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Outline

I Logistics/replication
I Extending steps in maximum likelihood estimation from

Precept/Problem set 2:

1. Write out the model.
2. Calculate the likelihood (L(θ|y)) for all observations.

I Using exponential distribution, move from θ = λ the same for all
observations to λi

3. Take the log of the likelihood (`(θ|Y)).
4. Plug in the systematic component for θi .
5. Bring in observed data.
6. Maximize `(θ|y) with respect to θ and confirm that this is a maximum.

I Previously: analytic optimization or optimize; this week: numerical
optimization using optim

7. Find the variance of your estimate.
8. Using simulation to go from estimates to QOI
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Logistics/replication

I Pset 1: graded copies over Blackboard or email by Friday night

I Pset 3: due next Wednesday
I Upcoming replication deadlines:

I Wednesday March 1st: provide proof of data to us; we give you 10
extra points on pset 3

I Wednesday March 8th (no pset due): Memo 1, main goal is to replicate
main tables and figures

I Some advice on contacting authors for data/code for those who
haven’t yet started
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Some (preemptive) Pset 3 clarifications

I In general: personal grading pref to use .rmd we provide so easy to
link questions with your response

I Problem 1B: Aesthetic choice to use separate Greek latter for
coefficient of interest- does not affect estimation:

dgect = seg ′ctβ + x ′ctγ + uct

I Problem 2: ”we’re going to use optim to optimize the likelihood w.r.t
β and σ2”; w.r.t = with respect to
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Notecard question: how are things connected under the
same framework?

To help illustrate, will walk through an example that:

1. Begins with the distribution from Pset 2 Recessions problem:
exponential with λ parameter

2. Uses the story of Jack (Leonardo DiCaprio) and Rose (Kate Winslet)
from Titanic to motivate linking λ to covariates like passenger social
class and gender

3. After adding the covariates, we need to make two shifts:

3.1 Shift from analytic optimization to numerical optimization
3.2 Within numerical optimization, minor programming shift from

optimize to optim in R

4. After we use optimization to find values for β for predictors of interest
like Titanic passenger race and social class, how to use simulation to
generate and visualize meaningful QOI from those estimates
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Example Jack and Rose from Titanic: same iceberg,
different time-to-death outcomes

I Jack: age 20 male passenger
in steerage (3rd class in
data)

I In movie/our example: died
from hypothermia roughly
60 minutes after impact

I Rose: age 17 female
passenger in 1st class

I In movie: survived Titanic,
died at age 101

I In our example: ignoring
right censoring for now (will
discuss more in Lecture 4
slides), so assume she died
about 200 minutes after
impact
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In precept one, we practiced telling a story about the data
generating process (DGP) behind a particular outcome

I Outcome in this case: we’re interested in the time until something
happens (the passenger dies)

I What’s the story?:
I Many passengers die really quickly from the collision or drowning, with

a tail end of those who die from hypothermia
I As discussed on the homework, the process is memoryless- in this

example, the expected time until the next passenger dies does not
depend on the time that’s elapsed since the previous passenger died
(might be violated by things like a certain passenger falling off a
lifeboat and dying, making it a longer time until the next passenger
dies because she took his spot)

I After telling this story, can look through our binder full of
distributions (promise this is the last election reference of this
precept...) and choose one that characterizes this DGP well

7 / 41



Before poring through this binder, can take a look at the
observed time to death
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Distribution we settle on: exponential distribution

I Probability density function is the following:

f (y) = λe−λy

I Then, if we assume that this is independent across passengers (e.g.,
Rose’s time to death is independent from Jack’s time to death), we
can index the time to death outcome (y) by passenger i , multiply
across passengers, and write the likelihood as:

L(λ|yJack , yRose , . . . yn) =
n∏

i=1

λe−λyi
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What we can and can’t investigate about time to death
after the Titanic with this likelihood

L(λ|yJack , yRose , . . . yn) =
n∏

i=1

λe−λyi

1. What we can investigate:
I Value of λ (maximum likelihood estimate: λ̂) that maximizes the

probability of observing the pattern of time to death we showed a few
slides ago

I Once have λ̂ can use to generate some QOI like Pset 2, Problem 1M–
in this case, could investigate probability of another death in the next 2
minutes for instance

2. What we can’t but might want to investigate: how does the
distribution of time to death vary by gender, social class, and other
covariates.

