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Example to motivate careful thought about

missing data.
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1

Abraham Wald

b. 1902, Austria-Hungary

Jewish, persecuted in
WWII

Fled to U.S. in 1938

Namesake of the Wald test

Statistical consultant for
U.S. Navy in WWII

1PC: Wikimedia commons
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Question: Where should armor be added to protect planes?

Data: Suppose we saw the following planes.2

2Story told by Mangel and Samaniego 1984 [link].
Presentation style inspired by Joe Blitzstein. See the original here [link]

http://dx.doi.org/10.1080/01621459.1984.10478038
https://www.youtube.com/watch?v=dzFf3r1yph8
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Where should we add armor?
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Missing data: Planes that never returned
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Now where should we add armor?

To the nose!

Results from the observed planes were misleading because
data were not missing at random!

Missing data requires careful thought.

No algorithm solves it for you!
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We will walk through the assumptions and implementation of
multiple imputation.

Our example will be the 2016 General Social Survey (GSS), which
was released last week (March 29).

The GSS measures Americans’ attitudes toward lots of issues.

List of files (we use 2016): http://gss.norc.org/get-the-data/spss

Link directly to data download

http://gss.norc.org/get-the-data/spss
http://gss.norc.org/Documents/spss/2016_spss.zip
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The GSS captures Americans’ attitudes about lots of things.
Sometimes our collective beliefs are nonsensical.
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The GSS also has information on parents’ characteristics for
mobility research.

For instance, paeduc captures father’s education in years.

But it’s sometimes missing. We need to know why!
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Code for prior slide

gss %>%

mutate(paeduc = factor(ifelse(paeduc < 12, 1,

ifelse(paeduc == 12, 2,

ifelse(paeduc < 16, 3,

ifelse(paeduc >= 16 & paeduc <= 20, 4,

paeduc)))),

labels = c("Less than HS","High school",

"Some college","College",

"Not applicable","Don’t know","No answer"))) %>%

group_by(paeduc) %>%

summarize(num = n()) %>%

ggplot(aes(x = paeduc, y = num)) +

geom_bar(stat = "identity", fill = "darkblue", alpha = .8) +

geom_label(aes(y = 50, label = round(num / nrow(gss),2))) +

xlab("Father’s education") + ylab("Count of respondents") +

ggsave("figs/PaEduc.pdf",

height = 4, width = 7)

height = 3, width = 5)
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Why is father’s education missing?

Check the codebook (p. 176) [link]

These are the “Not applicable” cases.
You should always make sure you know what your variables are!

https://gssdataexplorer.norc.org/documents/440/display
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Questionnaire logic, graphically

Was father in
household
at age 16?

Yes

No
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What to do? Two options

1 Fill in with theoretically meaningful values.

WARNING: This changes what the measure captures.

2 Multiply impute
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What to do? Option 1: Manual Filling

Was father in
household
at age 16?

Yes

No

GSS questionnaire logic
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It’s often possible to fill in missing values manually as above.

But be WARNED - this often changes the meaning of the
predictor.

In this example, it became a fuzzy measure of family background.

What if you really wanted a measure of the education of the father
or other male in the household at age 16?
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What to do? Option 2: Multiple Imputation

All respondents do have a father, even if that father wasn’t around
at age 16.

We could multiply impute the missing values of father’s education,
using mother’s education as a predictor.

In this case, the predictor truly is father’s education.
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Missingness Assumptions (adapted from lecture)

1. MCAR: Missing Completely At Random (naive)

P(M|X ) = P(M)

Missingness (M) is unrelated to father’s education (X )

2. MAR: Missing At Random (empirical)

P(M|X ,Z ) = P(M|Z )

Missingness is not a function of the missing variable (X = Father’s education),
conditional on measured variables (Z = Mother’s education)
e.g., Children with lesser-educated mothers are more likely to have missing fathers

3. NI: Non-ignorable (fatalistic)
P(M|X ) doesn’t simplify

e.g., within cells of mother’s education, missingness is still related to father’s
education

Adding variables to predict father’s education can change NI to MAR
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final results
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Multiple Imputation (from lecture)

REGRESSION
To preserve the relationships in the data.

