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Suppose you want to model the time until an event occurs.

Time has to be positive

Could we construct the simplest possible distribution defined on
positive values only?
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Let’s start with a uniform random variable.

U ∼ Uniform(0, 1)
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We could transform this to be defined on all negative values.
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Then we could make this positive.

X ∼ − log(U)
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This is the unit exponential distribution!

X ∼ − logU

− X ∼ logU

e−X ∼ U

1− e−X ∼ U

Is this starting to look like the Exponential CDF, 1− e−λx?
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We can stretch it out by a scale parameter 1
λ

X ∼ − 1

λ
log(U)

− λX ∼ log(U)

e−λX ∼ U

1− e−λX ∼ U

We have the Exponential CDF!

FX (x) = 1− e−λx
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Exponential distribution

T ∼ Exponential(λ)

PDF
f (t) = λe−λt

CDF
F (t) = 1− e−λt

Survival function

S(t) = P(T > t) = 1− P(T < t) =

1− FT (t) = e−λt

Hazard function: Risk of event at t given survival up to t

h(t) =
f (t)

S(t)
=
λe−λt

e−λt
= λ

Not a function of t! The hazard is constant.
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Modeling with covariates

Suppose we want to allow the hazard to vary by some set of
predictors.

Then, we can assume a proportional hazards model.

h(t | x) = h0(t)︸ ︷︷ ︸
Baseline hazard

exβ︸︷︷︸
Hazard ratio
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Exponential hazards
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Fitting an Exponential model in Zelig

Zelig is an R package designed to make everything we do in class
easier.

Note the Zelig workflow overview.

We will use the Zelig-Exponential.

https://github.com/IQSS/Zelig/blob/master/README.md
http://docs.zeligproject.org/en/latest/zelig-exp.html
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Zelig example: Lung cancer survival

We will walk through the example using data on lung cancer
survival

> library(survival)

> data(lung)

> head(lung)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss

1 3 306 2 74 1 1 90 100 1175 NA

2 3 455 2 68 1 0 90 90 1225 15

3 3 1010 1 56 1 0 90 90 NA 15

4 5 210 2 57 1 1 90 60 1150 11

5 1 883 2 60 1 0 100 90 NA 0

6 12 1022 1 74 1 1 50 80 513 0

lung <- mutate(lung, event = as.numeric(status == 2))



Duration Poisson process Overdispersion Zero-inflation

Variable definitions: Lung cancer survival

?lung

inst: Institution code

time: Survival time in days

status: censoring status 1=censored, 2=dead

age: Age in years

sex: Male=1 Female=2

ph.ecog: ECOG performance score (0=good 5=dead)

ph.karno: Karnofsky performance score (bad=0-good=100) rated by physician

pat.karno: Karnofsky performance score as rated by patient

meal.cal: Calories consumed at meals

wt.loss: Weight loss in last six months
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Zelig step 1: Fit a model

fit <- zelig(Surv(time, event) ~ age + sex,

model = "exp",

data = lung)
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Zelig step 1: Fit a model

> summary(fit)

Model:

Call:

z5$zelig(formula = Surv(time, event) ~ age + sex, data = lung)

Value Std. Error z p

(Intercept) 6.3597 0.63547 10.01 1.41e-23

age -0.0156 0.00911 -1.72 8.63e-02

sex 0.4809 0.16709 2.88 4.00e-03

Scale fixed at 1

Exponential distribution

Loglik(model)= -1156.1 Loglik(intercept only)= -1162.3

Chisq= 12.48 on 2 degrees of freedom, p= 0.002

Number of Newton-Raphson Iterations: 4

n= 228

Next step: Use ’setx’ method
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Zelig step 2: Use setx to set covariates of interest

men <- setx(fit, age = 50, sex = 1)

women <- setx(fit, age = 50, sex = 2)
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Zelig step 2: Use setx to set covariates of interest

> men

setx:

(Intercept) age sex

1 1 50 1

Next step: Use ’sim’ method

> women

setx:

(Intercept) age sex

1 1 50 2

Next step: Use ’sim’ method
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Zelig step 3: Use sim to simulate quantities of interest

> sims <- sim(obj = fit, x = men, x1 = women)

> summary(sims)

sim x :

-----

ev

mean sd 50% 2.5% 97.5%

1 355.086 33.63733 353.5258 296.6169 428.758

pv

mean sd 50% 2.5% 97.5%

[1,] 351.414 361.6174 242.511 7.082744 1357.005

sim x1 :

-----

ev

mean sd 50% 2.5% 97.5%

1 577.5684 78.5113 571.178 438.4341 743.9957

pv

mean sd 50% 2.5% 97.5%

[1,] 562.8317 550.6102 382.9658 11.5627 2016.61

fd

mean sd 50% 2.5% 97.5%

1 222.4824 85.0493 217.0278 61.08082 396.5632
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Zelig step 4: Use graph to plot simulation results

pdf("ZeligFigures.pdf",

height = 5, width = 7)

plot(sims)

dev.off()
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Summarizing Zelig

Estimate your model:

#install.packages("Zelig")

require(Zelig)

fit <- zelig(Surv(time, event) ~ age + sex,

model = "exp",

data = lung)

Set your covariates:

men <- setx(fit, sex = 1, fn = mean)

women <- setx(fit, sex = 2, fn = mean)

Simulate your QOI:

sims <- sim(obj = fit, x = men, x1 = women)

Plot:

plot(sims)
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Fitting an Exponential with survreg

> library(survival)

> fit <- survreg(Surv(time, event) ~ age + sex,

+ dist = "exponential",

+ data = lung)

> summary(fit)

Call:

survreg(formula = Surv(time, event) ~ age + sex, data = lung,

dist = "exponential")

Value Std. Error z p

(Intercept) 6.3597 0.63547 10.01 1.41e-23

age -0.0156 0.00911 -1.72 8.63e-02

sex 0.4809 0.16709 2.88 4.00e-03

Scale fixed at 1

Exponential distribution

Loglik(model)= -1156.1 Loglik(intercept only)= -1162.3

Chisq= 12.48 on 2 degrees of freedom, p= 0.002

Number of Newton-Raphson Iterations: 4

n= 228
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Interpreting hazard ratios

h(t | x) = h0(t)e−xβ

> exp(-coef(fit))

(Intercept) age sex

0.002 1.016 0.618
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Plotting survival curves

Hazard Survival
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Plotting survival curves

How we made the previous slide:

data.frame(t = seq(.5,20,.5)) %>%

mutate(Men.Hazard = lambda[1],

Women.Hazard = lambda[2],

Men.Survival = exp(-lambda[1]*t),

Women.Survival = exp(-lambda[2]*t)) %>%

melt(id = "t") %>%

separate(variable, into = c("Sex","QOI")) %>%

ggplot(aes(x = t, y = value, color = Sex)) +

geom_line() +

facet_wrap(~QOI, scales = "free") + ylab("") + xlab("time") +

ggtitle("Exponential survival fits, for 50-year-old men and women") +

ggsave("ExpoFit.pdf",

height = 3, width = 5)
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Scales and rates

The exponential is almost always parameterized with a rate λ.

But, it could just as well be defined in terms of a scale θ = 1
λ

Rate parameterization Scale parameterization

E (T ) = 1
λ E (T ) = θ

f (T ) = λe−λx
f (T ) = 1

θ e
− 1

θ
x

As rate grows, expected
waiting time shrinks

As scale grows, expected
waiting time grows

In general, you have to be careful with the parameterization of
survival distributions.
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Weibull distribution

T ∼Weibull(α, λ)

PDF 2

f (t) = tα−1αλαe−(λt)α

CDF
F (t) = 1− e−(λt)α

Survival function

S(t) = P(T > t) =

1− P(T < t) = 1− FT (t) = e−(λt)α

Hazard function: Risk of event at t given survival up to t

h(t) =
f (t)