I Why we can’t investigate with above density : λ is not indexed by i ,
which =⇒ same shape of time to death for all passengers
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Linking λ to covariates: motivation
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Linking λ to covariates: mechanics

1. Begin with the probability density function that does not link λ to
covariates:

f (yi ) = λe−λyi

2. Create a link between λ and covariates
I µi = Xiβ.

I Why not? λ must be positive, so we need to choose a functional form
for relating covariates to λ that regardless of what data we feed in and
what β we estimate, will constrain λ ≥ 0

I Exponents to the rescue...

I µi = eXiβ

I Why? Still straightforward relationship between λ and passenger
characteristics like gender and social class, but exponent constraints
λ ≥ 0

3. Can plug back into expression for λi : λi = 1
µi

= 1
eXiβ

= e−Xiβ
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Linking λ to covariates: mechanics continued...

4. Once we’ve found that function linking λ to our covariates of interest
(gender; social class), can plug back into the Likelihood1:

I Start with likelihood:

L(λ|yJack , yRose , . . . yn) =
n∏

i=1

λe−λyi

I Plug in λ = 1
eXiβ

to wherever λ appears (step should be familiar from
normal density replacing µ with Xiβ

L(β|yJack , yRose , . . . yn) =
n∏

i=1

e−Xiβe−e
−Xiβyi

1Could also plug into log likelihood but that gives us too many Pset 2 answers
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Linking λ to covariates: mechanics continued...

L(β|y) ∝
n∏

i=1

e−Xiβe−e
−Xiβyi

5. ln(
∏

x) =
∑

ln(x)

`(β|y)
.

=
n∑
i

ln[e−Xiβe−e
−Xiβyi ]

6. ln(e) = 1 and ln(ab) = ln(a) + ln(b)

`(β|y)
.

=
n∑
i

−Xiβ − e−Xiβyi
.

=
n∑
i

−Xiβ −
1

eXiβ
yi
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Contrast: λ with and without covariates

Without covariates (Pset 2)

1. Outcome (time to
death...yi ): distributed
exponentially and varies
between observations

2. λ: same across
observations

3. What we’re solving for
when we do
optimization: one λ̂

With covariates (now)

1. Outcome (time to death...yi ):
distributed exponentially and varies
between observations

2. λ: may differ between individuals
based on Xi , with β indicating how
each covariate plays a role in that
difference

3. What we’re solving for when we do
optimization: a vector equal to
length of covariates (including
intercept) of β̂
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Focusing on with covariates, inputs and outputs to this
new log-likelihood

`(β|y)
.

=
n∑
i

−Xiβ −
1

eXiβ
yi

I Inputs to the machine:
I yi : the outcome, or every passenger’s time to death in minutes
I Xi : the predictors, or that passenger’s social class, age, gender, etc...

I Output(s) of the machine:
I β̂: these maximize the (log) likelihood that a particular vector of β

(conditional on the model) generated the time to death we observe.
For instance, if we have (class, female, age)

1. Possibility one: (-0.2, -0.5, 1.5)
2. Possibility two: (-0.8, 0, 0)
3. Etc...

I With other models,the output of the machine might be more than one
parameter: for instance, Pset 3 normal linear regression, output of
machine is β̂ and σ̂2
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Now that we know we want to end up with a vector of β̂
that relate passenger characteristics to mean time to
death, how do we go about doing the optimization?

Two general methods (Lecture 3, Slide 38):

1. Analytic optimization (example: Pset 2, Problem 1, Part 3):
I Start with the log likelihood
I Take the derivative w.r.t. parameter of interest
I Set derivative equal to zero
I Solve for critical point(s)
I Check that critical point is a maximum by finding second derivative,

plugging in the critical point, and showing that it’s negative

2. Numerical optimization: for when #1 is difficult to impossible, we’ll
review two aspects:

2.1 Practice general procedure with Titanic data and R’s optim

2.2 Throughout, learn more about what R’s optim is doing under the hood
when we do optimization via different methods

17 / 41



General steps in using R for numerical optimization

1. Write a function for the log likelihood that takes in X , y , and a
vector of trial or starting parameters for which you’re trying to find
the maximum likelihood estimate (e.g., vector of β, vector containing
starting/trial values for both β and σ2)