SIMULATION
To reflect the uncertainty of our imputation.
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We wanted to impute missing values of father’s education.

Is it dubious that father’s education is missing at random? YES

We proceed cautiously anyway, realizing MAR is a heroic
assumption (heroic in a bad way)
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Choosing variables

We want to impute father’s education with other variables that
might be associated with it.

Mother’s education

Respondent’s education

Respondent’s perceived financial standing

Respondent’s perceived income decile

Respondent’s age

Respondent’s race

We’d have to argue that, net of all these, father’s education is
missing at random.
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Choosing variables

toImpute <- gss %>%

transmute(id = id,

paeduc = ifelse(paeduc > 20, NA, paeduc),

finrela = ifelse(finrela == "DK" | finrela == "NA",

NA, finrela),

maeduc = ifelse(maeduc > 20, NA, maeduc),

educ = ifelse(educ > 20, NA, educ),

rank = ifelse(rank > 10, NA, rank),

age, race)
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Choosing variables

> summary(toImpute)

id paeduc finrela maeduc

Min. : 1.0 Min. : 0.0 Min. :2.000 Min. : 0.00

1st Qu.: 717.5 1st Qu.:10.0 1st Qu.:3.000 1st Qu.:11.00

Median :1434.0 Median :12.0 Median :4.000 Median :12.00

Mean :1434.0 Mean :11.8 Mean :3.861 Mean :11.86

3rd Qu.:2150.5 3rd Qu.:14.0 3rd Qu.:4.000 3rd Qu.:14.00

Max. :2867.0 Max. :20.0 Max. :6.000 Max. :20.00

NA’s :775 NA’s :28 NA’s :286

educ rank age race

Min. : 0.00 Min. : 1.0 Min. :18.00 IAP : 0

1st Qu.:12.00 1st Qu.: 4.0 1st Qu.:34.00 WHITE:2100

Median :13.00 Median : 5.0 Median :50.00 BLACK: 490

Mean :13.74 Mean : 4.8 Mean :49.33 OTHER: 277

3rd Qu.:16.00 3rd Qu.: 6.0 3rd Qu.:62.00

Max. :20.00 Max. :10.0 Max. :99.00

NA’s :9 NA’s :79
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Implementation in Amelia
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Run Amelia

library(Amelia)

filled <- amelia(toImpute,

noms = "race",

idvars = "id")
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Run Amelia

> summary(filled)

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 5

Imputation 2: 8

Imputation 3: 6

Imputation 4: 7

Imputation 5: 5
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Run Amelia

Rows after Listwise Deletion: 1893

Rows after Imputation: 2867

Patterns of missingness in the data: 20

Fraction Missing for original variables:

-----------------------------------------

Fraction Missing

id 0.000000000

paeduc 0.270317405

finrela 0.009766306

maeduc 0.099755842

educ 0.003139170

rank 0.027554935

age 0.000000000

race 0.000000000
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Patterns of missingness

Amelia told us there were 20 patterns of missignness. What were
they?

missmap(filled)

Missingness Map
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Overimputing

Overimputing is a check that the imputation model we’ve set up is
doing roughly what we think it’s doing.

It does not verify the key identification assumption: missing at
random.

Idea:

Knock out some values

Fill in as though they were missing

Compare our imputations to the truth

We want the truth to generally fall in the range of imputed
values.
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Overimputing

overimpute(filled, var = "paeduc")
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Checking convergence

EM can sometimes end up in weird places.

We want to know our results converge the same place regardless of
the starting values.