S(t)
=

tα−1αλαe−(λt)α

e−(λt)α
= tα−1αλα

2I have used the rate parameterization for λ; in lecture slides Brandon uses
the scale parameterization.
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Weibull distribution

h(t) =

f (t)

S(t)
=

tα−1αλαe−(λt)α

e−(λt)α
= tα−1αλα

The hazard increases with t when α > 1
The hazard decreases with t when α < 1
The hazard is constant over t when α = 1
In that case, it’s the exponential!

h(t | α = 1) = tα−1αλα = t1−11λ1 = λ
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Fitting a Weibull model

## Fitting a Weibull model

fit <- survreg(Surv(time, event) ~ age + sex,

dist = "weibull",

data = lung)

Hazard Survival
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time
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Weibull survival fits, for 50−year−old men and women
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Lognormal distribution

T ∼ LogNormal(µ, σ2) ∼ eZ (where Z ∼ N(µ, σ2)

f (t) =
1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)
CDF

F (t) =

∫ t

0
f (x)dx = ugly formula

Survival function

S(t) = P(T > t) =

1− P(T < t) = 1− FT (t) = ugly formula

Hazard function: Risk of event at t given survival up to t

h(t) =
f (t)

S(t)
= ugly formula



Duration Poisson process Overdispersion Zero-inflation

Lognormal distribution

T ∼ LogNormal(µ, σ2) ∼ eZ (where Z ∼ N(µ, σ2)

f (t) =
1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)
CDF

F (t) =

∫ t

0
f (x)dx = ugly formula

Survival function

S(t) = P(T > t) = 1− P(T < t) =

1− FT (t) = ugly formula

Hazard function: Risk of event at t given survival up to t

h(t) =
f (t)

S(t)
= ugly formula



Duration Poisson process Overdispersion Zero-inflation

Lognormal distribution

T ∼ LogNormal(µ, σ2) ∼ eZ (where Z ∼ N(µ, σ2)

f (t) =
1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)
CDF

F (t) =

∫ t

0
f (x)dx = ugly formula

Survival function

S(t) = P(T > t) = 1− P(T < t) = 1− FT (t) = ugly formula

Hazard function:

Risk of event at t given survival up to t

h(t) =
f (t)

S(t)
= ugly formula



Duration Poisson process Overdispersion Zero-inflation

Lognormal distribution

T ∼ LogNormal(µ, σ2) ∼ eZ (where Z ∼ N(µ, σ2)

f (t) =
1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)
CDF

F (t) =

∫ t

0
f (x)dx = ugly formula

Survival function

S(t) = P(T > t) = 1− P(T < t) = 1− FT (t) = ugly formula

Hazard function: Risk of event at t given survival up to t

h(t) =
f (t)

S(t)
= ugly formula



Duration Poisson process Overdispersion Zero-inflation

Lognormal distribution

T ∼ LogNormal(µ, σ2) ∼ eZ (where Z ∼ N(µ, σ2)

f (t) =
1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)
CDF

F (t) =

∫ t

0
f (x)dx = ugly formula

Survival function

S(t) = P(T > t) = 1− P(T < t) = 1− FT (t) = ugly formula

Hazard function: Risk of event at t given survival up to t

h(t) =
f (t)

S(t)
= ugly formula



Duration Poisson process Overdispersion Zero-inflation

Fitting a Lognormal

fit <- survreg(Surv(time, event) ~ age + sex,

dist = "lognormal",

data = lung)

NOTE: This figure doesn’t correspond to the model above - just
an example of a LogNormal
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Gompertz distribution

f (t) = bηebteη exp(−ηebt)

F (t) = 1− exp
(
−η
(
ebt − 1

))
h(t) =

f (t)

S(t)

=
bηebteη exp(−ηebt)
exp (−η (ebt − 1))

