
Precept Five: Model Diagnostics for Binary Outcome
Models and Ordered Probit

Rebecca Johnson

March 8th, 2017

1 / 43

Outline

I Replication check-in: questions; advice on constructive feedback
I Follow-up topic for binary outcome models (focus of Pset 4, due

March 15th with optional one-week extension to March 22)
I Model diagnostics

I Separation plots
I k-fold cross validation

I Ordered probit model
I Conceptual review of latent variable interpretation
I Derive and optimize log likelihood
I Practice with Zelig to estimate model and if time, automatic version

of simulation for QOI

2 / 43

Memo 1 due yesterday; okay? problems/questions?

3 / 43

Tips for constructive feedback

1. Summarize in your own words

2. For a given comment, ask yourself: is there an actionable directive
from this? If answer is no, try to reformulate comment so that it
contains an actionable directive or flag it as something that they can’t
address given data/etc., but should mention as a limitation

3. Think both about tips you have for replication (since it seems like
most groups are still partway through) and advice for extensions you’d
be interested in seeing

4 / 43

Working example throughout precept

My House member during this time

(Mark Kirk) at my high school (not

my picture!)

5 / 43

Many questions in the paper with different models
corresponding to DGP for different outcomes

I How does the number of casualties in month t − 1 predict the count
of a House member’s speeches critical of the war in month t?

I Outcome variable: ”monthly sum total of the number of critical House
floor speeches identified from the Congressional record”

I Model : negative binomial regression
I Refresher from lecture: similar to Poisson in that it models counts but

allows for overdispersion by modifying the variance (in lecture notes,
Brandon refers to this as NB2 and it can be fit using MASS glm.nb)

I Poisson:
E(Speechesi |Xi) = µi ;V (Speechesi |Xi) = µi

I Negative binomial: for γ (sometimes called dispersion parameter), note
that as γ → ∞, variance → mean and negative binomial → Poisson

E(Speechesi |Xi) = µi ;V (Speechesi |Xi) = µi +
µ2
i

γ

6 / 43

Many questions in the paper with different models
corresponding to DGP for different outcomes

I Authors then switch from looking at congressman speeches critical of
the war as a count outcome to congressman speeches as a predictor
of war-related opinions for constituents from that congressman’s
district

I Two outcomes with different models:

1. Probit (use to explore model dx): Was the Iraq War a mistake (1 =
yes; 0 = no)?

2. Ordered probit (use to review concepts and finding QOI): Should the
U.S. stay the course in Iraq?

I 1 = withdraw immediately
I 2 = withdraw in next year
I 3 = stay as long as necessary
I 4 = increase the number of troops

7 / 43

Model diagnostics

8 / 43

Reported results in paper

9 / 43

Purpose of model diagnostics

I How well does the model predict the outcome (in this case, correctly
classify 1 = war was a mistake; 0 = not a mistake)?

I Underlying motivation: downsides of model complexity (slide 77
lecture), complex models have low bias, high variance and fit the data
well but can be ’overfit’ to the data’s peculiarities and do poorly at
predicting outcomes in unseen data

I Note that distinct from robustness checks for identification that
authors perform- model that fits well might be a good predictive
model but no guarantee it’s a causal model:

I Focus of model diagnostics we’ll review : how well the fitted model
classifies or predicts the outcomes of 1 = yes mistake; 0 = not a
mistake (which we hope generalizes to respondents out of sample)

I Focus of authors’ identification-focused robustness checks (e.g., IV
analysis using seniority): are results driven by unobserved features of a
district correlated with both congressman position-taking and
constituent opinion

10 / 43

Technique one: separation plot (Greenhill, Ward, and
Sacks, 2011)

I Motivation: in the post-Tufte era of statistics,
researchers and audiences want not only numerical
measures of binary model fit like the pseudo-R2

(1− `(ˆβMLE)
`(ȳ)), but also want intuitive visualizations

of model fit

I Idea: show how concentrated non-events (0’s; not
mistake) are in lower range of predicted values v.
how concentrated events (1’s; mistake) are in
higher range of predicted values

I Model with no predictive power : even
distribution of events and non-events within
range of predicted values

I Model with perfect predictive power : complete
partition of events and non-events

11 / 43

Technique one: implementing in R

In your .rmd, do the following:

1. Fit the following probit model that relates an individual’s views on
whether or not war was a mistake to negative speeches by his or her
congressman, controlling for covariates

I Can use glm with family = binomial(link = "probit") and
fitted to get fitted values

I Model is given by following code in STATA .do file:
probit iraqamistake totantiwarthroughjune16 gop3 dem3

age education4 male white

2. Use dplyr to arrange dataset from lowest to highest fitted value; use
head to view. How do these correspond to the respondent’s observed
value for the iraq war variable?

