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Replication Paper

Any thoughts or issues to discuss?



Uof U Integration

Likelihood: Binomial example Uncertainty

Universality of the Uniform
aka Probability Integral Transform, PIT

Theorem

O Regardless of the distribution of X, F(X) ~ Uniform(0, 1)
© For a r.v. X with CDF F and a Uniform r.v. U, F7}(U) ~ X

Poisson

p ~ F(Z) ~ Uniform(0,1)

0.00-

F(1.96) = .975

F(.975) = 1.96

-2 0 2
Z ~ FY(p) ~ Normal(0,1)
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Integral of PDF

All PDFs integrate to 1. Why?
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Integral of PDF

All PDFs integrate to 1. Why?

Because the probability of observing a value somewhere in the
support of the random variable is 1!
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Expected value as an integral

E(X) =


https://en.wikipedia.org/wiki/Beta_distribution

Uof U Integration Likelihood: Binomial example Uncertainty Poisson

Expected value as an integral


https://en.wikipedia.org/wiki/Beta_distribution

Uof U Integration Likelihood: Binomial example Uncertainty

Expected value as an integral

E(X) = /OO xfx (x)dx

— 00

Suppose

MotB) a—1(1 _ ,\8-1
o 3% 1—y for y € 0,1
fy(y) = {F( )r(B) ( ) [0.1]

0 otherwise

This is called the beta distribution.

Poisson
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Expected value as an integral

E(X) = /OO xfx (x)dx
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Suppose

MotB) a—1(1 _ ,\8-1
o 3% 1—y for y € 0,1
fy(y) = {F( )r(B) ( ) [0.1]

0 otherwise

This is called the beta distribution.

Can we write a formula for E(Y)?

E(Y) =

Poisson
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Expected value as an integral

E(X) = /OO xfx (x)dx

— 00

Suppose

MNa+p) a—171 _ ,\B-1
o 3% 1—y for y € 0,1
fy(y) = F(a)r(s) ( ) _[ ]
0 otherwise

This is called the beta distribution.

Can we write a formula for E(Y)?

1
E(Y)= /0 yfy(y)dy =


https://en.wikipedia.org/wiki/Beta_distribution
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Expected value as an integral

E(X) = /OO xfx (x)dx

— 00

Suppose

Ma+p) a-1 B—1
o 3% 1—y
fy(y) = {(;( ) (B) ( )

This is called the beta distribution.

Can we write a formula for E(Y)?

E(v) = / Vil /Olyrj)ﬁﬁ

Uncertainty

for y € [0,1]

otherwise

a—l(l _

)P tdy

Poisson
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Calculating E(Y') analytically

NOTE: We will not ask you to do this. It's cool though!

1
E(Y) :/0 yfy (y)dy
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Calculating E(Y') analytically

NOTE: We will not ask you to do this. It's cool though!

E(Y) :/ yfy (y)dy

= OIHB) Yo 1—y)Ptdy

) (3)”

Uncertainty

Poisson
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Calculating E(Y') analytically

NOTE: We will not ask you to do this. It's cool though!

E(Y)= /yfy y)dy
Ma+8) Yol — )BTl
/ I 5)” (1—y)" " dy

Ma+pB8+1 M+ 1)FB)\ Te+8) [T (ar1)-1/1 a1
(F(a+1)r(6))(r(a+ﬁ+l))F(a)r(ﬁ)/oy (L=y)"dy

Multiplying by 1
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Calculating E(Y') analytically

NOTE: We will not ask you to do this. It's cool though!

E(Y)= /yfy y)dy
Ma+8) Yol — )BTl
/ I 5)” (1—y)" " dy

_(T(a+p+1 M+ 1)FB)\ Te+8) [T (ar1)-1/1 a1
_(F(a+1)r(6))(r(a+ﬁ+l))F(a)r(ﬁ)/oy (L=y)"dy

Multiplying by 1

Mo+ 1)Ma+pB) MNa+8+1) (at+1)—1(q _ _
(r(a a+6+1))/ (F(a+1)r(6))y A=y

Beta pdf integrates to 1
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Calculating E(Y') analytically

NOTE: We will not ask you to do this. It's cool though!