= bηebteη

log[h(t)] = (log(b) + log(η) + η)︸ ︷︷ ︸
Intercept

+ b︸︷︷︸
Slope

t

= α + βt

The log of the hazard function is linear in time!
This is why people like the Gompertz.
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Gompertz distribution

Gompertz hazard with α = −7, β = .09

log[h(t)] = α + βt, h(t) = exp(α + βt)
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Gompertz hazard ( α = − 7 , β = 0.09 )

Note: Example motivated by U.S. mortality; see German
Rodriguez’s example here.

http://data.princeton.edu/eco572/us2002gompertz.html
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Note: Example motivated by U.S. mortality; see German
Rodriguez’s example here.
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As I said at the beginning, all of the survival models above have
the form:

hi (t)︸︷︷︸
Hazard function

= h0(t)︸ ︷︷ ︸
Baseline hazard

eXiβ︸︷︷︸
Hazard ratio

S(t) = e−
∫ t

0 h(u)du

Different models allow different kinds of flexibility in the baseline
hazard h0(t).

Can we model hazard ratios without any assumptions about h0(t)?
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Cox proportional hazards model

Then we can fit a Cox proportional hazards model!

To save time, I won’t cover this here, but it’s important and in
Brandon’s lecture slides.

The Cox model is fit based on the order at which people die, rather
than the times, so it does not assume a baseline hazard.

You can fit one with coxph()
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Most probability distributions are related!

In fact, people have put together charts of them all.

Here’s one by Larry Lemis (William and Mary)
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[link]

http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
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We won’t go into all of those.

We will explore some of these relationships in the Poisson process.
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I’d like to take you to the wilderness of the Sierra Nevada
mountains, to one of my favorite places: Rae Lakes.

PC: http://wilderness.org/30-prettiest-lakes-wildlands

http://wilderness.org/30-prettiest-lakes-wildlands
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Imagine laying out on your pad on the granite, looking up at the
sky.

We will count shooting stars and record the times we see them.3

3Thanks to William Chen for the shooting stars example. See more at
http://www.wzchen.com/probability-cheatsheet/.

http://www.wzchen.com/probability-cheatsheet/
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Exponential distribution: Memoryless property

P(T > s + t | T > s) =

P(T > s + t)

P(T > s)
=

S(s + t)

S(s)

=
e−λ(s+t)

e−λs
=

e−λse−λt

e−λs

= e−λt = P(T > t)

So, the probability of surviving an additional t years is independent
of whether you have already survived s years!
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Exponential ratio

Suppose

X1,X2
iid∼ Exponential(1)

What is the distribution of:

X1

X1 + X2
∼

Uniform(0,X1 + X2)

What if X1 and X2 are distributed Exponential(2)? The result still
holds!
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Sum of exponentials

The exponential is often described as the length of time you wait
until a bus comes.

What if we wanted a distribution for the time until the kth bus
comes?

X1, . . . ,Xk
iid∼ Exponential(λ)

Gk ∼ X1 + · · ·+ Xk

Then we say
Gk ∼ Gamma(k, λ)

The Gamma distribution characterizes the wait time until the kth
bus arrives.
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Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) =

E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) =

E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =

k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) =

V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) =

V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =

k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Gamma distribution

Gk ∼ Gamma(k , λ) ∼ X1 + · · ·+ Xk

E (T ) = E (X1 + · · ·+ Xk) = E (X1) + · · ·+ E (Xk) =
k

λ

V (T ) = V (X1 + · · ·+ Xk) = V (X1) + · · ·+ V (Xk) =
k

λ2

f (t) =
1

Γ(k)

(λt)ke−λt

t

CDF is hard to write.



Duration Poisson process Overdispersion Zero-inflation

Poisson: Events in an interval

Suppose

X1,X2, · · ·
iid∼ Exponential(λ)

Then the number of events occurring in a window of length 1
follows a Poisson distribution with rate λ.

