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Outline

I Problem of model dependence to motivate matching

I Intuition behind matching
I Implementation of matching (using example of Mahalanobis

distance); focus on choices at each step:

1. Check the need for matching/imbalance before matching
2. Choose a number of matches
3. Choose a distance metric/matching algorithm
4. Find matches (drop non-matches)
5. Check balance
6. Repeat 2-5 until balance is acceptable
7. Calculate effect of treatment on the outcome in matched dataset
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Motivating example: observational study that tries to
estimate the treatment effect of ads on political
contributions
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Framing article in potential outcomes notation...

I Yi : outcome for observation i ...in this case:
I i : geographic units (zip codes) composed of residents contributing to

campaigns
I Y : total campaign contributions (in 1,000s) for the 2008 election

campaign given to one of the two major-party candidates
(Obama/Biden and McCain/Palin)

I Di : binary indicator for treatment status for observation i ...in this
case:

I Di = 1: zip code receives treatment of campaign ads meant for
adjacent zip codes in battleground states that share a media market
with zip code of interest (spillover ads for shorthand)1

I Di = 0: zip code does not receive treatment

I Xi : vector of zip-code level covariates like income, race, and education
level of residents

1More precisely, the authors take a continuous measure of ad dollars spent in different media
markets and discretize it to count as a ’treatment effect’ of ads if > $1000 was spent; they
check results’ robustness to this threshold

4 / 56



Two assumptions behind identifying the treatment effect
of ads

1. Selection on observables (also called unconfoundedness, ignorability,
no unmeasured confounding)

I In general: (Y1,Y0)⊥D|X
I Specific case (in math):

(Contributions(ads),Contributions(no ads))⊥Ads|X

I Specific case (in words): the potential campaign contributions from
treated zip codes and from control zip codes are independent from
treatment status (receiving ads) once we condition on covariates like
resident income, education, etc.

2. Common support:
I In general: 0 < Pr(D = 1|X ) < 1 with probability one
I Specific case (in words): for zip codes with any level of covariate(s),

there is a positive probability of receiving the treatment of ads (or not
receiving the treatment of ads)
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How regression fits into this framework (which then
motivates how matching fits into this framework)

(Y1,Y0)⊥D|X
(Cont(ads),Cont(no ads))⊥Ads|X

I Regression: choose a set of covariates X that we think helps us
satisfy this assumption (so X to condition on to break the association
between whether a zip code receives ads and its potential campaign
contributions)

I In DAG terms, choose what goes into the elements of the vector that
compose the node in red- or as lecture slide 34 put it, ”when selection
on observables holds, we still need to adjust for Xi”

D

X

Y Ad

Income, education, etc.

Contribution
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Problem of model dependence (Ho et al., 2007)

I Begin with the ATT (using Di to represent treatment):

1∑n
i=1 Di

n∑
i=1

Di [µ1(Xi )− µ0(Xi )]

I Rewrite the treatment (receive ads) and control (don’t receive ads)
outcomes in terms of a model that links the mean of the outcome
variable to covariates like the town’s median income, etc.:

µ1(Xi ) = E [Yi (1)|Di = 1,Xi ] = g(α + β + Xiγ),

µ0(Xi ) = E [Yi (0)|Di = 0,Xi ] = g(α + Xiγ)

I In experiments, the parts in red drop out due to randomization, but
without experiments, we have researcher discretion in various choices
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Choices researcher can make

E [Yi (1)|Di = 1,Xi ] = g(α + β + Xiγ),

E [Yi (0)|Di = 0,Xi ] = g(α + Xiγ)

I g(·): Which parametric model? (parametric: choose a distribution for
Y and link function to relate X to Y ; e.g., choose linear regression v.
poisson in present case)

I X : after choosing a parametric model, what to include in X (e.g., if
we include the town’s median income, also include education?)

I After choosing a parametric model and choosing X , choices about
how to represent the relationship between X and Y (e.g., income
alone or income + income2)

I Why do we not like discretion? Potential for subconscious
cherry-picking of models to support priors/find significant results
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Empirical illustration from ads-contribution example

Ad

Income, education, etc.

