
Precept One: Review of Probability, Simulations, and
Data Manipulation/Merging

Soc 504

02.09.17

1 / 70

Outline

I
Logistics: problem set, o�ce hours, replication project

I
Simulation...steps towards:
1. Begin with a random variable
2. Fully characterize the random variable via a PMF/PDF
3. Summarize some aspect of the random variable via expectation
4. For step three, two general ways to find this summary:

4.1 Solve for using formulae + tools from calculus and probability (aka

analytically)

4.2 Approximate using random sampling

5. Today’s precept is focused on: approximate using random sampling

I
Review of data manipulation and merging: to help you with
replication/extension and future work

2 / 70

Logistics

Logistics

I Problem set 1: due 11:59 PM on Wednesday February 15th

I Challenge problem (zombies!): if you do this, don’t need to do Problem
1

I Optional problem (school dropout map!)

I O�ce hours (rotate each week; each in Wallace 190 usually, Friday’s
is in Wallace 165 this week only)

I
Tuesdays: 7:30-9:30 PM

I
Fridays: 1:30-3:30 PM

I Replication paper: 5:00 PM on Friday February 19th need to:
Choose a partner (talk to the preceptors if you’re having di�culty with this)

and e-mail Brandon, cc-ing the two preceptors, with 3 potential papers to

replicate, including a 2-3 sentence explanation of why you are considering

each paper. Papers can be from any literature but should be recent (last five

years) and high impact. The reason for 3 options is in case you have issues

obtaining data from your first choices. We will approve these choices (or tell

you to look for a new one).

3 / 70

Logistics

If you want our help in finding a partner...

I Email myself and Ian (can also cc Brandon but not necessary) with
general topical interests by this Friday (02.10) at midnight- if we
don’t hear from you, we’ll assume you’re set on this front

I We’ll help work out possible matches so you can meet next week to
choose 3 papers

Alvin Roth- won Nobel Prize for work in stable matching applied to school choice, medical
residency, and kidneys. Our stable matching will be much more ad-hoc but the stakes are
also significantly lower than in those markets.

4 / 70

Simulation

Context for simulation

Should be review from Soc 500 Precept 2

1. Begin with a random variable

2. Fully characterize the random variable via a PMF/PDF

3. Summarize some aspect of the random variable via expectation

4. For step three, two general ways to find this summary:
4.1 Solve for using formulae + tools from calculus and probability (aka

analytically)
4.2 Approximate using random sampling

5 / 70

Simulation

Random variables refresher: definition, notation, and
example

I Definition: a function from the sample space (S or ⌦), to the real
line, in other words a numerical value calculated from the outcome of
a random experiment.

I Notation (using example of outcome/dependent variable as RV; can
also index using i):

I Y : random variable (before we know/observe the outcome of the
experiment)

I y : realization of random variable (after we know/observe the outcome)

I Main types: discrete v. continuous

6 / 70

Simulation

(Hopefully hypothetical) example

Event: How many minutes late to precept is Rebecca (Y
RJ

)?
I Re-run the experiment of the Thursday precept 5 times and might get

the following realizations y
rj

:
1. y

rj

= 0
2. y

rj

= 10
3. y

rj

= 0
4. y

rj

= 0
5. y

rj

= 120
I

Bounded since we’re not counting early as negative late so

Pr(Y

rj

< 0) = 0

I If Y
RJ

is discrete, above suggests that there might be a higher
probability of drawing a Rebecca lateness value of 0 than other values

I If Y
RJ

is continuous, above suggests that there might be a higher
probability of drawing a Rebecca lateness value within the range of
0� 0.01 than within the range of 50� 50.01

I Lecture check : why do we use the language ”within the range”when
discussing the probability that a continuous r.v. takes some outcome?

7 / 70

Simulation

Helpful for checking that intuition...fully characterize the
lateness random variable with its PMF/PDF

If we’re measuring time as dis-
crete (whole minutes), the proba-
bility mass function (PMF) cha-
racterizes the probability of dra-
wing di↵erent discrete lateness va-
lues (e.g., 0 minutes; 10 minutes;
110 minutes)

If we’re measuring time as con-
tinuous, the probability density
function (PDF) characterizes the
probability of Rebecca’s lateness
falling within a particular range
(e.g., 0-5 minutes v. 20-40 minu-
tes)

8 / 70

Simulation

Once we have fully characterized the random variable via a
PMF/PDF, we can summarize the random variable using
expectation

I Expectation (mean) for discrete r.v.:

E (Y) =
X

i

y
i

P(Y = y
i

)

where P(X = x) is the probability mass function (PMF).
I Present example: E (Y) = 0.7⇥ 0 + 0.2 ⇤ 10 + 0.1 ⇤ 120 = 14 minutes

late

I Expectation (mean) for continuous r.v.:

E (Y) =

Z 1

�1
yf (y)dy

where f (y) is the probability density function (PDF).
I Present example: depends on f (y)!