N ∼ Pois(λ)

E (N) = λ

V (N) = λ
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Poisson: Events in disjoint intervals

Are the number of events in disjoint intervals (i.e.
{t ∈ (0, 1), t ∈ (2, 3)}) related?

No! By the memoryless property of the Exponential, the wait times
for events in these two periods are independent given the rate
parameter λ.
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Poisson: Intervals of non-unit length

What would you expect for the distribution of events occuring in a
window of length 2?

E (NT | T = 2) = 2λ, V (NT | T = 2) = 2λ

In general it will be the case that the number of events in a time
period of length t follows a Poisson distribution with rate λt.

Nt ∼ Poisson(λt)
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Ratio of Gammas

Ga ∼ Gamma(a, λ)

Gb ∼ Gamma(b, λ)

B ≡ Ga

Ga + Gb
∼ Beta(a, b)

The ratio of Gammas is a Beta distribution!

https://en.wikipedia.org/wiki/Beta_distribution
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Uniform order statistics

What is the distribution of the time until the 5th shooting star?

Gamma(5, λ)

What is the distribution of the time until the 20th shooting star
after that?

Gamma(20, λ)

These wait times are independent. What is the distribution of the
proportion of time spent waiting for the 5th star?

U(5) ∼
Gamma(5, λ)

Gamma(5, λ) + Gamma(20, λ)
∼ Beta(5, 20)

This is the 5th Uniform order statistic. Let’s discuss why this is
cool!
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Why do we care?

Suppose someone says to you, “I ran 100 hypothesis tests. What’s
the probability that the 7th-smallest p-value is less than 0.05 if
nothing is really happening?”

You say...let me take you to the wilderness. We will count shooting
stars.
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Why do we care?

X1, . . . ,Xn ∼ Exponential

{
X1∑
Xi
, . . . ,

Xn∑
Xi

}
∼
{
U(1), . . . ,U(n)

}
where

{
U(1), . . . ,U(n)

}
are order statistics that give an ordered version

of U1, . . . ,Un ∼ Uniform(0, 1)

G7 ≡ X1 + · · ·+ X7 ∼ Gamma(7, 1)

G93 ≡ X8 + · · ·+ X100 ∼ Gamma(93, 1)

U(7) ∼
G7

G7 + G93
∼ Beta(7, 93)

P(U(7) < .05) = FBeta(7,93)(.05) = 0.23

So, it’s not that strange to see 7 p-values less than 0.05. And we learned

this all from shooting stars!
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In the Poisson distribution,

E (Y ) = V (Y ) = λ

This is fairly restrictive. Can we allow the variance to differ from
the mean?
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Negative Binomial: Three constructions

We can add flexibility to the Poisson model with the Negative
Binomial.

We will walk through three constructions of the Negative Binomial
as

The number of tails until the kth heads

A Gamma-Poisson mixture

A Poisson with an overdispersion parameter
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Geometric distribution: Tails until first heads

Suppose you flip a coin until the first heads.
The number of tails until the first heads follows a geometric
distribution.

Y ∼ Geometric(p)

P(Y = y) = P(Y failures)P(Final success) = (1− p)yp
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Negative Binomial distribution: Tails until the kth heads

Yi ∼ NegBin(pi , k)

P(Yi = yi ) =

(
k + y − 1

k

)
(1− pi )

ypki

Note: This is a model for counts involving two parameters, so has
flexibility beyond the Poisson.
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Negative Binomial: A Gamma-Poisson mixture4

Yi |ςi ∼ Poisson(ςiλi )

ςi ∼
1

θ
Gamma(θ, 1)

Note that Gamma(θ, 1) has mean θ. This means that 1
θGamma(θ)

has mean 1, and so Poisson(ςiλi ) has mean λi .