Amelia’s disperse() command shows us that the first principle
component (a unidimensional summary of the data) converges to
the same value regardless of a few randomly chosen starting points.
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Checking convergence

disperse(filled, dims = 1, m = 5)
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Amelia objects

Your Amelia object holds lots of things, including 5 versions of the
data.

> head(filled$imputations[[1]])

id paeduc finrela maeduc educ rank age race

1 1 18.00000 6 13 16 1 47 WHITE

2 2 8.00000 4 12 12 5 61 WHITE

3 3 12.00000 3 8 16 4 72 WHITE

4 4 15.36367 5 12 12 3 43 WHITE

5 5 16.00000 5 12 18 3 55 WHITE

6 6 11.00000 4 12 14 5 53 WHITE
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transform: Operating on an Amelia object

What if we now want the respondent’s education to be coded as
college or not?

transform operates on all imputations at once.

filled <- transform(filled,

college = educ >= 16)

head(filled$imputations[[1]])

id paeduc finrela maeduc educ rank age race college

1 1 18.00000 6 13 16 1 47 WHITE TRUE

2 2 8.00000 4 12 12 5 61 WHITE FALSE

3 3 12.00000 3 8 16 4 72 WHITE TRUE

4 4 15.36367 5 12 12 3 43 WHITE FALSE

5 5 16.00000 5 12 18 3 55 WHITE TRUE

6 6 11.00000 4 12 14 5 53 WHITE FALSE
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The Multiple Imputation Scheme (again)

incomplete data

imputed datasets

imputation
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separate results
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final results
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Modeling with imputed data

We will model respondent’s college completion as a function of
race and father’s years of schooling.

We could just fit using single imputation.

fit <- glm(college ~ paeduc + race + paeduc:race,

family = binomial(link = "logit"),

data = filled$imputations[[1]])

summary(fit)

But this would understate our uncertainty.
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Modeling with imputed data

We will model respondent’s college completion as a function of
race and father’s years of schooling.

We could just fit using single imputation.

fit <- glm(college ~ paeduc + race + paeduc:race,

family = binomial(link = "logit"),

data = filled$imputations[[1]])

summary(fit)

But this would understate our uncertainty.
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Fitting on all imputations

We can use lapply() to

apply a function to all the imputations and

return a list of model fits.

fits <- lapply(filled$imputations, function(data)

fit <- glm(college ~ paeduc + race + paeduc:race,

family = binomial(link = "logit"),

data = data)

return(fit)

)
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Combining models

We can combine models by

Rubin’s rules

Simulation



Motivation Assumptions Amelia Combining results Ex.2 EM

Approach 1: Rubin’s rules

Rubin’s rules give analytic formulas for the combined estimates.

But, they are less automatic for quantities of interest beyond
coefficients,
and they rely on normality assumptions that may not hold. But
they are easy!
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Approach 1: Rubin’s rules

> library(mitools)

> MIcombine(fits)

Multiple imputation results:

MIcombine.default(fits)

results se

(Intercept) -3.23887997 0.20511552

paeduc 0.21203001 0.01597134

raceBLACK 0.26445325 0.47785166

raceOTHER -0.33563350 0.60387117

paeduc:raceBLACK -0.06866543 0.03697217

paeduc:raceOTHER 0.02652747 0.04888252
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Simulation is:

More flexible

A simple extension of what we’ve done
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Approach 2: Simulation

For each imputed dataset

Fit the model

Simulate quantities of interest

Combine the simulations across models,

and you have the combined results. No formulas required!
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Approach 2: Simulation for coefficients

library(mvtnorm)

list.of.sims <- lapply(fits, function(fit)

sim.coefs <- rmvnorm(n = 1000,

mean = coef(fit),

sigma = vcov(fit))

return(sim.coefs)

)

dim(list.of.sims[[1]])

sims <- do.call(rbind, list.of.sims)

cbind(apply(sims, 2, mean),

apply(sims, 2, sd))
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Approach 2: Simulation for coefficients

Rubin’s rules Simulation
Coefficient SE Coefficient SE

(Intercept) -3.24 0.21 -3.24 0.20
paeduc 0.21 0.02 0.21 0.02

raceBLACK 0.26 0.48 0.26 0.48
raceOTHER -0.34 0.60 -0.35 0.58

paeduc:raceBLACK -0.07 0.04 -0.07 0.04
paeduc:raceOTHER 0.03 0.05 0.03 0.05
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Approach 2: Simulation for QOIs

Same approach works for quantities of interest!