2. Plug that function into R’s optim along with a vector of starting/trial
values

3. The values you’re most interested in optim returning are, where K
refers to the number of parameters:

3.1 K -length vector of estimates:

optim$par

3.2 K × K matrix of all combinations of second derivatives of estimates
(the Hessian) that we use to derive standard error of estimates:

optim$Hessian
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Step one (programming log likelihood): practice in R

In an R or .rmd file, load the titanic.csv file and then:
1. Program a function for the log likelihood we derived for time to

death:
I Expression for likelihood:

`(β|y)=̇
n∑
i

−Xiβ −
1

eXiβ
yi (1)

I Arguments (can choose your own names):
1.1 y : a vector of the outcome variable (deathtime in your data)
1.2 X : a matrix of the explanatory variables in the following order: intercept,

social class, gender, age
1.3 par : a vector of trial or starting values for the parameters where length =

number of parameters seeking to return (in this case 4: β̂ for intercept, age,
gender, class

I Returns: a single scalar value for the log likelihood (equation 1)
evaluated at the parameters you fed it in step #1.3

2. Then, practice plugging in the following sets of trial parameters +
other inputs into the function:

I Trial 1: (0 0 0 0); Trial 2: (0.5 -0.5 0.5 -0.5); Trial 3: (0.5 -0.2 0.5 -0.2)
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Step one (programming log likelihood): solution

loglik.exp <- function(param, X, y){

#check if X has intercept and is matrix and if not,

#convert to that form

if(!all(X[, 1] == 1)){

X <- cbind(1, X)

}

if(!is.matrix(X)) {

X <- as.matrix(X)

}

#plug into expression for loglik

return(sum(-X%*%param - 1/exp(X%*%param) * y))

}
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Step one (programming log likelihood): solution continued

#create X, y vector,

#and trial values

X <- titanic_deathfull %>%

select(classCode, Age, female)

y <- titanic_deathfull %>%

select(deathtime)

trial1 <- rep(0, 4)

trial2 <- c(0.5, -0.5, 0.5, -0.5)

trial3 <- c(0.5, -0.2, 0.5, -0.2)

#first application (see .rmd solution for rest)

loglik.exp(param = trial1,

X = X,

y = y)
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Motivation for step two (use optim to find MLE)

I Going from trial1 to trial2 to trial3, the log likelihood should be
getting smaller across trials (less negative), indicating we’re getting
closer to the maximum

I But it’s highly inefficient to keep on randomly sampling trial values,
plugging those in, and then keeping track of which gets us closer to
the maximum

I Instead, we need a way to begin with a vector of random trial values,
but then use some information about what happens to the function
when we plug those trial values in to improve our next set of values

I R’s optim has a variety of built-in ways of above step, so before we
use it to optimize the loglik.exp function we wrote, let’s review
broadly what it’s doing under the hood
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General idea behind numerical optimization

I Instead of hiking in the Adirondacks armed with eyes + tree blazes to
find the valley or peak, imagine being blindfolded and exploring a
mountain with two tools:

1. Tool that tells you what direction to go in
2. Tool that tells you how far a step to take in that direction (and your

steps are large enough that you might overstep)

I Most optimization algorithms use some version of those two tools,
but operationalize them in different ways
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One general set of tools: gradient descent/ascent

Gradient descent (or ascent for max.) methods: use slope of curve
(first derivative) at trial value in iteration k as tool

1. Find general expression for function’s gradient (can think of as vector
of slopes)- e.g., if have two parameters x and y :

∇f = 〈
∂f

∂x
,
∂f

∂y
〉 (2)

2. Plugging the trial value into equation 2 tells us how steep the slope is
in x and y directions

3. If we want to descend the slope towards a minimum, can subtract this
gradient multiplied by a step size (usually denoted as α)2 to get our
next set of trial values since we want to get further away from value
where function is highest; for max, add because we want to get closer:

〈xk , yk〉 = 〈xk−1, yk−1〉 ± α∇f (xk−1, yk−1〉
4. Repeat process with 〈xk , yk〉 until gradient at trial value gets close to

zero (max or min)
2We’re not covering choices about fixed α versus α that updates with each iteration
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Another general set of tools: Newton-Raphson and
”quasi-Newton”methods

I Gradient ascent/descent used first derivative of function we seek to
maximize/minimize

I Another family of approaches uses first derivative and second
derivative–in multivariate case, gradient (vector) and Hessian (matrix)
respectively–to update the trial values with each k iteration

