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Housekeeping

Replication papers: formats, posters, deadlines

Poster session timing

Schedule for the final week of class

After the final week, feedback etc.

Some notes on lecture structure for this week.
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Readings

Murphy (2012) Machine Learning: a Probabilistic Perspective

James, Witten, Hastie and Tibshirani (2013) An Introduction to
Statistical Learning

Gelman and Hill (2008) Data Analysis Using Regression and
Multilevel/Hierarchical Models
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1 Regularization
Basics of Regularization
Quadratic Regularizers (Ridge)
Sparsity-Inducing Regularizers (LASSO)
Application 1: Flexible Functional Forms
Application 2: Subgroup Analysis

2 Eight Schools

3 Hierarchical Models
Varying Intercepts
Varying Slopes and Other Complexities
Estimation and Fitting Models in R
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The Core Idea: Penalizing Complexity
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Improving Estimation by Regularization

Theme of this week is improving estimation through regularization or
shrinkage

The core idea is that we may want to draw an estimate towards a
particular point, generally inducing bias in exchange for a reduction in
variance

Hierarchical models induce regularization to draw a set of group
specific coefficients towards each other.

We will start with the simpler case of drawing coefficients towards
zero (although later we will consider drawing estimates towards a
data-driven point)
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Prediction Accuracy and Interpretation

Including regularization can improve the predictive accuracy of
models, particularly in settings where n, the number of observations,
is not much larger than p, the number of variables.

When there are many variables with small or irrelevant effects, certain
types of shrinkage can perform variable selection which zeroes out
coefficients leaving only a small subset of variables.

Regularizers which draw coefficients to exact zeroes are called
sparsity-inducing regularizers

Regularization attempts to improve the generalizability of the model
by penalizing extreme solutions even if they fit the current dataset
better.
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Mathematical Form of Regularization

In standard OLS we minimize the following criterion:

RSS =
n∑

i=1

yi −

β0 +

p∑
j=1

βjxij

2

In regularization we add a penalty such that we want to minimize:

n∑
i=1

yi −

β0 +

p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj |q

for some positive regularization penalty λ and a value q which
determines the type of regularizer

As the coefficients get larger, the penalty term increases

The math here is for least-squares but it also works for GLMs by
replacing the RSS term with the negative log likelihood
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Equivalent Views

What is the penalty function doing?

View 1: Penalizing Complex Functions
I instead of minimizing the loss, minimize the loss plus a complexity

penalty
I larger values of β imply a more complicated model (because a smaller

change in X leads to a bigger change in y)
I also allows estimation in settings where p > n

View 2: Bayesian Prior
I the prior distribution for β encodes values that we believe are a priori

more reasonable
I a prior distribution centered at 0 regularizes by penalizing larger values

of β
I finding the maximum of the posterior (MAP inference) is equivalent to

maximizing the likelihood with regularization
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Bias-Variance Tradeoff

At the heart of this is the bias-variance tradeoff

Adding regularization can increase bias and in return reduce variance

We might care about minimizing the expected loss or expected
prediction error

R(p(X ,Y ), f ) = E [L(Y , f (X ))]

=

∫
X×Y

L(Y , f (X ))p(X ,Y )dXdY

How does bias and variance come into it?

Assume squared loss, and an estimated function f̂ , and fixed X ’s.
The pointwise expected prediction error is:

R(x0) = E[(Y − f̂ (x0))2|X = x0]

= σ2
ε + (E[f̂ (x0)]− f (x0))2 + E[f̂ (x0)− Ef̂ (x0)]2

= Irreducible error + Bias2 + Variance
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Mean Square Error

Suppose θ is some value of the true parameter

Bias:

Bias = E [θ̂ − θ]

We may care about average distance from truth

E[(θ̂ − θ)2] = E [θ̂2]− 2θE [θ̂] + θ2

= E [θ̂2]− E [θ̂]2 + E [θ̂]2 − 2θE [θ̂] + θ2

= E [θ̂2]− E [θ̂]2 + (E [θ̂ − θ])2

= Var(θ) + Bias2

To reduce MSE, we are willing to induce bias to decrease variance;
methods that shrink coefficients toward zero
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Two Canonical Regularizers

There are an enormous number of regularizers for the squared error
regression problem.

