
●

●

●

●●
●
●

●

●

●

●●
●
●

●●●●

●

●

●
●●
●

●●

●

●

●

●

●●

●
●

●

●
●●

●

●●●●
●
●●

●
●
●●
●●
●
●
●

●
●

●
●●
●●

●

●
●

●
●●
●●

●

●
●

●
●
●

●

●

●●

●●●

●

●
●

●●

●
●●
●
●●
●●

●
●

●

●

●

●
●
●
●

●

●●
●

●
●
●

●

●●
●
●●

●●

●●●

●
●
●

●
●
●
●
●●
●

●

●

●
●

●●
●

●●

●
●●
●

●●

●

●

●

●

●●
●

●●●
●

●
●●
●●

●
●
●

●
●

●

●

●
●
●
●●

●●●

●

●

●●
●●
●●

●

●

●
●
●

●

●●

●

●

●●
●

●
●●● ●

●

●
●
●●
●

●

●
●
●
●

●

●●

●
●

●
●
●●●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●●

●

●
●●

●
●

●
●●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●
●
●

●●●●

●●

●●
●
●

●
●
●

●

●

●
●

●
●
●

●

●
●●●
●

●

●●

●

● ●●

●
●

●
●

●

●
●

●
●
●
●●

●●●
●
●
●

●

●
●

●
●

●●

●

●●●●●
●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●●●

●

●●

●

●
●
●
●●

●
●

●

●

●●

●
●

●●●

●

●
●
●

●
●
●●

●

●●

●

●●
●

●

●

●
●
●●
●●

●
●

●

●

●

●●●
●
●
●

●

●

●

●

●
●
●●
●
●
●

●
●●●

●

●●
●
●●
●

●
●
●●

●
●

●
●

●

●

●

●●●
●
●

●●

●●

●
●
●
●
●●
●

●
●
●

●

●

●

●

●

●
●

●
●
●
●●●
●●
●
●
●

●●
●●

●●●

●
●●

●●

●

●●

●●●
●

●
●

●●

●

●
●
●

●
●

●

●

●
●

●
●
●

●●

●
●

●
●

●●

●

●

●

●

●
●●

●

●●
●

●

●
●●●●

●

●

●

●
●
●

●

●

●
●

●●

●
●
●●

●

●

●

●
●
●

●
●
●●

●
●
●

●
●

●

●

●●●
●
●●

●

●
●

●

●
●
●
●
●

●
●

●

●

●
●
●
●
●

●

●

●

●●
●●

●
●
●●

●

●●

●

●

●

●

●

●●●

●

●
●
●●

●
●●

●●
●

●

●

●●
●

●
●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

●●●●
●
●●

●

●

●

●

●

●●

●

●●

●
●

●

●●

●●●

●●

●
●
●

●●
●●
●●

●
●
●

●●●
●●●
●

●

●

●

●
●
●

●●
●

●●●●●
●
●

●●
●

●
●

●

●●●

●

●

●●

●

●
●

●●

●

●
●●●

●
●●
●●
●

●●

●
●

●

●

●●

●

●

●●●

●

●●

●

●

●

●
●
●
●
●
●

●●●●●

●

●

●

●

●

●

●●

●
●●

●

●
●
●
●
●●●

●●●●

●

●

●

●●●
●

●
●

●

●●

●

●
●●

●
●

●

●

●

●●

●●

●
●

● ●
●

●

●
●
●
●
●

● ●

●
●●

●

●

●
●
●

●

●●●

●●

●●
●

●
●

●
●

●

●
●
●
●
●●

●●

●
●
●

●

●●●
●●

●●●

●
●
●

●

●●
●
●

●

●

●
●
●

●

●

●

●

●
●
●

●
●
●

●●
●●

●
●● ●●

●●
●●
●●●

●

●●

●

●

●

●

●●

●
●

●●

●●

●●

●

●

●

●

●

●
●
●●●
●

●

●●
●●

●

●●

●●●

●

●●

●
●

●●

●
●
●
●●

●

●●●●●
●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●
●
●●●
●
●●●
●

●●

●
●●
●
●●

●
●
●

●●

●

●

●●

●
●
●●

●

●

●
●

●
●
●
●
●
●

●
●

●
●●
●
●●
●
●

●
●●
●●

●

●

●

●●●●
●●●
●
●
●

●

●●

●●
●

●

●

●
●●

●

●

●

●

●

●●●
●●●●

●

●

●

●●

●

●

●
●
●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●●
●

●

●

●
●

●
●
●

●

●●
●●

●

●

●
●●

●
●

●●●●●

●
●

●

●●

●

●

●
●
●

●

●

●
●●
●
●

●

●
●
●
●

●
●
●●
●

●

●●
●
●
●●●

●

●
●

●
●

●

●

●

●
●

●

●●●

●●

●

●

●

●●
●
●
●
●●
●

●●
●●

●

●●
●

●●

●

●

●

●
●

●

●●

●

●

●
●
●
●

●

●
●●●

●

●

●

●

●●
●
●
●

●●

●
●●

●●

●●
●

●

●
●

●
●

●
●

●

●

●●●

●

●●●
●

●●

●

●●
●●
●
●●
●●●

●
●

●

●

●

●●●

●

●
●●
● ●

●●●●●
●●●

●

●
●
●
●
●
●●●

●●

●
●

●

●
●

●

●●
●

●●
●

●

●

●

●

●

●●
●●●

●

●

●

●●
●
●

●●

●●

●
●●

●●●

●

●

●
●

●●

●

●
●
●
●

●

●

●
●

●
●

●
●

●●
●

●
●
●
●●●

●●
●●●●
●
●●●

●

●

●●
●
●●
●●
●

●●

●●●●

●●●
●●

●
●
●

●
●
●

●
●

●●

●●

●
●

●●

●

●

●

●

●

●

●●●●●
●
●

●

●

●

●
●

●
●
●●

●
●
●●

●

●
●●
●

●●

●●

●
●●
●●
●

●

●●
●●●●
●
●
●

●
●
●

●●●

●●●

●

●
●●●
●

●●
●

●

●●
●

●

●
●●

●
●
●

●
●
●

●

●
●●

●

●

●

●
●●●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●●

●

●

●
●

●●

●
●

●

●●

●
●

●

●●
●●

●

●

●●

●

●

●●●
●●●

●

●
●

●

●●
●
●

●

●●●●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●●●
●●●
●●
●●

●●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●●
●

●●●

●
●

●

●
●

●
●

●
●
●●
●
●
●

●

●●
●
●
●●

●●●

●●

●

●●

●
●
●

●
●●
●

●●

●

●●●
●

●

●
●

●

●

●
●
●
●
●●

●●●
●

●●
●
●●

●●

●
●
●
●
●

●
●

●●
●

●
●●

●
●
●

●

●
●●●

●
●

●●

●●
●●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●
●

●
●
●●

●●
●
●

●

●
●●

●

●
●
●

●

●●●

●●
●

●

●
●●●

●●

●

●

●

●● ●

●

●●

●

●

●●

●

●
●
●●

●●
●●

●

●●

●●

●
●
●

●

●

●●
●
●

●
●

●
●●

●
●

●●

●●

●

●●●

●
●
●

●

●

●
●

●●
●
●

●●●

●
●

●
●

●
●
●

●●●●

●

●●
●
●

●●

●●

●

●

●●

●

●

●

●

●

●●●
●
●

●

●
●

●●

●
●
●●
●
●

●

●
●

●●

●
●
●
●●●

●
●

●
●

●

●●

●

●●●●●
●●
●
●●●
●

●●

●
●

●●●

●

●

●

●●
●

●

●●

●
●●●
●

●
●●●●
●
●
●

●

●

●

●
●●
●●

●

●

●

●

●
●

●

●
●

●●

●●●

●

●
●

●

●
●
●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●
●●

●●
●

●

●●

●●●
●
●●
●
●

●

●

●●

●
●
●

●

●

●

●
●
●

●
●●
●

●

●
●

●●

●●

●

●

●

●
●
●
●

●

●

●

●
●●

●

●●●

●

●●●

●●
●
●

●●●

●●

●
●

●

●
●

●
●

●

●

●

●

●●

●●
●●●●

●

●●
●●

●

●
●
●
●

●●

●

●

●

●●

●

●●
●
●

●

●●●
●

●●

●●

●
●
●
●●

●

●

●

●

●

●

●

●

●●●
●
●●

●

●

●●

●●
●

●●

●●

●

●
●●●
●
●

●

●
●

●

●

●
●

●
●

●

●

●
●●
●●

●

●

●●●
●

●

●

●

●●

●

●
●
●
●●
●
●●

●

●
●
●
●

●
●
●

●

●●●●

●

●●

●

●●●

●

●●●

●●

●

●●●●
●●

●

●●
●

●●

●

●
●●●

●

●

●

●

●
●●●
●
●

●

●
●●

●●●
●
●

●

●

●
●

●

●
●

●
●
●

●●

●

●

●●
●
●
●
●

●

●

●

●

●●

●
●
●●
●

●

●
●
●

●
●

●

●
●

●

●

●

●●●
●

●

●●

●

●
●

●
●

●

●●
●

●

●
●

●

●
●

●●
●
●
●

●
●
●

●

●●
●●
●●
●
●
●

●●
●

●

●●●
●●●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●●
●
●●●

●

●●
●
●

●●●

●

●●

●●

●
●

●●

●

●

●

●●●

●

● ●

●
●
●

●

●

●
●
●●

●
●●
●

●

●

●
●
●
●

●

●
●

●●
●

●
●●
●●
●●
●●
●●

●
●●
●●●
●

●

●
●●
●
●●

●●
●
●

●

●
●●

●

●
●●

●
●
●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●●
●
●●

●
●●

●

●
●●●●

●

●

●●
●●
●
●
●
●

●
●●●
● ●●

●●

●●

●●●
●
●
●●

●
●●

●
●

●

●
●

●
●
●●●●
●
●

●

●
●

●

●

●
●●

●
●
●

●

●
●
●

●

●
●●●

●●

●
●●●●

●

●
●
●
●

●●
●●
●
●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●
●

●●●

●
●
●

●

●

●
●

●

●

●

●
●
●

●

●
●●●

●●
●●●

●●
●●

●

●

●●

●

●●
●
●
●

●
●●
●

●

●

●

●

●
●

●

●
●
●●●

●●●
●

●
●

●

●●
●
●●

●
●

●
●

●

●●●

●

●
●

●
●

●

●

●
●
●●

●

●
●

●

●

●●

●●●

●
●
●●
●

●

●
●●
●
●●●

●

●

●

●
●
●

●●●

●

●

●●●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●●●●

●
●

●

●●

●

●
●●

●●●●
●

●●

●
●

●●
●

●
●●

●

●

●

●

●

●

●

●
●
●

●●
●

●●

●

●

●

●●

●
●

●●

●
●
●

●
●

●

●

●

●

●

●●
●●
●●

●
●

●

●

●

●

●●

●

●●

●●

●
●

●

●
●

●●

●
●
●

●

●●

●

●
●
●
●

●●

●

●
●
●●●●

●

●

●
●
●●
●

●
●
●
●●

●

●

●

●

●

●

●
●

●

●●

●
●●

●●

●
●
●
●

●●

●

●

●

●
●

●●

●●
●
●

●

●

●●
●●

●

●●●

●
●●●
●
●

●
●
●●
●
●

●

●

●●
●
●

●●●

●●
●
●
●

●●

●●●

●
●

●●●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●
●
●

●
●

●

●
●
●

●
●
●

●
●●●

●
●●
●
●

●
●●
●

●
●
●●●

●
●
●
●●

●●

●

●
●

●

●
●●

●

●●
●

●
●

●●

●●
●
●

●●

●

●

●
●●

●

●●

●

●●

●●

●
●●

●●

●

●
●●

●●
●

●

●
●
●●

●

●●●

●

●
●●
●

●

● ●●
●●
●
●

●
●
●

●

●

●

●

●
●●
●
●

●
●
●●●

●●●
●
●●

●

●

●●

●●●
●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●●

●

●
●

●

●

●
●
●
●

●
●

●

●

●●
●●
●
●
●●

●
●
●●

●

●

●
●

●
●
●
●
●

●
●●
●
●
●●

●

●
●

●
●

●

●●
●

●

●●

●
●
●

●●●●
●

●

●
●●●
●●

●

●

●
●
●

●
●

●
●

●
●●

●

●
●●●●

●
●●●

● ●

●

●
●

●●

●

●
●

●

●
●●●
●
●

●
●

●

●●
●

●

●

●

●
●

●
●
●
●
●

●

●

●●

●●
●

●
●

●●

●
●
●

●●●●
●

●

●

●

●

●
●●

●

●●

●●

●

●

●
●●

●
●●
●

●

●

●●

●

●

●
●
●

●●

●
●

●
●
●●

●●●
●
●●
●●
●
●

●●

●

●
●
●●
●

●

●
●

●
●

●
●

●

●

●●●

●

●

●
●

●
●

●

●

●

●●●
●

●

●
●
●

●●

●

●

●
●
●●●

●
●

●
●
●●

●

●●
●
●
●

●

●
●
●
●●●
●

●●

●
●
●
●
●

●
●

●
●

●

●
●
●
●

●
●●●
●
●●●
●
●
●●●

●

●

●

●
●

●●
●

●●
●

●
●
●

●
●

●●●

●

●

●

●

●
●

●

●
●●
●●●

●

●
●

●●

●

●
●
●●

●●
●●

●
●
●
●
●

●●

●
●
●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●
●●
●
●●
●

●

●
●
●

●
●

●
●●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●●
●●
●●

●

●●

●
●

●
●

●

● ●

●

●●●
●
●●
●

●
●
●

●

●

●
●●
●

●
●
●

●

●

●

●

●●

●●

●

●

●

●
●●
●●

●
●

●

●
●
●●●

●

●
●
●●

●

●●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●●●●

●
●
●
●

●

●
●●

●
●●●

●●

●
●

●

●●

●

●●●
●
●
●
●
●
●

●●●
●

●
●●
●

●●●
●●
●

●
●
●
●●●
●●

●●
●●
●
●●

●

●

●●

●
●
●

●●

●●
●●●●
●●
●

●
●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●
●

●●●
●

●●●
●
●

●
●
●●
●

●

●●
●●

●

●
●
●

●●●

●

●●

●
●

●
●
●
●

●
●
●

●

●●

●
●●●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●
●

●●●

●
●

●●

●●●
●●
●
●
●●

●●
● ●

●
●

●●

●

●●●●
●
●
●

●●●●

●
●

●
●●
●
●●●

●
●●
●
●

●
●
●●

●●
●

●

●

●

●

●●

●●

●
●

●●
●
●●
●

●
●
●

●

●
●
●
●

●

●●

●

●
●

●
●

●

●

●

●

●●
●●

●

●
●
●

●

●
●

●●

●

●

●●
●●
●●

●

●
●
●●●
●

●●

●●●

●

●

●
●
●
●

●
●●●
●

●

●
●
●

●●●
●

●●

●

●

●●
●
●●
●●
●

●

●

●
●

●
●
●

●
●●
●

●

●

●
●

●●
●

●
●
●
●
●●

●

●

●
●

●

●

●
●●

●
●

●

●

●●
●

●
●

●

●

●●
●●
●●
●

●

●

●

●
●●

●

●
●
●

●
●●

●

●

●
●

●

●
●
●
●●

●
●●●

●

●
●
●
●

●

●
●
●

●

●

●

●●●

●

●●●●
●
●

●

●

●

●

●

●

●
●●●
●
●

●
●●

●

●
●
●●

●

●●●
●
●●

●

●

●
●●●●
●●

●

●●●●

●

●

●

●

●
●

●●●

●

●
●

●●

●●
●●●
●

●●●●
●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●●●
●
●●●
●
●

●

●
●●

●

●
●
●●
●

●
●
●
●

●●●

●●●
●

●
●●

●

●
●
●
●

●

●●

●●

●
●
●
●●

●

●●
●

●●

●

●

●●

●●
●

●
●●

●

●
●

●

●

●

●●
●

●
●●
●

●●●

●
●
●
●
●
●
●
●
●●
●●●●●

●

●●
●
●
●
●

●

●
●●

●●
●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●

●●●

●

●

●
●

●

●

●

●●

●
●
●●
●

●

●●●

●●
●

●
●
●
●
●

●

●●
●
●

●

●

●●
●

●●

●

●●

●

●●
●

●

●

●
●●

●●●●
●

●
●
●
●
●●
●
●

●
●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●●
●●●

●
●
●

●

●
●●

●

●
●
●
●●

●●●
●
●

●●

●

●●

●●●
●

●
●
●
●
●●●

●
●●
●
●
●
●

●
●●
●●

●
●
●●
●

●

●
●

●

●

●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●
●
●

●
●

●

●●

●

●●

●●

●

●

●
●
●
●
●

●

●

●

●

●●●
●
●
●
●
●
●

●

●●
●
●●
●

●●●●●

●●

●
●
●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●●

●
●

●●
●

●

●●

●

●

●●●●●
●

●●
●

●

●

●

●

●

●
●
●
●

●

●
●
●

●
●●
●●

●

●

●

●

●

●

●●●

●●
●
●

●

●
●●
●
●
●
●

●

●●●
●●
●
●
●

●
●

●
●●●
●
●

●

●

●

●
●
●

●

●
●●●

●

●
●●

●

●
●

●

●
●●●
●

●

●●

●
●

●
●●
●

●

●
●

●
●
●
●

●●

●

●●
●

●
●
●

●●●

●

●●

●
●

●●●

●●

●●
●●
●●
●

●

●
●
●

●
●
●

●
●

●●●●
●●
●

●

●●●●

●

●●

●●
●
●

●

●

●
●

●

●

●

●●

●

●
●
●●

●●

●
●
●

●●
●
●

●

●

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wi

π(
T

i,W
i)

Ti = 1

Ti = 0

●