E(Y)= /yfy y)dy
Ma+8) Yol — )BTl
/ I 5)” (1—y)" " dy

Ma+pB8+1 M+ 1)FB)\ Te+8) [T (ar1)-1/1 a1
(F(a+1)r(6))(r(a+ﬁ+l))F(a)r(ﬁ)/oy (L=y)"dy

Multiplying by 1

_ (T(a+1)(a+B) Te+B8+1)\ (ar1)—1/1 _ 8-
*(r(a a+ﬁ+1))/ (r(a+1)r(6))y e

Beta pdf integrates to 1

_Ma+1) T(a+p)
T T(a) T(la+B8+1)

a+f
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Numeric integration

On the homework, we'll have you do integrals with the integrate
function in R.
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Numeric integration

On the homework, we'll have you do integrals with the integrate
function in R.

beta.pdf <- function(alpha,beta,x) {
gamma (alpha + beta) / (gamma(alpha) * gamma(beta)) *
x"(alpha - 1) * (1 - x)"(beta - 1)
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Numeric integration

On the homework, we'll have you do integrals with the integrate
function in R.

beta.pdf <- function(alpha,beta,x) {
gamma (alpha + beta) / (gamma(alpha) * gamma(beta)) *
x"(alpha - 1) * (1 - x)"(beta - 1)
}

integrate(f = function(x) x * beta.pdf(1,2,x),
lower = O, upper = 1)
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Numeric integration

On the homework, we'll have you do integrals with the integrate
function in R.

beta.pdf <- function(alpha,beta,x) {
gamma (alpha + beta) / (gamma(alpha) * gamma(beta)) *
x"(alpha - 1) * (1 - x)"(beta - 1)
}

integrate(f = function(x) x * beta.pdf(1,2,x),
lower = O, upper = 1)

0.3333333 with absolute error < 3.7e-15
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Variance as an integral
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Variance as an integral

V(X) = E(X — E[X])?
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Variance as an integral

V(X) = E(X — E[X])?
= E(X?) - (E[X])”

Poisson
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Variance as an integral

V(X) = E(X — E[X])?

X?) — (E[X])?
x?fx (x)dx — ( / h fo(x)dx>2
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Likelihood

Steps of likelihood inference:



Uof U Integration Likelihood: Binomial example Uncertainty Poisson

Likelihood

Steps of likelihood inference:

@ Assume a data generating process.
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Likelihood

Steps of likelihood inference:
@ Assume a data generating process.
@ Derive the likelihood.

Uncertainty

Poisson
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Likelihood

Steps of likelihood inference:
@ Assume a data generating process.
@ Derive the likelihood.
@ Maximize the likelihood to get the MLE.

Poisson
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Likelihood

Steps of likelihood inference:
@ Assume a data generating process.
@ Derive the likelihood.
@ Maximize the likelihood to get the MLE.

@ Derive standard errors from the inverse of the Fisher
information
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Binomial example

Suppose we would like to know the probability that a Princeton
Ph.D. student in sociology who submits a paper to a major journal
is offered the chance to revise and resubmit the paper. We have
data on several students who each submit 5 papers over the course
of the program. For each student, we observe the number of these
papers that receive a revise and resubmit on the first submission.
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Binomial example

Suppose we would like to know the probability that a Princeton
Ph.D. student in sociology who submits a paper to a major journal
is offered the chance to revise and resubmit the paper. We have
data on several students who each submit 5 papers over the course
of the program. For each student, we observe the number of these
papers that receive a revise and resubmit on the first submission.

Can we translate this into a data generating process?
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Binomial example

Suppose we would like to know the probability that a Princeton
Ph.D. student in sociology who submits a paper to a major journal
is offered the chance to revise and resubmit the paper. We have
data on several students who each submit 5 papers over the course
of the program. For each student, we observe the number of these
papers that receive a revise and resubmit on the first submission.

Can we translate this into a data generating process?

Fori=1,...,n,
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Binomial example

Suppose we would like to know the probability that a Princeton
Ph.D. student in sociology who submits a paper to a major journal
is offered the chance to revise and resubmit the paper. We have
data on several students who each submit 5 papers over the course
of the program. For each student, we observe the number of these
papers that receive a revise and resubmit on the first submission.

Can we translate this into a data generating process?

Fori=1,...,n,
Y; ~ Binomial(5, p)
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We assume that the response is binomial, with each paper
independent, and with all submissions from all students having the
same probability p of success.
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We assume that the response is binomial, with each paper
independent, and with all submissions from all students having the
same probability p of success.

What does the model help us to learn?



Uof U

Integration Likelihood: Binomial example Uncertainty

We assume that the response is binomial, with each paper
independent, and with all submissions from all students having the
same probability p of success.

What does the model help us to learn?