3. Create a separation plot- either your own or by installing/using the
separationplot package in R

12 / 43

Technique one: our implementation

##arrange in ascending order by predicted value

probit_df_order <- probit_df_all %>%

arrange(probit_pred_out) %>%

select(probit_outcome_predicted,

probit_outcome_observed)

13 / 43

Technique one: our implementation

##plot results

ggplot(data=probit_df_order) +

geom_rect(aes(xmin = 0,

xmax = seq(length.out = length(probit_outcome_observed)),

ymin = 0, ymax = 1),

fill = "#FEE8C8") +

geom_linerange(aes(color = factor(probit_outcome_observed,

levels = c(0, 1),

labels = c("0 = not mistake",

"1 = mistake")),

ymin = 0, ymax = 1, x = seq(length.out =

length(probit_outcome_observed))),

alpha = 0.4) +

labs(color = "Observed value: Was Iraq war \n a mistake") +

geom_line(aes(y = probit_outcome_predicted,

x = seq(length.out =

length(probit_outcome_observed))), lwd = 0.8) +

theme_bw() + xlab("Order of predicted values (smallest to largest)") +

ylab("Predicted value for answering 1 = mistake") +

theme(axis.text.x=element_blank(), axis.ticks.x=element_blank(),

legend.position = c(0.75, 0.25))

14 / 43

Technique one: interpretation

Highlights fairly high concentration of non-events (war not a mistake) in lower

range of predicted values and fairly high concentration of events (war was a

mistake) in higher range of predicted values, but obviously not perfect separation

15 / 43

Technique one: implementation using separationplot
package

#feed separationplot the predicted v. observed outcomes

#from the binary model

separationplot(probit_df_order$probit_outcome_predicted,

probit_df_order$probit_outcome_observed,

type = "line", line = T, lwd1 = 0.5, lwd2 = 0.5,

xlab = "Predicted values in order", shuffle = T,

width = 9, height = 1.2,

col0 = "#FEF0D9", col1 = "#E34A33", flag = NULL, flagcol = 1,

file = "~/Dropbox/Working materials soc 504/precept5 draft/

auto_sep_plot", newplot = TRUE, locate = NULL, rectborder = NA,

show.expected = F, zerosfirst = T, BW = F,

heading = "Separation plot for Was Iraq a Mistake

predicted outcome: package version")

16 / 43

Technique one: results from separationplot package

Separation plot for Was Iraq a Mistake predicted outcome: package version

17 / 43

Technique two: k-fold cross-validation

I Motivation: we want to ’train’ (fit) our model on one set of data
(training set) and then evaluate how well model performs in
predicting outcomes in test set

I One approach: split our data into two subsets; use one as training,
other as test

I How k-fold validation differs: especially for small data sets, idea that
by only training on, for instance, one half the data and testing on the
other half, we ’waste’ the data by only using it for one purpose;
instead, let’s split the data into k partitions so that each observation is
sometimes in the training set and sometimes in test set

I Acknowledgments (but no liability): Alex’s great stats reading group
presentation on the topic!

18 / 43

http://scholar.princeton.edu/sites/default/files/bstewart/files/srg_crossval.pdf

Technique two: k-fold cross-validation

General procedure:

1. Split data into K equally-sized partitions

2. For k = 1, 2....K :

2.1 Use kth partition as test data; other k − 1 partitions as training data
2.2 Fit model on training data
2.3 Evaluate how well model performs on test data...in precept today,

performance = round predicted value to nearest integer (0 or 1) and
see what fraction match observed values but other techniques: AUC
under receiver operator curve (see Alex’s presentation link previous
slide); methods in cv.glm function in boot package, etc.1

2.4 Repeat process for each k partition

1As discussed in precept, we can also call this performance metric a loss function, and when
we shift to cases of using cross-validation for continuous outcomes, we may want to define this
loss function in terms of (ŷ − y)2 since distance between prediction and observed is especially
important in cases without the 0, 1 misclassification of binary outcomes case

19 / 43

Technique two: use 10-fold cross-validation to compare
three model fits

I In your .rmd, use K = 10 to use cross-validation to compare the fit of
three models for predicting views of Iraq war as a mistake:

