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Outline

I Replication/psets check-in

I Mixture model example: Middle-Inflated Ordered Probit (MiOP)
model with views on EU membership

I Shift to EM algorithm with different mixture: wines from distinct
cultivars (plants) in Italy

I Move from mixture of k = 2 univariate normals to mixture of k = 3
multivariate normals

I Practice coding EM algorithm into R to gain intuition on the algorithm
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Inflation models as mixture models

I In precept 6, Ian took us through an example of a zero-inflated
negative binomial (if a logit and negative binomial model mated and
gave birth to a zinb!)

I Example: count of male ’satellites’ around a female horseshoe crab
I Counts are a mixture of two processes, each modeled using a different

distribution:
I Whether or not the female attracts any satellites...modeled using a

Bernoulli distribution that draws Zi = 0 or Zi = 1
I Conditional upon attracting satellites, the count she attracts...modeled

using a Negative Binomial distribution that draws from positive
integers including 0
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Inflation models as mixture models

I On problem set 5, we have an example of a zero-inflated poisson (if a
logit (or probit) mated with a Poisson and gave birth to a zip!)

I Example: the count of speeches critical of the Iraq War that
Republican house members give in a particular month

I Counts are a mixture of two processes, each modeled using a different
distribution:

I Whether or not there are any speeches given...modeled using a
Bernoulli distribution that draws Zi = 0 or Zi = 1

I Conditional upon any speeches, the count of speeches...modeled using
a Poisson distribution that draws from positive integers including 0
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This framing of the two zero-inflated models should look
familiar from Monday’s lecture...

I Mixture models (sometimes called finite mixture models): we assume
that each observation is generated from one of k clusters/distributions

I Common notation:
I Latent variable for which distribution/cluster: Z before estimated; z

after estimated; zi indicates which distribution/cluster observation i
comes from

I Number of distributions/clusters to choose from: k
I Putting these together: zi ∈ {1, 2, . . . k}
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This framing of the two zero-inflated models should look
familiar from Monday’s lecture...

I In previous examples, k = 2, allowing us to model k using
distributions for binary outcomes like logit and probit

I In other examples, k > 2, meaning we need to switch to a distribution
that allows us to draw from more than two categories...1

I Multinomial distribution, where 1 = number of trials and π =
probability of choosing category 1, 2 . . . k :

zi |π ∼ Multinomial(1, π)

1More formally, we can think of the Bernoulli distribution behind the logit model as a
special case of a Multinomial when the number of trials = 1 and k = 2
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Mixture models we’ve seen: happen to be models where
we’ve assumed observations are drawn from one of two
categories

I Old faithful and height by sex examples: mixture of normals
(Gaussian mixture) with k = 2

I What’s ’mixed’? : same distribution (normal) but each of the k = 2
normal distributions has a different mean and variance

I Which parameters can we estimate? : {µ1, µ2,Σ1,Σ2, π}
I Horseshoe crab and count of speeches examples: mixture of two

distributions with k = 2
I What’s ’mixed’? : different distributions: a distribution that explains

zero’s and a distribution that explains counts that include zero’s
(negative binomial; poisson)

I Which parameters can we estimate? : {β for logit or probit; γ for
negative binomial or poisson, π}

I Voting on trade bills example: mixture of regression models with
k = 2 (Stoper-Samuelson theory v. Ricardo-Viner theory)
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Mixture models: examples where k > 2

I If Garip (2012) had estimated membership in one of the four
migration clusters using EM algorithm rather than k-means clustering

I Multivariate normal example we’ll turn to later where k = 3 distinct
plants used to grow wine

I Many others! (extracting dominant k dominant colors from images,
modeling ancestry, etc.)
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New mixture model for today’s precept...

I Middle-inflated ordered probit model (MiOP)

Bagozzi, Benjamin E., Bumba Mukherjee, and R. Michael
Alvarez. A mixture model for middle category inflation in
ordered survey responses. Political Analysis (2012): 369-386.

I Why we’re covering:

1. Reiterates general ideas behind zero-inflated model you’ll
derive/estimate in Pset 5 because builds on general intuition behind
zero inflation

2. Useful for applied survey work using Likert-type scales
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Motivation for MiOP: Eurobarometer poller takes a trip to
Vilnius, Lithuania in 2002
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Motivation for MiOP: Eurobarometer poller takes a trip to
Vilnius, Lithuania in 2002

I Interviewer : ”Generally speaking, do you think that Lithuania’s
membership in the European Union would be a good thing, a bad
thing, or neither good nor bad? (or you can choose do not know)”

I Informed Vilnius resident 1: a good thing!
I Informed Vilnius resident 2: neither good or bad! I can see the benefits

of easier migration, but I also think we benefit from having litas and
that switching to the Euro might induce inflation

I Uninformed Vilnius resident who is willing to admit he or she is
uninformed: don’t know!