They have really great names too: tikhonov regularization, ridge
regression, least absolute shrinkage and selection operator (LASSO),
elastic net, grouped lasso, fused lasso, adaptive lasso, gamma lasso,
Bayesian lasso, square-root lasso, hierarchical adaptive lasso,
smoothly clipped absolute deviation, horseshoe, bridge regression . . .

We will cover two which come up frequently ridge regression and
LASSO
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Some Practical Matters and Notation

We will assume that covariates are standardized to have mean 0 and
variance 1. This is to ensure that the different covariates are treated
equivalently. We can always reproject them to their original scale.

We may talk about the penalty functions in terms of norms. The `2

norm is defined as ||β||2 =
√∑J

j=1 β
2
j

More generally we can define the `p norm as ||β||p =
(∑J

j=1 |βj |p
) 1

p

We will use a running example of Credit Data which predicts credit
card balance of a number of individuals using many predictors
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Credit Data
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Quadratic Regularizers

Penalty for model complexity

f (β,X ,Y ) =
N∑
i=1

yi −

β0 +
J∑

j=1

βjxij

2

+ λ

J∑
j=1

β2
j︸ ︷︷ ︸

Penalty

where:

- β0 ; intercept

- λ ; penalty parameter
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Ridge Regression ; Intuition (for a simple setting)

Suppose X
′
X = I J .

β̂ =
(
X

′
X
)−1

X
′
Y

= X
′
Y

βridge =
(
X

′
X + λI J

)−1
X

′
Y

= (I j + λI j)−1 X
′
Y

= (I j + λI j)−1 β̂

βRidge
j =

β̂j
1 + λ
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Selecting λ

λ
∑

j β
2
j

λ controls the relative impact of the penalty term and the likelihood:
selecting a good value is important!

Often referred to as a tuning parameter and most machine learning
approaches have (at least) one

A higher value of λ indicates a lower tolerance for complexity the
fitted model.

We most often use cross-validation

We can visualize with a regularization path, a calculation across all
values of λ
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Regularization Path
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Why Would We Use Ridge?

As λ increases, the flexibility of the model decreases ; decreased
variance, increased bias

The trick is to find a place where the tradeoff is favorable
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Lasso Regression Objective Function/Optimization

A different penalty ; different behavior

f (β,X ,Y ) =
N∑
i=1

yi −

β0 +
J∑

j=1

βjxij

2

+ λ
J∑

j=1

|βj |︸︷︷︸
Penalty

- Optimization is non-linear (due to the absolute value)

- Induces sparsity; sets some coefficients to zero
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Regularization Path: Lasso
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Lasso Regression ; Soft Thresholding

In a simple special case where X ′X = IJ , one can show that the
LASSO update is:

βLASSO
j = sign

(
β̂j

)(
|β̂j | − λ

)
+

I where sign(·) ; 1 or −1

I

(
|β̂j | − λ

)
+

= max(|β̂j | − λ, 0)

Thus up to a particular value the coefficient remains 0.

Where does the sparsity come from? and why doesn’t ridge have it?
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Lasso vs. Ridge
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Origins of Sparsity

It turns out the sparsity is deeply connected to the fact that the
penalty term is not differentiable. This also makes optimization
difficult

One intuition is that the marginal rate of penalization is constant as
you move away from zero, but grows under the ridge penalty.