I Can also use expectation to find variance and other QOI (Lecture 2)
9 / 70

Simulation

Preview of GLM: how do we choose f(y) that characterizes
lateness?

Each distribution was originally derived from a very specific set
of theoretical assumptions. These assumptions may be stated in
abstract mathematical form, but they may also be interpreted as
political assumptions about the underlying process generating the
data...the first principles from which they were originally derived
represent interesting political science situations and are much
closer to both data and theory (King, p. 41)

10 / 70

Simulation

Preview of GLM: how do we choose f(y) that characterizes
lateness?

I Thinking about data-generating process for lateness outcome (DGP)

I DGP : most of the time not late at all, some of the time miss shuttle
(a little bit late), or very rarely sleep through alarm (miss entirely and
very late)

I With that DGP in mind, begin to formalize characteristics we’re
looking for in candidate distributions:

I Continuous v. discrete: do we measure lateness as discrete minutes or
as an underlying continuous variable?

I Symmetric v. skewed : DGP suggests that lateness is not distributed
according to a uniform density or normal symmetric density; process
above suggests higher density around 0 so positive/right skew

I Boundedness: can’t be negative late, so Pr(Y < 0) = 0
I Next few weeks: will review many distributions, some of which describe

this DGP well but many of which describe this DGP poorly

11 / 70

Simulation

Summing up thus far and where next...

1. Begin with a random variable

2. Fully characterize the random variable via a PMF/PDF

3. Summarize some aspect of the random variable via expectation

4. For step three, two general ways to find this summary:
4.1 Solve for using formulae + tools from calculus and probability (aka

analytically)
4.2 Approximate using random sampling

12 / 70

Simulation

You gave us a formula to calculate the expectation using
integration, and we learned how to integrate in calculus.
When or why would we use simulation in this context?

Process that you formalize

Impossible or time-consuming to
solve analytically

Solve analytically

Integrate
certain PDFs
to find
expectation

Bernoulli sim
(lecture);
std. normal
example

13 / 70

Simulation

Example: find prob. of falling within region of density

1. Say we transform the lateness variable (or more realistically, are working
with a di↵erent r.v.) where the DGP is best characterized using a standard
normal distribution (µ = 0; �2 = 1)

2. We want to find the probability that an observation’s lateness is between the
mean and one unit above the mean, translating #2 into math:

I Begin with general form for finding area under region of PDF:

I =

Z
b

a

f (y)dy

I For f (y), substitute in standard normal density (find in Brandon’s
slides or on Wikipedia...); for a and b, substitute in the range of the
distribution we’re interested in:

�(y) =

Z 1

0

e
�y

2

2

p
2⇡

dy =
1p
2⇡

Z 1

0

e
�y

2

2 dy

I Anyone want to come to the board and integrate...?1

1You should actually know the answer due to standard normal’s properties
14 / 70

Simulation

Blocked path for analytic solution

Process that you formalize

Impossible or time-consuming to
solve analytically

Solve analytically

Integrate
certain PDFs
to find
expectation

Bernoulli sim
(lecture);
std. normal
example

15 / 70

Simulation

Since analytic solution is a blocked path, need to
approximate the integral using tool from set of methods
for numerical integration

I Focus in precept: integration using Monte Carlo method
I Discussed in lecture (in slightly di↵erent context):

I Trapezoid (trapezoidal; trapezium) rule: break up area of interest into
sub-intervals of equal length, map trapezoid onto each sub-interval,
find area of each interval’s trapezoid and then sum

I Many other methods

16 / 70

Simulation

Zooming in: specific Monte Carlo steps for evaluating a
PDF

I Integral:

I (f) =

Z
b

a

f (y)dy

I Approximate with:

I ⇡ Î
M

=
1

M

MX

i=1

f (y)

Approach:
1. Randomly sample M points, Y1....YM

, from a uniform distribution over
[a, b]