Contribution

I Begin with the following predictors plausibly correlated with both
whether a town receives political ads and the town’s potential total
campaign contributions:

1. Median household income
2. Median household income2

3. Percent black
4. Percent hispanic
5. Percent college graduates
6. Percent college graduates2

7. Population density
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To illustrate model dependence even after we decide that
X should include some combination of these 7 predictors...

1. Enumerate all combinations2 of 7 predictors of size 2, 3, . . . 7

2. Run a linear regression of contributions on the treatment of ads (1 = yes; 0
= no) for each combination found in step 1...e.g.:

contributionsi =α + β1 × ad(1 = yes; 0 = no)i + β2 × incomei

+β3 × percblacki + β4 × densityi

contributionsi =α + β1 × ad(1 = yes; 0 = no)i + β2 × incomei

+β3 × percblacki + β4 × perchispi + β5 × densityi

3. Extract coefficient and p-value for treatment variable of interest (ads (1 =
yes; 0 = no) and plot the distribution across the combinations from 1

I Higher model dependence (bad!): estimate of ’treatment effect’
changes a lot across specifications

2We’re simplifying this slightly because, for instance, we might not want to count a
combination as valid if it includes income2 but not income
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Results: variation in estimated treatment effect across
model specifications
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Results: variation in significance level of estimated
treatment effect across model specifications
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How to generate using R (and like last week, a refresher on lapply for
PSet 6...)
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Step one: enumerate all combinations of seven predictors

##start with a vector of predictors

predictors

[1] "Inc" "PercentHispanic" "PercentBlack"

"density" "per_collegegrads" "Inc_sq" "College_sq"

##use combn in conjunction with apply to choose 2, 3...7

##predictors from that length 7 vector

all_predictors <- sapply(m,

function(x) {combn(predictors, m = x)})

Results in following count of combinations for a regression with 2, 3, . . . 7
predictors:

Predictors Combinations of the 7 possible variables
2 21
3 35
4 35
5 21
6 7
7 1
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Step two: run a linear regression of contributions on the
treatment of ads (1 = yes; 0 = no) for each combination
found in step 1

##create regression formulas for each combination (each comb.

## is a matrix column so we apply over columns (2))

all_predictors_form <- lapply(all_predictors,

function(x) {apply(x, 2,

function(y) paste(y, collapse = "+"))})

##add treatment to each regression formula

all_predictors_form_with_tx <- lapply(all_predictors_form,

function(x) {lapply(x, function(y)

as.formula(paste("Cont ~ Treatment1 +",

y)))})

##feed each formula to lm

all_models_results <- lapply(all_predictors_form_with_tx,

function(x) lapply(x,

function(y) (lm(y, data = nj))))
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Step three: extract coefficient and p-value for treatment
variable of interest (ads (1 = yes; 0 = no) and plot the
distribution across the combinations from step 1

##extract coefficient on tx variable (ads)

all_tx_coef <- lapply(all_models_results,

function(x) lapply(x,

function(y) coefficients(y)["Treatment1"]))

##extract the p value

all_tx_p <- lapply(all_models_results,

function(x) lapply(x,

function(y)

summary(y)$coefficients["Treatment1",

4]))

##plotting code in solutions .rmd
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Contributors to model dependence we saw in wide
variation in treatment values and wide variation in p values
(Lecture slide 44)

Imbalance on covars.
b/t treatment
and control

Model
dependence

Researcher
discretion

Bias
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Leads us to matching as a pre-processing technique for
addressing imbalance between treatment and covariates

Imbalance on covars.
b/t treatment
and control
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General matching procedure

1. Check the need for matching/imbalance before matching
2. Choose a number of matches

2.1 Choose how many controls to match to each treatment unit (e.g.,
M = 1; M > 1)

2.2 When matching controls to treatment, choose:
2.2.1 Sampling without replacement: each control serves as a match for a

max of 1 treatment unit (can also serve as match for 0 treatment units)
2.2.2 Sampling with replacement: each control can serve as a match for more

than one treatment unit (still can serve as a match for 0 treatment
units)