PHILIPPI , 1982π̂i = 0.299

E[^ Yi(1)]

E[^ Yi(0)]

τ̂ = 0.127

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 28 / 242



Variance Estimation

The variance estimates can be used for calculating confidence
intervals for logit/probit β: [β̂MLE − zα/2 · s.e., β̂MLE + zα/2 · s.e.]
But β itself is (typically) not of direct substantive interest

Predicted probability: π̂(x) = exp(x>β̂MLE )

1+exp(x>β̂MLE )
for logit

ATE: τ̂ = 1
n

∑n
i=1

(
exp(β̂T +W>i β̂W )

1+exp(β̂T +W>i β̂W )
− exp(W>i β̂W )

1+exp(W>i β̂W )

)
for logit

How we compute standard errors for quantities like π̂ and τ̂?

Three approaches:

1 Analytical approximation: the Delta method
2 Simulating from sampling distributions
3 Resampling: the bootstrap (parametric or nonparametric)
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Monte Carlo Approximation

For MLE, we know that θ̂
approx.∼ N (θ,V(θ̂))

We can simulate this distribution by sampling from N (θ̂, V̂(θ̂))

For each draw θ∗, compute f (θ∗) by plugging in

Variance in the distribution of θ∗ should transfer to f (θ∗)

This leads to the algorithm of King, Tomz and Wittenberg (2000):

1. Draw R copies of θ̂r from N (θ̂, V̂(θ̂))
2. For each θ̂r , compute f (θ̂r )

3a. To obtain s.e. of f (θ̂), use the sample standard deviation of
{f (θ̂1), ..., f (θ̂R)}

3b. To compute 95% CI, use 2.5/97.5 percentiles of {f (θ̂1), ..., f (θ̂R)} as
the lower/upper bounds
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Example: Civil Conflict and Political Instability
Confidence Intervals for π̂(Ti = 1,Wi = 3.10):

0.
25

0.
30

0.
35

Comparison of 95% Confidence Intervals
π̂ i

Delta Method Nonparametric Bootstrap
Clarify Parametric Bootstrap

Delta Method Clarify Nonpara. B. Para. B.
Normal Approximation Yes Yes No No
Simulations No Yes Yes Yes
Derivation-Free No Yes Yes No
Computation Speed Instant Fast Very Slow Slow
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Simulation from any model must reflect all uncertainty

Yi ∼ f (θi , α) stochastic

θi = g(xi , β) systematic

Must simulate anything with uncertainty:

1. Estimation uncertainty: Lack of knowledge of β and α. (Due to
inadequacies in your research design: n is not infinite.)

2. Fundamental uncertainty: Represented by the stochastic component.
(Due to the nature of nature!)
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Strategy for Simulating from Generalized Linear Models

All of the models we’ve talked about so far (and for the next few weeks)
belong to the class of generalized linear models (GLM).

Three elements of a GLM

A distribution for Y (stochastic component)

A linear predictor Xβ (systematic component)

A link function that relates the linear predictor to the mean of the
distribution. (systematic component)

(Note: the language is slightly different for the latent variable with
observation mechanism but the result is the same)
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Complete Recipe

1 Specify a distribution for Y

2 Specify a linear predictor

3 Specify a link function

4 Estimate Parameters via Maximum Likelihood

5 Simulate or Calculate Quantities of Interest

Let’s do this together for a particular example.
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The Data: Political Assassinations

Taken from Olken and Jones (2009), ”Hit or Miss? The Effect of
Assassinations on Institutions and War”, American Economic Journal:
Macroeconomics.

Dataframe is called as and contains information on assassination
attempts, success or failure, and various covariates.

> as[as$country == "United States" & as$year == "1975",]

country year leadername age tenure attempt

United States 1975 Ford 62 510 TRUE

survived result dem_score civil_war war

1 24 10 0 0

pop energy solo weapon

215973 2208506 1 gun

Observations are country-year-leaders, so some country-years have multiple
observations.
Let’s try to predict assassination attempts with some of our covariates.
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1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial

What fits our application?
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2. Specify a linear predictor

We are interested in allowing some parameter of the distribution θ to vary
as a (linear) function of covariates. So we specify a linear predictor.

Xβ = β0 + x1β1 + x2β2 + · · ·+ xkβk
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What’s in our model?

We wish to predict assassination attempts for country-year-leaders.

tenure: number of days in office

age: age of leader, in years

dem score: polity score, -10 to 10

civil war: is there currently a civil war?

war: is country in an international conflict?

pop: the country’s population, in thousands

energy: energy usage
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3. Specify a link function

The link function relates the linear predictor to some parameter θ of the
distribution for Y (usually the mean).

Let g(·) be the link function and let E (Y ) = θ be the mean of distribution
for Y .

g(θ) = Xβ

θ = g−1(Xβ)

Note that we usually use the inverse link function g−1(Xβ) rather than
the link function.

Together with the linear predictor this forms the systematic component
that we’ve been talking about all along.
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Example Link Functions

Identity:

Link: µ = Xβ

Inverse:

Link: λ−1 = Xβ

Inverse Link: λ = (Xβ)−1

Logit:

Link: ln
(

π
1−π

)
= Xβ

Inverse Link: π = 1
1+e−Xβ

Probit:

Link: Φ−1(π) = Xβ

Inverse Link: π = Φ(Xβ)

Log:

Link: ln(λ) = Xβ

Inverse Link: λ = exp(Xβ)
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Logit or Probit?

“The question of which distribution to use is a natural one... There are
practical reasons for favoring one or the other in some cases for
mathematical convenience, but it is difficult to justify the choice of one
distribution or another on theoretical grounds ...[A]s a general proposition,
the question is unresolved. In most applications, the choice between these
two seems not to make much difference.” -Econometric Analysis, Greene.
pg. 774.

Let’s do probit. Why? Mostly to avoid giving away the problem set.
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4. Estimate Parameters via ML

a. Write down the likelihood

b. Estimate all the parameters by maximizing the likelihood.
I In this case it would be the coefficients β
I In the regression case it would be θ = {β, γ} where γ is a

reparametrization of the variance.

c. Obtain an estimate of the variance by inverting the negative Hessian
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Step 4a: Write Down the Likelihood

The model:

1. Yi ∼ fbern(yi |πi ).

2. πi = Φ(Xiβ) where Φ is the CDF of the standard normal distribution.

3. Yi and Yj are independent for all i 6= j .

Like all CDF’s, Φ has range 0 to 1, so it bounds our πi to the correct
space:

Φ(z) =

∫ z

−∞

1√
2π

exp(
z2

2
)dz .
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Step 4a: Write Down the Likelihood

We can then derive the log-likelihood for β:

L(β|y) ∝
n∏

i=1

fbern(yi |πi )

=
n∏

i=1

(πi )
yi (1− πi )(1−yi )

Therefore:

ln L(β|y) ∝
n∑

i=1

yi ln(πi ) + (1− yi ) ln(1− πi )

=
n∑

i=1

yi ln(Φ(Xiβ)) + (1− yi ) ln(1− Φ(Xiβ))
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Step 4b: Maximize the Likelihood

First implement a function of the likelihood:

ll.probit <- function(beta, y=y, X=X){

phi <- pnorm(X%*%beta, log = TRUE)

opp.phi <- pnorm(X%*%beta, log = TRUE, lower.tail = FALSE)

logl <- sum(y*phi + (1-y)*opp.phi)

return(logl)

}

Notes:

1. the STN CDF is evaluated with pnorm. R’s pre-programmed log of
the CDF has greater range than log(pnorm(Z)) (try Z=-50).

2. if lower.tail = FALSE gives Pr(Z ≥ z).

3. uses a logical test to check that an intercept column has been added
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Step 4b: Maximize the Likelihood

y <- as$attempt

X <- as[,c("tenure","age","dem_score","civil_war",

"war","pop","energy")]

yX <- na.omit(cbind(y,X))

y <- yX[,1]; X <- cbind(1,yX[,-1])

opt <- optim(par = rep(0,ncol(X)), fn = ll.probit, y=y, X=X,

method = "BFGS", control = list(fnscale = -1,

maxit = 1000), hessian = TRUE)

opt$par

[1] -1.836166916 0.029141779 -0.005751652 -0.012433873 0.066287021 0.317451778 0.040863289

[8] 0.026859441
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Step 4c: Estimate the Variance-Covariance Matrix

vcov <- solve(-opt$hessian)

Now we can draw approximate the sampling distribution of beta.

MASS::mvrnorm(n=1, mu=opt$par, Sigma=vcov)

[1] -1.819984146 -0.001830225 -0.005933452 -0.012464456 0.122449059 0.380434336 0.072157828

[8] 0.008879418

This is stochastic so we do it again and get a different answer:

MASS::mvrnorm(n=1, mu=opt$par, Sigma=vcov)

[1] -1.792636772 0.081477117 -0.006457063 -0.013436530 0.019081307 0.255634394 0.036075468

[8] 0.073840550
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5. Quantities of Interest

What not to do...

est SE

Intercept -1.8362 1.4012
tenure 0.0291 0.2937

age -0.0058 0.0251
dem score -0.0124 0.0445

civil war 0.0663 0.8918
war 0.3175 1.0141
pop 0.0409 0.2368

energy 0.0269 0.2432

ses <- sqrt(diag(solve(-opt$hessian)))

table.dat <- cbind(opt$par, ses)

rownames(table.dat) <- colnames(X)

xtable::xtable(table.dat, digits = 4)
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5. Quantities of Interest

1 Simulate parameters from multivariate normal.

2 Run Xβ through inverse link function to get the original parameter
(typically the distribution mean)

3 Draw from distribution of Y for predicted values.
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5. Quantities of Interest

General considerations:

a. Incorporating estimation uncertainty.

b. Incorporating fundamental uncertainty when making predictions.

c. Establishing appropriate baseline values for QOI, and considering
plausible changes in those values.
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Expected Values

For this model we will be interested in estimating the predicted probability
of an assassination attempt at some level for the covariate values. In
general, E [y |X ].

Let’s consider a potentially high risk situations (we’ll call them
“highrisk”,“XHR”) then we can manipulate the risk factors:

Var. Value

tenure -0.30
age 54.00

dem score -3.00
civil war 0.00

war 0.00
pop -0.18

energy -0.23
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Expected Values

What’s the estimated probability of an assassination at XHR?