We will examine the probability of college completion by race and
father’s education.
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Approach 2: Simulation for for QOIs: Set x

x <- rbind(

## White, grades 10-16

White.10 = c(1,10,0,0,0,0),

White.11 = c(1,11,0,0,0,0),

White.12 = c(1,12,0,0,0,0),

White.13 = c(1,13,0,0,0,0),

White.14 = c(1,14,0,0,0,0),

White.15 = c(1,15,0,0,0,0),

White.16 = c(1,16,0,0,0,0),

## Black, grades 10-16

Black.10 = c(1,10,1,0,10,0),

Black.11 = c(1,11,1,0,11,0),

Black.12 = c(1,12,1,0,12,0),

Black.13 = c(1,13,1,0,13,0),

Black.14 = c(1,14,1,0,14,0),

Black.15 = c(1,15,1,0,15,0),

Black.16 = c(1,16,1,0,16,0)

)
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Approach 2: Simulate in each imputation

list.of.sims <- lapply(fits, function(fit)

sim.coef <- rmvnorm(n = 1000,

mean = coef(fit),

sigma = vcov(fit))

linear.predictor <- x %*% t(sim.coef)

pred.p <- plogis(linear.predictor)

rownames(pred.p) <- rownames(x)

return(pred.p)

)
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Approach 2: Combine across imputations

Note: do.call(function, list) does the function to all
elements of the list.

sims <- do.call(cbind, list.of.sims)

Here we column bind them all into one matrix.
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Approach 2: Plot results

t(sims) %>%

melt(id = NULL) %>%

separate(Var2, into = c("Race","Education")) %>%

group_by(Race, Education) %>%

summarize(Estimate = mean(value),

min = quantile(value, .025),

max = quantile(value, .975)) %>%

group_by() %>%

mutate(Education = as.numeric(Education)) %>%

ggplot(aes(x = Education, y = Estimate,

ymin = min, ymax = max,

fill = Race)) +

geom_line(aes(color = Race)) +

geom_ribbon(alpha = .4) +

ylab("Child probability of college") +

xlab("Father’s education")
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Approach 2: Simulation for QOIs
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Another source of missingness: Ballots

To RStudio!
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The Multiple Imputation Scheme (last time I will show)

incomplete data

imputed datasets

imputation
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separate results
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final results
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Should we transform variables?

Quoted from Amelia documentation, p. 16:

As it turns out, much evidence in the literature (discussed in King
et al. 2001) indicates that the multivariate normal model used in
Amelia usually works well for the imputation stage even when
discrete or non- normal variables are included and when the
analysis stage involves these limited dependent variable models.
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Mixture of exponentials

X0i ∼ Exponential(λ0)

X1i ∼ Exponential(λ1)

Zi ∼ Bernoulli(p)

Yi ≡ (1− Zi )X0i + ZiX1i
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Simulate the data

set.seed(08544)

x0 <- rexp(100, rate = 0.5)

x1 <- rexp(100, rate = 2)

z <- rbinom(100, size = 1, prob = .6)

y <- (1 - z)*x0 + z*x1
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E-step

Find the expected value of the latent variable Zi , given the
parameters {pt , λt0, λt1} and the data Yi .

We sometimes call these the responsibilities.

