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Replication Paper

Any thoughts or issues to discuss?
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Generalized Linear Models

All of the models we’ve talked about belong to a class called
generalized linear models (GLM).

Three elements of a GLM:

A distribution for Y (stochastic component)

A linear predictor Xβ (systematic component)

A link function that relates the linear predictor to a parameter
of the distribution. (systematic component)
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1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded:

Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary:

Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count:

Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration:

Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories:

Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories:

Multinomial



GLMs Complementary log-log Quantities of Interest

1. Specify a distribution for Y

Assume our data was generated from some distribution.

Examples:

Continuous and Unbounded: Normal

Binary: Bernoulli

Event Count: Poisson

Duration: Exponential

Ordered Categories: Normal with observation mechanism

Unordered Categories: Multinomial



GLMs Complementary log-log Quantities of Interest

2. Specify a linear predictor

We are interested in allowing some parameter of the distribution θ
to vary as a (linear) function of covariates. So we specify a linear
predictor.

Xβ = β0 + x1β1 + x2β2 + · · ·+ xkβk
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3. Specify a link function

The link function relates the linear predictor to some parameter θ
of the distribution for Y (almost always the mean).

Let g(·) be the link function and let E (Y ) = θ be the mean of
distribution for Y .

g(θ) = Xβ

θ = g−1(Xβ)

This is the systematic component that we’ve been talking about all

along.
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Example Link Functions

Identity:

Link: µ = Xβ

Inverse:

Link: λ−1 = Xβ

Inverse Link: λ = (Xβ)−1

Logit:

Link: ln
(

π
1−π

)
= Xβ

Inverse Link: π = 1
1+e−Xβ

Probit:

Link: Φ−1(π) = Xβ

Inverse Link: π = Φ(Xβ)

Log:

Link: ln(λ) = Xβ

Inverse Link: λ = exp(Xβ)
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4. Estimate Parameters via ML

Use optim to estimate the parameters just like we have all along.
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5. Quantities of Interest

1 Simulate parameters from multivariate normal.

2 Run Xβ through inverse link function to get expected values.

3 Draw from distribution of Y for predicted values.
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We will use data from the Fragile Families and Child Wellbeing
Study to study the cumulative risk of eviction over child for
children born in large American cities.



GLMs Complementary log-log Quantities of Interest

Research question and data

What is the probability of eviction in a given year for a child with a
given set of covariates?

ffEviction.csv is the data that we use.
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Fragile Families data

What’s in the data?

> head(d)

idnum income married cm1ethrace ev

1 0001 1.5 0 Hispanic 0

2 0002 1.6 0 Black 0

3 0003 2.7 0 White 0

4 0004 1.0 0 Hispanic 0

5 0006 0.2 0 Black 0

6 0007 1.3 0 Hispanic 0

> summary(d)

idnum income married cm1ethrace ev

Length:12298 Min. :0.000 Min. :0.0000 White :2709 Min. :0.00000

Class :character 1st Qu.:0.500 1st Qu.:0.0000 Black :5911 1st Qu.:0.00000

Mode :character Median :1.200 Median :0.0000 Hispanic:3225 Median :0.00000

Mean :1.666 Mean :0.2502 Other : 453 Mean :0.02301

3rd Qu.:2.400 3rd Qu.:1.0000 3rd Qu.:0.00000

Max. :5.000 Max. :1.0000 Max. :1.00000
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Fragile Families data

ev:

dependent variable; was this child evicted in a given year?

income: family income / poverty line at age 1

married: were the parents married at the birth?

cm1ethrace: mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Fragile Families data

ev: dependent variable; was this child evicted in a given year?

income: family income / poverty line at age 1

married: were the parents married at the birth?

cm1ethrace: mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Fragile Families data

ev: dependent variable; was this child evicted in a given year?

income:

family income / poverty line at age 1

married: were the parents married at the birth?

cm1ethrace: mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Fragile Families data

ev: dependent variable; was this child evicted in a given year?

income: family income / poverty line at age 1

married: were the parents married at the birth?

cm1ethrace: mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Fragile Families data

ev: dependent variable; was this child evicted in a given year?

income: family income / poverty line at age 1

married:

were the parents married at the birth?

cm1ethrace: mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Fragile Families data

ev: dependent variable; was this child evicted in a given year?

income: family income / poverty line at age 1

married: were the parents married at the birth?