I Uninformed Vilnius resident who is not willing to admit he or she is
uninformed: neither good or bad! (while thinking: I don’t want to
choose ’do not know’ because that will show I’m clueless about the EU)
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Focusing on the neither good nor bad category, how do we
distinguish between...?

1. Informed Vilnius resident 2: neither good or bad! I can see the
benefits of easier migration, but I also think we benefit from having
litas and that switching to the Euro might induce inflation

2. Uninformed Vilnius resident who is not willing to admit he or she is
uninformed: neither good or bad! (while thinking: I don’t want to
choose ’do not know’ because that will show I’m clueless about the
EU)

Problem: same observed choice but different DGP behind that choice
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The ideal: a variable in the data that labels these two
types of respondents with their corresponding DGP

Name2 Choice Label

Nojus Neither good nor bad Informed
Matas Neither good nor bad Informed
Vilt Neither good nor bad Uninformed

2Source: Babynamewizard.com Most popular Lithuanian boys and girls names
13 / 38



What we have instead: covariates that we’re going to use
to probabilistically model that label assignment

Name Choice Label Education Age

Nojus Neither good nor bad ? College 45
Matas Neither good nor bad ? H.S. 35
Vilt Neither good nor bad ? H.S. 21
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The need to model who might be informed v. uninformed
before modeling views on EU leads to a shift from
one-stage to a two-stage process

Assume there is a latent variable Y ∗i that in this case, represents
something like the latent degree of support for Lithuana’s EU membership

I Standard ordered probit: use covariates to model choice:
1. ’A bad thing’: low Y ∗i
2. ’Neither good nor bad’: medium Y ∗i
3. ’A good thing’: high Y ∗i

I That one-stage process is for ’a bad thing’ and ’a good thing’, but
MiOP argues that middle category is likely inflated (has excess
responses) because that response for observation i could be generated
by the following two-stage DGP:

1. Stage one: is the respondent informed or uninformed but wants to save
face?

I If uninformed and wants to save face: chooses ’neither good nor bad’

2. Stage two: conditional on being informed, having medium Y ∗i
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Putting that argument into mathematical notation:
sidenote on notation we use versus notation in paper

I For consistency with Lectures 4/5, and because the authors make the
confusing choice to use zi to refer to a vector of covariates that
relates to being informed rather than a latent variable, we’re shifting
some notation from the paper

I In particular (and only relevant if you want to cross-ref paper
eventually):

I Modeling binary outcome of informed v. uninformed
I Authors use: si
I We will use: zi

I Vector of covariates that predict being informed v. uninformed
I Authors use: zi
I We will use: wi

I Threshold parameters for ordered probit
I Authors use: µj

I We use: ψj (Lecture also sometimes uses τj)
I For ordered probit, they start with j = 0 as first category while we start

with j = 1
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Stage one of the model: is respondent informed or
uninformed (latent variable)

I Split between two sub-populations: zi ∈ {0, 1} where 0 = uninformed
and 1 = informed

I Latent variable representation:
I z∗i : latent propensity to be informed
I wi : vector of covariates related to that propensity (e.g., age; whether

you discuss politics)
I γ: coefficients on those covariates
I Putting it together: z∗i = w ′i γ + ui

I Translating back into binary outcomes and modeling using
probit...two types of respondents, where Φ is standard normal CDF:

1. Informed: Pr(zi = 1|wi ) = Pr(z∗i > 0|wi ) = Φ(wiγ)
2. Uninformed: Pr(zi = 0|zi ) = Pr(z∗i ≤ 0|wi ) = 1− Φ(wiγ)
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Taking stock: we now have a model for stage one of our
DGP (is the respondent informed or uninformed?)

1. Informed:
Pr(zi = 1|wi ) = Pr(z∗i > 0|wi ) = Φ(wiγ)

2. Uninformed:

Pr(zi = 0|wi ) = Pr(z∗i ≤ 0|wi ) = 1− Φ(wiγ)

How do we then incorporate this information into stage two of our DGP
(views on EU?)
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Stage two: add these indicators to ordered probit model
from Lecture 4, Slide 101

Where:

I yi is observed choice

I xi : covariates predicting that choice - importantly, these can be
different than the covariates that predict being informed or not

I β: coefs on covars

I And we generalize to j choices (rather than just the j = 3 of EU case)
where m = middle choice:

Pr(yi ) =

{
Pr(yi = 1|xi ,wi ) = Φ(w ′i γ)Φ(w ′i β)

Pr(yi = j |xi ,wi ) = [1− Φ(w ′i γ)]j=m + Φ(w ′i γ)[Φ(ψj − x ′i β)− Φ(ψj−1 − x ′i β)]