The model helps us to learn the value of the parameter p that
makes the observed data the most likely.

Poisson
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Fori=1,...,n,

Y; ~ Binomial(5, p)
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Fori=1,...,n,
Y; ~ Binomial(5, p)

What is the systematic component?
What is the stochastic component

Uncertainty

Poisson
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Fori=1,...,n,
Y; ~ Binomial(5, p)

What is the systematic component?
What is the stochastic component

Systematic component: The probability p

Poisson
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Fori=1,...,n,
Y; ~ Binomial(5, p)

What is the systematic component?
What is the stochastic component

Systematic component: The probability p
Stochastic component: The outcome Y;

Poisson
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P(y | p)

What is the probability of one y; given p?
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P(y | p)

What is the probability of one y; given p?

p(yi | p) = p¥ (1 — p)>~
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P(y | p)

What is the probability of one y; given p?

p(yi | p) = p¥ (1 — p)>~

What is the probability of all n observations given p?

Poisson
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P(y | p)

What is the probability of one y; given p?

p(yi | p) = p¥ (1 — p)>~

What is the probability of all n observations given p?

P(}’1a~-7)/n|P):

Poisson
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P(y | p)

What is the probability of one y; given p?

p(yi | p) = p¥ (1 — p)>~

What is the probability of all n observations given p?

n
pyi, - yn | p) = [ p(yi | p)
i=1

Poisson
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P(y | p)

What is the probability of one y; given p?

p(yi | p) = p¥ (1 — p)>~

What is the probability of all n observations given p?

n
pyi, - yn | p) = [ p(yi | p)
i=1

n
— pri(l _ p)5—y;
i=1

Poisson
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Lip | yi,---y¥n)

What is the likelihood?

Lp|y1s---syn)
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Lip | yi,---y¥n)

What is the likelihood?

Lp|yt,---syn) < p(yi,---

Uncertainty

Yn | P)

Poisson
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Lip | yi,---y¥n)

What is the likelihood?

L(P|)/1a---7Yn)O<P(Y1,---»Yn|P)

n
= [[pi(t-py
i=1
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Review of log rules
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Review of log rules

log(ab) = log(a) + log(b)
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Review of log rules

log(ab) = log(a) + log(b)
log(e?) = a
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Up |y, yn)

K(p | }/17~~,}/n) = |OgL(p ‘ )’1a~~7)/n)
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Up |y, yn)

f(p | yla"'7yn) = |OgL(p ‘ yla"°7yn)

= log (H pri(l - p)”")

i=1
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Up |y, yn)

g(p | yla"'7yn) = |OgL(p ‘ yla"°7yn)

= log (H pri(l - p)”")

i=1

= > log (p(1—p)*™)
i=1



Uof U Integration Likelihood: Binomial example Uncertainty Poisson

Up |y, yn)

g(p | yla"'7yn) = |OgL(P ‘ yla"°7yn)

= log (H Pl - p)”")

i=1

= > log (p(1—p)*™)
i=1

=3 (log(p") +log (1 - p)*) )

i=1



Uof U Integration Likelihood: Binomial example Uncertainty Poisson

Up |y, yn)

g(p | yla"‘7yn) = |OgL(P ‘ yla"°7yn)

= log (H Pl - p)”")

i=1

= > log (p(1—p)*™)
i=1

=3 (log(p") +log (1 - p)*) )
i=1

— Z (y,- log p+ (5 — yi) log(1 — P))
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Up |y, ..., ¥n) (continued)

(we can go further)

n

Up |yt - yn) = Z (y,- log p+ (5 — yi) log(1 — p))

Poisson
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Up |y, ..., ¥n) (continued)

(we can go further)

(P yrsym) = (y,- log p+ (5 — yi) log(1 — p))
i=1
= logp» yi+5nlog(1—p) —log(1—p) > yi
i=1 i=1
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Up |y, ..., ¥n) (continued)

(we can go further)

(p |y, - yn) =

So...the data yy, ...

i: ()/i log p+ (5 — yi) log(1 — p))

n
logp> i+ 5nlog(1 — p) —log(1—p) > _yi

i=1 i=1

(log p — log[1 — p]) Y _ yi + 5nlog(1 — p)
i=1

, ¥n only enter the likelihood through their sum.

Poisson
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Up |y, ..., ¥n) (continued)

(we can go further)

n

Up |yt - yn) = Z (y,- log p+ (5 — yi) log(1 — p))

n
= logp ) _ yi+5nlog(1l— p) —log(1—p) > i

i=1

n

i=1

= (log p — log[1 — p]) Y _ yi + 5nlog(1 — p)

i=1

So...the data y1,..., ¥, only enter the likelihood through their sum.