Draw β̃

beta.draws <- MASS::mvrnorm(10000, mu = opt$par, Sigma = vcov)

dim(beta.draws)

[1] 10000 8

Now we simulate the outcome (warning: inefficient code!)

nsims <- 10000

p.ests <- vector(length=nrow(beta.draws))

for(i in 1:nsims){

p.ass.att <- pnorm(highrisk%*%beta.draws[i,])

outcomes <- rbinom(nsims2, 1, p.ass.att)

p.ests[i] <- mean(outcomes)

}

> mean(p.ests)

[1] 0.0166266

> quantile(p.ests, .025); quantile(p.ests, .975)

2.5% 97.5%

0.0134 0.0201
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Expected Values
What are the steps that I just took?

1. simulate from the estimated sampling distribution of β̂ to incorporate estimation
uncertainty.

2. start our for-loop which will do steps 3-5 each time.

3. combine one β̃ draw with XHR as XHR β̃, then plug into Φ() to get probability of
attempt for that β̃ draw.

4. draw a bunch of outcomes from the Bernoulli(Φ(XHR β̃)).

5. average over those draws to get one simulated E [y |XHR ].

6. return to step 3.
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Expected Values: A Shortcut

There is a shorter way to come up with the same answer, but it requires
some care in its application.

beta.draws <- mvrnorm(10000, mu = opt$par, Sigma

= solve(-opt$hessian))

p.ests2 <- pnorm(highrisk%*%t(beta.draws))

> mean(p.ests2)

[1] 0.01659705

> quantile(p.ests2, .025); quantile(p.ests2, .975)

2.5% 97.5%

0.01395935 0.01955867

This shortcut works because E [y |XHR ] = πHR ; i.e. the parameter is the
expected value of the outcome.
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When wouldn’t this work?

Ex.: suppose that yi ∼ Expo(λi ) where λi = exp(Xiβ). We could find our
likelihood, insert our parameterization of λi for each i , and then maximize to find
β̂ as usual.

Thus, for some baseline set of covariates XBL, we now have a simulated sampling
distribution for λBL which has a mean at E [exp(XBLβ̂)].

Its not too hard to show that if y ∼ Expo(λ), then E [y ] = 1
λ . The temptation is

then to declare that because E [λ̂BL] = E [exp(XBLβ̂)] then

Ê [y ] = 1/E [exp(XBLβ̂)].

It turns out this is not the case because E [1/λ̂] 6= 1/E [λ̂]. The first averages over

the sampling distribution of the means of y . The second averages over the

sampling distribution of λ̂ then plugs into the formula for the mean of y .
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When wouldn’t this work?

Why this annoying wrinkle?

Jensen’s inequality: given a random variable
X, E [g(X )] 6= g(E [X ]) (it’s ≥ if g(·) is concave; ≤ if g(·) is convex).

Why can we use our shortcut with the Probit model? If Y ∼ Bern(π) then

E [Y ] = π. Our guess would then be that Ê [Y ] = E [Φ(XHR β̂)] which is
fine because 1 · E [Φ(XHR β̂)] = E [1 · Φ(XHR β̂)].

Rule of thumb: if E [Y ] = θ, you are safe taking the shortcut.
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More Expected Values

What if I want a bunch of these to see how expected values change with
some variable?

dem.rng <- -10:10

p.ests <- matrix(data = NA, ncol = length(dem.rng),

nrow=10000)

for(j in 1:length(dem.rng)){

highrisk.dem <- highrisk

highrisk.dem["dem_score"] <- dem.rng[j]

p.ests[,j] <- pnorm(highrisk.dem%*%t(beta.draws))

}

plot(dem.rng, apply(p.ests,2,mean), ylim = c(0,.028))

segments(x0 = dem.rng, x1 = dem.rng,

y0 = apply(p.ests, 2, quantile, .025),

y1 = apply(p.ests, 2, quantile, .975))
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Predicted Values

What if someone asks me to predict whether an assassination will take
place? If I were to simulate from the distribution of β̂, and then draw 1
value from the stochastic component for each simulation I would get a
predictive distribution for y |X .

Q: What will it look like?

There is no need to actually conduct the simulation, though. The

simulated outcomes will be Bern(Ê [y |X ]) = Bern(.166). How is this
different than the linear regression case?
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First Differences

Compare expected values of the outcome for two different scenarios,
usually all predictors held constant but one. Recall from our regression
results that war seemed to have a big positive effect on probability of an
assassination attempt.

So let’s find:
E [y |XWar ]− E [y |XNowar ].

Each of these are just fitted values for the probability parameter, with all
covariates at the highrisk values except war, which we control.
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First Differences

highrisk.war <- highrisk

highrisk.war["war"] <- 1

highrisk.nowar <- highrisk

highrisk.nowar["war"] <- 0

fd.ests <- pnorm(highrisk.war%*%t(beta.draws)) -

pnorm(highrisk.nowar%*%t(beta.draws))

> mean(fd.ests)

[1] 0.01891

> quantile(fd.ests, .025); quantile(fd.ests, .975)

2.5% 97.5%

0.00578 0.03609
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Simulating (Parameter) Estimation Uncertainty

To take one random draw of all the parameters γ = (~β, α) from their
“sampling distribution” (or “posterior distribution” with a flat prior):

1. Estimate the model by maximizing the likelihood function, record the
point estimates γ̂ and variance matrix V̂(γ̂).

2. Draw the vector γ from the multivariate normal distribution:

γ ∼ N
(
γ̂, V̂(γ̂)

)
Denote the draw γ̃ = vec(β̃, α̃), which has k elements.
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Simulating the Distribution of Predicted Values, ∼ Y

Predicted values can be for:

1. Forecasts: about the future

2. Farcasts: about some area for which you have no y

3. Nowcasts: about the current data (perhaps to reproduce it to see whether it fits)

To simulate one predicted value, follow these steps:

1. Draw one value of γ̃ = vec(β̃, α̃).

2. Choose a predicted value to compute, defined by one value for each explanatory
variable as the vector Xc .

3. Extract simulated β̃ from γ̃; compute θ̃c = g(Xc , β̃) (from systematic component)

4. Simulate outcome variable Ỹc ∼ f (θ̃c , α̃) (from stochastic component)

Repeat algorithm say M = 1000 times, to produce 1000 predicted values. Use these to

compute a histogram for the full posterior, the average, variance, percentile values, or

others.
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4. Simulate outcome variable Ỹc ∼ f (θ̃c , α̃) (from stochastic component)

Repeat algorithm say M = 1000 times, to produce 1000 predicted values. Use these to

compute a histogram for the full posterior, the average, variance, percentile values, or

others.
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The Distribution of Expected v. Predicted Values

1. Predicted values: draws of Y that are or could be observed

2. Expected values: draws of fixed features of the distribution of Y , such
as E (Y ).

3. Predicted values: include estimation and fundamental uncertainty.

4. Expected values: average away fundamental uncertainty
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5. The variance of expected values (but not predicted values) go to 0 and
n gets large.

6. Example use of predicted value distribution: probability of temperature
colder than 32◦ tomorrow. (Predicted temperature is uncertain because
we have to estimate it and because of natural fluctuations.)

7. Example use of expected value distribution: probability the average
temperature on days like tomorrow will be colder than 32◦. (Expected
temperature is only uncertain because we have to estimate it; natural
fluctuations in temperature doesn’t affect the average.)

8. Which to use for causal effects & first differences?
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Simulating the Distribution of Expected Values: An
Algorithm

1. Draw one value of γ̃ = vec(β̃, α̃).

2. Choose one value for each explanatory variable (Xc is a vector)

3. Taking the one set of simulated β̃ from γ̃, compute θ̃c = g(Xc , β̃)
(from the systematic component)

4. Draw m values of the outcome variable Ỹ
(k)
c (k = 1, . . . ,m) from the

stochastic component f (θ̃c , α̃). (This step simulates fundamental
uncertainty.)

5. Average over the fundamental uncertainty by calculating the mean of
the m simulations to yield one simulated expected value

Ẽ (Yc) =
∑m

k=1 Ỹ
(k)
c /m.
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Simulating Expected Values: Notes

1. When m = 1, this algorithm produces predicted values.

2. With large m, this algorithm better represents and averages over the
fundamental uncertainty.

3. Repeat entire algorithm M times (say 1000), with results differing only
due to estimation uncertainty

4. Use to compute a histogram, average, standard error, confidence
interval, etc.

5. When E (Yc) = θc , we can skip the last two steps. E.g., in the logit
model, once we simulate πi , we don’t need to draw Y and then average
to get back to πi . (If you’re unsure, do it anyway!)
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Simulating First Differences

To draw one simulated first difference:

1. Choose vectors Xs , the starting point, Xe , the ending point.

2. Apply the expected value algorithm twice, once for Xs and Xe (but
reuse the random draws).

3. Take the difference in the two expected values.

4. (To save computation time, and improve approximation, use the same
simulated β in each.)
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Tricks for Simulating Parameters

1. Simulate all parameters (in γ), including ancillary parameters, together,
unless you know they are orthogonal.

2. Reparameterize to unbounded scale to

I make γ̂ converge more quickly in n (and so work better with small n) to
a multivariate normal. (MLEs don’t change, but the posteriors do.)

I make the maximization algorithm work faster without constraints

3. To do this, all estimated parameters should be unbounded and logically
symmetric. E.g.,

I σ2 = eη (i.e., wherever you see σ2, in your log-likelihood function,
replace it with eη)

I For a probability, π = [1 + e−η]−1 (a logit transformation).
I For −1 ≤ ρ ≤ 1, use ρ = (e2η − 1)/(e2η + 1) (Fisher’s Z transformation)

In all 3 cases, η is unbounded: estimate it, simulate from it, and
reparameterize back to the scale you care about.
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Tricks for Simulating Quantities of Interest

1. Unless you’re sure, always compute simulations of Y and use that as a basis
for creating simulations of other quantities. (This will get all information from
the model in the simulations.)

2. Simulating functions of Y

(a) If some function of Y , such as ln(Y ), is used, simulate ln(Y ) and then
apply the inverse function exp(ln(Y )) to reveal Y .

(b) The usual, but wrong way: Regress ln(Y ) on X , compute predicted value

l̂n(Y ) and exponentiate.
(c) Its wrong because the regression estimates E [ln(Y )], but

E [ln(Y )] 6= ln[E (Y )], so exp(E [ln(Y )]) 6= Y
(d) More generally, E (g [Y ]) 6= g [E (Y )], unless g [·] is linear.

3. Check the approximation error of your simulation algorithm: Run it twice,
check the number of digits of precision that don’t change. If its not enough
for your tables, increase M (or m) and try again.

4. Analytical calculations and other tricks can speed simulation, or precision.

5. Canned Software Options: Clarify in Stata, Zelig in R
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Replication of Rosenstone and Hansen from King, Tomz
and Wittenberg (2000)

1. Logit of reported turnout on Age, Age2, Education, Income, and Race

2. Quantity of Interest: (nonlinear) effect of age on Pr(vote|X ), holding
constant Income and Race.

3. Use M = 1000 and compute 99% CI:
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To create this graph, simulate:

1. Set age=24, education=high school, income=average, Race=white

2. Run logistic regression

3. Simulate 1000 β̃’s

4. Compute 1000 π̃i = [1 + exi β̃ ]−1

5. Sort in numerical order

6. Take 5th and 995th values as the 99% confidence interval

7. Plot a vertical line on the graph at age=24 representing the CI.

8. Repeat for other ages and for college degree.
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Replication of Garrett (King, Tomz and Wittenberg 2000)

Dependent variable: Government Spending as % of GDP
Key explanatory variable: left-labor power (high = solid line; low =
dashed)
Garrett used only point estimates to distinguish the eight quantities
represented above. What new information do we learn with this approach?
Left-labor power only has a clear effect when exposure to trade or capital
mobility is high.

See Last Semester’s Slides
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Model Diagnostics for Binary Outcome Models

How do you quantify the goodness of fit of your model?

Note: Goodness of fit may or may not be very important

A model that fits well is likely to be a good predictive model

But it does not guarantee that the model is a good causal model

Pseudo-R2: a generalization of R2 to outside of the linear world

R̃2 = 1− `(β̂MLE )

`(ȳ)
∈ [0, 1]

`(ȳ): log-likelihood of the null model, which sets π̂i = ȳ for all i

This one is due to McFadden (1974); many other variants exist
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How do you know which model is better?

1. Out-of-sample forecasts (or farcasts)

(a) Your job: find the underlying (persistent) structure, not the idiosyncratic
features of any one data set.

(b) Set aside some (test) data.
(c) Fit your model to the rest (the training data).
(d) Make predictions with training set; compare to the test set.
(e) Comparisons to average prediction and full distribution.
(f) E.g., if a set of predictions have Pr(y = 1) = 0.2, then 20% of these

observations in the test set should be 1s.
(g) The best test sets are really out of sample, not even available yet.
(h) If the world changes, an otherwise good model will fail. But it’s still the

right test.
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(See Trevor Hastie et al. 2001. The Elements of Statistical Learning, Springer, Chapter 7: Fig 7.1.)
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(i) Binary variable predictions require a normative decision.

I Let C be number of times more costly misclassifying a 1 is than a 0.
I C must be chosen independently of the data.
I C could come from your philosophical justification, survey of policy

makers, a review of the literature, etc.
I People often choose C = 1, but without justification.
I Decision theory: choose Y = 1 when π̂ > 1/(1 + C ) and 0 otherwise.

• If C = 1, predict y = 1 when π̂ > 0.5
• If C = 2, predict y = 1 when π̂ > 1/3

I Only with C chosen can we compute (a) % of 1s correctly predicted
and (b) % of 0s correctly predicted, and (c) patterns in errors in
different subsets of the data or forecasts.

(j) If you can’t justify a choice for C , use ROC (receiver-operator
characteristic) curves

I Compute %1s and %0s correctly predicted for every possible value of C
I Plot %1s by %0s
I Overlay curves for several models on the same graph.
I If one curve is above another the whole way, then that model dominates

the other. It’s better no matter your normative decision (about C )
I Otherwise, one model is better than the other in only given specificed

ranges of C (i.e., for only some normative perspectives).
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In sample ROC, on left (from Gary King and Langche Zeng. “Improving
Forecasts of State Failure,” World Politics, Vol. 53, No. 4 (July, 2001):
623-58)
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4. Cross-validation

(a) The idea: set aside k observations as the “test set”: evaluate; and then
set aside another set of k observations. Repeat multiple times; report
performance averaged over subsets

(b) Useful for smaller data sets; real test sets are better.