3. Choose a distance metric/matching algorithm
4. Find matches (drop non-matches)

I If chose M > 1 or sampling with replacement: each control will have a
weight that represents how much it contributes to data once included
rather than a 1 = included; 0 = not included

5. Check balance
6. Repeat 2-5 until balance is acceptable
7. Calculate effect of treatment on the outcome in matched dataset
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We’ll review each step in detail, but before, general intuition behind
matching as pre-processing to correct imbalance between treatment and

control units

Intuition: specify the correct counterfactual for each treatment unit/the
treatment units as a whole

To illustrate, we’ll focus on New Jersey within the treatment effect of ads
on contributions data, and focus on a particular treated observation w/

which many of us are familiar...
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Princeton as a treatment unit

I Each i is a zip code, and associated with two zip codes in the data,
both of which were treated with spillover ads likely from targeting of
Pennsylvania media markets:

Contrib. Di zip Inc % Hisp % Black pop. dens % college
grads

1155.20 1 08540 90.98 0.04 0.05 811.98 71.39
87.34 1 08542 56.15 0.25 0.12 8958.48 52.88
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Focusing on 08540, approaches we could take to finding a
counterfactual for Princeton (Di = 1) from a pool of
controls (Di = 0)

Treatment zip code Control zip code

Princeton

Hopewell

Plainsboro
Kendall
Park
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Matching by intuition/researcher discretion (not a real
approach)!

City Contrib. Di zip Inc % Hisp % Black pop. dens % college
Princeton 1155.20 1 08540 90.98 0.04 0.05 811.98 71.39
Hopewell 49.96 0 08525 90.44 0.02 0.02 216.46 53.58
Plainsboro 29.39 0 08536 70.65 0.05 0.08 3148.13 70.48
Kendall P. 9.23 0 08824 89.35 0.04 0.04 3003.76 44.54

I How do we decide, for instance, which of the following we should use
as a match for Princeton?

1. Hopewell : close in terms of income but much lower population density
and college education levels

2. Plainsboro: more similar college education but lower income/higher
minority population

3. Weighted combination of 0.75 Hopewell, 0.25 Plainsboro: Hopewell
contributes similar income/demographics; Plainsboro contributes
population density

I Could use intuition to decide the most plausible counterfactual unit
for Princeton, but better to use a data-driven approach 23 / 56



To decide which approach to use, return to original
problem we’re trying to solve with matching

Imbalance on covars.
b/t treatment
and control

Model
dependence

Researcher
discretion

Bias
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And focus on step one from our general procedure

1. Check the need for matching/imbalance before matching

2. Choose a number of matches

3. Choose a distance metric/matching algorithm

4. Find matches (drop non-matches)

5. Check balance

6. Repeat 2-5 until balance is acceptable

7. Calculate effect of treatment on the outcome in matched dataset
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Ways to check for imbalance

Ad

Income, education, etc.

Contrib.

1. Imbalance variable by variable: iterate through each variable you
think might be relevant for the paths in red above and...

I Compare summary statistics for each covariate between the treatment
group (Di = 1; receives ad) and control group (Di = 0; doesn’t receive
ad)

I Visualize density of each variable between treatment and control

2. Imbalance in joint distribution of variables: how do we get a more
global summary measure of imbalance that looks at imbalance across
all the variables of interest? One we’ll review:

I Multivariate L1 (in cem package in R)
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Ways to check for imbalance

1. Imbalance variable by variable: iterate through each variable you
think might be relevant for the paths in red above and...