We call >~7 , y; a sufficient statistic since it's all you need to

compute the likelihood.

Poisson
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Sufficient statistic discussion

Does it seem reasonable that we could compute the likelihood only
knowing the number of graduate student submissions that are
given R&Rs?
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Sufficient statistic discussion

Does it seem reasonable that we could compute the likelihood only
knowing the number of graduate student submissions that are
given R&Rs?

This makes sense because we assumed every submission had the
same probability of success, so it's like we had 5n Bernoulli trials.
There is no need to distinguish who submitted them!
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Sufficient statistic discussion

Does it seem reasonable that we could compute the likelihood only
knowing the number of graduate student submissions that are
given R&Rs?

This makes sense because we assumed every submission had the
same probability of success, so it's like we had 5n Bernoulli trials.
There is no need to distinguish who submitted them!

Sufficient statistics can save disk space in more complex problems -
no need to store all the data!
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Calculus review: Derivatives

Suppose we have a function

f(x) = x — x* + log(x) + log(3x?)

f(x)

-10-

2 3 4 5
X

0 1

What is the derivative?

Poisson
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Calculus review: Derivatives

Suppose we have a function

f(x) = x — x* + log(x) + log(3x?)

f(x)

-10-

2 3 4 5
X

What is the derivative? It is just the slope.

0 1

Poisson
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Calculus review: A few derivative rules

%x"” =ax®!
9 logx =+
Bx 8% T %
%f(x) is often denoted f'(x)

ox

Ef(g[X]) = f'(g[x])g’(x) (often called the chain rule)

Poisson
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Calculus review: Derivatives

f(x) = x — x* + log(x) + log(3x?)

The derivative is
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Calculus review: Derivatives

f(x) = x — x* + log(x) + log(3x?)

The derivative is

Poisson
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Calculus review: Derivatives

f(x) = x — x* + log(x) + log(3x?)
The derivative is

0 1 6x
Zf(x)=14+2x+ = + —
e (x) + X+X+3X2
1 2
=1-2x+ -+ -

X X

Poisson
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Calculus review: Derivatives

f(x) = x — x* + log(x) + log(3x?)

The derivative is

0 1 6x
Zf(x)=14+2x+ = + —
e (x) + X+X+3X2
1 2
=1-2x+ -+ -
X X

3
=1-2x+ —
X

Let's evaluate the derivative at x = 2
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Calculus review: Derivatives

f(x) = x — x* + log(x) + log(3x?)

The derivative is

0 1 6x
Zf(x)=14+2x+ = + —
e (x) + X+X+3X2
1 2
=1-2x+ -+ -
X X

3
=1-2x+ —
X
Let's evaluate the derivative at x = 2

f’(2):1—2x2—i—g:—1.5

Poisson
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Calculus review: Maximizing a function

f(x) = x — x> + log(x) + log(3x?)
3
flx)=1—2x+ >
()=1-2c+>

How do we maximize this?

Poisson
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Calculus review: Maximizing a function

f(x) = x — x> + log(x) + log(3x?)
3
flx)=1—2x+ >
()=1-2c+>

How do we maximize this?

Set the derivative equal to 0 and solve!

Poisson
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Calculus review: Maximizing a function

f(x) = x — x> + log(x) + log(3x?)
3
! =1-2 —
()=1-2x+°
How do we maximize this?

Set the derivative equal to 0 and solve!

(Then check that you find a maximum)

Poisson
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Calculus review: Maximizing a function

f(x)




Poisson

Uncertainty
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Uof U Integration

Calculus review: Maximizing a function

f(x)

,10 -
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Calculus review: Maximizing a function

Set the derivative equal to 0
f'(x*)=0

3
1-2x*+— =0
X

Poisson
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Calculus review: Maximizing a function

Set the derivative equal to 0

f'(x*)=0
1—2x*+%:0
X
3

— =2x" -1

X*

Poisson
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Calculus review: Maximizing a function

Set the derivative equal to 0

f'(x*)=0
1—2x*+%:0
X
%:2X**1
X

3 =2x*% — x*

Poisson



Uof U Integration Likelihood: Binomial example Uncertainty

Calculus review: Maximizing a function

Set the derivative equal to 0

f'(x*)=0
1—2x*+%:0
X
%:2X**1
X

3 =2x*% — x*

0=2x"—x*—3

Poisson
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Calculus review: Maximizing a function