5. Fit, in general: Look for all possible observable implications of a model,
and compare to observations. (Think. Be creative here!)

6. Fit: continuous variables

(a) The usual regression diagnostics
(b) E.G., plots of e = y − ŷ by X , Y or ŷ
(c) Check more than the means. E.g., plot e by ŷ and draw a line at 0 and at
±1, 2 se’s. 66%, 95% of the observations should fall between the lines.

(d) For graphics:

F transform bounded variables
F transform heteroskedastic results
F highlight key results; label everything
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±1, 2 se’s. 66%, 95% of the observations should fall between the lines.

(d) For graphics:

F transform bounded variables
F transform heteroskedastic results
F highlight key results; label everything

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 80 / 242



4. Cross-validation

(a) The idea: set aside k observations as the “test set”: evaluate; and then
set aside another set of k observations. Repeat multiple times; report
performance averaged over subsets

(b) Useful for smaller data sets; real test sets are better.

5. Fit, in general: Look for all possible observable implications of a model,
and compare to observations. (Think. Be creative here!)

6. Fit: continuous variables

(a) The usual regression diagnostics
(b) E.G., plots of e = y − ŷ by X , Y or ŷ
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±1, 2 se’s. 66%, 95% of the observations should fall between the lines.

(d) For graphics:

F transform bounded variables
F transform heteroskedastic results
F highlight key results; label everything

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 80 / 242



4. Cross-validation

(a) The idea: set aside k observations as the “test set”: evaluate; and then
set aside another set of k observations. Repeat multiple times; report
performance averaged over subsets

(b) Useful for smaller data sets; real test sets are better.

5. Fit, in general: Look for all possible observable implications of a model,
and compare to observations. (Think. Be creative here!)

6. Fit: continuous variables

(a) The usual regression diagnostics
(b) E.G., plots of e = y − ŷ by X , Y or ŷ
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7. Fit: dichotomous variables

(a) Sort estimated probabilities into bins of say 0.1 width: [0, 0.1),
[0.1, 0.2),. . . , [0.9, 1].

(b) From the observations in each bin, compute (a) the mean predictions
(probably near 0.05, 0.15, etc.) and (b) the average fraction of 1s.

(c) Plot (a) by (b) and look for systematic deviation from 45◦ line.

In sample calibration graph on right (from Gary King and Langche Zeng.
“Improving Forecasts of State Failure,” World Politics, Vol. 53, No. 4
(July, 2001): 623-58)
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Out of sample calibration graph on right.
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Out-of-Sample with Cross-Validation
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New Developments: Separation plots

Greenhill, Ward and Sacks (2011)
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New Developments

Hanmer and Kalkan distinguish between:

average case (most common)

observed value (they argue better)
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The Case for Observed Case

Consider the case of voting for Bush in 2004. Average case is:

a white

48 year old woman

identifies as independent and a political moderate

with an associates degree

believes economic performance has been constant

disapproves of the Iraq war but not strongly

with an income between $45K and $50K
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The Case for Observed Case

Try to come up with an argument for why the average-case method will
tend to produce bigger changes than the observed-case method.

Average cases are likely to be in the “middle” of the data where the
predicted probabilities are changing the fastest. Think about Bill O’Reilly
and Rachel Maddow. They are going to show up in the observed-case
method but not the average-case method.
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The Case for Observed Case
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UPM Remainder of Chapter 5.

Optionally: Greenhill et al. 2011, Hamner and Kalkan 2013

Also Helpful: Mood 2010, Berry, DeMeritt and Esarey 2010
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1 Binary Outcome Models

2 Quantities of Interest
An Example with Code
Predicted Values
First Differences
General Algorithms

3 Model Diagnostics for Binary Outcome Models

4 Ordered Categorical

5 Unordered Categorical

6 Event Count Models
Poisson
Overdispersion
Binomial for Known Trials

7 Duration Models
Exponential Model
Weibull Model
Cox Proportional Hazards Model

8 Duration-Logit Correspondence

9 Appendix: Multinomial Models

10 Appendix: More on Overdispersed Poisson

11 Appendix: More on Binomial Models

12 Appendix: Gamma Regression
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Modeling Ordered Outcomes

Suppose that we have an outcome which is one of J choices that are
ordered in a substantively meaningful way

Examples:
I “Likert scale” in survey questions (“strongly agree”, “agree”, etc.)
I Party positions (extreme left, center left, center, right, extreme right)
I Levels of democracy (autocracy, anocracy, democracy)
I Health status (healthy, sick, dying, dead)

Why not use continuous outcome models?
−→ Don’t want to assume equal distances between levels

Why not use categorical outcome models?
−→ Don’t want to waste information about ordering
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Why not use categorical outcome models?

−→ Don’t want to waste information about ordering
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Ordered Dependent Variable Models

The model

Y ∗i ∼ STN(y∗i |µi )
µi = xiβ

Observation mechanism

yij =

{
1 if τj−1,i ≤ y∗i ≤ τj ,i
0 otherwise
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Ordered Logit and Probit Models
Again, the latent variable representation: Y ∗i = X>i β + εi

Assume that Y ∗i gives rise to Yi based on the following scheme:

Yi =


1 if −∞(= ψ0) < Y ∗i ≤ ψ1,
2 if ψ1 < Y ∗i ≤ ψ2,
...

...
J if ψJ−1 < Y ∗i ≤ ∞(= ψJ)

where ψ1, ..., ψJ−1 are the threshold parameters to be estimated
If Xi contains an intercept, one of the ψ’s must be fixed for
identifiability (typically ψ1 = 0)

εj
i.i.d.∼ logistic ⇒ the ordered logit model:

Pr(Yi ≤ j | Xi ) =
exp(ψj − X>i β)

1 + exp(ψj − X>i β)

εj
i.i.d.∼ N (0, 1) ⇒ the ordered probit model:

Pr(Yi ≤ j | Xi ) = Φ
(
ψj − X>i β

)
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Ordered Logit and Probit Models
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Ordered Dependent Variable Models: Connections

1. Y ∗i ∼ STL(y∗i |µi )→ ordinal logit
Y ∗i ∼ STN(y∗i |µi )→ ordinal probit

2. Alternate representation: dichotomous variable Yji for each category j ,
only one of which is 1; the others are 0.

3. If Y ∗i is observed, the probit version is a linear-normal regression model

4. If a dichotomous realization of Y ∗ is observed, its a logit/probit model

5. This is the same model, and the same parameters are being estimated;
only the observation mechanism differs.
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Deriving the likelihood function

First the probability of each observation, then the joint probability.

Pr(Yij = 1) = Pr(τj−1 ≤ Y ∗i ≤ τj)

=

∫ τj

τj−1

STN(y∗i |µi )dy∗i

= Fstn(τj |µi )− Fstn(τj−1|µi )
= Fstn(τj |xiβ)− Fstn(τj−1|xiβ)

The joint probability is then:

P(Y ) =
n∏

i=1

 J∏
j=1

Pr(Yij = 1)yij


Bracketed portion has only one active component for each i .
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Deriving the likelihood function

The Log-likelihood:

ln L(β, τ |y) =
n∑

i=1

J∑
j=1

yij ln Pr(Yij = 1)

=
n∑

i=1

J∑
j=1

yij ln [Fstn(τj |xiβ)− Fstn(τj−1|xiβ)]

(Constraints during optimization make this more complicated to do from
scratch: τj−1 < τj , ∀j)
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Interpretation: Ordinal Probit

1. Coefficients are the linear effect of X on Y ∗ in standard deviation units

2. Predictions from the model are J probabilities that sum to 1.

3. One first difference has an effect on all J probabilities.

4. When one probability goes up, at least one of the others must go down.

5. Can use ternary diagrams if J = 3
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Representing 3 variables, with Yj ∈ [0, 1] and
∑3

j=1 Yj = 1
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Calculating Quantities of Interest

Predicted probability:

πij(Xi ) ≡ Pr(Yi = j | Xi ) = Pr(Yi ≤ j | Xi )− Pr(Yi ≤ j − 1 | Xi )

=

{
exp(ψj−X>i β)

1+exp(ψj−X>i β)
− exp(ψj−1−X>i β)

1+exp(ψj−1−X>i β)
for logit

Φ
(
ψj − X>i β

)
− Φ

(
ψj−1 − X>i β

)
for probit

ATE (APE): τj = E [πj(Ti = 1,Wi )− πj(Ti = 0,Wi )]

Estimate β and ψ via MLE, plug the estimates in, replace E with 1
n

∑
, and

compute CI by delta or MC or bootstrap

Note that X>i β appears both before and after the minus sign in πij
−→ Direction of effect of Xi on Yij is ambiguous (except top and bottom)
−→ Again, calculate quantities of interest, not just coefficients
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Example: Immigration and Media Priming
Brader, Valentino and Suhay (2008):

Yi : Ordinal response to question about increasing immigration

T1i ,T2i : Media cues (immigrant ethnicity × story tone)

Wi : Respondent age and income

Estimated coefficients:

Coefficients:

Value s.e. t

tone 0.27 0.32 0.85

eth -0.33 0.32 -1.02

ppage 0.01 0.02 1.40

ppincimp 0.00 0.03 0.06

tone:eth 0.90 0.46 2.16

Intercepts:

Value s.e. t

1|2 -1.93 0.58 -3.32

2|3 -0.12 0.55 -0.21

3|4 1.12 0.56 2.01

ATE:

−
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4
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0

0.
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 countries should be increased or decreased?
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Example: Peer Bereavement

Andersen, Silver, Koperwas, Stewart and Kirschbaum (2013):

Study of response by college students to a sequence of 14 peer deaths in one
academic year.

Yi : Severity of acute reaction (1-5 scale)

Xi : gender, number of peers known, media exposure

Coef SE CI P-value RR Strong (95% CI) RR Extreme (95% CI)
Female 0.89 0.23 (0.44, 1.35) 0 2.71 (1.51, 4.82) 13.69 (2.84, 45.55)

Num. Peers Known 0.54 0.16 (0.23, 0.85) 0 1.43 (1.15, 1.82) 3.53 (1.6, 7.25)
Media Exposure 0.25 0.06 (0.13, 0.36) 0 1.17 (1.08, 1.3) 1.73 (1.31, 2.38)

The Risk Ratio measures the relative probability of being in the outcome category
based on different values of the independent variable. Thus the RR for the Strong
Reaction category for Female can be understood as

RRStrong =
Pr(Strong Reaction|Female)

Pr(Strong Reaction|Male)
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Example: Peer Bereavement
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Figure: This plot shows the expected probabilities of being in each category of
reaction given gender (left) and knowing 1 to 4 people (right) with 95%
confidence intervals.
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Ordered Categorical Conclusions

Straightforward to derive from latent variable representation

Ordered probit is often easier to work with,

ordered logit has a nice
interpretation as a proportional odds model

log
γij

1− γij
= λjexp(xiβ)

where γij is the cumulative probability and λj is the baseline odds.
Covariates raise or lower the odds of a response in category j or below.

Visualization and appropriate quantities of interest can be tricky. Let
the substance guide you.
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Multinomial Logit

Sometimes we encounter unordered categories (choose a Ph.D.
Sociology, Politics, Psychology, Statistics).

We can generalize the logit model to two choices to get the
multinomial logit model

πij = Pr(Yi = j | Xi ) =
exp(X>i βj)∑J

k=1 exp(X>i βk)
,

where Xi = individual-specific characteristics of unit i

category-specific set of coefficients (one category omitted for
identification)

Multinomial logit also has a latent variable interpretation: make
choice with greatest utility Y ∗ij . When the stochastic component on

the utility is εij
i.i.d.∼ type I extreme value distribution, multinomial

logit is implied.

Coefficients are relative to a baseline category- so again we want to
compute quantities of interest for interpretation.
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logit is implied.

Coefficients are relative to a baseline category- so again we want to
compute quantities of interest for interpretation.
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Independence of Irrelevant Alternatives

Multinomial logit assumes iid errors in the latent utility model, this
implies that unobserved factors affecting Y ∗ij are unrelated to those
affecting Y ∗ik .

MNL makes the Independence of Irrelevant Alternatives (IIA)
assumption:

Pr(Choose j | j or k)

Pr(Choose k | j or k)
=

Pr(Choose j | j or k or l)

Pr(Choose k | j or k or l)
for any l ∈ {1, ...J}

A classical example of IIA violation: the red bus-blue bus problem

That is, the multinomial choice reduces to a series of independent
pairwise comparisons
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Relaxing IIA with Multinomial Probit

To relax IIA, we need to allow the stochastic component of the utility
εij to be correlated across choices j for each voter.

Multinomial probit model (MNP):

Y ∗i = X>i β + εi where


εi

i.i.d.∼ N (0,ΣJ)
Y ∗i = [Y ∗i1 · · · Y ∗iJ ]>

Xi = [Xi1 · · · XiJ ]>

Restrictions on level and scale of Y ∗i for identification

Computation is difficult because integral is intractable
Moreover, # of parameters in ΣJ increases as J gets large, but data
contain little information about ΣJ :

J 3 4 5 6 7
# of elements in ΣJ 6 10 15 21 28
# of parameters identified 2 5 9 14 20
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The Poisson Distribution

It’s a discrete probability distribution which gives the probability that some
number of events will occur in a fixed period of time.
Examples:

1. number of terrorist attacks in a given year

2. number of publications by a Professor in a career

3. number of days absent from school for High School Sophomores

4. logo for the Stata Press:

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 111 / 242



The Poisson Distribution

It’s a discrete probability distribution which gives the probability that some
number of events will occur in a fixed period of time.
Examples:

1. number of terrorist attacks in a given year

2. number of publications by a Professor in a career

3. number of days absent from school for High School Sophomores

4. logo for the Stata Press:

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 111 / 242



The Poisson Distribution

It’s a discrete probability distribution which gives the probability that some
number of events will occur in a fixed period of time.
Examples:

1. number of terrorist attacks in a given year

2. number of publications by a Professor in a career

3. number of days absent from school for High School Sophomores

4. logo for the Stata Press:

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 111 / 242



The Poisson Distribution

It’s a discrete probability distribution which gives the probability that some
number of events will occur in a fixed period of time.
Examples:

1. number of terrorist attacks in a given year

2. number of publications by a Professor in a career

3. number of days absent from school for High School Sophomores

4. logo for the Stata Press:

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 111 / 242



The Poisson Distribution

It’s a discrete probability distribution which gives the probability that some
number of events will occur in a fixed period of time.
Examples:

1. number of terrorist attacks in a given year

2. number of publications by a Professor in a career

3. number of days absent from school for High School Sophomores

4. logo for the Stata Press:

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 111 / 242



Poisson distribution’s first principles:

1. Begin with an observation period and count point:

2. Assumptions are about: events occurring between start and count
observation. The process of event generation is not observed.