E(Zi | pt , λt
0, λ

t
1,Yi ) = P(Zi = 1 | pt , λt

0, λ
t
1,Yi )

=
P(Yi | Zi = 1)P(Zi = 1)

P(Yi )

=
P(Yi | Zi = 1)P(Zi = 1)

P(Yi | Zi = 1)P(Zi = 1) + P(Yi | Zi = 0)P(Zi = 0)

=
λ1e

−yiλ1p

λ1e−yiλ1p + λ0e−yiλ0(1− p)

Note: Conditioning on the parameters is not written explicitly after the first

step to simplify the presentation. But all quantities throughout are conditional

on pt , λt
0, and λt

1}. Likewise, P refers to both probability and probability

densities for simplicity.
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E-step

e.step <- function(p, lambda0, lambda1, y) {

e.z <- lambda1 * exp(-y * lambda1) * p /

lambda1 * exp(-y * lambda1) * p +

lambda0 * exp(-y * lambda0) * (1 - p)

return(e.z)

}
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M-step

Find updated MLE estimates of {pt , λt0, λt1} using the data z t

created in the E-step.

First, write the complete data log likelihood, which includes both
observed and latent variables.

L(pt , λt0, λ
t
1 | y , z) = f (y , z | pt , λt0, λt1)

= f (y | z , pt , λt0, λt1)f (z)

=
n∏

i=1

(λ1e
−yiλ1)zi (λ0e

−yiλ0)1−zipzi (1− p)1−zi

`(pt , λt0, λ
t
1 | y , z) =

n∑
i=1

(
zi (log λ1 − yiλ1)

+ (1− zi )(log λ0 − yiλ0)

+ zi log pi + (1− zi ) log(1− pi )

)
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M-step

comp.data.log.lik <- function(par,z,y) {

p <- plogis(par[1])

lambda0 <- exp(par[2])

lambda1 <- exp(par[3])

log.lik <- sum(z*(log(lambda1) - y*lambda1) +

(1 - z)*(log(lambda0) - y*lambda0) +

z*log(p) + (1 - z)*log(1 - p))

return(log.lik)

}
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M-step

Write a function to maximize that log likelihood

m.step <- function(z,y) {

opt.out <- optim(

par = c(0,0,0),

z = z,

y = y,

fn = comp.data.log.lik,

method = "BFGS",

control = list(fnscale = -1)

)

p <- plogis(opt.out$par[1])

lambda0 <- exp(opt.out$par[2])

lambda1 <- exp(opt.out$par[3])

return(list(p = p, lambda0 = lambda0,

lambda1 = lambda1))

}
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Put E and M together!

Initialize the matrix to store parameters

par.estimates <- matrix(nrow = 11, ncol = 3)

colnames(par.estimates) <- c("p.t","lambda0.t","lambda1.t")

Choose starting values

p.t <- 0.5

lambda0.t <- 1

lambda1.t <- 1

set.seed(12345)

z.t <- rbinom(n = length(y),

size = 1,

prob = .5)

Store our starting parameters in the matrix

par.estimates[1,] <- c(p.t, lambda0.t, lambda1.t)
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Put E and M together!

Iterate

for (i in 2:11) {

z.t <- e.step(p = p.t,

lambda0 = lambda0.t,

lambda1 = lambda1.t,

y = y)

m.out <- m.step(z = z.t, y = y)

p.t <- m.out$p

lambda0.t <- m.out$lambda0

lambda1.t <- m.out$lambda1

par.estimates[i,] <- c(p.t, lambda0.t, lambda1.t)

}
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EM convergence

Iteration pt λt0 λt1
0 0.5000 1.0000 1.0000

1 0.3482 0.5409 2.7712
2 0.2474 0.6271 1.8944
3 0.3010 0.5934 1.9726
4 0.2779 0.6076 1.9548
5 0.2874 0.6019 1.9603
6 0.2835 0.6042 1.9580
7 0.2851 0.6033 1.9589
8 0.2844 0.6037 1.9585
9 0.2847 0.6035 1.9587

10 0.2846 0.6036 1.9586
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