I
Why sample from uniform? Want every point within range we’re

integrating over [a, b] to have an equal probability of being chosen; if

sampled from normal, then points towards middle of [a, b] would have

higher probability of being evaluated than points towards end

2. Evaluate f (y) at each of those points
3. Take mean of step 2 and multiply by b � a (1 in this case) 17 / 70

Simulation

Example with standard normal as M increases from 5 !
500 ! 50000 (also in your .rmd)

I (f) =

Z 1

0

e
�y

2

2

p
2⇡

dy (1)

Set your seed to 1848 and evaluate the above integral using the following
steps:

1. Randomly sample M = 5, M = 500, and M = 50, 000 points,
Y1....Y

M

, from a uniform distribution over [a, b]

2. Evaluate equation 1 at each of those points

3. Create a density plot of step #2 that contrasts M = 5 to M = 500 to
M = 50000; how does the density change as M ! 1?

4. Take mean of step 2 and compare results for M = 5 to M = 500 to
M = 50, 000

5. Compare means from step #4 with solution via R’s pnorm

18 / 70

Simulation

Code for steps 1 and 2

I (f) =

Z 1

0

e
�y

2

2

p
2⇡

dy

set.seed(1848)

normal.MC.int <-function(M){
points_from_ab<-runif(n = M, min = 0, max = 1)

#write out density function

#can also use dnorm in this case but we want

#to practice writing out functions for distributions

#that don’t have a built-in dnorm equivalent in R

exp((-points_from_ab^2)/2/sqrt(2*pi)

}

#apply function to M = 5, 500, 50000 iter.

m_results<-sapply(c(5, 500, 50000), normal.MC.int)
19 / 70

Simulation

Comparing density of results under di↵erent numbers of
iterations

0

5

10

15

20

25

0.25 0.30 0.35 0.40
Approximated probability

D
en

si
ty

 o
f i

te
ra

tio
ns

Iterations
M =5
M = 500
M = 50,000

20 / 70

Simulation

Comparing probability found by mean across M iterations
with probability from pnorm

pnorm result: 0.3413447

Iterations Î
M

=
1

M

P
M

i=1 f (y)

M =5 0.3405771501
M = 500 0.3442309409
M = 50,000 0.3410664949

(See .rmd solutions for data transformation of m results from slide 19 for
plot and to generate these means)

21 / 70

Simulation

Soc 500 refresher: why can we use pnorm to check our
simulation?

I pnorm: gives the cumulative distribution function for a normal
distribution

I How does this relate to the probability we were seeking to find?

Z 1

0

e
�y

2

2

p
2⇡

dy

I Answer:
I In math: F (y) =

R
b

a

f (y)dy
I In words: we integrate PDF to get CDF and then evaluate in the

appropriate range (F (b)� F (a)); so in the previous code, we used R’s
CDF function for a normal distribution (pnorm) to check our results

22 / 70

Simulation

The fact that M = 500 and M = 50, 000 provided better approximations
of the integral than M = 5 should give a strong hint about the conceptual

foundation for Monte Carlo integration and other uses of repeated
iterations to simulate quantities that we’ll review next...

23 / 70

Simulation

Foundation of Monte Carlo: Law of Large Numbers

I Key principle: The Law of Large Numbers

I Let Y1, . . . ,Yn

be n independent and identically distributed random
variables. Let E [Y

i

] = µ and Var(Y
i

) = �2.

I As n goes to 1, the sample average
P

N

i=1 Yi

n

converges almost surely to
the true value E [Y

i

] = µ.
I The same thing holds for deterministic functions of Y

i

.

I What does this mean? It means that if I repeatedly take a lot of
independent samples from a process and average the results, I get
close to the true mean output of that process!

24 / 70

Simulation

And because of that general foundation, we can generalize the process
behind Monte Carlo integration to use Monte Carlo methods for a variety

of other problems

25 / 70

Simulation

Zooming out: typology of uses of Monte Carlo simulation
beyond specific case of integration of PDFs

Process that you formalize

Impossible or time-consuming to
solve analytically

Solve analytically

Integrate
certain PDFs
to find
expectation

Misc.