4Material adapted from lecture slides
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Negative Binomial: A Gamma-Poisson mixture5

Using a similar approach to that described in UPM pgs. 51-52 we
can derive the marginal distribution of Y as

Yi ∼ Negbin(λi , θ)

where

fnb(yi |λi , θ) =
Γ(θ + yi )

yi !Γ(θ)

λyii θ
θ

(λi + θ)θ+yi

Notes:

1. E[Yi ] = λi and Var(Yi ) = λi +
λ2
i
θ . What values of θ would

be evidence against overdispersion?

2. we still have the same old systematic component: λi =
exp(Xiβ).

5Material adapted from lecture slides
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Negative Binomial: Poisson with an overdispersion
parameter

E (Yi ) = λi

V (Yi ) = θλi

p(yi ) =
Γ
(
Yi + λi

1−θ

)
Yi !Γ

(
λi

1−θ

) (
λi

λi + λi
1−θ

)Yi
(

λi
1−θ

λi + λi
1−θ

) λi
1−θ
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Harmonizing the three constructions

Failures before kth success

p(y) =

(
k + y − 1

k

)
︸ ︷︷ ︸

Part 1

(1− p)y︸ ︷︷ ︸
Part 2

pk︸︷︷︸
Part 3

Gamma-Poisson mixture

p(y) =
Γ(θ + yi )

yi !Γ(θ)

λyii θ
θ

(λi + θ)θ+yi

=
Γ(θ + yi )

yi !Γ(θ)︸ ︷︷ ︸
Part 1

(
λi

λi + θ

)yi

︸ ︷︷ ︸
Part 2

(
θ

λi + θ

)θ

︸ ︷︷ ︸
Part 3

These are just different parameterizations of the same thing!

p =
θ

λi + θ

k = θ
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Zero-inflation

What if count data has a disproportionate number of 0s?

Brandon gave the example of someone who fishes.

There’s some probability of not fishing at all (catching 0 fish)

Given that you fish, there’s some count distribution for the number
of fish caught.
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Example

Keeping with the nautical theme, we will use an example with
Horseshoe crabs.

These data come from Alan Agresti’s book on
GLMs:

We will model the number of satellites around female horseshoe
crabs.
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You ask - what does it mean for a crab to have satellites?

That’s a bit awkward to type up.

Let’s just see online.

http://myfwc.com/research/saltwater/crustaceans/horseshoe-crabs/facts/
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PC: http://myfwc.com/research/saltwater/crustaceans/horseshoe-crabs/facts/

http://myfwc.com/research/saltwater/crustaceans/horseshoe-crabs/facts/
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Horseshoe crab data

Load the data

> d <- read.table("http://www.stat.ufl.edu/~aa/glm/data/Crabs.dat",

+ header = T)

> head(d)

crab y weight width color spine

1 1 8 3.05 28.3 2 3

2 2 0 1.55 22.5 3 3

3 3 9 2.30 26.0 1 1

4 4 0 2.10 24.8 3 3

5 5 4 2.60 26.0 3 3

6 6 0 2.10 23.8 2 3

y is the number of satellites
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The number of 0s is higher than you might expect!
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Data generating process

Stochastic component:

Zi ∼ Bernoulli(pi )

Yi ∼ ZiNegBin(λi , θ)

Systematic component:

logit(pi ) = Xiβ

log(λi ) = Xiγ
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Student: We already have the Poisson and the Negative Binomial.
These each allow for some 0s. Why do we need to make this
complicated mixture?

Us: The mixture model allows a more flexible distribution of
counts. It allows us to construct a data generating process that
could create disproportionately more 0s than either the Poisson or
Negative Binomial would have without the mixture.
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Student: Is this the same as if we estimated one model for
whether a crab had any satellites, and another model for the
number of satellites around crabs with at least one satellite?