I Compare summary statistics for each covariate between the treatment
group (Di = 1; receives ad) and control group (Di = 0; doesn’t receive
ad)

I Visualize density of each variable between treatment and control

2. Imbalance in joint distribution of variables: how do we get a more
global summary measure of imbalance that looks at imbalance across
all the variables of interest? One we’ll review:

I Multivariate L1 (in cem package in R)
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Implementing in R

balance_function <- function(data, vars_of_interest,

treatment){

##restrict data to treatment + variables of interest

variables <- data[, c(treatment, vars_of_interest)]

##summarize the mean and variance of each column in

##the data after grouping by treatment

##the weird group_by is just so it takes a string

summary_eachvar <- as.data.frame(variables %>%

group_by_(.dots = treatment) %>%

summarize_each(funs(mean, var)))

##order in terms of column names

##and transpose

return(t(summary_eachvar[, order(names(summary_eachvar))]))

}
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Results: see that units that receive ads are more rural
(lower pop density), have a slightly lower median income
and fewer college grads

Control Treatment
density mean 4352.91 2502.20

density var 34677536.23 74245806.12
Inc mean 68.19 51.60

Inc var 591.50 255.21
per collegegrads mean 34.79 21.46

per collegegrads var 276.84 193.16
PercentBlack mean 0.08 0.12

PercentBlack var 0.03 0.03
PercentHispanic mean 0.10 0.06

PercentHispanic var 0.02 0.01

Will want to use matching to see better balance between treatment and
control on these variables!
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Ways to check for imbalance

1. Imbalance variable by variable: iterate through each variable you
think might be relevant for the paths in red above and...

I Compare summary statistics for each covariate between the treatment
group (Di = 1; receives ad) and control group (Di = 0; doesn’t receive
ad)

I Visualize density of each variable between treatment and control

2. Imbalance in joint distribution of variables: how do we get a more
global summary measure of imbalance that looks at imbalance across
all the variables of interest? One we’ll review:

I Multivariate L1 (in cem package in R)
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Implementing in R

density_function <- function(data, vars_of_interest,

treatment){

##restrict data to treatment + variables of interest

wide_data <- data[, c(treatment, vars_of_interest)]

##reshape to long format to use facet_wrap in

##plotting

data_long <- melt(variables, id.vars = treatment)

##plot with facet_wrap- subsetting inside

##as.factor is again due to ggplot and strings

ggplot(data_long, aes(x = value)) +

geom_density(aes(fill = as.factor(data_long[[treatment]])),

alpha = 0.3) +

facet_wrap(~ variable, scales = "free") +

labs(fill = treatment) +

theme_bw()

}
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Results

Notice differences in not only mean but also distribution of income and percent
college grads; density difference is still there but not showing up as clearly on

graph because of some very high density zip codes 32 / 56



Ways to check for imbalance

1. Imbalance variable by variable: iterate through each variable you
think might be relevant for the paths in red above and...

I Compare summary statistics for each covariate between the treatment
group (Di = 1; receives ad) and control group (Di = 0; doesn’t receive
ad)

I Visualize density of each variable between treatment and control

2. Imbalance in joint distribution of variables: how do we get a more
global summary measure of imbalance that looks at imbalance across
all the variables of interest? One we’ll review:

I Multivariate L1 (in cem package in R)
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Motivation and background for multivariate L1 (Ho et al.,
2007, p. 220)

I Motivation: previous summary statistics and plots went variable by
variable to check imbalance, but we may want a more global measure
of imbalance across all predictors of interest

I Can break down into two parts:
1. L1: jargon for measure of distance (

∑
i=1 |ai − bi |)

2. Multivariate: rather than iterating over each variable and defining the
distance, want to calculate one measure of distance for all the variables

I General idea: calculate distance between heights in multidimensional
histogram for covariates of interest (k) for treatment observations
and multidimensional histogram for covariates of interest (k) in
control observations
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Motivation and background for multivariate L1

I More specifically:
1. Coarsen the k covariates into bins (function can also do automatically)
2. Separately for tx and control group, generate cross-tabs that represent

cell counts of different combinations of variables/bins
3. Repeat for the control group
4. End up with two length-k vectors of counts (treatment vector; control

vector)– calculate absolute value of difference and average across
variables, where f is treated and g is control:3