3. 0 events occur at the start of the period

4. Observe only: number of events at end of the period

5. No 2 events can occur at the same time

6. Pr(event at time t | all events up to time t − 1) is constant for all t.
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The Poisson Distribution

Here is the probability density function (PDF) for a random variable Y
that is distributed Pois(λ):

Pr(Y = y) =
λy

y !
e−λ.

-suppose Y ∼ Pois(3). What’s Pr(Y = 4)?

Pr(Y = 4) =
34

4!
e−3 = 0.168.

Poisson Distribution

y

P
r(

Y
=

y)

0
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1
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The Poisson Distribution

(λ):

Pr(Y = y) =
λy

y !
e−λ.

Using a little bit of geometric series trickery, it isn’t too hard to show that
E[Y ] =

∑∞
y=0 y · λyy ! e

−λ = λ.

It also turns out that Var(Y ) = λ, a feature of the model we will discuss
later on.
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The Poisson Distribution

Poisson data arises when there is some discrete event which occurs
(possibly multiple times) at a constant rate for some fixed time period.

This constant rate assumption could be restated: the probability of an
event occurring at any moment is independent of whether an event has
occurred at any other moment.

Derivation of the distribution has some other technical first principles, but
the above is the most important.
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Connections to Distributions We Have Seen

Take Binom(n, p) and let n→∞ and p → 0 holding np = µ constant

If the number of arrivals in the time interval [0, t] follows a
Poisson(λt) then the wait times are distributed Exponential with
mean 1/λ.

For Yj |(X = k) ∼Multinom(k , pj) then each Yj ∼Pois(λpj).

If Xi ∼Pois(λi ) for i = 1 . . . n independent then
Y =

∑n
i=1 Xi ∼ Pois(

∑n
i=1 λi )
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The Poisson regression model:

Yi ∼ Poisson(yi |λi )
λi = exp(xiβ)

and, as usual, Yi and Yj are independent ∀ i 6= j , conditional on X .
The probability density of all the data:

P(y |λ) =
n∏

i=1

e−λiλyii
yi !

The log-likelihood:

ln L(β|y) =
n∑

i=1

{yi ln(λi )− λi − ln(yi !)}

=
n∑

i=1

{(xiβ)yi − exp(xiβ)− ln yi !}

.
=

n∑
i=1

{(xiβ)yi − exp(xiβ)}
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Comparing with the Linear Model

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 118 / 242



Example: Civil Conflict in Northern Ireland

Background: a conflict largely along religious lines about the status of
Northern Ireland within the United Kingdom, and the division of resources
and political power between Northern Ireland’s Protestant (mainly
Unionist) and Catholic (mainly Republican) communities.

The data: the number of Republican deaths for every month from 1969,
the beginning of sustained violence, to 2001 (at which point, most
organized violence had subsided). Also, the unemployment rates in the two
main religious communities.
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Example: Civil Conflict in Northern Ireland

The model: Let Yi = # of Republican deaths in a month. Our sole
predictor for the moment will be: UC = the unemployment rate among
Northern Ireland’s Catholics.

Our model is then:
Yi ∼ Pois(λi )

and
λi = E [Yi |UC

i ] = exp(β0 + β1 ∗ UC
i ).
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Estimate (just as we have all along!)

mod <- glm(repdeaths ~ cathunemp,

data = troubles, family = poisson(link="log")

> summary(mod)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.295875 0.1805327 7.178064 7.070547e-13

cathunemp 1.406498 0.6689819 2.102445 3.551432e-02
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Our fitted model

λi = E [Yi |UC
i ] = exp(1.296 + 1.407 ∗ UC

i ).
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Some fitted and predicted values
Suppose UC is equal to .2.

mod.coef <- coef(mod); mod.vcov <- vcov(mod)

beta.draws <- mvrnorm(10000, mod.coef, mod.vcov)

lambda.draws <- exp(beta.draws[,1] + .2*beta.draws[,2])

outcome.draws <- rpois(10000, lambda.draws)
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Overdispersion

36% of observations lie outside the 2.5% or 97.5% quantile of the Poisson
distribution that we are alleging generated them.
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Overdispersion in Poisson Model

The Poisson model assumes E(Yi | Xi ) = V(Yi | Xi )

But for many count data, E(Yi | Xi ) < V(Yi | Xi )

Potential sources of overdispersion:
1 unobserved heterogeneity
2 clustering
3 contagion or diffusion
4 (classical) measurement error

Underdispersion could occur, but rare

One solution to this is to modify the Poisson model by assuming:

E(Yi | Xi ) = µi = exp(X>i β) and V(Yi | Xi ) = Vi = φµi

This is called the overdispersed Poisson regression model

When φ > 1, this corresponds to a type of the negative binomial
regression model (more on this later)
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Derivation as a Gamma-Poisson Mixture

Here’s the new stochastic component:

Yi |ςi ∼ Poisson(ςiλi )

ςi ∼
1

θ
Gamma(θ)

Note that Gamma(θ) implicitly has location parameter 1, so its mean is θ.
This means that 1

θGamma(θ) has mean 1, and so Poisson(ςiλi ) has mean
λi .
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Derivation as a Gamma-Poisson Mixture

Using a similar approach to that described in UPM pgs. 51-52 we can
derive the marginal distribution of Y as

Yi ∼ Negbin(λi , θ)

where

fnb(yi |λi , θ) =
Γ(θ + yi )

yi !Γ(θ)

λyii θ
θ

(λi + θ)θ+yi

Notes:

1. E[Yi ] = λi and Var(Yi ) = λi +
λ2
i
θ . What values of θ would be

evidence against overdispersion?

2. we still have the same old systematic component: λi = exp(Xiβ).
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Estimates

mod <- zelig(repdeaths ~ cathunemp, data = troubles,

model = "negbin")

summary(mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.2959 0.1805 7.178 7.07e-13 ***

cathunemp 1.4065 0.6690 2.102 0.0355 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

...

Theta: 0.8551

Std. Err.: 0.0754
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Overdispersion Handled!
5.68% of observations lie at or above the 95% quantile of the Negative
Binomial distribution that we are alleging generated them.
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Binomial Regression Model

Sometimes count data have a known upper bound Mi

Examples:

I # of votes for a third party candidate in precinct with population Mi

I # of children who drop out of high school in a family with Mi children

If Mi “trials” are all independent, we have the binomial distribution:

p(Yi | Mi , πi ) =

(
Mi

Yi

)
πYi

i (1− πi )Mi−Yi

An exponential family with E(Yi ) = Miπi and V(Yi ) = Miπi (1− πi )

We can thus consider a GLM, the binomial regression model,
by setting πi = g−1(X>i β)

Common links: logit (canonical), probit, cloglog

Note that if Mi = 1 for all i , this reduces to a binary outcome model
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Estimation and Overdispersion

The log-likelihood:

`(β | Xi ) =
N∑
i=1

{
Yi log

(
πi

1− πi

)
+ Mi log(1− πi ) + log

(
Mi

Yi

)}

Use the standard MLE/GLM machinary to estimate β and calculate
quantities of interest

Data are often overdispersed due to dependence between trials

Modify the variance function by including a dispersion parameter:

E(Yi | Xi ) = Miπi and V(Yi | Xi ) = φMiπi (1− πi )

Estimate β and φ via QMLE

This is a GLM, so we have the same robustness properties as the Poisson
case
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Example: Butterfly Ballot in 2000 Presidential Election
Wand et al. (2001): Did the butterfly ballot give the election to Bush?

Yi : Number of votes cast for Buchanan in county i

Xi : Past Republican & third-party vote shares, demographic covariates

Wand et al. examine residuals to see how abberant the vote share was in
Palm Beach
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Fitting GLMs in R

Canonical Link
Family (Default) Variance Model
gaussian identity φ (= σ2) normal linear
binomial logit µ(1− µ) logit, probit, binomial
poisson log µ Poisson
quasibinomial logit φµ(1− µ) overdispersed binomial
quasipoisson log φµ overdispersed Poisson

Other choices not covered in this course: Gamma, inverse.gaussian

You can roll your own GLM using the quasi family

The negative binomial regression (NB2) can be fitted via the glm.nb

function in MASS
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Other Models

Note that there are many other count models for different types of
situations:

Generalized Event Count (GEC) Model

Zero-Inflated Poisson

Zero-Inflated Negative Binomial

Zero-Truncated Models

Hurdle Models
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What are duration models used for?

Survival models = duration models = event history models

Dependent variable Y is the duration of time that observations spend
in some state before experiencing an event (aka failure, death)

Used in biostatistics and engineering: i.e. how long until a patient dies

Models the relationship between duration and covariates (how does
an increase in X affect the duration Y )

In social science, used in questions such as how long a coalition
government lasts, how long until someone gets a job, how a program
extends life expectancy

Observations should be measured in the same (temporal) units, i.e.
don’t have some units’ duration measured in days and others in
months
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Why not just use OLS?

Three reasons:

1. The normal linear model assumes Y is Normal but duration
dependent variables are always positive (number of years, etc.)

2. Duration models can handle censoring
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Observation 3 is censored in that
it has not experienced the event
at the time we stop collecting
data, so we don’t know its true
duration
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Why not use OLS?

3. Duration models can handle time-varying covariates

I If Y is duration of a regime, GDP may change during the duration of
the regime

I OLS cannot handle multiple values of GDP per observation
I You can set up data in a special way with duration models such that

you can accommodate time-varying covariates
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Duration/Survival Model Jargon

Let T denote a continuous positive random variable representing the
duration/survival times (T = Y )

T has a probability density function f (t)
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Duration/Survival Model Jargon
F(t): the CDF of f (t),

∫ t
0 f (u)du = P(T ≤ t), which is the probability of

an event occurring before (or at exactly) time t

Survivor function: The probability of surviving (i.e. no event occuring)
until at least time t: S(t) = 1− F (t) = P(T > t)

Eye of the Tiger: 1982 album by the band Survivor, which reached
number 2 on the US Billboard 200 chart.
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Duration/Survival Model Jargon

Hazard rate (or hazard function): h(t) is roughly the probability of an
event at time t given survival up to time t

h(t) = P(t ≤ T < t + τ |T ≥ t)

= P(event at t|survival up to t)

=
P(survival up to t|event at t)P(event at t)

P(survival up to t)

=
P(event at t)

P(survival up to t)

=
f (t)

S(t)
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Relating the Density, Survival, and Hazard Functions

h(t) =
f (t)

S(t)

implies

f (t)︸︷︷︸
density function

= h(t)︸︷︷︸
hazard function

· S(t)︸︷︷︸
survival function
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Modeling with Covariates

We can model the mean of the duration times as a function of covariates
via a link function g(·)

g(E [Ti ]) = Xiβ

and estimate β via maximum likelihood.
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How to estimate parametric survival models

They might seem fancy and complicated, but we estimate these models
the same as every other model!

1 Make an assumption that Ti follows a specific distribution f (t) (i.e.
choose the stochastic component).

2 Model the hazard rate with covariates (i.e. specify the systematic
component).

3 Estimate via maximum likelihood.

4 Interpret quantities of interest (hazard ratios, expected survival
times).
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What’s Special About Survival Models?

Censoring:

... it makes modeling a little tricky.
But not too tricky
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collected the data, so we don’t know its
true duration.
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Censoring

Observations that are censored give us information about how long they
survive.

For censored observations, we know that they survived at least until some
observed time, tc , and that the true duration, t is greater than or equal to
tc .

For each observation, let’s create a censoring indicator variable, ci , such
that

ci =

{
1 if not censored
0 if censored
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Censoring

We can incorporate the information from the censored observations into
the likelihood function.

L =
n∏

i=1

[f (ti )]ci︸ ︷︷ ︸
uncensored

[P(Ti ≥ tci )]1−ci︸ ︷︷ ︸
censored

=
n∏

i=1

[f (ti )]ci [1− F (ti )]1−ci

=
n∏

i=1

[f (ti )]ci [S(ti )]1−ci

So uncensored observations contribute to the density function and
censored observations contribute to the survivor function in the likelihood.
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The Poisson Process

Popular example of stochastic process

Principles of Poisson process:
I Independent increments: number of events occurring in two disjoint

intervals is independent
I Stationary increments: probability distribution of number of

occurrences depends only on the time length of interval (because of
common rate)

Events occur at rate λ (expected occurrences per unit of time)

Nτ = number of arrivals in time period of length τ
I Nτ ∼ Poisson(λτ)
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The Poisson Process

Exponential distribution measures the times between events in a
Poisson process

T = time to wait until next event in a Poisson process with rate λ

T ∼ Expo(λ)

Memorylessness property: how much you have waited already is
irrelevant

P(T > t + k |T > t) = P(T > k)

P(T > 3 + 5|T > 3) = P(T > 5)
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The Exponential Model
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Link Functions

If you use a rate parameterization with λi :

E (Ti ) =
1

λi
=

1

exp(xiβ)

Positive β implies that expected duration time decreases as x
increases.

If you use a scale parameterization with θi

E (Ti ) = θi = exp(xiβ)

Positive β implies that expected duration time increases as x
increases.
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Hazard Function for Rate Parametrization

For Ti ∼ Exponential(λi ):

f (t) = λie
−λi t

S(t) = 1− F (t)

= 1− (1− e−λt)

= e−λi t

h(t) =
f (t)

S(t)

=
λie
−λi t

e−λi t

= λi
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Hazard Function for Scale Parametrization

For Ti ∼ Exponential(θi ):

f (t) =
1

θi
exp[− t

θi
]

S(t) = 1− F (t)

= 1− (1− exp[− t

θi
])

= exp[− t

θi
]

h(t) =
f (t)

S(t)

=
1
θi

exp[− t
θi

]

exp[− t
θi

]
=

1

θi
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Let’s work with the scale parametrization

Note that h(t) = 1
θi

, which does not depend on t!