Us: These are not quite the same, since crabs with Zi = 1 may
still have 0 satellites if the count portion of the mixture randomly
draws a 0.
We know that crabs with satellites have Zi = 1, but for those
without satellites they may have Zi = 0, or they may have Zi = 1
and just have 0 satellites because the count drawn was 0.
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Likelihood6

L(β, γ, θ | Y ) ∝ f (y | β, γ, θ)

=
n∏

i=1

f (y | β, γθ)

=
n∏

i=1

(
f (y | Z = 0, γ)P(Z = 0 | β) + f (y | Z = 1, γ, θ)P(Z = 1 | β)

)
︸ ︷︷ ︸

Apply the law of total probability

=
n∏

i=1

(
I(yi = 0)(1− pi ) +

Γ(θ + yi )

yi !Γ(θ)

λyi
i θ

θ

(λi + θ)θ+yi
pi

)
︸ ︷︷ ︸

Substitute the PDF and PMF

=
n∏

i=1

(
I(yi = 0)(1− logit−1[Xiβ])

+
Γ(θ + yi )

yi !Γ(θ)

(exp[Xiγ])yi θθ

(exp[Xiγ] + θ)θ+yi
logit−1[Xiβ]

)
︸ ︷︷ ︸

Replace parameters with inverse link of linear predictors

6I(yi = 0) is an indicator function coded 1 if yi = 0 and 0 otherwise.
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Code our likelihood

`(β, γ, θ, | Y ) =
n∑

i=1

log

(
I(yi = 0)(1− logit−1[Xiβ])

+
Γ(θ + yi )

yi !Γ(θ)

(exp[Xiγ])yi θθ

(exp[Xiγ] + θ)θ+yi
logit−1[Xiβ]

)
zinb.loglik <- function(par, y, X) {

k <- ncol(X)

beta <- par[1:k]

gamma <- par[(k + 1):(2*k)]

theta <- exp(par[(2*k + 1)])

p <- plogis(X %*% beta)

lambda <- exp(X %*% gamma)

log.lik <- sum(log(

(y == 0)*(1 - p) +

dnbinom(y, size = theta, mu = lambda) * p

))

return(log.lik)

}
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Code our likelihood

Notes about how we coded that likelihood:

We defined pi and λi , and θ based on parameters, then coded
the log likelihood as a function of those rather than as a
function of β and γ directly. This is just one of several
reasonable approaches.

We used plogis() for the inverse logit, but we could just as
well have typed log(p / (1-p)).

We used dnbinom() rather than writing out the negative
binomial density. In general, we prefer to write the density,
but we used the canned version here to avoid computational
issues in this particular model.
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Optimize

opt.zinb <- optim(par = rep(0, 2*ncol(X) + 1),

y = y,

X = X,

fn = zinb.loglik,

method = "BFGS",

control = list(fnscale = -1),

hessian = TRUE)
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Report coefficients and standard errors

results <- data.frame(

Predictor = c("Intercept","Weight","Width"),

Beta = opt.zinb$par[1:3],

SE.Beta = sqrt(diag(-solve(opt.zinb$hessian)))[1:3],

Gamma = opt.zinb$par[4:6],

SE.Gamma = sqrt(diag(-solve(opt.zinb$hessian)))[4:6]

)

print(xtable(results),

include.rownames = F)

theta <- exp(opt.zinb$par[7])
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Report coefficients and standard errors

Zi ∼ Bernoulli(pi ) Yi ∼ ZiNegBin(λi , θ)

logit(pi ) = Xiβ log(λi ) = Xiγ

Predictor β̂ ŜE (β̂) γ̂ ŜE (γ̂)

Intercept -10.45 4.04 2.66 1.44
Weight 0.71 0.81 0.53 0.28
Width 0.37 0.21 -0.10 0.08

θ̂ = 5.24

What do the β mean? The γ?
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Simulate

sim.par <- mvrnorm(

10000,

mu = opt.zinb$par,

Sigma = -solve(opt.zinb$hessian)

)

We found before that θ̂ = 5.24. Can we calculate ŜE(θ̂)?

> sim.theta <- exp(sim.par[,7])

> sd(sim.theta)

[1] 2.067322
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After break: expectation maximization, missing data

Questions?
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