I Newton-Raphson: uses actual gradient and Hessian of function
evaluated at trial values for each iteration

I Quasi-Newton: for cases where the Hessian at each iteration is too
computationally intensive, approximate Hessian

I Why can it be more useful to use first and second derivatives to
update trial values rather than first derivatives alone? Taylor
expansion as background:

f (xk) ≈ f (xk−1) + f ′(xk−1)(xk − xk−1) +
f ′′(xk−1)

2!
(xk − xk−1)2
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With each higher-order derivative, get closer to true curve
(illustration with univariate case)

Source: Rice University Comp 130
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Using that curve approx. to get trial value closer to
min/max

f (xk) ≈ f (xk−1) + f ′(xk−1)(xk − xk−1) +
f ′′(xk−1)

2!
(xk − xk−1)2

I Can then maximize this function w.r.t xk to get next trial value:
1. Term to max highlighted in red, take deriv and set equal to zero:

f (xk) ≈ f (xk−1) + f ′(xk−1)(xk − xk−1) +
f ′′(xk−1)

2!
(xk − xk−1)2

0 = f ′(xk−1) + f ′′(xk−1)(xk − xk−1)

2. Solve for xk to get next trial value

−f ′(xk−1) = f ′′(xk−1)(xk − xk−1)

−f ′(xk−1)

f ′′(xk−1)
= xk − xk−1

xk = xk−1 −
f ′(xk−1)

f ′′(xk−1)
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Now that we’ve reviewed a couple general approaches to
moving blindfolded around the curve, what built-in
methods does R’s optim have?

I Nelder-Mead: this is the default; it is slow but somewhat robust to
non-differentiable functions.

I BFGS: a quasi-Newton Method; it is fast but needs a well behaved
objective function.

I L-BFGS-B: similar to BFGS but allows box-constraints (i.e. upper and
lower bounds on variables).

I CG: conjugate gradient method, may work for really large problems
(we won’t really use this).

I SANN: uses simulated annealing – a stochastic global optimization
method; it is very robust but very slow.

For pset 3, using BFGS for all of the problems involving optim
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Refresher of where we are in the steps that find us β̂ that
maximize the time to death we observed in the Titanic
data

1. Write a function for the log likelihood that takes in X , y , and a
vector of trial or starting parameters for which you’re trying to find
the maximum likelihood estimate (e.g., vector of β, vector containing
starting/trial values for both β and σ2)

2. Plug that function into R’s optim along with a vector of starting/trial
values

3. The values you’re most interested in optim returning are, where K
refers to the number of parameters:
3.1 K -length vector of estimates:

optim$par

3.2 K × K matrix of all combinations of second derivatives of estimates
(the Hessian) that we use to derive standard error of estimates:

optim$Hessian
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Step two (use optim to find MLE): useful arguments

1. par: vector of trial/starting parameters; should be equal in length to
number of parameters we’re trying to estimate (e.g., 10 covars + σ2

= vector of length 11)

2. fn: function we’re trying to optimize– here, it’s loglik.exp

3. Additional arguments: after the function, can specify X , y , etc. and
whatever other arguments the function fed in fn needs

4. method is the algorithm used to find the maximum.

5. fnscale multiplies the function by the given constant. As a default
optim() finds the minimum so multiplying our function by −1 fools
optim() into finding the maximum.

6. hessian = TRUE requests that optim return a K × K matrix of
second derivatives, where K = number of parameters
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Step two (use optim to find MLE): practice in R

I Use optim to find four β̂ for the exponential regression function
whose log likelihood you programmed as loglik.exp:

1. β̂ for intercept
2. β̂ for social class (classCode)
3. β̂ for female
4. β̂ for Age

I You can use method = "BFGS" and set trial parameters to zero

I After running optim, extract the ”par”from the output to get β̂ and
to find standard error of each β̂, extract Hessian and use following
formula:

sqrt(diag(solve(-optoutput$hessian)))

I Briefly interpret the coefficients (for social class variable, higher = in
worse class (e.g., 3rd class steerage; 2nd class, 1st class)); if you’d
like, you can compare them to survreg in the survival library and the
esimates should be similar

31 / 41



Step two (use optim to find MLE): solution

#run optim with trial parameters

#of 0 and BFGS

opt.time_death <- optim(par = rep(0, 4),

fn = loglik.exp,

y = y,

X = X,

control = list(fnscale = -1),

method = "BFGS",

hessian = TRUE)

#extract estimates and SE

beta_td <- opt.time_death$par

beta_td_se <- sqrt(diag(solve(-opt.time_death$hessian)))
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Results and comparison with survreg

variables beta optim se optim beta survreg se survreg

Intercept 5.1838 0.1612 5.1858 0.1612
Class -0.2134 0.0467 -0.2137 0.0467
(1 = 1st;
3 = steerage)
Age -0.0059 0.0028 -0.0060 0.0028
female 0.4613 0.0757 0.4614 0.0757
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But remember how we feel about usefulness of raw
coefficients...