Set the derivative equal to 0

f'(x*)=0
1—2x*+%:0
X
%:2X**1
X

3 =2x*% — x*
0=2x"—x*—3

0=2x"—x*—3

Poisson



Uof U Integration Likelihood: Binomial example Uncertainty

Calculus review: Maximizing a function

Set the derivative equal to 0
f'(x*)=0
1—2x*+ 3* =0
X
% =2x" -1
3=2x" — x*
0=2x"2—-x*-3
0=2x"2—-x*-3
0=(2x" =3)(x* +1)

Poisson
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Calculus review: Maximizing a function

Set the derivative equal to 0
f'(x*)=0
1—2x*+ 3* =0
X
% =2x" -1
3=2x" — x*
0=2x"2—-x*-3
0=2x"2—-x*-3
0=(2x" —3)(x*+1)
x*={-1,1.5}

These are our critical values.

Poisson
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Calculus review: Second derivative

The second derivative captures the curvature of the function.

£(x )—%1—2x+§
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Calculus review: Second derivative

The second derivative captures the curvature of the function.

0 3

f” _ 1_ _
(x) = Ix 2x+

21—2x+3x

Ox
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Calculus review: Second derivative

The second derivative captures the curvature of the function.

£(x )—%1—2x+§
%1—2x+3x

=-2-3x7?
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Calculus review: Second derivative

The second derivative captures the curvature of the function.

() = 12t
%1—2x+3x
=-2-3x7?
3

x2
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Calculus review: Second derivative

The second derivative captures the curvature of the function.

f(x )—%1—2x+§
%1—2x+3x
=-2-3x7?
__2_%
F(—1) = L R N

Poisson



Uof U Integration Likelihood: Binomial example Uncertainty

Calculus review: Second derivative

The second derivative captures the curvature of the function.

o 3
f” _71_2 —
(x) ox X+
%1 —2x+3x7!
=2 -3x72
3
Fl(—=1) = —2— _3 = —5 — Maximum

Poisson
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Calculus review: Second derivative

The second derivative captures the curvature of the function.

£(x )—%1—2x+§
%1—2x+3x
=-2-3x7?
3
:_2_;
Fl-1) = —2— > — 5 Maxi
(_ )__ _(_1)2—— — aximum
3
f’(1.5) = —2 — — = —3.333 —

1.52
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Calculus review: Second derivative

The second derivative captures the curvature of the function.

() = 12t
%1 —2x +3x71
=-—2-3x7?
3
=-2-
f'(-1) = -2 3 5 — Maxi
(-1)=-2- = — Maximum
f"(1.5) = -2 — 3o —3.333 — Maximum

1.52
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We had

Up|yis---y¥n) = (logp — log[l — p]) Zy,- + 5nlog(1l — p)
i=1

How do we maximize this?

Poisson
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Back to our example: Maximizing the log likelihood
We had

n
Up|yis---y¥n) = (logp — log[l — p]) Zy,- + 5nlog(1l — p)
i=1
How do we maximize this? Take derivative and set equal to 0!
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Back to our example: Maximizing the log likelihood
We had

n
Up|yis---y¥n) = (logp — log[l — p]) Zy,- + 5nlog(1l — p)
i=1
How do we maximize this? Take derivative and set equal to 0!

0 0 n
g5t (P 1 y1:--yn) = 55 (log p — log[1 - p]);y; +5nlog(1 — p)

a n
= 5,108 — log[1 — pl) ;y; +5nlog(1 — p)
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Back to our example: Maximizing the log likelihood
We had
{p|y1,---,yn) = (log p—log[L — p]) Y _ yi + 5nlog(1 — p)

i=1

How do we maximize this? Take derivative and set equal to 0!

0 0 4
g5t (P 1 y1:--yn) = 55 (log p — log[1 - P> yi+5nlog(1 - p)

8p i=1
8 n
= 5,108 — log[1 — pl) 3" yi + 5nlog(L - p)
i=1
1¢ 2 i1 Yi = 5n
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Back to our example: Maximizing the log likelihood

0:—2 4 iz i 5 1y’_5

— p*
5n — Z,r"—1 Yi Z
— Y . = Yi
p i=1

1-—p*

Poisson
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Back to our example: Maximizing the log likelihood
0= —Z 4 iz i 5 1y’_5
— p*
5n—S" vy
Z/—ly :szl
p i=1