cm1ethrace: mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Fragile Families data

ev: dependent variable; was this child evicted in a given year?

income: family income / poverty line at age 1

married: were the parents married at the birth?

cm1ethrace:

mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Fragile Families data

ev: dependent variable; was this child evicted in a given year?

income: family income / poverty line at age 1

married: were the parents married at the birth?

cm1ethrace: mother’s race/ethnicity



GLMs Complementary log-log Quantities of Interest

Outline

1 GLMs
General Structure of GLMs
Procedure for Running a GLM

2 Complementary log-log

3 Quantities of Interest



GLMs Complementary log-log Quantities of Interest

Binary Dependent Variable

Our outcome variable is whether or not a child was evicted

What’s the first question we should ask ourselves when we start to
model this dependent variable?
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1. Specify a distribution for Y

Yi ∼ Bernoulli(πi )

p(y|π) =
n∏

i=1

πyii (1− πi )1−yi

2. Specify a linear predictor:

Xiβ
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`(β | Y ) = log(L(β | Y ))

= log(p(Y | β))
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[1− exp(− exp(Xiβ))]
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(1−Yi )

)

=
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(Yi log(1− exp(− exp(Xiβ))) + (1− Yi ) log[exp(− exp(Xiβ))])

=
n∑

i=1

(Yi log(1− exp(− exp(Xiβ)))− (1− Yi ) exp(Xiβ))
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i=1

(Yi log(1− exp(− exp(Xiβ)))− (1− Yi ) exp(Xiβ))

cloglog.loglik <- function(par, X, y) {

beta <- par

log.lik <- sum(y * log(1 - exp(-exp(X %*% beta))) -

(1 - y) * exp(X %*% beta))

return(log.lik)

}
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Finding the MLE

X <- model.matrix(~married + cm1ethrace + income,

data = d)

opt <- optim(par = rep(0, ncol(X)),

fn = cloglog.loglik,

X = X,

y = d$ev,

control = list(fnscale = -1),

hessian = T,

method = "BFGS")

Point estimate of the MLE:

opt$par

[1] -2.704 -1.211 -0.526 -0.620 -0.272 -0.348
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Standard errors of the MLE

Recall that the standard errors are defined as the diagonal of:√
−
[
∂2`

∂β2

]−1

where ∂2`
∂β2 is the

2

2Credit to Stephen Pettigrew for including this figure in slides.
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Standard errors of the MLE

Variance-covariance matrix:

-solve(opt$hessian)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.026 -0.002 -0.021 -0.021 -0.019 -0.006

[2,] -0.002 0.063 0.004 0.002 -0.001 -0.004

[3,] -0.021 0.004 0.026 0.019 0.018 0.002

[4,] -0.021 0.002 0.019 0.033 0.018 0.002

[5,] -0.019 -0.001 0.018 0.018 0.128 0.002

[6,] -0.006 -0.004 0.002 0.002 0.002 0.004

Standard errors:

sqrt(diag(-solve(opt$hessian)))

[1] 0.162 0.252 0.160 0.183 0.358 0.064
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Interpreting c-loglog coefficients

Here’s a nicely formatted table with your regression results from
our model:

Variable Coefficient SE

Intercept -2.70 0.16
Married -1.21 0.25
Black -0.53 0.16
Hispanic -0.62 0.18
Other -0.27 0.36
Income / poverty line -0.35 0.06

But what does this table even mean?
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Interpreting c-loglog results

What does it even mean for the coefficient for married to be -1.21?

All else constant, children of married parents have -1.21 points
lower log rate of eviction.

And what are log rates? Nobody thinks in terms of log odds, or

probit coefficients, or exponential rates.
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If there’s one thing you take away from this class, it should be this:

When you present results, always present your
findings in terms of something that has substantive

meaning to the reader.

For binary outcome models that often means turning your results
into predicted probabilities, which is what we’ll do now.