1. Model estimated in the paper: congressman speech + covariates
outlined on earlier slide

2. Same model as #1 but exclude congressman speech
3. Same model as #1 but exclude the two party affiliation variables (gop3

and dem3)

I Remember that when defining ’compare the fit’, we’re using the
following metric of performance for this example and that
performance is in test set:

1. Round the predicted value to the nearest integer (0 or 1)
2. Compare to observed value for viewing Iraq as mistake (will be 0 or 1)
3. Find fraction that match

I Compare the average of that metric across folds for each of the three
models

20 / 43

Technique two (10-fold cross-val): setting up data/folds
and formulae

#shuffle data and divide into 10 folds

war_shuffle <- war_nomiss %>%

sample_n(nrow(war_nomiss)) %>%

mutate(fold_indic =

rep_len(1:10, nrow(war_shuffle)))

#setting up formulae

form_withspeech <- formula(iraqamistake ~

totantiwarthroughjune16 + gop3 + dem3 + age + education4 +

male + white)

form_nospeech <- formula(iraqamistake ~ gop3 + dem3 +

age + education4 + male + white)

form_nopol <- formula(iraqamistake ~

totantiwarthroughjune16 + age + education4 + male + white)

21 / 43

Technique two (10-fold cross-val): storing the function

crossval.mod <- function(k, data, form_of_interest){

##divide data into training and test set

test_data <- data %>% filter(fold_indic == k)

train_data <- data %>% filter(fold_indic != k)

##fit model on training data

mod_train <- glm(form_of_interest, data = train_data,

family = binomial(link = "probit"))

##use that model to predict outcomes in test df

predict_test <- predict(mod_train, newdata = test_data, type = "response")

##bind with observed values in test data

##round, and code if it equals the observed, then summarise

frac_match_res <- test_data %>%

mutate(pred_out = predict_test,

round_pred_out = round(pred_out, 0),

match_obs_pred = ifelse(round_pred_out ==

iraqamistake, 1, 0)) %>%

summarise(frac_match = sum(match_obs_pred)/nrow(test_data))

##return the fraction that match

return(frac_match_res)

}
22 / 43

Technique two (10-fold cross-val): applying the function

kfold_res_speech <- sapply(1:10, crossval.mod,

data = war_shuffle,

form_of_interest = form_withspeech)

paper_mod <- mean(unlist(kfold_res_speech))

kfold_res_nospeech <- sapply(1:10, crossval.mod,

data = war_shuffle,

form_of_interest = form_nospeech)

nospeech <- mean(unlist(kfold_res_nospeech))

kfold_res_nopol <- sapply(1:10, crossval.mod,

data = war_shuffle,

form_of_interest = form_nopol)

nopol <- mean(unlist(kfold_res_nopol))

23 / 43

Technique two (10-fold cross-val): results

Model Average rounded
match with observed

across 10 folds

Model in paper 0.7289

Model without 0.7268
speech predictor

Model without 0.5608
respondent pol. affil

I Cross-validation shows that excluding respondent’s political affiliation
from the model is associated with greater reduction in model fit in
test sample than excluding the respondent’s exposure to speeches

I Highlights contrast between good predictors (in this case, political
affiliation) and the predictors that may be of causal interest

24 / 43

Shifting gears to ordered probit2

1. Review of latent variable interpretation

2. Programming the log-likelihood and optimizing

3. Practice with Zelig to find QOI

2Slides owe great debt to generations of TFs in Gov 2011 and (a) generation of 504
25 / 43

Motivation for ordered probit (or logit): ordered response
category

I Authors don’t report question wording and it was difficult to track
down, but probably something like: ”What should the U.S. do with
the troops in Iraq?”

I 1 = withdraw immediately
I 2 = withdraw in next year
I 3 = stay as long as necessary
I 4 = increase the number of troops

I This has 1, 2, 3, 4– why not lm?
I lm assumes a continuous outcome variable that is on an interval scale

(distance between 1 and 2 is equivalent to distance between 3 and 4)
I May be violated for scales like above where, for instance, when we map

the categories onto a latent continuous variable that underlies each
individual’s response, there’s a larger distance between withdrawing
next year v. staying as long as necessary than between withdrawing
immediately v. withdrawing next year

26 / 43

Latent variable interpretation applied to present example

I Suppose there is a latent (unobserved) data distribution,
Y ∗ ∼ fstn(y∗|µi).