Monty hall
(Bayes rule); airline
passenger
problem (pset)

Bernoulli sim
(lecture);
std. normal
example

Certain
combination or
permutation
problems

Birthday (Soc500);
group comp.
(precept);
Secretary (precept)

26 / 70

Simulation

Zooming out: general Monte Carlo steps for a range of
problems/applications beyond integration

1. Write down a probabilistic model of the process you’re interested in
I Standard normal : wrote down density function for normal distribution
I Monty Hall : coded two strategies (switching to unopened door; not

switching to unopened door) and enumerated which strategy would
mean door choice = winning door

I Birthday problem: sampled N people from 365 days of year and
enumerated count of those with same birthday

2. Repeatedly sample from the random components of the model to
obtain realizations of the outcome you care about

I Standard normal example: M random draws from uniform
I Monty Hall : for loop from 1 ! M simulations
I Birthday problem: for loop from 1 ! M simulations

3. Compute the summary of interest using the realizations (e.g. mean;
5th and 95th percentiles)

I Standard normal example: mean
I Monty Hall and birthday problem: enumeration of interest divided by

number of simulations
27 / 70

Simulation

Terminology: Monte Carlo v. simulation

Simulation means producing random variables with a certain
distribution just to look at them. For example, we might have a
model of a random process that produces clouds. We could
simulate the model to generate cloud pictures, either out of
scientific interest or for computer graphics. As soon as we start
asking quantitative questions about, say, the average size of a
cloud or the probability that it will rain, we move from pure
simulation to Monte Carlo (NYU CS G22.2112-001)

28 / 70

Simulation

More practice with two examples from other branches of
zoomed out typology

Process that you formalize

Impossible or time-consuming to
solve analytically

Misc.

Monty hall
(Bayes rule); airline
passenger
problem (pset)

Certain
combination or
permutation
problems

Birthday (Soc500);
group comp.
(precept);
Secretary (precept)

29 / 70

Simulation

Two examples on this branch

1. Drawing friend groups with certain composition from dorms

2. Adopting the puppy with optimal cuteness from a queue of puppies
you get to meet

30 / 70

Simulation

Example one: drawing friendship groups from dorm

31 / 70

Simulation

Example one: drawing friendship groups from dorm

Suppose you are a social scientist invited to observe a college dormitory
with 55 students from 5 di↵erent states (so 11 students from each
state). You have data on the composition of the students’ observed
friendship groups. You want to eventually compare those observed values
to the probability of those groups forming by random chance. The first
step in that comparison is to find the probabilities of certain groups
forming by chance.

Set your seed to 01530 and use simulation with M = 50, 000 to calculate
the probability of two outcomes. Hint: you could either use 1) a for loop or
2) a function + apply or replicate

1. A seven person friendship group randomly drawn from the dorm has
three students from one state and four students from a di↵erent state

2. A seven person friendship group randomly drawn from the dorm has
six students from one state and one from a di↵erent state

We’ll then as a group compare to analytic solution
32 / 70

Simulation

Overview of how we approached running simulation

1. Created the population to sample from (dorm in the code) composed
of 5 states ⇥ 11 students = 55 students

2. Wrote a function (could also use loop) that takes in a randomly
drawn group of 7 friends from the dorm pop. created in step 1 and
enumerates two conditions we’re looking to quantify (in our case,
used ifelse for enumeration):
2.1 3 students one state; 4 students other state
2.2 6 students one state; 1 student other state

3. Applied or replicated function M = 50, 000 times

4. Stored results and took mean to find probability of forming that
group type

33 / 70

Simulation

Creating the population and a function that tabulates
randomly sampled friend groups displaying certain char.

set.seed(01530)

#create dorm to sample from

dorm <-rep(seq(1:5), 11)

#write a function takes in a sample of friends

and adds 1 to a vector if certain composition

compare<-function(friendgroup){
three_four <-ifelse(all(c(3, 4) %in% table(friendgroup),1,

0))

six_one <-ifelse(any(table(friendgroup)==6, 1, 0))

return(c(three_four, six_one))

}

34 / 70

Simulation

If use function rather than loop, reminder of two options
for how to iterate M times before finding mean

1. replicate

sim_results_rep <- replicate(50000, compare(sample(dorm,

7)))

rowMeans(sim_results_rep)

2. apply family

sim_results_app <- apply(as.matrix(1:50000), 1,

function(x) {compare(friendgroup = sample(dorm, 7))})

rowMeans(sim_results_app)