In the special cases we saw different types of shrinkage: ridge shrinks
each estimate by the same proportion, Lasso shrinks each estimate by
the same amount

Let’s do a quick mathematical example
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Comparing Ridge and LASSO
Contrast β = ( 1√

2
, 1√

2
) and β̃ = (1, 0)

Under ridge:

2∑
j=1

β2
j =

1

2
+

1

2
= 1

2∑
j=1

β̃2
j = 1 + 0 = 1

Under LASSO

2∑
j=1

|βj | =
1√
2

+
1√
2

=
√

2

2∑
j=1

|β̃j | = 1 + 0 = 1
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Bias-Variance Tradeoff in Action
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Example Synthetic Problem2

y = sin(1 + x2) + ε

2These slides are adapted from material by Radford Neal.
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Linear Basis Function Models

We talked before about polynomials x2, x3, x4 for modeling
non-linearities, this is a linear basis function model.

In general the idea is to do a linear regression of y on
φ1(x), φ2(x), . . . , φm−1(x) where φj are basis functions.

The model is now:

y = f (x , β) + ε

f (x , β) = β0 +
m−1∑
j=1

βjφj(x) = βTφ(x)

Stewart (Princeton) Regularization April 24-26 34 / 93



Linear Basis Function Models

We talked before about polynomials x2, x3, x4 for modeling
non-linearities, this is a linear basis function model.

In general the idea is to do a linear regression of y on
φ1(x), φ2(x), . . . , φm−1(x) where φj are basis functions.

The model is now:

y = f (x , β) + ε

f (x , β) = β0 +
m−1∑
j=1

βjφj(x) = βTφ(x)

Stewart (Princeton) Regularization April 24-26 34 / 93



Linear Basis Function Models

We talked before about polynomials x2, x3, x4 for modeling
non-linearities, this is a linear basis function model.

In general the idea is to do a linear regression of y on
φ1(x), φ2(x), . . . , φm−1(x) where φj are basis functions.

The model is now:

y = f (x , β) + ε

f (x , β) = β0 +
m−1∑
j=1

βjφj(x) = βTφ(x)

Stewart (Princeton) Regularization April 24-26 34 / 93



Linear Basis Function Models

We talked before about polynomials x2, x3, x4 for modeling
non-linearities, this is a linear basis function model.

In general the idea is to do a linear regression of y on
φ1(x), φ2(x), . . . , φm−1(x) where φj are basis functions.

The model is now:

y = f (x , β) + ε

f (x , β) = β0 +
m−1∑
j=1

βjφj(x) = βTφ(x)

Stewart (Princeton) Regularization April 24-26 34 / 93



Polynomial Basis Functions

We can look at OLS fits with polynomial basis functions of increasing
order.

It appears that the last model is too complex and is overfitting a bit.
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Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over
the whole input space. Often local basis functions are more appropriate.

One choice is a Gaussian basis function

φj(x) = exp(−(x − µj)2)/2s2)
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Gaussian Basis Fits
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Regularization

We’ve seen that flexible models can lead to overfitting

Two ways to address: limit model flexibility or use a flexible model
and regularize

Regularization is the way to express preference for smoothness in our
function

Let’s look at the ridge penalty λ
∑m−1

j=1 β2
j where λ controls the

strength of the penalty.
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Results
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We’ve Seen Ridge Regression Before

Generalized Additive Models (GAM’s) from the mgcv package use
ridge regression.

Also recall Kernel Regularized Least Squares (KRLS)
Hainmueller and Hazlett (2013). “Kernel Regularized Least Squares:
Reducing Misspecification Bias with a Flexible and Interpretable
Machine Learning Approach” Political Analysis.
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Paper

Ratkovic and Tingley (2017) “Sparse Estimation and Uncertainty with
Application to Subgroup Analysis” Political Analysis.
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Motivating Example: Subgroup Analysis

Moving past average treatment effects

effects for different groups of individuals (subgroups)

the effect of combinations of treatments

Increasingly complex designs

conjoint analysis

repeated observations

Proliferation of possible effects
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Multiple hypothesis testing

Majors problems with multiple hypothesis testing

p-values become uninformative!