Pr(yi = J|xi ,wi ) = Φ(w ′i γ)[1− Φ(ψJ−1 − x ′i β)]
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Aside about paper: correlated errors ordered probit model
(MiOPC)

I Now that we’ve shifted from a one-stage model in the typical ordered
probit case (just modeling how a respondent’s covariates predict his
or her choice on EU question) to a two-stage model, we run into a
challenge with the error terms in each model

I More specifically, we have two one equation and one error term in
each stage:

1. Stage one: model informed v. uninformed

z∗i = w ′i γ + ui

2. Stage two model: choice among informed

y∗i = x ′i β + ei

I Since both ei and ui come from the same respondent, these error
terms are likely to be correlated so the authors create another model
(MiOPC) that adds to the model/estimates ρeu
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Combining the two stages into one likelihood/log-likelihood

In writing out the likelihood, we distinguish between two cases, where m =
indicates middle category:

1. Observed choice is not middle category: Pr(yi = j |xi ,wi ) means we
don’t include observations classified as uninformed

I Don’t include 1− Φ(w ′i γ) in that part of the likelihood

2. Observed choice is middle category: Pr(yi = m|xi ,wi )
I Do include 1− Φ(w ′i γ) in that part of the likelihood

This leads to a likelihood/log-likelihood with three components...
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Likelihood/log-likelihood for MiOP

1. L(γ, β, ψ|x ,w)3 =

n∏
i

m−1∏
j=1

[Pr(zi = 1)Pr(yi = j)]dij

choose cat<m

×
n∏
i

m∏
j=m

[Pr(zi = 0) + Pr(zi = 1)Pr(yi = j)]dij

choose cat m

×
n∏
i

J∏
j>m

[Pr(zi = 1)Pr(yi = j)]dij

choose cat>m

2. `(γ, β, ψ|x ,w):
∏

become
∑

and ab = bln(a) so move dij out of
exponent

3dij is an indicator for whether respondent i chose category j
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Coding this log-likelihood into R
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Coding the log-likelihood into R (from replication package)

MIOP <- function(b,data) {

#stores outcome

y<-data[,1] #EU Support

##stores each covar

x1<-data[,2] #political trust

x2<-data[,3] #xenophobia

x3<-data[,4] #discuss politics

x4<-data[,5] #univers_ed

x5<-data[,6] #professional

x6<-data[,7] #executive

x7<-data[,8] #manual

x8<-data[,9] #farmer

x9<-data[,10] #unemp

x10<-data[,11] #rural

x11<-data[,12] #female

x12<-data[,13] #age

x13<-data[,16] #student

x14<-data[,18] #income

x15<-data[,17] #EU Bid Knowledge

x16<-data[,14] #EU Knowledge Objective

x17<-data[,22] #TV

x18<-data[,23]; x19<-data[,24]; x20<-data[,25] #High High-Mid; Low-Mid
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Coding the log-likelihood into R (from replication package)

#observations

n<-nrow(data)

#covars for stage 2 choice if informed

z<-cbind(x1,x2,x3,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x18,x19,x20)

#covars for stage 1 - informed or not

x<-cbind(1,x3,x10,x11,x12,x13,x15,x16,x17,x18,x19,x20)

#initialize thresholds for ordered probit

tau<- rep(0,6)

tau[1]<--(Inf)

tau[2]<- b[1]

tau[3]<- b[1]+exp(b[2])

tau[4]<- (Inf)
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Coding the log-likelihood into R (from replication package)

llik <- matrix(0, nrow=n, ncol = 1)

#iterate through each obs

for(i in 1:n){

#coef for informed or not

B<-b[3:14]; XB <- B %*% x[i,]

#coef for EU view

G<-b[15:30]; ZG <- G %*% z[i,]

#if choice is 1 (EU bad), assume informed and estimate choice prob

if(y[i]==1){llik[i]<-log((pnorm(XB)) * (pnorm(tau[2]-ZG)) )}

#if choice is 2 (neither), add prob of uninformed to informed*choice

else if(y[i]==2){llik[i]<-log((1-pnorm(XB))+

(pnorm(XB)) * (pnorm(tau[3]-ZG) - pnorm(tau[2]-ZG)))}

#if choice is 3, assume informed and estimate choice prob

else if(y[i]==3){llik[i]<-log((pnorm(XB)) * (1-pnorm(tau[3]-ZG)))}

}

llik<--1*sum(llik); return(llik)

}
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Estimating using one of R’s built-in methods for numerical
optimization

b<-rep(.01,30)

output.MIOP<-optim(f=MIOP, p=b, method="BFGS",

control=list(maxit=500),

data=Dataset.Expanded, hessian=TRUE)