35 / 70

Simulation

Analytic solution

1. 3 students one state; 4 students other state

5 ⇤
�11
3

�
⇤ 4 ⇤

�11
4

�
�55
7

� = 0.0054

2. 6 students one state; 1 student other state

5 ⇤
�11
6

�
⇤ 4 ⇤

�11
1

�
�55
7

� = 0.0005

36 / 70

Simulation

Generalizable takeaways

Might be useful to think of problem in two separate, sequential steps

1. What quantity am I try to produce and how can I use code to
characterize that quantity? (step where we created the dorm
population, code to sample a 7-person friend group from that pop,
and code to tabulate whether a friend group has a certain
composition)

2. How can I iterate step 1 M times to draw upon LLN (mean of M
simulations approximates true probability) (step where we embedded
that code in a function and used apply or replicate to repeat M times)

37 / 70

Simulation

Example two: the Secretary Problem

Old version: choosing the optimal secretary

38 / 70

Simulation

Example two: the Secretary problem

New version: choosing the optimal puppy (nb: consent for photos was
obtained from each puppy’s legal guardian)

39 / 70

Simulation

Rules of problem

Goal: choose the puppy with optimal cuteness

1. You have n puppies to choose from that are waiting in the next room

2. You meet the puppies, one-by-one, in a random order
3. After you play with each puppy, you can evaluate that puppy’s

cuteness relative only to puppies that came before him/her, and then
make a decision:
3.1 Adopt- you immediately adopt the puppy and the process stops
3.2 Pass - you can’t return to the puppy if you decide later that you want to

adopt it/want a second chance (they’re cute...someone else will take it)

Throughout, you have no idea about the distribution of cuteness in
the pool of puppies but you do know the total number of puppies;
assume that the puppies can be ranked (after meeting) in order of
cuteness and that there are no ties

Question: when should you stop meeting puppies and commit to adopt? If
you stop too soon, could miss optimal puppy that comes later; if you stop
too late, could pass on optimal puppy that comes sooner

40 / 70

Simulation

Remembering the typology, see if we can solve analytically
by enumeration

I General strategy: meet some sample of puppies, rank their cuteness,
and then choose the next puppy that exceeds the highest cuteness in
the first sample

I Example (with a larger sample): meet the first 4 puppies, rank them,
and then adopt the next puppy you meet who exceeds the highest
ranking of those first four

I Raises question: when in the puppy queue should we stop, take stock
of the cuteness, and then choose the next puppy that exceeds existing
highest cuteness?

Source for general strategy: datagenetics.com

41 / 70

Simulation

Could try to solve analytically via enumeration, but even at
N = 3 puppies, gets complicated

I Possible order of randomly meeting puppies, with higher number =
higher cuteness
1. 1 2 3
2. 1 3 2
3. 2 1 3 2 1 3
4. 2 3 1
5. 3 1 2
6. 3 2 1

I Stop choice and fraction of times you choose optimal puppy:
I Sample 0 and take first puppy in queue: 2

6
I Sample 1 and take highest subsequent puppy: 3

6
I Sample 2 and take highest subsequent puppy: 2

6

I In case of N = 3, best to stop and choose next highest at N = 1 (13)
puppies... Fine if we’re meeting 3 puppies, but what if we have 50
puppies we get the chance to meet and select the cutest?! Could find
analytic solution but challenging

42 / 70

Simulation

Turn to simulation...

With 50 puppies and setting seed to 0134, use simulation to find which
stopping point in the queue has highest likelihood of yielding puppy with

optimal cuteness

43 / 70

Simulation

(One) way to simulate

#set seed

set.seed(0134)

#generate cuteness ratings

cuteness <- 1:50

#create function that for each iteration,

#its applied, returns which stops out of

#1:50 yielded optimal puppy; fed a

#certain order of cuteness

optim_puppy <- function(puppy_order){

#iterate through stopping at different points

for(stop in 1:50){

44 / 70

Simulation

(One) way to simulate continued...

#find the highest cuteness of the puppies

#seen thus far at that stopping point

cutoff_cuteness <- max(puppy_order[1:stop])

#select first subsequent puppy with higher cuteness

puppy_adopt_index <- stop +

which(puppy_order[stop+1:length(puppy_order)]

> cutoff_cuteness)[1]

#if we already passed the cutest puppy, above will be NA

#and we’re stuck with last puppy

if(is.na(puppy_adopt_index)){

puppy_adopt_index <- length(puppy_order)

}

#find the cuteness value for the puppy we adopted

puppy_adopted_cuteness <- puppy_order[puppy_adopt_index]

45 / 70

Simulation

(One) way to simulate continued...