1, 000 possible subsets: 50 false positives!

Publication bias

Subsetting data still requires specification hunting, and is also
underpowered.
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Design: N = 10,000; K = 76
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“Oracle:” OLS on only non-zero effects
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“Oracle:” Zooming in
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LASSOplus
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Introducing LASSOplus

Statistical properties

Sparse estimates

Oracle property
I Consistent variable selection
I Asymptotically equivalent to model fit to non-zero effects

Frequentist coverage

Practical properties

Easy to implement
s1<-sparsereg(y, X, cbind(t1, t2), scale.type="TX", EM=TRUE)

Flexibility
I Up to three-way random effects
I Continuous and binary outcomes
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Contributions of LASSOplus

Statistical contributions

1 Weakly informative prior structure

2 Sparse estimates

3 Approximate confidence intervals

4 Oracle property

Practical contributions

1 Pre-processes data

2 Handles repeated observations

3 Extends beyond standard linear model (probit, tobit, etc.)

All implemented in sparsereg (Ratkovic and Tingley 2015) in R.
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A Simple Example

A hypothetical experiment

Two treatments
I T1 ∈ {a, b, c}
I T2 ∈ {a, b, c , d}

Pre-treatment covariates: [Xi1,Xi2,Xi3,Xi4,Xi5]

Data generating process

Yi =3 + 2 · Xi2 + 2 · 1(Ti1 = a)− 2 · 1(Ti1 = b)

− 2 · Xi2 · 1(Ti1 = b) + 2 · Xi2 · 1(Ti2 = c) + εi

where εi
i.i.d.∼ N (0, 4); N = 500

K = 3 + 4 + 5︸ ︷︷ ︸
main effects

+ 5 · (3 + 4)︸ ︷︷ ︸
interaction terms

= 47
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violinplot(s1)
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Application

Study: Bechtel and Scheve 2013

Effect of international treaty on climate design on support

Conjoint experiment across four countries

Treatment conditions: cost, extent of other countries participating,
extent of sanctions, who monitors

215 total effects
I 16 covariates; 31 main effects; 6 treatments, 23 levels; 184 treatment
× covariate effects

Investigated sub-group effects by multiple split sample analyses
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   Greenpeace
   United Nations
   Indep. commission
   (Baseline = Your government)
monitoring:
   dollars32
   dollars11
   dolars43
   (Baseline = None)
sanctions:
   80% of current emissions
   60% of current emissions
   (Baseline = 40% of current emissions)
emissions:
   160 of 192
   80 of 192
   (Baseline = 20 of 192)
countries:
   Rich pay more than poor countries
   Prop. to history of emissions
   Prop. to current emissions
   (Baseline = Only rich)
distributional:
   dollars267
   dollars213
   dollars160
   dollars107
   (Baseline = dollars53)
cost:

−0.2 0.0 0.2
Change in E[Y]
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Conclusion on LASSOplus

LASSOplus is an estimator that

1 possesses the Oracle property

2 achieves a low FDR

3 identifies non-zero effects

4 returns approximate confidence intervals
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Where we are

Regularization/shrinkage as pulling coefficients towards 0

Our goal was to reduce variance at the possible expense of bias

In general hierarchical models we use reguarlization in order to share
information across related units

Let’s consider a single example of a hierarchical model: eight schools
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Eight Schools Background

ETS analyzes special coaching program on test scores

8 separate parallel experiments in different high schools

Outcome was the score on a special administration of SAT-V with
scores varying between 200 and 800 (µ = 500, σ = 100)

SAT is designed to be resistant to short-term efforts intended to
boost performance, but each school thought it was a success.

No prior reason to believe that one program would be more effective
than the others

Treatment effects estimated controlling for PSAT-M and PSAT-V
scores

A bit over the 30 students in each school

For the sake of scale: an 8-point increase in the score indicates about
1 more test item was answered correctly.