I The exponential model thus assume a flat hazard: Every unit /
individual has their own hazard rate, but it does not change over time

I Connected to memorylessness property of the exponential
distribution

Modeling h(t) with covariates:

h(t) =
1

θi
= exp[−xiβ]

Positive β implies that hazard decreases and average survival time
increases as x increases.
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Estimation via ML:

L =
n∏

i=1

[f (ti )]1−ci [1− F (ti )]ci

=
n∏

i=1

[
1

θi
e
− ti

θi

]1−ci [
e
− ti

θi

]ci
` =

n∑
i=1

(1− ci )(ln
1

θi
− ti
θi

) + ci (−
ti
θi

)

=
n∑

i=1

(1− ci )(ln e−xiβ − e−xiβti ) + ci (−e−xiβti )

=
n∑

i=1

(1− ci )(−xiβ − e−xiβti )− ci (e−xiβti )

=
n∑

i=1

(1− ci )(−xiβ)− e−xiβti
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Quantities of interest

If our outcome variable is how long a parliamentary government lasts, and
we’re interested in the effect of majority versus minority governments. We
could calculate:

Find the hazard ratio of majority to minority governments

Expected survival time for majority and minority governments

Predicted survival times for majority and minority governments

First differences in expected survival times between majority and
minority governments
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Hazard Ratios

HR =
h(t|xmaj)

h(t|xmin)

=
e−xmajβ

e−xminβ

=
e−β0e−x1β1e−x2β2e−x3β3e−xmajβ4e−x5β5

e−β0e−x1β1e−x2β2e−x3β3e−xminβ4e−x5β5

=
e−xmajβ4

e−xminβ4

= e−β4

Hazard ratio greater than 1 would imply that majority governments fall
faster (shorter survival time) than minority governments.
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Expected (average) Survival Time

E (T |xi ) = θi

= exp[xiβ]
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Predicted Survival Time

Draw predicted values from the exponential distribution.
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First Differences

E (T |xmaj)− E (T |xmin)
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Quantities of Interest in Zelig

x.min <- setx(z.out,numst2=0)

x.maj <- setx(z.out,numst2=1)

s.out <- sim(z.out, x=x.min,x1=x.maj)

summary(s.out)

plot(s.out)
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The exponential model is nice and simple, but the assumption of a flat
hazard may be too restrictive.

What if we want to loosen that restriction by assuming a monotonic
hazard?

We can use the Weibull model.
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The Weibull Model

Similar to how we generalized the Poisson into a Negative Binomial by adding a
parameter, we can do the same with the Exponential by turning it into a Weibull:

Ti ∼ Weibull(θi , α)

E (Ti ) = θiΓ

(
1 +

1

α

)
θi > 0 is the scale parameter and α > 0 is the shape parameter.
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The Weibull Model

f (ti ) =

(
α

θαi

)
tα−1
i exp

[
−
(

ti
θi

)α]

Model θi with covariates in the systematic component:

θi = exp(xiβ)

Positive β implies that expected duration time increases as x increases.
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f (ti ) =

(
α

θαi

)
tα−1
i exp

[
−
(

ti
θi

)α]

S(ti ) = 1− F (ti )

= 1− (1− e−(ti/θi )
α

)

= e−(ti/θi )
α

h(ti ) =
f (ti )

S(ti )

=

(
α
θαi

)
tα−1
i exp

[
−
(

ti
θi

)α]
e−(ti/θi )α

=

(
α

θi

)(
ti
θi

)α−1

=

(
α

θαi

)
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Hazard monotonicity assumption
h(ti ) is modeled with both λi and α and is a function of ti . Thus, the
Weibull model assumes a monotonic hazard.

If α = 1, h(ti ) is flat and the model is the exponential model.

If α > 1, h(ti ) is monotonically increasing.

If α < 1, h(ti ) is monotonically decreasing.
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The shape parameter α for the Weibull distribution is the reciprocal of the
scale parameter given by survreg().

The scale parameter given by survreg() is NOT the same as the scale
parameter in the Weibull distribution, which should be θi = exiβ.
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Hazard Ratios

One quantity of interest is the hazard ratio:

HR =
h(t|x = 1)

h(t|x = 0)

With the Weibull model we make a proportional hazards assumption:
hazard ratio does not depend t.
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Other Parametric Models

Gompertz model: monotonic hazard

Log-logistic or log-normal model: nonmonotonic hazard

Generalized gamma model: nests the exponential, Weibull,
log-normal, and gamma models with an extra parameter (see
appendix slides)

But what if we don’t want to make an assumption about the shape of the
hazard?
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The Cox Proportional Hazards Model

Often described as a semi-parametric model.
Pros:

Makes no restrictive assumption about the shape of the hazard.

A better choice if you want the effects of the covariates and the
nature of the time dependence is unimportant.

Cons:

Only quantities of interest are hazard ratios.

Can be subject to overfitting

Shape of hazard is unknown (although there are semi-parametric ways
to derive the hazard and survivor functions)
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1 Reconceptualize each ti as a discrete event time rather than a
duration or survival time (non-censored observations only).

I ti = 5: An event occurred at month 5, rather than observation i
surviving for 5 months.

2 Assume there are no tied event times in the data.
I No two events can occur at the same instant. It only seems that way

because our unit of measurement is not precise enough.
I There are ways to adjust the likelihood to take into account observed

ties.

3 Assume no events can happen between event times.
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We know that exactly one event occurred at each ti for all non-censored i .

Define a risk set Ri as the set of all possible observations at risk of an
event at time ti .

What observations belong in Ri?

All observations (censored and non-censored) j such that tj ≥ ti

For example, if ti = 5 months, then all observations that do not experience
the event or are not censored before 5 months are at risk.
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We can then create a partial likelihood function:

L =
n∏

i=1

[P(event occurred in i |event occurred in Ri )]ci

=
n∏

i=1

[
P(event occurred in i)

P(event occurred in Ri )

]ci
=

n∏
i=1

[
h(ti )∑
j∈Ri

h(tj)

]ci

=
n∏

i=1

[
h0(t)hi (ti )∑
j∈Ri

h0(t)hj(tj)

]ci

=
n∏

i=1

[
hi (ti )∑
j∈Ri

hj(tj)

]ci

h0(t) is the baseline hazard, which is the same for all observations, so it
cancels out.
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Like in parametric models, h(t) is modeled with covariates:

hi (ti ) = exiβ

Note that a positive β now suggests that an increase in x increases the
hazard and decreases survival time.

L =
n∏

i=1

[
exiβ∑
j∈Ri

exjβ

]ci

There is no β0 term estimated. This implies that the shape of the baseline
hazard is left unmodeled.
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Pros:

Makes no restrictive assumption about the shape of the hazard.

A better choice if you want the effects of the covariates and the
nature of the time dependence is unimportant.

Cons:

Only quantities of interest are hazard ratios.

Can be subject to overfitting

Shape of hazard is unknown (although there are semi-parametric ways
to derive the hazard and survivor functions)
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How do I run a Cox proportional hazards model in R?

Use the coxph() function in the survival package (also in the Design

and Zelig packages).
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Alternatives

Survival models are cool . . .

but hard.

There are other things you can model:
I Perhaps some observations are more likely to fail than others: frailty

models
I Perhaps some observations you don’t expect to fail at all: split

population models
I Perhaps there can be more than one type of event: competing risks

model

If you encounter survival data think carefully about the process and then
choose a corresponding model.
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How Do Survival Models Relate to Duration Dependence
in a Logit Model?

Based on Beck, Katz, and Tucker (1998)

Suppose we have Time-Series Cross-Sectional Data with a binary
dependent variable.

I For example, if we had data on country dyads over 50 years, with the
dependent variable being whether there was a war between the two
countries in each year.

Not all observations are independent. We may see some duration
dependence.

I Perhaps countries that have been at peace for 100 years may be less
likely to go to war than countries that have been at peace for only 2
years.

How can we account for this duration dependence in a logit model?
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Think of the observations as grouped duration data:

Year tk Dyad Yi Ti

1992 1 US-Iraq 0
1993 2 US-Iraq 0
1994 3 US-Iraq 0
1995 4 US-Iraq 0
1996 5 US-Iraq 0
1997 6 US-Iraq 0
1998 7 US-Iraq 0 12
1999 8 US-Iraq 0
2000 9 US-Iraq 0
2001 10 US-Iraq 0
2002 11 US-Iraq 0
2003 12 US-Iraq 1
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Then we end up with:

P(yi ,tk = 1|xi ,tk ) = h(tk |xi ,tk )

= 1− P(surviving beyond tk |survival up to tk−1)

It can be shown in general that

S(t) = e−
∫ t

0 h(u)du

So then we get

P(yi ,tk = 1|xi ,tk ) = 1− e
−

∫ tk
tk−1

h(u)du

where we take the integral from tk−1 to tk in order to get the conditional
survival.
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P(yi ,tk = 1|xi ,tk ) = 1− exp

(
−
∫ tk

tk−1

h(u)du

)

= 1− exp

(
−
∫ tk

tk−1

exi,tk βh0(u)du

)

= 1− exp

(
−exi,tk β

∫ tk

tk−1

h0(u)du

)
= 1− exp

(
−exi,tk βαtk

)
= 1− exp

(
−exi,tk β+κtk

)

This is equivalent to a model with a complementary log-log (cloglog) link
and time dummies κtk .
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BKT suggest using a logit link instead of a cloglog link because logit
is more widely used (and nobody knows what a cloglog link is except
you guys!).

As long as probability of an event does not exceed 50 percent, logit
and cloglog links are very similar.

The use of time dummies means that we are imposing no structure on
the nature of duration dependence (structure of the hazard).

If we don’t use time dummies, we are assuming no duration
dependence (flat hazard)

Using a variable such as “number of years at peace” instead of time
dummies imposes a monotonic hazard.

The use of time dummies may use up a lot of degrees of freedom, so
BKT suggest using restricted cubic splines.
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Possible complications:

Multiple events
I Assumes that multiple events are independent (independence of

observations assumption in a survival model).

Left censoring
I Countries may have been at peace long before we start observing data,

and we don’t know when that “peace duration” began.

Variables that do not vary across units
I May be collinear with time dummies.
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First Half of Course Summary

In the first six weeks we have covered: maximum likelihood estimation,
generalized linear models and a general approach to quantities of interest

We touched on at least briefly on standard models for most types of data
you will encounter:

I continuous: normal linear model
I binary: logit, probit
I count: poisson, negative binomial
I ordered: ordinal probit, ordinal logit
I categorical: multinomial logit, multinomial probit
I duration: exponential, weibull, cox proportional hazards

Each model followed a similar pattern:

1 define a model with a stochastic and systematic component
2 derive the log-likelihood
3 estimate via MLE
4 interpret quantities of interest

You can now interpret these models and learn new ones.
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Preview

Weeks 7-8 Missing Data
I Mixture Models and the Expectation Maximization algorithm
I Missing Data and Multiple Imputation

Weeks 9-10 Causal Inference
I Model Dependence and Matching
I Explanation in Causal Inference with Moderation/Mediation

Weeks 11-12 Hierarchical Models
I Regularization and Hierarchical Models
I More Hierarchical Models and Wrap-up

These topics are a long-term bet on things that will be important in your
career. Also a short case-study in reading into a new statistical literature.
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1 Binary Outcome Models

2 Quantities of Interest
An Example with Code
Predicted Values
First Differences
General Algorithms

3 Model Diagnostics for Binary Outcome Models

4 Ordered Categorical

5 Unordered Categorical

6 Event Count Models
Poisson
Overdispersion
Binomial for Known Trials

7 Duration Models
Exponential Model
Weibull Model
Cox Proportional Hazards Model

8 Duration-Logit Correspondence

9 Appendix: Multinomial Models

10 Appendix: More on Overdispersed Poisson

11 Appendix: More on Binomial Models

12 Appendix: Gamma Regression
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Identification

Reading: Unifying Political Methodology, Chapter 8

Definition of “identification”

I Qualitative: we can learn the parameter with infinite draws
I Mathematical: Each parameter value produces unique likelihood value
I Graphical: A likelihood with a plateau at the maximum

Partially identified models: the likelihood is informative but not about
a single point

Non-identified models: include those that make little sense, even if
hard to tell.
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Example 1: Flat Likelihoods

A (dumb) model:
Yi ∼ fp(yi |λi )

λi = 1 + 0β

What do we know about β? (from the likelihood perspective)

L(λ|y) =
n∏

i=1

e−λλyi

yi !

and the log-likelihood, with (1 + 0β) substituted for λi :

ln L(β|y) =
n∑

i=1

{−(0β + 1)− yi ln(0β + 1)}

=
n∑

i=1

−1

= −n
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Example 1: Flat Likelihoods

1. An identified likelihood has a unique maximum.

2. A likelihood function with a flat region or plateau at the maximum is
not identified.

3. A likelihood with a plateau can be informative, but a unique MLE
doesn’t exist
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Example 2: Non-unique Reparameterization

A model

Yi ∼ fN(yi |µi , σ
2)

µi = x1iβ1 + x2iβ2 + x3iβ3, where x2i = x3i

= x1iβ1 + x2i (β2 + β3)

What is the (unique) MLE of β2 and β3? Different parameter values lead to the
same values of µ and thus the same likelihood values:

µi = x1iβ1 + x2i (5 + 3)

µi = x1iβ1 + x2i (3 + 5)

µi = x1iβ1 + x2i (7 + 1)

So {β2 = 2, β3 = 5} gives the same likelihood as {β2 = 5, β3 = 2}.
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Introduction to Multiple Equation Models

1. Let Yi be an N × 1 vector for each i (i = 1, . . . , n)

2. Elements of Yi are jointly distributed

Yi
N×1
∼ f ( θi

N×1
, α
N×N

)

3. Systematic components:

θ1i = g1(x1i , β1)

θ2i = g2(x2i , β2)

...