#if that puppy has optimal cuteness, assign 1 to counter

optimal_counter[stop] <- ifelse(puppy_adopted_cuteness == 50,

1, 0)

#for each iteration, identify which stop(s) allowed

#us to select optimal puppy

opt_stops <- which(optimal_counter == 1)

}

return(opt_stops)

}

#regenerate puppy order 50,000 times and feed function

optimal_stops <- unlist(replicate(50000,

optim_puppy(sample(cuteness, 50, replace = FALSE))))

#out of 50,000 iterations, see which stop had the highest count

table(optimal_stops)[table(optimal_stops)

== max(table(optimal_stops))]

46 / 70

Simulation

Top 5 stop choices for choosing the optimal puppy

Stop Count optimal out of 50,000
18 18915
17 18865
19 18864
20 18809
16 18711

Accords with analytic solution which is that as N (number of puppies in
this case) increases, optimal stop point converges to:

N

e
=

50

e
⇡ 18.4

47 / 70

Simulation

These examples–PDF’s, friend groups, puppies–may seem
scattered, but remember general approach to simulation

1. Write down a probabilistic model of the process you’re interested in
I Friend groups: coded way to enumerate when a friend group had

certain composition
I Optimal puppy : coded way to see which stops out of stopping at puppy

1 to stopping at puppy 50 yield optimal solution

2. Repeatedly sample from the random components of the model to
obtain realizations of the outcome you care about

I Friend group: randomly sampled groups of friends of size 7 from dorm
I Optimal puppy : randomly sampled order in which you meet puppies

3. Compute the summary of interest using the realizations (e.g. mean;
5th and 95th percentiles)

I Friend group: success at creating group over M iterations
I Optimal puppy : which stopping point is optimal in highest number of

iterations

48 / 70

Data manipulation and merging

Data manipulation and merging

49 / 70

Data manipulation and merging

Structure of review

1. Refresher on dplyr vocabulary (from methods camp slides)

2. Work together through example that illustrates three concepts:
2.1 Aggregating to higher units of analysis
2.2 Reading in data formats beyond .csv: focus on reading in .txt files as

structured data versus unstructured strings
2.3 Cleaning column names and subsetting data to columns of interest

based on naming patterns
2.4 Merging

2.4.1 Preparing data for merge

2.4.2 Types of merges

2.4.3 Post-merge troubleshooting and diagnostics

In each case, we’ll work through an example together that highlights each
of the techniques rather than providing an exhaustive list of commands

50 / 70

Data manipulation and merging

Review of dplyr vocabulary

Goal base R dplyr

Extract data[, c(”col1”, ”col2”...)] select(data, col1, col2...)
columns

Extract rows data[variable == condition,] filter(data,
variable == condition)

Arrange by column data[order(variable),] arrange(data, variable)
value (default =

ascending)

Add new variables data$newvar ¡- log(data$oldvar) mutate(data,
to data.frame newvar = log(oldvar))

Grouped summary tapply(data$outcomevar, summarise(group by(data,
statistics list(data$groupvar1, data$groupvar2...), groupvar1, groupvar2),

function to perform) stat1 = function 1 to perform,
stat2 = function 2 to perform..)

51 / 70

Data manipulation and merging

Combining multiple verbs via piping

Example from methods camp slides of grouping AddHealth data by gender
and debt status (e.g., males with no debt), finding the mean ratings of no
cheating vs. love versus money’s importance for a relationship, and
arranging results by rating of money’s importance

I Without piping:
arrange(summarise(group by(addh, gender, debt),
nocheatavg = mean(nocheating), loveavg = mean(love), moneyavg =
mean(money)), desc(moneyavg))

I With piping:
addh %>%
group by(gender, debt) %>%
summarise(nocheatavg = mean(nocheating), loveavg = mean(love),
moneyavg = mean(money)) %>%
arrange(desc(moneyavg))

52 / 70

Data manipulation and merging

Moving to example: variation in reporting of college crime
by institutional characteristics

Three data sources:

1. Department of Education (DOE) data on report of sexual assaults on
college campuses (SA)

2. IPEDS data on contextual features of colleges (e.g., selectivity;
demographics)

3. OCR data on Title IX investigations

53 / 70

Data manipulation and merging

Step one: aggregate each college’s SA count across
campuses using dplyr verbs

1. Load reported o↵ense.csv data and save as sa all

2. Print the number of unique institutions versus total number of
observations in data– are they the same? If not, why not?