(Analysis is from Rubin 1981, treatment via Gelman et al 2015)
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Eight Schools Data

School Est. Effect SE

A 28 15
B 8 10
C -3 16
D 7 11
E -1 9
F 1 11
G 18 10
H 12 18

Policy Question: What is the effect size in School A?
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What do we know?

Unbiased estimate: 28 points

Hypothesis test fails to reject hypothesis that true effect is the same
for all of them

Should we analyze them all together? All separately?

It is the “same course” in every school, but they are different schools.
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Options for Analysis
There are two clear options:

1 an unpooled analysis in which we use separate estimates for every
school- in this case directly from the table

I 2 moderate effects, 4 small effects and 2 small negative effects
I standard errors are large, 95% intervals overlap substantially

2 a pooled analysis that generates a single estimate for all schools

I assume that all effects are exactly the same
I we get the single effect size and standard error with inverse variance

weighting of the unpooled estimates.

ȳ. =

∑8
j=1

1
σ2
j
ȳj∑8

j=1
1
σ2
j

σ2
. =

 8∑
j=1

1

σ2
j

−1

I the pooled estimate is 7.7 with standard error of 4.1. Thus the
confidence interval is [−.5, 15.9]
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ȳj∑8

j=1
1
σ2
j

σ2
. =

 8∑
j=1

1

σ2
j

−1

I the pooled estimate is 7.7 with standard error of 4.1. Thus the
confidence interval is [−.5, 15.9]

Stewart (Princeton) Regularization April 24-26 67 / 93



Options for Analysis
There are two clear options:

1 an unpooled analysis in which we use separate estimates for every
school- in this case directly from the table

I 2 moderate effects, 4 small effects and 2 small negative effects
I standard errors are large, 95% intervals overlap substantially

2 a pooled analysis that generates a single estimate for all schools

I assume that all effects are exactly the same
I we get the single effect size and standard error with inverse variance

weighting of the unpooled estimates.
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Problems with Separate and Pooled Analysis

The two approaches radically different results for school A:
28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

Under a Bayesian framework, the separate analysis implies the
probability statement “the probability is 1

2 that the true effect in A is
more than 28.4”

This seems . . . dubious given the other results (remember we had no
reason to believe one school would perform stronger than the others)

The pooled analysis implies the statement “the probability is 1
2 that

the true effect in A is less than 7.7”, it also implies that “the
probability is 1

2 that the true effect in A is less than the true effect in
C”

Again these seem unlikely given the data
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Borrowing Information

We want an estimate that combines information from the 8
experiments without assuming that all the effects are equal

Rubin suggests a middle path: a hierarchical model in which we

1 assume that each school’s true effect is drawn a Normal distribution
with some unknown mean and standard deviation

2 assume that the observed effect in each school is sampled from a
normal distribution with a mean equal to its true effect and standard
deviation given in the table

This model contains both the separate and pooled estimates as
limiting special cases. If we force the standard deviation of the true
effects to be zero, then all school get the same estimate, if we let it
go to infinity we get the separate estimates
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The Model

ȳj |θj ∼ Normal(θj , σ
2
j )

θj |µ, τ ∼ Normal(µ, τ2)

p(µ, τ) = p(µ|τ)p(τ) ∝ p(τ)

Known: ȳj , σ
2
j

Unknown: τ, µ, θ
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A General Hierarchical Model Form

First Stage: p(data | process, parameters)
Second Stage: p(process | parameters)
Third Stage: hyperparameters

Y |X , β ∼ N(Xβ,ΣY )

β|Z , α ∼ N(zα,Σβ)

α ∼ N(α0,Σα)
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Some Mechanics

How do the calculations work conditional on some values of the
hyperparameters?

The θs are latent variables which have a distribution. In Bayesian statistics
we call this the posterior distribution.

θj |µ, τ, y ∼ N(θ̂j ,Vj)

θ̂j =

1
σ2
j
ȳj + 1

τ2µ

1
σ2
j

+ 1
τ2

Vj =
1

1
σ2
j

+ 1
τ2
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What is Happening?