(5n =Y y)p*=(1—p)D v
' i—1

Poisson
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Back to our example: Maximizing the log likelihood

_ ]_.yl_5

o—*z o+ ZEY
5n— 311 Yi
moXh Ly,

n n
(5n =Y y)p*=(1—p)D v
i=1 . i=1
5np* =Y i
i=1

Poisson
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Back to our example: Maximizing the log likelihood

0:—2 4 iz i 5 1y’_5

— p*
5n— 311 Yi

(5n =Y y)p*=(1—p)D v
i—1 i=1

n
5np* =Y i
i=1

* 27:1 Yi
5n
This p* such that ¢(p | y) = 0 is the critical value.

p

Poisson
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Back to our example: Maximizing the log likelihood

0:—2 +7’ 1Y 5

— p*
5n— 311 Yi

(5n =Y y)p*=(1—p)D v
i—1 i=1

n
5np* =Y i
i=1

5n

This p* such that ¢(p | y) = 0 is the critical value. Is it a
maximum?

p
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Back to our example: Maximizing the log likelihood
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Back to our example: Maximizing the log likelihood

02 0 Z?:l)’i 5”‘27:1%'
&ﬂawy)_ap( p  1-p >

27:1 Yi 5n— 27:1 Yi

2 (1-p)?

Poisson
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Back to our example: Maximizing the log likelihood

s O (Yiyi 5n—=Y1.yi
iy - =171 i=171
op? (p1y) 8/3( p 1—p >
_ _27:1 Yi 5n— 27:1 Yi
p? (1—-p)?

<0 V p

Poisson
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Back to our example: Maximizing the log likelihood

2 ol )= 2 (a5 Ehan)
p p I1—-p
Xy n—> gy
p? (1—-p)?
<0 V p

Since the first derivative is 0 and the second derivative is negative,

27:1 Yi
5n

iS @ maximum.

27:1 Yi
5n

the critical value p* =

PMLE =

Poisson
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Plotting the log likelihood

Up|yis---y¥n) = (logp — log[l — p]) Zy,- + 5nlog(1 — p)
i=1

Let's define a function in R that returns the log likelihood given a
vector y
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Plotting the log likelihood

Up|yis---y¥n) = (logp — log[l — p]) Zy,- + 5nlog(1 — p)
i=1

Let's define a function in R that returns the log likelihood given a
vector y

log.lik <- function(p) {
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Plotting the log likelihood

Up|yis---y¥n) = (logp — log[l — p]) Zy,- + 5nlog(1 — p)
i=1

Let's define a function in R that returns the log likelihood given a
vector y

log.lik <- function(p) {
(log(p) - log(l - p)) * sum(y) + 5 * length(y) * log(l - p)
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Plotting the log likelihood

Define some data and make a plot.

y <= rbinom(100,5,.2)
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data.frame(p = seq(0.1,0.3,0.01)) %>%

Uncertainty

Poisson
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Plotting the log likelihood

Define some data and make a plot.

y <= rbinom(100,5,.2)
data.frame(p = seq(0.1,0.3,0.01)) %>%
mutate(‘Log likelihood‘ = log.lik(p)) %>%
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Plotting the log likelihood

Define some data and make a plot.

y <= rbinom(100,5,.2)

data.frame(p = seq(0.1,0.3,0.01)) %>%
mutate(‘Log likelihood‘ = log.lik(p)) %>%
ggplot(aes(x = p, y = ‘Log likelihood‘)) +

Poisson
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Plotting the log likelihood

Define some data and make a plot.

y <= rbinom(100,5,.2)

data.frame(p = seq(0.1,0.3,0.01)) %>%
mutate(‘Log likelihood‘ = log.lik(p)) %>%
ggplot(aes(x = p, y = ‘Log likelihood‘)) +
geom_line ()

Poisson
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Finding the maximum numerically

> y <- rbinom(100,5,.2)
> optimize(f = log.lik,

+ interval = c(0,1),
+ maximum = T)
$maximum

[1] 0.2020157

$objective
[1] -251.5813
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The next 3 slides are exactly copied from lecture so we can discuss
uncertainty.
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Uncertainty: Likelihood Ratios for nested models

f

1

ttest

Rao's Score (LM)