3. Create a data.frame that aggregates reported sa (reported sexual
assaults (SA)) so that each row is one institution and you have the
following columns. When doing this aggregation, group by the
institution’s ID rather than its name:

I Institution’s name: some ID’s are associated with multiple ”names”but
just choose the first name listed

I Institution’s ID
I Count of reported SA across campuses
I Rate of reported SA across campuses (count/sum of InstSize across

campuses)

4. Save this data as sa inst

54 / 70

Data manipulation and merging

Code for aggregating counts of reports across each unique
college’s campuses

#summarizing rates

sa_inst <- sa_all %>% group_by(ID) %>%

summarize(Institution = Institution[1],

total_sa = sum(reported_sa),

total_sa_rate = total_sa/sum(InstSize))

55 / 70

Data manipulation and merging

Generalizing: when is this form of aggregation useful?

Non-exhaustive examples:

1. Computing descriptive statistics for defined groups
I Example: mean income across each gender ⇥ marital status cell, could

group by gender and marital status

2. Combining more granular units of analysis into higher units of analysis

I Example: previous example (didn’t care about di↵erences across
campus, only wanted one count and rate per college). Others: have
counties nested in states and only care about state outcomes, have
students nested in schools and only care about school-level outcomes,
etc

3. E�ciently summarizing trends
I Example: Data is long format with each row as a county-year and the

country’s debt-GDP ratio; want to summarize the mean debt-GDP
ratio for all countries and plot by year

56 / 70

Data manipulation and merging

Step two: read in data formats beyond .csv: focus on .txt
files

A research assistant started to put together a list of colleges in a
.txt file with current Title IX investigations by the DOE’s O�ce
for Civil Rights (OCR). You asked the RA to note the Title IX
coordinator’s name at each of these schools, but they got busy
with thesis work and so only looked up this information for two
of the schools. So some of the colleges have three columns of
data (State, College name, OCR coordinator name) while most
have two columns.

57 / 70

Data manipulation and merging

Important function: read.table and di↵erent options

I When to use: .txt file that you want to read in as structured data
I Sidenote- when not to use: when you want to read in a file as a single

string–for instance, you want to create a data.frame where each row is
a document and one column is all of the document’s text. read.table
causes issues here because it wants to separate the text into separate
columns based on some delimiter so should use read file in readr or
readLines

I Arguments also present in read.csv but may be esp. important for
reading in .txt as structured data:

I
sep: instead of variables/columns being separated by commas as in a
.csv file, .txt files often separate by tab so you may want

sep = "\t"

I
fill: if set to TRUE, R fills in rows with unequal length with blank
spaces so that you don’t get error about unequal row length in
data.frames (remember that unlike lists, df and matrices need equal
length)

58 / 70

Data manipulation and merging

Step two: code for reading in .txt file with rows of unequal
length

#read in file

ocr_results <- read.table("OCR_invest.txt", header = TRUE,

sep = "\t",

fill = TRUE)

59 / 70

Data manipulation and merging

Step three: cleaning column names and selecting columns

1. Load the IPEDS data on college contextual characteristics which is in
the more standard .csv format (IPEDS.csv)

2. You should notice the column names have dots where spaces were in
the .csv file names. Use gsub to remove dots by referencing this
guide: http://www.endmemo.com/program/R/gsub.php

3. Then, restrict the data to the following columns: UnitID,
InstitutionName, and any column containing the pattern SAT, then
filter to those with positive values on
SATCriticalReading25thpercentilescoreIC2013 RV

60 / 70

http://www.endmemo.com/program/R/gsub.php

Data manipulation and merging

Step three: code

#remove periods from column names

#option one: use \\ to tell gsub to escape special character

clean_cols <- gsub("\\.", "", colnames(ipeds))

#option two: set argument fixed = TRUE to

#tell gsub to interpret pattern literally

clean_cols_2 <- gsub(".", "", colnames(ipeds), fixed = TRUE)

#assign to column names

colnames(ipeds) <- clean_cols

#restrict to cols of interest

ipeds_2 <- ipeds %>% select(UnitID,

InstitutionName,

contains("SAT")) %>%

filter(SATCriticalReading25thpercentilescoreIC2013_RV > 0)