We are borrowing information between the schools

Alternatively- we are regularizing estimates of the individual effects
towards their grand mean

This captures our intuition that while School A might have a larger
effect, it is perhaps an overestimate

The form show us that the amount of shrinkage is relative to our
certainty about the estimate and how much we believe the individual
effects matter

Our final guess is that the median effect for school A is about 10
points with 50% probability between 7 and 16
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Results
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The Great Thing About Eight Schools

This is a microcosm of hierarchical modeling

Works well when we have a decent number of groups and the
individual group sample sizes are lowish

Allows us to capture variability in our treatment effects, variances etc.

Allows us to model dependence in our error terms
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1 Regularization
Basics of Regularization
Quadratic Regularizers (Ridge)
Sparsity-Inducing Regularizers (LASSO)
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Beyond Eight Schools

Eight Schools is a simple example without any covariates (sort of)
and with the individual data abstracted away

Today we will consider the broader class of multilevel models

Let’s start with a simple structure: individuals within a group,
individual level predictors only.

We can think of three model variants:

varying-intercept model:yi = aj[i ] + βxi + εi

varying-slope model:yi = α + βj[i ]xi + εi

varying intercept and slope model:yi = aj[i ] + βj[i ]xi + εi
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Varying Intercept and Slopes
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Example Data
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Four ways to analyze

1 Individual-level regression:

I include all the individual and city-level variables in the table
I restriction: can’t capture city-level variation beyond the city level

predictors

2 Group-level regression on city averages

I explain the average level outcome based on group-level covariates and
individual-level average

I restriction: fewer data points and removes ability of individual
predictors to predict individual outcomes.

3 Two-step analysis

I fit an logistic regression with individual variables and city level
intercepts, in a second linear regression fit the estimated intercepts
with group level covariates

I retstriction: problems with small sample sizes, ignores individual/group
variable interactions, ignores estimation uncertainty

4 Multilevel models
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An Example Multilevel Model for Fragile Families

Pr(yi = 1) = logit−1(Xiβ + αj[i ])

αj ∼ N (Ujγ, σ
2
α)

where X are individual predictors, U are group predictors, and σa is the
standard deviation of unexplained city-level variation.

What does it mean to include group level predictors U?

In eight schools we saw partial pooling to the grand mean, here we see
partial pooling to the regression prediction.

The multilevel estimate of αj is a weighted average of the no-pooling
estimate for the group and the regression prediction.
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Non-nested Structures

We can extend this framework to settings which are not cleanly nested
such as longitudinal data.

Pr(yi = 1) = logit−1(β0 + β1psmokej + β2femalej + β3t+

β4(femalej)t + αj)
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Fixed and Random Effects Nomenclature

Five wildly different uses

Rules of thumb:
I “fixed effects regression” means a regression with group level intercepts

included as dummy variables (no shrinkage)
I “fixed effects” within the former type are the group level intercepts
I “fixed effects” within a multilevel/hierarchical model are the terms

which don’t vary by group

Perspectives and estimation in econometrics
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Reasons to Do Multilevel Modeling

Accounting for individual/group variation in estimating group-level
coefficients

Modeling variation in individual-level regression coefficients

Partially pooling to estimate regression coefficients for individual
groups

When should we bother?
Roughly speaking when the number of groups is > 5 with decent amounts
of variation between groups and/or small group sizes.
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Different Ways of Writing the Same Model

αj ∼ N(µα, σ
2
α) can be rewritten as αj = µα + ηj where ηj ∼ N(0, σ2

α)

This formulation leads naturally into expressing the model as a
regression with multiple error terms:
yi = Xiβ + µα + ηj + σ2

ε

We can also express it as a standard regression with correlated errors:
yi = Xiβ + εall

i , ε
all
i ∼ N(0,Σ) where Σ is structured in a particular

way.