L(thetaly)

thetal

MLE

theta3

o L* is the likelihood value for the unrestricted model

Poisson
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Uncertainty: Likelihood Ratios for nested models

f

o Rao's Score (LM)
L(thetaly)

ttest

thetal MLE theta3

o L* is the likelihood value for the unrestricted model

o L% is the likelihood value for the (nested) restricted model
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Uncertainty: Likelihood Ratios for nested models

f

o Rao's Score (LM)
L(thetaly)

ttest

thetal MLE theta3

o L* is the likelihood value for the unrestricted model

o L% is the likelihood value for the (nested) restricted model

L*
o = L'>lp = <1
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Meaning of the likelihood ratio

o Substantively, its the ratio of 2 traditional probabilities:
L(61ly) o< k(y)9(y[62)
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Meaning of the likelihood ratio

o Substantively, its the ratio of 2 traditional probabilities:

L(01]y) o< k(y)9(y161)
L(02]y) o< k(y)9(y(02)

L(b1ly) — k(y) 9(yl61)
L(62ly) — k(y) 9(y162)
_ (yl61)

(162
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Meaning of the likelihood ratio

o Substantively, its the ratio of 2 traditional probabilities:
L(61]y) o< k(y)9(y(61)

L(B2ly) o< k(y)9(y[62)

L(61ly) _ Kk(y) 9(y|61)

L(92|Y) k(y) 9(y162)
9(v161)
9(y[62)

o Statistically (from the Neyman-Pearson Hypothesis Testing

viewpoint), let

Poisson
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Meaning of the likelihood ratio

o Substantively, its the ratio of 2 traditional probabilities:
L(61]y) o< k(y)9(y(61)
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L(61ly) _ Kk(y) 9(y|61)
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o Statistically (from the Neyman-Pearson Hypothesis Testing

viewpoint), let
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Meaning of the likelihood ratio

o Substantively, its the ratio of 2 traditional probabilities:
L(61ly) o< k(y)9(y[62)

L(02]y) o< k(y)9(y(02)

L(b1ly) _ k() 9(y]61)

L(faly) — k(y) 9(y|02)
9(yl61)
(Y|92)

o Statistically (from the Neyman-Pearson Hypothesis Testing

viewpoint), let
L*
R=—-2In <L’:) =2(InL* —InLg)

Then, under the null of no difference between the 2 models,

Poisson
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Meaning of the likelihood ratio

o Substantively, its the ratio of 2 traditional probabilities:
L(61ly) o< k(y)9(y[62)

L(02]y) o< k(y)9(y(02)

L(b1ly) _ k() 9(y]61)

L(faly) — k(y) 9(y|02)
9(yl61)
(Y|92)

o Statistically (from the Neyman-Pearson Hypothesis Testing

viewpoint), let
L*
R=—-2In <L’:) =2(InL* —InLg)

Then, under the null of no difference between the 2 models,

R ~ f2(r|m)

Poisson
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Meaning of the likelihood ratio

o Substantively, its the ratio of 2 traditional probabilities:
L(61ly) o< k(y)9(y[62)

L(02]y) oc k(y)9(v162)

L(61ly) — k() 9(y]61)

L(62ly) — k(y) 9(y162)
(yl61)

9(y102)
o Statistically (from the Neyman-Pearson Hypothesis Testing
viewpoint), let
L*
R=—-2In <L’:) =2(InL* —InLg)
Then, under the null of no difference between the 2 models,
R ~ f2(r|m)

where r is the observed value of R and m is the number of
restricted parameters.

Poisson
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Meaning of the likelihood ratio

Uncertainty

From lecture slides

Chi(R|m)

5%
E(R)=m

Cv
o If restrictions have no effect, E(R) = m.

from zero.

o So only if r >> m will the test parameters be clearly different

Poisson
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Meaning of the likelihood ratio

From lecture slides

Chi(R|m)
5%

E(R)=m cv

o If restrictions have no effect, E(R) = m.

o So only if r >> m will the test parameters be clearly different
from zero.

o Disadvantage: Too many likelihood ratio tests may be
required to test all points of interest
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Uncertainty: Curvature at the maximum

Because of the logic of likelihood ratio tests, we can think of
uncertainty as curvature around the MLE.

-250 -
-255-

-260-

Log likelihood

-265-

-270-

0.10 015 020 025 030
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Uncertainty: Curvature at the maximum

The negative of the curvature at the MLE is referred to as the
Fisher information.


https://en.wikipedia.org/wiki/Fisher_information
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Uncertainty: Curvature at the maximum

The negative of the curvature at the MLE is referred to as the
Fisher information.
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Z,(0) = _E<3892 log f(X | 6) | 0)
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Uncertainty: Curvature at the maximum

The negative of the curvature at the MLE is referred to as the
Fisher information.
2

Z,(0) = _E<3892 log f(X | 6) | 0)

The expectation is taken over the distribution of possible samples
X. In practice, we often use the observed fisher information
from our one sample as an estimate.


https://en.wikipedia.org/wiki/Fisher_information
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Uncertainty: Curvature at the maximum

The negative of the curvature at the MLE is referred to as the
Fisher information.
2

Z,(0) = _E<3892 log f(X | 6) | 0)

The expectation is taken over the distribution of possible samples
X. In practice, we often use the observed fisher information
from our one sample as an estimate.