61 / 70

Data manipulation and merging

Overview of merging

1. Preparing data for merge (will focus on when reviewing
troubleshooting, since this can involve going back to prepare data for
merge better)

2. Types of merges

3. Post-merge troubleshooting and diagnostics

62 / 70

Data manipulation and merging

Can think of types of merges through framework of data as
sets (circles on venn diagram)

We have three datasets:

1. SA reports data (Crim): 2163 colleges, has ID’s and names

2. OCR investigations data (OCR): 55 colleges, only has names

3. IPEDS data on selectivity (IPEDS): 1303 colleges, has ID’s and names

We’ll see what happens when we practice three common types of join on
di↵erent pairs of those datasets. A helpful resource for these is:
http://stat545.com/bit001_dplyr-cheatsheet.html#full_

joinsuperheroes-publishers

63 / 70

http://stat545.com/bit001_dplyr-cheatsheet.html#full_joinsuperheroes-publishers
http://stat545.com/bit001_dplyr-cheatsheet.html#full_joinsuperheroes-publishers

Data manipulation and merging

Merge option one: retain all observations present in
dataset A OR dataset B

I Concept:

I Implementation:
I Base R: merge with

all.x = TRUE and all.y = TRUE
I dplyr:

full_join

I Example to practice with: Merge IPEDS and Crim based on numeric
ID, retaining all colleges in either IPEDS or Crim

64 / 70

Data manipulation and merging

Merge option two: retain all observations present in
dataset A AND dataset B

I Concept:

I Implementation:
I Base R: merge with no flags specified
I dplyr:

inner_join

I Example to practice with: Merge IPEDS and Crim based on numeric
ID, retaining only colleges in IPEDS and Crim

65 / 70

Data manipulation and merging

Merge option three: retain all of dataset A’s observations
but only observations in dataset B present in dataset A

I Concept:

I Implementation:
I Base R: specify A first and merge with

all.x = TRUE
I dplyr: specify A first and merge with

left_join

I Example to practice with: treating the Crim data as dataset A, merge
in the OCR investigations data, retaining OCR data on colleges only
if they are in the Crim data. Since the OCR data lacks ID’s, merge
based on the college’s name

66 / 70

Data manipulation and merging

Last example was probably more challenging, which leads
to a brief focus on troubleshooting two challenges

1. Identifying observations lost in merge

2. Merging based on string (much more we could cover but here, focus
on common issue of di�cult to detect leading and trailing whitespace
in string)

67 / 70

Data manipulation and merging

Troubleshooting one: identifying observations lost in merge

I Thinking of merges as unions, intersections, and other ways of
combining two sets (e.g., left join) leads us to base R’s family of set
operations that can help us explore which observations will remain in
a merge

I For each of the three merges you performed based on the last three
slides, use the appropriate set-related command to identify which
observations will be in the merged dataset

I union(A, B)
I intersect(A, B)
I Observations in A not in B:

setdiff(A, B)

68 / 70

Data manipulation and merging

Troubleshooting two: when merging on character strings,
checking for sources of string incompatibility

I If previous step returns a di↵erent number of rows remaining than you
would expect given the data, and the merge is based on a string
rather than an ID, want to troubleshoot ways that two strings that
look alike when you view them might not merge properly in R

I Vast topic, but today, will focus on how to address one particularly
annoying error: leading and trailing whitespace in the string

I Your .rmd contains an example we’ll practice with
I Try an inner join of df leading and df noleading based on the sibnames

column
I That should only return Adam’s favorite dog
I Use one of the following commands on the names column in df leading

to remove leading whitespace from Becky and trailing whitespace from
Bruce

I trimws(varname)
I gsub("^\\s+|\\s+$", "", varname)

69 / 70

Data manipulation and merging

Recap

I
Logistics: problem set, o�ce hours, replication project

I
Simulation...steps towards:
1. Begin with a random variable
2. Fully characterize the random variable via a PMF/PDF
3. Summarize some aspect of the random variable via expectation
4. For step three, two general ways to find this summary:

4.1 Solve for using formulae + tools from calculus and probability (aka

analytically)

4.2 Approximate using random sampling

5. Today’s precept is focused on: approximate using random sampling

I
Review of data manipulation and merging: to help you with
replication/extension and future work

70 / 70

	Logistics
	Simulation
	Data manipulation and merging