Generally I find it easier to think about the intercepts as latent
variables, but the error formulation is more intuitive to some people.
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1 Regularization
Basics of Regularization
Quadratic Regularizers (Ridge)
Sparsity-Inducing Regularizers (LASSO)
Application 1: Flexible Functional Forms
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2 Eight Schools

3 Hierarchical Models
Varying Intercepts
Varying Slopes and Other Complexities
Estimation and Fitting Models in R

Stewart (Princeton) Regularization April 24-26 86 / 93



1 Regularization
Basics of Regularization
Quadratic Regularizers (Ridge)
Sparsity-Inducing Regularizers (LASSO)
Application 1: Flexible Functional Forms
Application 2: Subgroup Analysis

2 Eight Schools

3 Hierarchical Models
Varying Intercepts
Varying Slopes and Other Complexities
Estimation and Fitting Models in R

Stewart (Princeton) Regularization April 24-26 86 / 93



Varying Slopes

Varying slopes are essentially the same but we now allow slope coefficients
to vary, possibly via group level predictors

ya = αj[i ] + βj[i ]xi + εi

αj = γα0 + γα1 uj + ηαj

βj = γβ0 + γβ1 uj + ηβj

We can re-express this as a regression with interactions:

yi =
[
γα0 + γα1 uj[i ] + ηαj[i ]

]
+
[
γβ0 + γβ1 uj[i ] + ηβj[i ]

]
xi + εi

Treating uj[i ] as an individual level predictor, we can see that this is a
model with interactions between x and all the group indicators, and
between x and between u and x .
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Centering

There are a lot of different perspectives on covariate centering in the
literature, with more or less attention given depending on the source.

Centering can have large impacts on speed of convergence in estimation
but also interpretation. The intuition for interpretation differences follows
from the analog to interactions.
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Distributions for Slope Models

The strong correlation between the slope and the intercept needs to be
included in our model .

yi ∼ N(Xi , βj[i ], σ
2
y )

βj ∼ N(MB ,ΣB)

The complexity arises in how to model ΣB .

Gelman recommends a scaled inverse-Wishart distribution which we won’t
discuss now. See Gelman and Hill (2007) Chapter 13 for more.
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Additional Complexities

A major advantage of the multilevel infrastructure is the generality

Models can in theory be used for arbitrary depths and for non-nested
groups

The methods for linear models can also be extended to generalized
linear models. Estimation gets harder but most other things are the
same.

Different types of smoothing can be imposed when groups are ordered
either temporally, spatially or both

Many large classes of models are simply special cases of the
hierarchical models considered here

The downside is that things get complicated quickly- which is why
focused treatments of these specialized cases are important!
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Estimation

There are an enormous number of ways to fit hierarchical models and
(to make matters worse!) many monikers for each strategy

The two most relevant strategies for our purposes are: Restricted
Maximum Likelihood (REML) and Markov Chain Monte Carlo
(MCMC)

Both strategies have a number of variants and there are various ways
that even using those names isn’t quite right.

Let’s focus on two alternatives in R which are both important in their
own right: lmer in lme4 and rstanarm

Stan is a cross-platform probabilistic programming language. It can
be used to expand to almost any model you can dream of.
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Concluding Thoughts: What You Don’t Know

This has been a teaser for hierarchical models- there is a huge amount
not covered here and blindly jumping can result in things going wrong

Hopefully now though you have (a) an intuition for how hierarchical
models work and (b) a foundation from which to learn more.

When in doubt Always check your models!

Read Chapter 21: “Understanding and summarizing the fitted
models” in Gelman and Hill (2007)

Gelman and Hill (2007) is great, but the computation has modernized
a bit (due to Gelman’s own work!) and you should use Stan for
computation over the book recommended BUGS.
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When in doubt Always check your models!

Read Chapter 21: “Understanding and summarizing the fitted
models” in Gelman and Hill (2007)
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