If there’s a second thing you should take away, it’s this:

Always account for all types of uncertainty when
you present your results

We’ll spend the rest of today looking at how to do that.
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Getting Quantities of Interest

How to present results in a better format than just coefficients and
standard errors:

1 Write our your model and estimate β̂MLE and the Hessian

2 Simulate from the sampling distribution of β̂MLE to incorporate
estimation uncertainty

3 Multiply these simulated β̃s by some covariates in the model to get

X̃β

4 Plug X̃β into your link function, g−1(X̃β), to put it on the same
scale as the parameter(s) in your stochastic function

5 Use the transformed g−1(X̃β) to take thousands of draws from your
stochastic function and incorporate fundamental uncertainty

6 Store the mean of these simulations, E [y |X ]

7 Repeat steps 2 through 6 thousands of times

8 Use the results to make fancy graphs and informative tables
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Simulate from the sampling distribution of β̂MLE

By the central limit theorem, we assume that
β̂MLE ∼ mvnorm(β̂, V̂ (β̂))

β̂ is the vector of our estimates for the parameters, opt$par

V̂ (β̂) is the variance-covariance matrix, -solve(opt$hessian)

We hope that the β̂s we estimated are good estimates of the true
βs, but we know that they aren’t exactly perfect because of
estimation uncertainty.

So we account for this uncertainty by simulating βs from the
multivariate normal distribution defined above
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Simulate from the sampling distribution of β̂MLE

Simulate one draw from mvnorm(β̂, V̂ (β̂))

Install the mvtnorm package if you need to

install.packages("mvtnorm")

require(mvtnorm)

sim.betas <- rmvnorm(n = 1,

mean = opt$par,

sigma = -solve(opt$hessian))

sim.betas

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -2.825 -1.424 -0.478 -0.358 -0.123 -0.237
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Untransform Xβ

Now we need to choose some values of the covariates that we want
predictions about.

Let’s make predictions for one white child born to married parents
with family income at the poverty line Recall that our predictors
(in order) are:

> colnames(X)

[1] "(Intercept)" "married" "cm1ethraceBlack" "cm1ethraceHispanic"

[5] "cm1ethraceOther" "income"

We can set the values of X as:

setX <- c(1, 1, 0, 0, 0, 1)
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Untransform Xβ

Now we multiply our covariates of interest by our simulated
parameters:

setX %*% t(sim.betas)

[,1]

[1,] -4.486287

If we stopped right here we’d be making two mistakes.

1 -4.486287 is not the predicted probability (obviously - it’s
negative!), it’s the predicted log rate

2 We haven’t done a very good job of accounting for the
uncertainty in the model
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Untransform Xβ

To turn X̃ β̃ into a predicted probability we need to plug it back
into our link function, which was 1− exp(− exp(Xiβ))

> sim.p <- 1 - exp(-exp(setX %*% t(sim.betas)))

> sim.p

[,1]

[1,] 0.0111992
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Simulate from the stochastic function

Now we have to account for fundamental uncertainty by simulating
from the original stochastic function, Bernoulli

> draws <- rbinom(n = 10000, size = 1, prob = sim.p)

> mean(draws)

[1] 0.0117

Is 0.0117 our best guess at the predicted probability of eviction?
Nope
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Store and repeat

Remember, we only took 1 draw of our βs from the multivariate
normal distribution.

To fully account for estimation uncertainty, we need to take tons
of draws of β̃.

To do this we’d need to loop over all the steps I just went through
and get the full distribution of predicted probabilities for this case.
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Speeding up the process

Or, instead of using a loop, let’s just vectorize our code:

sim.betas <- rmvnorm(n = 10000,

mean = opt$par,

sigma = -solve(opt$hessian))

head(sim.betas)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] -2.800 -0.955 -0.545 -0.531 -0.217 -0.319

[2,] -2.410 -0.879 -0.772 -0.896 -0.301 -0.485

[3,] -2.715 -1.672 -0.483 -0.741 -0.365 -0.333

[4,] -2.718 -0.993 -0.588 -0.545 -0.094 -0.389

[5,] -2.479 -1.161 -0.721 -0.794 -0.601 -0.413

[6,] -2.625 -1.227 -0.654 -0.586 -0.496 -0.351

dim(sim.betas)

[1] 10000 6
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Speeding up the process

Now multiply the 10,000 x 6 β̃ matrix by your 1 x 6 vector of X̃ of
interest

pred.xb <- setX %*% t(sim.betas)

And untransform them

> pred.prob <- 1 - exp(-exp(pred.xb))

> pred.prob[,1:5]

[1] 0.016858874 0.022674923 0.008876607 0.016426627 0.017223131
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Look at Our Results in Tabular Form
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Look at Our Results

> mean(pred.prob)

[1] 0.01446521

> quantile(pred.prob, prob = c(.025, .975))

2.5% 97.5%

0.00844883 0.02295435

> mean(pred.prob > .02)

[1] 0.0828
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Different QOI

What if our QOI was the chance of any eviction from birth to age
9?