I See social class is highly significant, with passengers in a worse social
class (higher value) having a significantly higher expected time to
death

t =
β

se
≈ −0.2134

0.0467
≈ −4.57

I Gender and age also seem significant, with older individuals having a
shorter time to death and females with a longer time to death

I You’re interested in the difference in time to death the model predicts
between two passengers who share the same observed characteristics
with Jack and Rose (who seems to have a lot going for her longer
survival):

I Jack: 20 year old male with social class = 3
I Rose: 17 year old female with social class = 1
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Steps for using simulation to generate QOI: adapted from
Lecture 3, slide 74

1. Choose values of explanatory variables- in this case, it’ll be one vector
representing Jack’s characteristics and another vector representing
Rose’s

2. Simulate estimation uncertainty (we use θ as a placeholder to refer to
any set of parameters– in this case, only β, but in other cases, might
also include σ2):

2.1 Draw θ from their sampling distribution: N(β̂, V̂ar(β̂)). Label the

random draw θ̃ and in this case, θ̃ = {β̃}
I Why can we use multivariate normal to draw betas when our outcome

follows an exponential distribution? CLT! Even if outcome follows
exponential, sampling distribution of β is normal asn→∞

3. Use the β̃ to compute the simulated systematic component – in this
case, µ̃i = eXi β̃ = 1

λ̃i

4. Add fundamental uncertainty: draw ỹi ∼ exp(λ̃i )
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Step one: choose (or fix) values of explanatory variables

jack <- data.frame(Int = 1,

classCode = 3,

Age = 20,

female = 0)

rose <- data.frame(Int = 1,

classCode = 1,

Age = 17,

female = 1)
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Step two: draw the parameters (just beta here) from
multivariate normal sampling distribution

I When defining the multivariate normal, we use the β̂ and V̂ar we
obtained using optim- here simulating 5000 values

beta_tild_td <- rmvnorm(n = 5000,

mean = opt.time_death$par,

sigma = solve(-opt.time_death$hessian))

I Result is a 5000× 4 matrix that for each intercept/covariate, has
5000 different realizations of the β̂ parameter
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Step three: use the β̃ to compute the simulated systematic
component

1. Remember that for this particular distribution, and that because Jack
and Rose have different covariates, we’ll want both a ˜λJack and ˜λRose :

λi =
1

eXiβ

2. Keeping that in mind, we can do the following to generate the λi to
feed into our exponential distribution for the next step

jack_mat <- as.matrix(jack)

lambda_tild_jack <- 1/exp(jack_mat %*% t(beta_tild_td))

rose_mat <- as.matrix(rose)

lambda_tild_rose <- 1/exp(rose_mat %*% t(beta_tild_td))
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Step four: Add fundamental uncertainty: draw ỹi ∼ exp(λ̃i)

I Since we have both ˜λJack and ˜λRose from previous step, we’ll get two
different length 5000 time to death vectors, which was the whole
point of the exercise!

I In R, setting seed to 1484:

jack_simout <- rexp(5000, rate = lambda_tild_jack)

rose_simout <- rexp(5000, rate = lambda_tild_rose)

I Could then take difference and plot a histogram of that, plot two
distributions of time to death side by side, etc.!
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One way of comparing
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What we reviewed

1. Write out the model.

2. Calculate the likelihood (L(θ|y)) for all observations.
I Using exponential distribution, move from θ = λ the same for all

observations to λi

3. Take the log of the likelihood (`(θ|Y)).

4. Plug in the systematic component for θi .

5. Bring in observed data.

6. Maximize `(θ|y) with respect to θ and confirm that this is a
maximum.

I Previously: analytic optimization or optimize; this week: numerical
optimization using optim

7. Find the variance of your estimate.

8. Using simulation to go from estimates to QOI
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