L1(f , g) =
1

2

∑
`1...`k

|f`1...`k − g`1...`k |

I Interpretation:
I Higher L1: greater distance across variables; more imbalance and more

need for matching
I Lower L1: smaller distance across variables; less imbalance and more

need for matching
3Note: the source for equation uses notation ` but we should not confuse that with

log-likelihood!
35 / 56



Implementation in R

##load CEM package

library(cem)

##restrict to vars of interest

nj_varsofint <- nj_withz[, c("Treatment1", vars_of_interest)]

##run function

imbalance_pre <- imbalance(group = nj_varsofint$Treatment1,

data = nj_varsofint, drop = c("Treatment1"))

Result: L1 = 0.787
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Where we go from here

I Summary statistics, density plots, and global imbalance all show
imbalance between treatment group (receives spillover ads) and
control group (lack of spillover ads) on covariates that might also be
correlated with campaign contributions

I Suggests need for matching/next steps in the process
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Moving to steps 2-4

1. Check the need for matching/imbalance before matching
2. Choose a number of matches

2.1 Choose how many controls to match to each treatment unit (e.g.,
M = 1; M > 1)

2.2 When matching controls to treatment, choose:
2.2.1 Sampling without replacement: each control serves as a match for a

max of 1 treatment unit (can also serve as match for 0 treatment units)
2.2.2 Sampling with replacement: each control can serve as a match for more

than one treatment unit (still can serve as a match for 0 treatment
units)

3. Choose a distance metric/matching algorithm
4. Find matches (drop non-matches)

I If chose M > 1 or sampling with replacement: each control will have a
weight that represents how much it contributes to data once included
rather than a 1 = included; 0 = not included

5. Check balance
6. Repeat 2-5 until balance is acceptable
7. Calculate effect of treatment on the outcome in matched dataset
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Brief note: why are we collapsing these steps?

1. Important conceptual differences in each step and each requires
different decisions

I Number of matches...decisions:

1.1 One control or more than one control for treatment?
1.2 Match controls to treatments with or without replacement?

I Choose a distance metric/matching algorithm...decisions:

1.1 Algorithm that minimizes distances between covariates or algorithm
that uses covariates to estimate a single score and minimizes distances
between scores (propensity score matching)?

1.2 Within each approach, many variations (e.g. estimate propensity score
with logistic regression or more complex prediction model)

2. Implementation-wise in R, we often specify these decisions in the
same command by passing the command different arguments
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Matching algorithm to anchor these steps

1. Method 1: Mahalanobis distance (covered in Weds. lecture)

2. If time in code: Propensity score (covered in Monday lecture)

3. Next week: coarsened exact matching (CEM) (covered in Monday
lecture)
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For many methods

I Covariates to match on (same as those in Urban and Niebler (2013)):

1. Median household income
2. Percent black
3. Percent hispanic
4. Percent college graduates
5. Population density

I Package to use: MatchIt

I When choosing m, keeping in mind the count of treatment and
control observations which can constrain how many control units we
match to each treatment unit if matching without replacement:

Control Treatment
(Treatment1 = 0) (Treatment1 = 1)

395 186
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Method 1: Mahalanobis distance

I General idea in words:
I For two cities, calculate the distance between two covariates
I When creating the summary measure of distance across covariates,

make small distances between loosely correlated covariates count more
towards a smaller distance than small distances between two highly
correlated covariates

I In math:

Distance(Xi ,Xj) =
√

(Xi − Xj)S−1(Xi − Xj)

I S in present data: less important to have small distance between
income/college since two are highly correlated; more important between
density and college since two are less correlated:4

Inc % Hisp % Black Density % College
Inc 1.00 -0.41 -0.42 -0.34 0.83

% Hisp -0.41 1.00 0.32 0.52 -0.34
% Black -0.42 0.32 1.00 0.39 -0.36

density -0.34 0.52 0.39 1.00 -0.19
% College 0.83 -0.34 -0.36 -0.19 1.00

4For instance, you might have low density suburbs with mansions or low density rural areas
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Method 1: Mahalanobis distance- implementing via
MatchIt...each control only matches with one treatment
unit