P(Ever evicted) = 1− P(Never evicted)

= 1−
9∏

i=1

(1− P(Evicted at age i))

= 1− (1− p)9

All that will change is the very last step3

3Note: We assume independence between eviction in each year, and a
constant risk over time. This corresponds to an Exponential survival model.
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Different QOI

We already estimated the sampling distribution of p and stored
samples from this distribution in the vector predprob. Now we
can just transform them!

P(Ever evictedi ) = 1− (1− pi )
9

> cum.prob <- 1 - (1 - pred.prob) ^ 9

> mean(cum.prob)

[1] 0.1224441

12%! The probability of eviction looks much higher than we had
thought!
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Look at Our Results For Both QOIs
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Quantities of interest matter in continuous

cases as well

Example: Modeling log income
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Modeling log income

We want to model the effect of college (D) on earnings (Y ), net
of age (X ).

Let’s get some data! http://cps.ipums.org

http://cps.ipums.org


GLMs Complementary log-log Quantities of Interest

Causal identification

We state an ignorability assumption:

{Y (0),Y (1)} ⊥⊥ D | X

D Y

X = Age

This is our identification strategy
but it says nothing about estimation.
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Estimation via GLMs

1. Specify a distribution for Y ...

LogNormal!

Y ∼ LogNormal(µ, σ2)

2. Specify a linear predictor

Xβ

3. Specify a link function

log(µ) = Xβ

4. Estimate parameters via maximum likelihood

5. Simulate quantities of interest

https://en.wikipedia.org/wiki/Log-normal_distribution
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Likelihood

L(β, σ2 | Y ) ∝ f (Y | β, σ2)

=
n∏

i=1

f (Yi | β, σ2)

=
n∏

i=1

1

Yiσ
√

2π
exp

(
−(ln(Yi )− µ)2

2σ2

)



GLMs Complementary log-log Quantities of Interest

Log likelihood

`(β, σ2 | Y) = ln

[
N∏
i=1

f (Yi |β, σ2)

]

= ln

[
N∏
i=1

1

Yiσ
√

2π
exp

(
− (ln(Yi )− Xiβ)2

2σ2

)]

=
N∑
i=1

ln

[
1

Yiσ
√

2π
exp

(
− (ln(Yi )− Xiβ)2

2σ2

)]

=
N∑
i=1

(
− ln(Yi )− ln(σ)− ln(

√
2π) + ln

[
exp

(
− (ln(Yi )− Xiβ)2

2σ2

)])

=
N∑
i=1

(
− ln(Yi )− ln(σ)− ln(

√
2π)− (ln(Yi )− Xiβ)2

2σ2

)
.

=
N∑
i=1

(
− ln(σ)− (ln(Yi )− Xiβ)2

2σ2
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Coding our log likelihood function

N∑
i=1

(
− ln(σ)− (ln(Yi )− Xiβ)2

2σ2

)

logNormal.log.lik <- function(par, X, y) {

beta <- par[-length(par)]

sigma2 <- exp(par[length(par)])

log.lik <- sum(-log(sqrt(sigma2)) -

((log(y) - X %*% beta) ^ 2) /

(2*sigma2))

return(log.lik)

}
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Finding the MLE

X <- model.matrix(~ college + age,

data = d)

y <- d$incwage

opt <- optim(par = rep(0, ncol(X) + 1),

fn = logNormal.log.lik,

y = y,

X = X,

control = list(fnscale = -1),

method = "BFGS",

hessian = TRUE)
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Extract the MLE

> opt$par

[1] 8.84550213 0.72904517 0.03270657 -0.03216774

See that it matches what we get with LM

> lm.fit <- lm(log(incwage) ~ college + age,

+ data = d)

> coef(lm.fit)

(Intercept) collegeTRUE age

8.84550213 0.72904517 0.03270657

Why is that last term negative? Because it’s the log of σ2!
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See how σ2 matches

> summary(lm.fit)

Call:

lm(formula = log(incwage) ~ college + age, data = d)

.......other output....