The variance is the inverse of the Fisher information:

V(Ouie) = 7,0)


https://en.wikipedia.org/wiki/Fisher_information
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Now, we can all practice the whole process on a different
distribution: the Poisson distribution.
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Now, we can all practice the whole process on a different
distribution: the Poisson distribution.

A\ke=A
p(yIA)ZT

The Poisson is a discrete distribution for count variables: its
support is all nonnegative integers. You can learn more on
Wikipedia!
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Remember the steps for likelihood inference!

@ Assume a data generating process.
@ Derive the likelihood.
@ Maximize the likelihood to get the MLE.

@ Derive standard errors from the inverse of the Fisher
information
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What is the likelihood for n observations?

L()‘ ‘ Yi,.-. 7yn) = p(y17d0t5>}/n ’ )\)

= [ p0i 1)
i=1

ﬁ Vie=X
1 )

Poisson
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What is the log likelihood?

Uyiy..yyn | A) = logL(yi,...,yn | A)

n

-y <y,- log A — A — Iog(yi!)>

i=1

Poisson
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What is the log likelihood?

Uyiy..yyn | A) = logL(yi,...,yn | A)

n

-y <y,- log A — A — log(yi!)>

i=1

n n
= log A " yi—nA = log(y!)
i=1 i=1
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What is the log likelihood?

Uyiy..yyn | A) = logL(yi,...,yn | A)

n

-y (y,- log A — A — log(y,-!)>

i=1

n n
= log A " yi—nA = log(y!)
i=1 i=1

= IogAZy; —n\— Zlog(y,-!)
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Involves A\ Does not involve A




Uof U Integration Likelihood: Binomial example Uncertainty Poisson

What is the log likelihood?

Uyiy..yyn | A) = logL(yi,...,yn | A)

n

-y (y,- log A — A — log(y,-!)>

i=1

n n
= log A " yi—nA = log(y!)
i=1 i=1

= IogAZy; —n\— Zlog(y,-!)
i=1 i=1

~
Involves A\ Does not involve A

= Iog)\zn:y,- — n\
i=1
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What is the derivative of the log likelihood?

0 0 &
ag()/lw-'a}’n | >\) - a)\IOg/\;y:—N)\
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What is the derivative of the log likelihood?

0
oy | A) = IogAZy,

= XZ%’—"
i=1
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What is the derivative of the log likelihood?

0
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= XZ%’—"
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Set the derivative equal to 0 to find the critical value.

1 n
= FZ%—”
i=1

Poisson
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What is the derivative of the log likelihood?

0
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Set the derivative equal to 0 to find the critical value.

1 n
= FZ%—”
i=1

n
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What is the derivative of the log likelihood?

0
oy | A) = IogAZy,

S
i=1
Set the derivative equal to 0 to find the critical value.

1 n
= FZ%—”
i=1

n

Check second derivative is negative to verify this is a maximum.

Poisson
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What is the derivative of the log likelihood?

0
oy | A) = IogAZy,

S
i=1
Set the derivative equal to 0 to find the critical value.

1 n
= FZ%—”
i=1

n

Check second derivative is negative to verify this is a maximum.

& _ D1 Yi

a2 0| A) = = =155 <0

Poisson
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Let's find the variance
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Let's find the variance

V(Aue) = (In(A)) -
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This is a maximum!

27:1 Yi

n

~

AMLE =

Let's find the variance

V(Aue) = (In()‘)) -

Uncertainty Poisson
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This is a maximum!

Let's find the variance

V(Aue) = (In()‘)) -
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This is a maximum!

Let's find the variance

V(Aue) = (In()‘)) -
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in.
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own models in the future to fit your data generating processes!
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This week is a lot of math. We appreciate the work you're putting
in.

We'll use this again and again and it will enable you to invent your
own models in the future to fit your data generating processes!

Keep it up!



	U of U
	Integration
	Likelihood: Binomial example
	Uncertainty
	Poisson