I This latent distribution has a systematic component, µi = xiβ.

I Any realizations, y∗i , are completely unobserved.

I In present case, this latent Y ∗ might represent something like a
respondent’s feelings about the appropriate deployment of troops in
Iraq and when Gallup presents that respondent with the survey with
the four categories from the previous slide, the respondent translates
those latent feelings into an observed category choice

I What you do observe is whether y∗i is between some threshold
parameters

27 / 43

Latent variable interpretation: where do these thresholds
come from?

I Shorter answer: since these thresholds are unobserved, we need to
estimate them (treat them as parameters in our maximum likelihood
estimation)

I So, for instance, if we pretend our latent variable about war Y ∗

ranges from 0-4, the thresholds might correspond to the following:
I 1 = withdraw immediately: τ1 = 0.5
I 2 = withdraw in next year: τ2 = 1.8
I 3 = stay as long as necessary: τ3 = 2
I 4 = increase the number of troops

I Or, they might be:
I 1 = withdraw immediately: τ1 = 1
I 2 = withdraw in next year: τ2 = 1.7
I 3 = stay as long as necessary: τ3 = 2.2
I 4 = increase the number of troops

28 / 43

Ordered probit: deriving the likelihood

In equation form,

yij =

{
1 if τj−i < y∗i ≤ τj
0 otherwise

Our stochastic component is still Bernoulli:

Pr(Yij |π) = πyi1i1 π
yi2
i2 π

yi3
i3 . . .

where
∑M

j=1 πij = 1

29 / 43

Ordered probit: Deriving the likelihood

Like the regular probit and logit, the key here is deriving πij .

You use this to derive the likelihood that y∗i will fall into category j :

πij = Pr(Yij = 1) = Pr(τj−1 < y∗i < τj)

=

∫ τj

τj−1

f (y∗i |µi)dy∗i

=

∫ τj

τj−1

f (y∗i |xiβ)dy∗i

= F (τj |xiβ)− F (τj−1|xiβ)

where F is the cumulative normal density with variance 1.

30 / 43

Ordered probit: Deriving the likelihood

But this is the likelihood of one observation falling in one of the
categories. We want to generalize to all observations and all categories

L(τ, β|y) =
n∏

i=1


m∏
j=1

[πij]
yij


L(τ, β|y) =

n∏
i=1


m∏
j=1

[F (τj |xiβ)− F (τj−1|xiβ)]yij


where τ is a vector of threshold parameters that you’ll have to estimate.

Then we take the log to get the log-likelihood

lnL(τ, β|y) =
n∑

i=1

m∑
j=1

yji ln[F (τj |xiβ)− F (τj−1|xiβ)]

31 / 43

Two approaches to estimating the model

1. More manual: program that log-likelihood (together) and use optim

to optimize

2. More automatic: check our work in #1 using Zelig

32 / 43

General steps for ordered probit log-likelihood

1. Create a matrix (we call it Z in the code) that for each respondent,
indicates the choice of an outcome category we observe in the data
(e.g., withdraw immediately versus send more troops)

2. In log-likelihood equation, we’ll estimate both the unobserved
thresholds for each category τ and how covariates relate to a
particular respondent falling within each threshold

33 / 43

Step one: create matrix indicating each respondent’s
observed choice

##first make an empty matrix Z indicating

##what category a respondent falls in

##rows = number of respondents

##columns = number of levels of ordered response

levels <- length(unique(war_noNA$staythecourseindex))

Z <- matrix(NA, nrow(war_noNA), levels)

y <- war_noNA$staythecourseindex

y0 <- sort(unique(y))

##then, populate that Z matrix with each respondent

##and indicating whether they do (TRUE) or

##don’t (FALSE) fall into that level

for(j in 1:levels){

Z[, j] <- y == y0[j]

}

34 / 43

Step 1.5: create our X matrix without an intercept

##create X matrix- no intercept because

##we fix tau_1 to be cutoff point and intercept

##by not adding an intercept to the X,

##we’re estimating that tau_1

X <- as.matrix(war_noNA %>%

select(totantiwarthroughjune16,

gop3, dem3, age, education4,

male, white))

35 / 43

Step two: program the log-likelihood

loglik.probit <- function(par, Z, X){

##first, we separate the parameters

##vector into two types of parameters- beta

##and tau thresholds

beta <- par[1:ncol(X)]

tau <- par[(ncol(X)+1):length(par)]