θNi = gN(xNi , βN)
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When are Multiple Equation Models different from N
separate equation-by-equation models?

When the elements of Yi are (conditional on X ),

1. Stochastically dependent, or

2. Parametrically dependent (shared parameters)

Example and proof:

Suppose no ancillary parameters, and N = 2. The joint density:

f (y |θ) =
n∏

i=1

f (y1i , y2i |θ1i , θ2i )

(BTW, you now know how to form the likelihood for multiple equation
models!)
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Assuming stochastic independence lets us factor f :

P(y |θ) =
n∏

i=1

f (y1i , y2i |θ1i , θ2i )

=
n∏

i=1

f (y1i |θ1i )f (y2i |θ2i )

with log-likelihood

ln L(θ1, θ2|y) =
n∑

i=1

ln f (y1i |θ1i ) +
n∑

i=1

ln f (y2i |θ2i )

Also assume parametric independence, and you can estimate the equations
separately.
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Example: 1992 U.S. Presidential Election

Alvarez and Nagler (1995):

Yi : Vote choice in the 1992 U.S. presidential election
(1 = Clinton, 2 = Bush, 3 = Perot)

Bush Clinton Perot

1992 Presidential Election Vote Choice (ANES, n=909)

0
20

0
40

0

34%

46%

20%

Two types of predictors:

I Voter-specific (Vi ): age, gender, education, party, opinions, etc.

I Candidate-varying (Xij): ideological distance between voter i and
candidate j
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Multinomial Logit Model

Generalize the logit model to more than two choices

The multinomial logit model (MNL):

πij = Pr(Yi = j | Vi ) =
exp(V>i δj)∑J

k=1 exp(V>i δk)
,

where Vi = individual-specific characteristics of unit i (and an
intercept)

Note that
∑J

j=1 πij = 1

Need to set the base category for identifiability: δ1 = 0

δj represents how characteristics of voter i is associated with
probability of voting for candidate j
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Conditional Logit Model

We can also incorporate alternative-varying predictors Xij

The conditional logit (CL) model:

πij = Pr(Yi = j | Xij) =
exp(X>ij β)∑J
k=1 exp(X>ik β)

β represents how characteristics of candidate j for voter i are
associated with voting probabilities

Xij does not have to vary across voters (e.g. whether candidate j is
incumbent)

In that case we suppress the subscript to Xj
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MNL as a Special Case of CL

Mathematically, MNL can be subsumed under CL using a set of
artificial alternative-varying regressors for each Vi :

Xi1 =


Vi

0
...
0

 , Xi2 =


0
Vi

...
0

 , · · · , XiJ =


0
0
...

Vi


Set the element of β for Xij to δj and you get the MNL model

δ1 must be set to zero for identifiability

Thus we can write both models (and their mixture) simply as CL:

πij = Pr(Yi = j | X ) =
exp(X>ij β)∑J
k=1 exp(X>ik β)

We use the names CL and MNL interchangeably from here on
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Predictor Types and Data Formats

Discrete choice data usually come in one of the two formats:

1 Wide format: N rows, #V + J ·#X predictors

choice women educ idist.Clinton idist.Bush idist.Perot

Bush 1 3 4.0804 0.1024 0.2601

Bush 1 4 4.0804 0.1024 0.2601

Clinton 1 2 1.0404 1.7424 0.2401

Bush 0 6 0.0004 5.3824 2.2201

Clinton 1 3 0.9604 11.0220 6.2001 ...

2 Long format: NJ rows, #V + #X predictors

chid alt choice women educ idist

1 Bush TRUE 1 3 0.1024

1 Clinton FALSE 1 3 4.0804

1 Perot FALSE 1 3 0.2601

2 Bush TRUE 1 4 0.1024

2 Clinton FALSE 1 4 4.0804

2 Perot FALSE 1 4 0.2601 ...

Use reshape to change between wide and long

Some estimation functions (e.g. mlogit) can take both formats
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Latent Variable Interpretation

Recall the random utility model:

Y ∗ij = X>ij β + εij ,

where

{
Y ∗ij = latent utility from choosing j for i

εij = stochastic component of the utility

Assume that voter chooses the most preferred candidate, i.e.,

Yi = j if Y ∗ij ≥ Y ∗ij ′ for any j ′ ∈ {1, ..., J}

Assuming εij
i.i.d.∼ type I extreme value distribution, this setup implies

MNL (McFadden 1974)

Proof for J = 2:

Pr(Yi = 1 | X ) = Pr(Y ∗i1 ≥ Y ∗i2 | X )

= Pr
(
εi2 − εi1 ≤ (Xi1 − Xi2)>β

)
=

exp
(
(Xi1 − Xi2)>β

)
1 + exp ((Xi1 − Xi2)>β)

=
exp(X>i1 β)

exp(X>i1 β) + exp(X>i2 β)
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Estimation and Inference

Estimation via MLE

Likelihood for a random sample of size n:

L(β | Y ,X ) =
∏n

i=1

∏J
j=1 π

1{Yi=j}
ij

It can be shown that the log-likelihood is globally concave
⇒ guaranteed convergence to the true (not local) MLE
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Interpreting MNL/CL Coefficients

In MNL/CL, β itself is not necessarily informative about the effect of X

1 The coefficients are all with respect to the baseline category

−→ Testing βj = 0 does not generally make sense
(unless comparison to the baseline is the goal)

2 Changing Xij has impact on Pr(Yi = k | X ), k 6= j :

I For individual-specific characteristics (Vi ), even sign of δj may not
agree with the direction of the change in response probability for j

I For alternative-varying characteristics (Xij), sign of β does indicate the
direction of the effect, but magnitude is hard to interpret

Compute a quantity that has a clear substantive interpretation!
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Calculating Quantities of Interest
1 Choice probability:

πj(x) = Pr(Yi = j | X = x)

e.g. How likely is a female college-educated conservative Republican voter to
vote for Perot?

2 Predicted vote share:

pj(x1) ≡ E [1 {πj(Xi1 = x1,Xi2) ≥ πk(Xi1 = x1,Xi2) for all k}]

where Xi1 is the predictor(s) of interest and Xi2 is all other predictors

e.g. What would Perot’s vote share be if all voters supported abortion?

3 Average partial (treatment) effects:

τjk = E [πj(Tik = 1,Ti∗,Wi )− πj(Tik = 0,Ti∗,Wi )]

where Tik is treatment on candidate k, Ti∗ is treatment on others, Wi is
pre-treatment covariates

I “Direct effect” if j = k; “indirect effect” if j 6= k
I If T is individual-specific, τj = E[πj(Ti = 1,Wi )− πj(Ti = 0,Wi )]

Estimate by plugging in sample analogues (e.g. πj → π̂j , E→ 1
n

∑
)
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Example: 1992 U.S. Presidential Election

Model specification (Alvarez and Nagler 1995):

πij =
exp(X>ij β + V>i δj)∑J

k=1 exp(X>ik β + V>i δk)

where

Xij = {ideological distance}
Vi = {1, issue opinions, party, gender, education, age, ...}

Estimated coefficients:

β̂ = −0.11 (0.02)

δ̂ =
[
δ̂Bush δ̂Clinton

]
=

 0.67 (0.94) −0.41 (0.45)
−0.52 (0.11) −0.02 (0.12)
0.54 (0.23) 0.30 (0.22)

...
...

 (intercept)
(support abortion)
(female)

...
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Example: 1992 U.S. Presidential Election

Estimated choice probabilities for a “typical” voter from South:
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Assumptions in Multinomial Logit Models

Recall that MNL assumes εij is i.i.d.

In particular, εij⊥⊥εik for j 6= k

This implies that unobserved factors affecting Y ∗ij are unrelated to
those affecting Y ∗ik

When is this assumption plausible?

Example: Multiparty election with parties R, L1 and L2.

Do voters’ unobserved ideological preferences affect Pr(Yi =L1)
independently of their effect on Pr(Yi =L2)? Probably not.
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Independence of Irrelevant Alternatives

MNL makes the Independence of irrelevant alternatives (IIA)
assumption:

Pr(Choose j | j or k)

Pr(Choose k | j or k)
=

Pr(Choose j | j or k or l)

Pr(Choose k | j or k or l)
for any l ∈ {1, ...J}

A classical example of IIA violation: the red bus-blue bus problem

Relative risk of j over k does not depend on other alternatives:

Pr(Yi = j | Xi )

Pr(Yi = k | Xi )
= exp{(Xij − Xik)>β}

That is, the multinomial choice reduces to a series of independent
pairwise comparisons
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Multinomial Probit Model

How can we relax the IIA assumption?

Instead of assuming εij to be i.i.d. across alternatives j , we allow εij
to be correlated across j within each voter i

Multinomial probit model (MNP):

Y ∗i = X>i β + εi where


εi

i.i.d.∼ N (0,ΣJ)
Y ∗i = [Y ∗i1 · · · Y ∗iJ ]>

Xi = [Xi1 · · · XiJ ]>

Restrictions on the model for identifiability:
I The (absolute) level of Y ∗i shouldn’t matter
−→ Subtract the 1st equation from all the other equations and work

with a system of J − 1 equations with ε̃i
i.i.d.∼ N (0, Σ̃J−1)

I The scale of Y ∗i also shouldn’t matter

−→ Σ̃(1,1) = 1
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Multinomial Probit Walkthrough

U∗i ∼ N(u∗i |µi ,Σ)

µij = xijβj

with observation mechanism:

Yij =

{
1 if U∗ij > U∗ij ′ ∀ j 6= j ′

0 otherwise
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The stochastic component:

Pr(Yij = 1) = πij , s.t.
J∑

j=1

πij = 1

for i = 1, . . . , n

Systematic component. Let Y ∗ij = U∗ij − U∗ij ′ , so the observation
mechanism is

Yij =

{
1 if Y ∗ij > 0

0 otherwise

πij = Pr(yij = 1)

= Pr(Y ∗i1 ≤ 0, . . . ,Y ∗ij > 0, . . . ,Y ∗iJ ≤ 0)

=

∫ 0

−∞
· · ·
∫ ∞

0
· · ·
∫ 0

−∞
N(y |µi ,Σ)dyi1 · · · dyij · · · dyiJ
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Computational and Estimation issues

No analytical solution is known to the integral

Moreover, # of parameters in ΣJ increases as J gets large, but data
contain little information about ΣJ :

J 3 4 5 6 7
# of elements in ΣJ 6 10 15 21 28
# of parameters identified 2 5 9 14 20

Consequently, MNP is only feasible when J is small

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 216 / 242



Computational and Estimation issues

No analytical solution is known to the integral

Moreover, # of parameters in ΣJ increases as J gets large, but data
contain little information about ΣJ :

J 3 4 5 6 7
# of elements in ΣJ 6 10 15 21 28
# of parameters identified 2 5 9 14 20

Consequently, MNP is only feasible when J is small

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 216 / 242



Computational and Estimation issues

No analytical solution is known to the integral

Moreover, # of parameters in ΣJ increases as J gets large, but data
contain little information about ΣJ :

J 3 4 5 6 7
# of elements in ΣJ 6 10 15 21 28
# of parameters identified 2 5 9 14 20

Consequently, MNP is only feasible when J is small

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 216 / 242



Computational and Estimation issues

No analytical solution is known to the integral

Moreover, # of parameters in ΣJ increases as J gets large, but data
contain little information about ΣJ :

J 3 4 5 6 7
# of elements in ΣJ 6 10 15 21 28
# of parameters identified 2 5 9 14 20

Consequently, MNP is only feasible when J is small

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 216 / 242



1 Binary Outcome Models

2 Quantities of Interest
An Example with Code
Predicted Values
First Differences
General Algorithms

3 Model Diagnostics for Binary Outcome Models

4 Ordered Categorical

5 Unordered Categorical

6 Event Count Models
Poisson
Overdispersion
Binomial for Known Trials

7 Duration Models
Exponential Model
Weibull Model
Cox Proportional Hazards Model

8 Duration-Logit Correspondence

9 Appendix: Multinomial Models

10 Appendix: More on Overdispersed Poisson

11 Appendix: More on Binomial Models

12 Appendix: Gamma Regression

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 217 / 242



1 Binary Outcome Models

2 Quantities of Interest
An Example with Code
Predicted Values
First Differences
General Algorithms

3 Model Diagnostics for Binary Outcome Models

4 Ordered Categorical

5 Unordered Categorical

6 Event Count Models
Poisson
Overdispersion
Binomial for Known Trials

7 Duration Models
Exponential Model
Weibull Model
Cox Proportional Hazards Model

8 Duration-Logit Correspondence

9 Appendix: Multinomial Models

10 Appendix: More on Overdispersed Poisson

11 Appendix: More on Binomial Models

12 Appendix: Gamma Regression

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 217 / 242



Estimating the Dispersion Parameter

In GLMs, φ is typically estimated sequentially after β̂ is obtained by MLE.
Two common methods for the common case of a(φ) = φ/ωi :

1 Calculate the (unscaled) deviance:

D(Y ; µ̂) ≡ φD∗(Y ; µ̂) = 2
n∑

i=1

ωi

{
Yi (θ̃i − θ̂i )− (b(θ̃i )− b(θ̂i ))

}
which approximately follows φ · χ2

n−k (because D∗(Y ; µ̂)
approx.∼ χ2

n−k)

Then estimate φ by φ̂D = D(Y ;µ̂)
n−k (because E

[
χ2
n−k
]

= n − k)

2 Calculate the generalized Pearson χ2 statistic:

X 2 ≡
n∑

i=1

ωi (Yi − µ̂i )
2

b′′(θ̂i )
= φ

n∑
i=1

(Yi − µ̂i )
2

V̂i

which also approximately follows φ · χ2
n−k

Then estimate φ by φ̂P = X 2

n−k (by the same logic)

When Yi ∼ N , D = X 2 ∼ φχ2
n−k exactly, and φ̂D and φ̂P are identical and MLE
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Relaxing the Distributional Assumption

Note that in the overdispersed Poisson model, Yi cannot be Poisson
distributed

How can this seemingly arbitrary modification justified?