Residual standard error: 0.9841 on 68932 degrees of freedom

We estimated

σ2 = eγ = e−0.03216774

> exp(opt$par[4])

[1] 0.9683441

It matches!
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Variance-covariance matrix matches

We know how to calculate the variance-covariance matrix - the
inverse of the negative Hessian!

> vcov.optim <- -solve(opt$hessian)

> vcov.optim

[,1] [,2] [,3] [,4]

[1,] 1.938105e-04 -6.974235e-06 -4.762674e-06 1.171351e-13

[2,] -6.974235e-06 6.311970e-05 -4.031325e-07 1.714362e-14

[3,] -4.762674e-06 -4.031325e-07 1.316824e-07 2.028694e-14

[4,] 1.171351e-13 1.714362e-14 2.028694e-14 2.901283e-05

And we can compare that to the canned version...

> vcov(lm.fit)

(Intercept) collegeTRUE age

(Intercept) 1.938189e-04 -6.974537e-06 -4.762880e-06

collegeTRUE -6.974537e-06 6.312244e-05 -4.031500e-07

age -4.762880e-06 -4.031500e-07 1.316881e-07

....which matches!
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> vcov(lm.fit)

(Intercept) collegeTRUE age

(Intercept) 1.938189e-04 -6.974537e-06 -4.762880e-06

collegeTRUE -6.974537e-06 6.312244e-05 -4.031500e-07

age -4.762880e-06 -4.031500e-07 1.316881e-07

....which matches!
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What is the effect of college on earnings?

Our model can easily estimate the effect of college on log earnings.

But we want the effect of college on earnings.

One could try to interpret the lognormal regression coefficients.
We estimated βCollege = 0.729.

This means a unit increase in age increases earnings by a factor of
e0.729 = 2.208.
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Student: Can’t we just exponentiate things?

No! We run into Jensen’s inequality.

E (Y ) = E (e log(Y )) ≥ eE(log(Y ))

So we can’t just exponentiate predicted values. What can we do
instead? Simulation!
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How wrong can you be?

[If time allows, we can walk through this in R]

Using the naive approach of exponentiating things, we would find
an effect of college on earnings of $25,181.27.

Using simulation, the actual average treatment effect is
$43,266.67!

Why the discrepancy? (Draw on the board).
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we don’t have to average over the population, right?

No! Effect sizes depend on the values chosen for the rest of the
covariates.
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Different effect sizes for different groups!

Effect 2.5% 97.5%

20-year-olds 23,276.88 19,466.92 27,494.30
50-year-olds 62,319.15 51,498.74 73,129.50

Since 50-year-olds have higher predicted earnings to begin with,
multiplying by a factor of 2.208 increases their earnings by more
dollars.
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Student: Ok, so now I see that I need to carefully specify and
simulate my quantity of interest, involving both estimation
uncertainty and fundamental uncertainty.

Which of those goes away as the sample size grows?
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Estimation uncertainty disappears in large samples

Each row section below shows the difference in earnings (college -
noncollege), for 50 year olds.

$‘N = 100‘

2.5% 97.5%

Difference in any two 50-year-olds -186146.3 890301.0

Average difference 53387.9 249905.7

$‘N = 1,000‘

2.5% 97.5%

Difference in any two 50-year-olds -169635.63 479623.19

Average difference 51505.21 85801.36

$‘N = 50,000‘

2.5% 97.5%

Difference in any two 50-year-olds -177369.77 459907.68

Average difference 52190.08 73289.31

The expected difference is more precisely estimated with larger
sample sizes, but fundamental uncertainty makes it always difficult
to make precise predictions about the difference between any two
actual individuals.
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Conclusion: Getting Quantities of Interest

How to present results in a better format than just coefficients and
standard errors:

1 Write our your model and estimate β̂MLE and the Hessian

2 Simulate from the sampling distribution of β̂MLE to incorporate
estimation uncertainty

3 Multiply these simulated β̃s by some covariates in the model to get

X̃β

4 Plug X̃β into your link function, g−1(X̃β), to put it on the same
scale as the parameter(s) in your stochastic function

5 Use the transformed g−1(X̃β) to take thousands of draws from your
stochastic function and incorporate fundamental uncertainty

6 Store the mean of these simulations, E [y |X ]

7 Repeat steps 2 through 6 thousands of times

8 Use the results to make fancy graphs and informative tables
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