BFGS = briefly reviewed in Precept 3; ’quasi-Newton’ method
that takes the general form of using both the first and second
derivative of the function we’re max/minimizing (quasi = uses
approximation for Hessian rather than analytic solution)
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Results: first stage (predicted being informed = 1)

coefficient SE z-score

constant 0.43 0.22 1.97
discuss pol 0.21 0.05 4.33

rural -0.09 0.04 -2.29
female -0.39 0.08 -4.76

age -0.01 0.00 -2.98
student -0.36 0.16 -2.28
EU bid 0.49 0.10 4.82

EU know 0.15 0.02 6.94
TV 0.06 0.03 1.97

high -0.22 0.14 -1.62
high-mid -0.52 0.14 -3.81
low-mid -0.48 0.09 -5.22
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Results: second stage (conditional on informed, choice of
category)

coefficient SE z-score
polit trust 0.90 0.05 17.43

Xenophobia -0.58 0.05 -10.94
discuss politics 0.02 0.02 0.81

professional -0.09 0.08 -1.15
executive 0.12 0.10 1.19

manual -0.13 0.05 -2.71
farmer -0.05 0.09 -0.56

Unemployed 0.12 0.06 2.10
rural 0.01 0.02 0.44

female 0.03 0.03 0.81
age -0.00 0.00 -1.45

student 0.15 0.08 1.78
income 0.07 0.01 10.75

high 0.09 0.06 1.52
high-mid 0.01 0.07 0.13
low-mid -0.03 0.05 -0.72 29 / 38



Takeaways

I Same observed choice–neither good nor bad–in population of
respondents disguises two sub-populations: informed about EU bid
and genuinely torn versus uninformed and saving face

I Ideal data: we’d have a label identifying each observation as
belonging to one of those two sub-populations

I Real data: we lack that label so model it using covariates

I Adding that modeling of the label transforms a typical ordered probit
case into a two-stage process, just as in the zero-inflation models,
adding in the logit/probit as the first stage transforms a typical count
model into a two-stage process
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Transition to EM

I In previous optimization, we ended up with a challenging
log-likelihood involving a normal pdf that required using a numerical
optimization method (BFGS)

I EM is focused on similarly intractable likelihoods that have two
characteristics:

1. We can write the model using a latent variable representation, which
we can do with mixture models

2. When we get to a step reviewed on a later slide, we are able to take
the expectation to compute responsibilities
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Motivating example: classification of wine based on
observed attributes

I Opening up a script or .rmd, install and load the gclus package

I Then, load and view the wine data

I You’ll notice there’s a variable Class that indicates which cultivar out
of k = 3 options the wine comes from

I When coding the EM algorithm, we’ll use that to check our work

I But the example is motivated by idea that those labels are latent
variables that we need to probabilistically estimate
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To estimate those labels, we’ll return to the normal/Gaussian mixture
we’ve seen in many examples...
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What we did with student heights and old
faithful...univariate normal

I In univariate normal, we model a given wine’s label using a single
observed attribute among the many present in the data (e.g., choose
one out of Alcohol; Phenols; Ash, etc)
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But we might think that if we add in other attributes, we
can better distinguish between labels/clusters

I Rather than estimate labels based on a single attribute (Alcohol
content), can estimate labels based on multiple attributes (in this
case: Alcohol content + Phenols)
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Conveniently, this takes us into the world of the EM algorithm derivation
from Slides 38 and 39 of this week’s lecture...we’re going to go slowly step

by step and implement in R using the wine data, Alcohol and Phenol
attributes (bivariate normal), and k = 3
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Algorithm for Gaussian mixture

1) Initialize parameters µt ,Σt , πt

2) Expectation step: compute ‘responsibilities’ p(zi |µt ,Σt ,πt ,X ) r ti

rik =
πkN (xi |µk ,Σk)∑
k ′ πk ′N (xi |µk ′ ,Σk ′)

3) Maximization step: maximize with respect to µ,Σ and π:

Ez [log p(x, z |µk ,Σk ,π)] = Ez

[
log

(
N∏
i=1

K∏
k=1

π
znk
k N (xn|µk ,Σk )znk

)]

= Ez

[
N∑

n=1

K∑
k=1

znk [log πkN (xn|µk ,Σk )]

]

Obtain µt+1
k ,Σt+1

k , πt+1

4) Assess change in the log-likelihood
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Focus on M-step

3) M-Step:

E[log Complete data|θ,π] =
N∑
i=1

K∑
k=1

E [zik ] log (πkN (xi |µk ,Σk))

Because E [zik ] = rik , solutions are weighted averages of usual updates

πt+1
k =

∑N
i=1 r

t
ik

N
(1)

µt+1
k =

∑N
i=1 r

t
ikxi∑N

i=1 r
t
ik

(2)

Σt+1
k =

1∑N
i=1 r

t
ik

N∑
i=1

rik(xi − µt+1
k )(xi − µt+1

k )T (3)

38 / 38