In GLMs, we can replace the distributional assumption with the
variance function assumption:

1 Systematic component: X>i β = X>i β
2 Link function: X>i β = g(µi ) where µi ≡ E(Yi | X )
3 Variance function: V(Yi | X ) = φψ(µi )

That is, we specify mean and variance, but remain agnostic about the
rest of f (Y ) (i.e. likelihood)

With this reduced set of assumptions, what can we learn?

Bottom line: We lose nothing, thanks to the properties of the
exponential family
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Negative Binomial Regression Models

The overdispersed Poisson model is also called the negative binomial
1 (NB1) model

An alternative parameterization for allowing overdispersion:

E(Yi | Xi ) = µi and V(Yi | Xi ) = µi + µ2
i /γ > E(Yi | Xi )

This is called the negative binomial 2 (NB2) model

The NB2 model corresponds to the following PMF:

p(Yi | µi , γ) =
Γ(Yi + γ)

Yi !Γ(γ)

(
µi

µi + γ

)Yi
(

γ

µi + γ

)γ
where µi = exp(X>i β)

(But keep in mind, you don’t need to exactly assume this PMF!)

Estimation via (Q)MLE
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Grouped Uncorrelated Binary Variables
Same model as binary logit, but we only observe sums of iid groups of
Bernoulli trials. E.g., the number of times you voted out of the last 5
elections.

Yi ∼ Binomial(yi |πi ) =

(
Ni

yi

)
πyii (1− πi )Ni−yi

where
πi = [1 + e−xiβ]−1

which implies
E (Yi ) ≡ µi = Niπi = Ni [1 + e−xiβ]−1

and a likelihood of

L(π|y) ∝
n∏

i=1

Binomial(yi |πi )

=
n∏

i=1

(
Ni

yi

)
πyii (1− πi )Ni−yi
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Grouped Uncorrelated Binary Variables

The Log-likelihood is then:

ln L(π|y) =
n∑

i=1

{
ln

(
Ni

yi

)
+ yi lnπi + (Ni − yi ) ln(1− πi )

}

and after substituting in the systematic component:

ln L(β|y)
.

=
n∑

i=1

{
−yi ln[1 + e−xiβ] + (Ni − yi ) ln

(
1− [1 + e−xiβ]−1

)}
=

n∑
i=1

{
(Ni − yi ) ln(1 + exiβ)− yi ln(1 + e−xiβ)

}
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Grouped Uncorrelated Binary Variables

Notes:

1. Similar log-likelihood to binary logit

2. All inference is about the same π as in binary logit

3. How to simulate and compute quantities of interest?

(a) Run optim, and get β̂ and the variance matrix.
(b) Draw many values of β̃ from the multivariate normal with mean vector β̃

and the variance matrix that come from optim.
(c) Set X to your choice of values, Xc

(d) Calculate simulations of the probability that any of the component binary
variables is a one:

π̃c = [1 + e−xc β̃]−1

(e) If π is of interest, summarize with mean, SD, CI’s, or histogram as
needed.

(f) If simulations of y are needed, go one more step and draw ỹ from
Binomial(yi |πi )
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Binomial(yi |πi )

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 224 / 242



Grouped Uncorrelated Binary Variables

Notes:

1. Similar log-likelihood to binary logit

2. All inference is about the same π as in binary logit

3. How to simulate and compute quantities of interest?

(a) Run optim, and get β̂ and the variance matrix.
(b) Draw many values of β̃ from the multivariate normal with mean vector β̃

and the variance matrix that come from optim.

(c) Set X to your choice of values, Xc

(d) Calculate simulations of the probability that any of the component binary
variables is a one:

π̃c = [1 + e−xc β̃]−1

(e) If π is of interest, summarize with mean, SD, CI’s, or histogram as
needed.

(f) If simulations of y are needed, go one more step and draw ỹ from
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Grouped Correlated Binary Variables
In the binomial-logit model, V (Y ) = πi (1− πi )/Ni , with no σ2-like
parameter to take up slack. The beta-binomial (or extended BB) adds this
extra parameter. The model:

Yi ∼ febb(yi |πi , γ)

where, recall

febb(yi |πi , γ) = Pr(Yi = yi |πi , γ,N)

=
N!

yi !(N − yi )!

yi−1∏
j=0

(πi + γj)

N−yi−1∏
j=0

(1− πi + γj)/
N−1∏
j=0

(1 + γj)

and

πi =
1

1 + e−xiβ
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The probability model of all the data:

Pr(Y = y |β, γ; N) =
n∏

i=1

(
N!

yi !(N − yi )!

)

×
yi−1∏
j=0

{
[1 + exp(−xiβ)]−1 + γj

}

×
N−yi−1∏

j=0

{
[1 + exp(xiβ)]−1 + γj

}
/
N−1∏
j=0

(1 + γj)

ln L(β, γ|y) =
n∑

i=1

{
ln

(
N!

yi !(N − yi )!

)

+

yi−1∑
j=0

ln
{

[1 + exp(−xiβ)]−1 + γj
}

+

N−yi−1∑
j=0

ln
{

[1 + exp(xiβ)]−1 + γj
}
−

N−1∑
j=0

ln(1 + γj)
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=
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Notes:

1. The math looks complicated.

2. The use of this model is simple.

3. γ soaks up binomial misspecification

4. Assuming binomial when EBB is the right model causes se’s to be
wrong.

5. How to simulate to compute quantities of interest?

(a) Run optim, and get β̂, γ̂ and the variance matrix.
(b) Draw many values of β̃ and γ̃ from the multivariate normal with mean

vector ~(β̂, γ̂) and the variance matrix that come from optim.
(c) Set X to your choice of values, Xc

(d) Calculate simulations of the probability that any of the component binary
variables is a one:

π̃c = [1 + e−xc β̃]−1

(e) If π is of interest, summarize with mean, SD, CI’s, or histogram as
needed.

(f) If simulations of y are needed, go one more step and draw ỹ from
febb(yi |πi )

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 227 / 242



Notes:

1. The math looks complicated.

2. The use of this model is simple.

3. γ soaks up binomial misspecification

4. Assuming binomial when EBB is the right model causes se’s to be
wrong.

5. How to simulate to compute quantities of interest?

(a) Run optim, and get β̂, γ̂ and the variance matrix.
(b) Draw many values of β̃ and γ̃ from the multivariate normal with mean

vector ~(β̂, γ̂) and the variance matrix that come from optim.
(c) Set X to your choice of values, Xc

(d) Calculate simulations of the probability that any of the component binary
variables is a one:

π̃c = [1 + e−xc β̃]−1

(e) If π is of interest, summarize with mean, SD, CI’s, or histogram as
needed.

(f) If simulations of y are needed, go one more step and draw ỹ from
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Generalized Gamma Distribution
The Weibull and Exponential distributions are special cases of the
Generalized Gamma distribution, Y ∼ GGamma(ν, λ, p) :

fY (y) =
pλpν

Γ(ν)
ypν−1exp(−λy)p

When p = 1, Y ∼ Gamma(ν, λ):

fY (y) = λν

Γ(ν) yν−1exp(−λy)

When ν = 1, Y ∼ Weibull( 1
λ
, p):

fY (y) = pλpyp−1exp(−λy)p

When p = 1 and ν = 1, Y ∼ Expo(λ):

fY (y) = λexp(−λy)

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 229 / 242



Generalized Gamma Distribution
The Weibull and Exponential distributions are special cases of the
Generalized Gamma distribution, Y ∼ GGamma(ν, λ, p) :

fY (y) =
pλpν

Γ(ν)
ypν−1exp(−λy)p

When p = 1, Y ∼ Gamma(ν, λ):

fY (y) = λν

Γ(ν) yν−1exp(−λy)

When ν = 1, Y ∼ Weibull( 1
λ
, p):

fY (y) = pλpyp−1exp(−λy)p

When p = 1 and ν = 1, Y ∼ Expo(λ):

fY (y) = λexp(−λy)

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 229 / 242



Generalized Gamma Distribution
The Weibull and Exponential distributions are special cases of the
Generalized Gamma distribution, Y ∼ GGamma(ν, λ, p) :

fY (y) =
pλpν

Γ(ν)
ypν−1exp(−λy)p

When p = 1, Y ∼ Gamma(ν, λ):

fY (y) = λν

Γ(ν) yν−1exp(−λy)

When ν = 1, Y ∼ Weibull( 1
λ
, p):

fY (y) = pλpyp−1exp(−λy)p

When p = 1 and ν = 1, Y ∼ Expo(λ):

fY (y) = λexp(−λy)

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 229 / 242



Generalized Gamma Distribution
The Weibull and Exponential distributions are special cases of the
Generalized Gamma distribution, Y ∼ GGamma(ν, λ, p) :

fY (y) =
pλpν

Γ(ν)
ypν−1exp(−λy)p

When p = 1, Y ∼ Gamma(ν, λ):

fY (y) = λν

Γ(ν) yν−1exp(−λy)

When ν = 1, Y ∼ Weibull( 1
λ
, p):

fY (y) = pλpyp−1exp(−λy)p

When p = 1 and ν = 1, Y ∼ Expo(λ):

fY (y) = λexp(−λy)

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 229 / 242



When would a Gamma regression be appropriate?

For positive random variables with a skewed distribution, the variance
often increases with the mean.

Poisson random variable: Var(Y ) = E [Y ] = µ.

Another case occurs where the standard-deviation increases linearly with
the mean: √

Var(Y ) ∝ E (Y )

In this case, the coefficient of variation (ratio of standard deviation to
expectation) is constant:

c.v . =

√
Var(Y )

E (Y )

The Gamma distribution has this property.
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When would a Gamma regression be appropriate?

Example

Mean duration of developmental period in Drosphila melanogaster
(McCullagh & Nelder, 1989)
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Gamma shapes
ν is the shape parameter, λ is the scale parameter

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

y

f(y
)

ν = 0.5
ν = 1
ν = 2
ν = 5
λ = 1

f(y) =
λν

Γ(ν)
(y)(ν−1)exp(−λy)

Special cases:

ν = 1 =⇒ Exponential

ν →∞ =⇒ Normal
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Gamma as an EDF

fY (y) =
λν

Γ(ν)
yν−1exp(−λy)

= exp

(
−λ
ν y + ln(λν )

ν−1
+ νln(νy)− ln(y)− ln(Γ(ν))

)

Where

θ = −λ
ν

φ = ν−1 = σ2

b(θ) = −ln
(λ
ν

)
E [Y ] = b′(θ) =

ν

λ
= µ

Var(Y ) = φb′′(θ) =
1

ν

ν2

λ2
= σ2µ2
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Link functions

Canonical link

η = θ = − 1

µ

The reciprocal transformation does not map the range of µ onto the whole
real line.

The requirement that µ > 0 places restrictions on β’s.

The canonical link is rarely used.
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Link functions

Inverse polynomial: linear

η =µ−1 = β0 + β1/x

Inverse polynomial: quadratic

η =µ−1 = β0 + β1x + β2/x

Inverse polynomials have appealing property that η is everywhere positive
and bounded.

Application: sometimes used in plant density experiments, where yield per
plant (yi ) varies inversely with plant density (xi )
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Link functions

Log link

η =ln(µ) = β0 + β1x

η =ln(µ) = β0 + β1x + β2/x

Application: useful for describing functions that have turning points, but
are noticeably asymmetric around that point.
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Link functions

Identity link

η =µ = β0 + β1x

Application: used for modeling variance components.
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Maximum Likelihood Estimation

L =
n∏

i=1

λν

Γ(ν)
yν−1
i exp(−λyi )

lnL =
n∑

i=1

ln

[
λν

Γ(ν)
yν−1
i exp(−λyi )

]

=
n∑

i=1

νlnλ− lnΓ(ν) + (ν − 1)lnyi − λyi
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Gamma regression with weights
Suppose your data consist of n observations, each from a separate group
i ∈ {1, . . . , n}. Each group has ni individuals.

Example

Yi is the duration of embryonic period in ni batches of fruit flies

Yi =

ni∑
j=1

Yij Yij = duration for j embryo in i-th batch

Y s
i = Yi/ni = average duration in i-th batch

If Yij ∼ Gamma(λi , ν), independent, with λi = ν/µi :

E [Y s
i ] =

1

ni

ni∑
j=1

E [Yij ] =
1

ni

ni∑
j=1

µi = µi

Var(Y s
i ) =

1

ni
Var(Yi ) =

σ2µ2
i

ni
weights = ni
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Application: Drosophila melanogaster

4 models estimated:

1 log(Durationi ) = β0 + β1Tempi

2 log(Durationi ) = β0 + β1Tempi + β2/Tempi
3 log(Durationi ) = β0 + β1Tempi + β2/Tempi

(weighted by batch size)

4 log(Durationi ) = β0 + β1Tempi + β2/(Tempi − δ)
(weighted by batch size)
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Application: Drosophila melanogaster

15 20 25 30

20
30

40
50

60

Temperature (Celsius)

M
ea

n 
du

ra
tio

n 
hr

s

log(µ) = β0 + β1x

Min. duration at 35 degrees

15 20 25 30

20
30

40
50

60

Temperature (Celsius)

M
ea

n 
du

ra
tio

n 
hr

s

log(µ) = β0 + β1x + β2 x

Min. duration at 35 degrees

15 20 25 30

20
30

40
50

60

Temperature (Celsius)

M
ea

n 
du

ra
tio

n 
hr

s

log(µ) = β0 + β1x + β2 x
(weighted)

Min. duration at 35 degrees

15 20 25 30

20
30

40
50

60

Temperature (Celsius)

M
ea

n 
du

ra
tio

n 
hr

s

log(µ) = β0 + β1x + β−1 (x − δ)
(weighted)

Min. duration at 29.95 degrees

Stewart (Princeton) GLMs Feb 22 - Mar 15, 2017 242 / 242


	Binary Outcome Models
	Quantities of Interest
	An Example with Code
	Predicted Values
	First Differences
	General Algorithms

	Model Diagnostics for Binary Outcome Models
	Ordered Categorical
	Unordered Categorical
	Event Count Models
	Poisson
	Overdispersion
	Binomial for Known Trials

	Duration Models
	Exponential Model
	Weibull Model
	Cox Proportional Hazards Model

	Duration-Logit Correspondence
	Appendix: Multinomial Models
	Appendix: More on Overdispersed Poisson
	Appendix: More on Binomial Models
	Appendix: Gamma Regression