##creates each respondent’s

##latent variable y* as product

##of coefficients and covariate vals

ystarmu <- X%*%beta

##levels (m in notation) is # of

##thresholds + 1

levels <- length(tau) + 1

##create matrix for first 3 level prob

cprobs = matrix(nrow=length(ystarmu), ncol=levels)

##create matrix to eventually store all level prob

probs <- matrix(nrow=nrow(X), ncol=levels)

36 / 43

Step two: program the log-likelihood continued

##for levels 1-3, estimate each

##respondent’s difference in cumul.prob

##of y* falling within thresholds for that level

for (j in 1:(levels-1))

cprobs[,j] <- pnorm(tau[j]- ystarmu)

##for last level, probability is 1 - probability of 3rd level

probs[,levels] <- 1-cprobs[,levels-1]

##add in estimated prob for first level

probs[,1] <- cprobs[,1]

##iterate through the 2nd and 3rd level of the ordinal variable and

compute probability as c2-c1 (for second level)

##and c3-c2 (for third level) results in a mtrix with respondent prob

##of falling in each level filled in each respondent’s probability sums to 1

for (j in 2:(levels-1))

probs[,j] <- cprobs[,j] - cprobs[,(j-1)]

##sum the logged probabilities to get

##log.lik

sum(log(probs[Z]))

}
37 / 43

Optimize

Note that for these data, optimization is very sensitive to choice of
starting parameters and as another note, care also needs to be taken when
optimizing to make sure τ remain in the same order

##try optimizing

##for parameters,

##use the lm val

reg_lm <- lm(staythecourseindex ~ totantiwarthroughjune16 +

gop3 + dem3 + age + education4 + male + white,

data = war_noNA)

coef_lm <- coef(reg_lm)[-1]

par <- c(coef_lm, 0, 1, 2)

optim(par, loglik.probit,

Z = Z, X = X, method = "BFGS",

control = list(fnscale = -1))

38 / 43

Way two: checking work using oprobit within
Zelig/ZeligChoice

ordered.prob <- zelig(factor(staythecourseindex) ~

totantiwarthroughjune16 + gop3 +

dem3 + age + education4 + male + white,

data = war, model = "oprobit")

39 / 43

Motivation for simulation to get QOI’s

I The more manual log-likelihood and Zelig each yield the following estimates
for the relationship between the covariate of interest (House rep. speeches),
other covariates, and the respondent’s choice of ordered category on the Iraq
war question

I Shows unsurprisingly, that republicans (gop3) have a higher probability of
choosing a higher category

Coef SE
totantiwarthroughjune16 -0.067 0.026

gop3 0.712 0.093
dem3 -0.283 0.087

age 0.006 0.002
education4 0.120 0.038

male 0.426 0.073
white 0.319 0.103

I But that general coefficient could be driven by different parts of the
category distribution– for instance, by republicans being much less likely to
choose one of the withdrawal options than dems, or instead by republicans
being much more likely to advocate for increased troops for instance–
simulation helps us explore via first differences between two groups

40 / 43

General steps for using Zelig for simulation for QOI process
we’ve been doing manually

1. Use setx to create data.frames of interest (in this case, one for gop3 = 1 =
republican; another for gop3 = 0 = democrat)

x.repub <- setx(ordered.prob, gop3 = 1)

x.dem <- setx(ordered.prob, gop3 = 0)

2. Use sim to use simulation for QOI- here, we feed it the model, our first
data.frame of interest, our second one of interest (since we want it to return
first differences among other things), and tell it to run 10,000 simulations

sim.oprobit <- sim(ordered.prob,

x = x.repub,

x1 = x.dem,

num = 10000)

3. Once we have those simulations, see .rmd solutions for code to extract the
first differences results for plotting in ggplot rather than Zelig’s built-in
graphics (accessed via plot(simobject)) for plot we show on next slide

41 / 43

Simulation results: distribution of category differences
driving significant coefficient

First differences shows that significant coefficient on Republican largely driven by

Democrats’ much higher probability of choosing a withdrawal response (with

distribution > 0), and less by Republicans’ probability of choosing a keeping or

increasing the troops response (where distributions overlap with zero)

42 / 43

Summing up

I Model diagnostics
I Separation plots
I k-fold cross validation

I Ordered probit model
I Conceptual review of latent variable interpretation
I Derive and optimize log likelihood
I Practice with Zelig to estimate model and if time, automatic version

of simulation for QOI

43 / 43