I Choices:
I How to calculate distance: mahalanobis distance

distance = "mahalanobis"
I Method for matching treatment units after calculation of distance:

nearest neighbor
method = "nearest"

I How many units to match with each treatment: 2
ratio = 2

I Can controls to match with multiple treatment units?: no
replace = FALSE

I Putting it together:
mahal.out_nomult <- matchit(Treatment1 ~ Inc +

PercentHispanic + PercentBlack + density + per_collegegrads,

data = nj_withz, method = "nearest", distance = "mahalanobis",

ratio= 2, replace = FALSE)
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Method 1: Mahalanobis distance- implementing via
MatchIt...each control can match with multiple treatment
units

I Choices:
I How to calculate distance: mahalanobis distance

distance = "mahalanobis"
I Method for matching treatment units after calculation of distance:

nearest neighbor
method = "nearest"

I How many units to match with each treatment: 2
ratio = 2

I Can controls to match with multiple treatment units?: yes
replace = TRUE

I Putting it together:
mahal.out_mult <- matchit(Treatment1 ~ Inc + PercentHispanic +

PercentBlack + density + per_collegegrads,

data = nj_withz, method = "nearest",

distance = "mahalanobis",

ratio= 2, replace = TRUE) 44 / 56



Method 1: useful quantities to extract from the output of
matchit

In this case, we can use to assess differences produced by choice to allow
for controls to only match one or to match multiple treatment units

1. Summary table of number of control units matched
2. Weights on observations: need for balance function to check means,

density plot function for visualization, and eventually regression we
feed the matched data to

I Treatment units: weights should be 1– remember from lecture that
discarding treatment units changes our quantity of interest to the
feasible ATT, so for now, we’re keeping all treatment units

I Control units: weights will depend on method:
I Match without replacement: each control unit either does not get

matched with a treatment (w = 0) or gets matched with one
treatment (w = 1)

I Match with replacement: each control unit may not get matched
(w = 0) but may also have a non-zero weight depending on how many
units they are matched with w > 0
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1. Summary table of matched counts

I How many of control units are matched in each method? we know
the answer for the only matching one (treatment × 2), but are
interested in whether allowing multiple matches reduces to each
control still only being used once:

mahal.out_nomult$nn

mahal.out_mult$nn
I Results:

I Control matches with one unit
Control Treated

All 395.00 186.00
Matched 372.00 186.00

Unmatched 23.00 0.00

I Control can match with multiple units:

Control Treated
All 395.00 186.00

Matched 140.00 186.00
Unmatched 255.00 0.00
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2. Weights to use for remainder of analysis

I How to find:
##find weights

mahal.out_nomult_w <- mahal.out_nomult$weights

mahal.out_mult_w <- mahal.out_mult$weights

##append weights to data

nj_withz <- nj_withz %>%

mutate(weights_mahalnomult = mahal.out_nomult_w,

weights_mahalmult = mahal.out_mult_w)

I Example of how which observations are used as controls changes
between methods:

Di city zip Weights Weights
no multiple allow multiple

0 Spring Lake 07762 1.00 0.75
1 Camden 08104 1.00 1.00
1 Wildwood 08260 1.00 1.00
0 Woodbridge 07095 1.00 0.00
0 Ramsey 07446 1.00 0.00
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Visual comparison of control towns used as matches versus
not used as matches depending on whether same town can
match multiple treatments

Atlantic

Bergen

Burlington

Camden

Cape May

Cumberland

Essex

Gloucester

Hudson

Hunterdon

Mercer

Middlesex

Monmouth

Morris

Ocean

Passaic

Salem

Somerset

Sussex

Union

Warren

Type of town

Matched Control

Non−matched Control

Treatment

Control units matched and not matched: 
 Mahalanobis distance, 2 controls:treatment, 
 no replacement of controls

Atlantic

Bergen

Burlington

Camden

Cape May

Cumberland

Essex

Gloucester

Hudson

Hunterdon

Mercer

Middlesex

Monmouth

Morris

Ocean

Passaic

Salem

Somerset

Sussex

Union

Warren

Type of town

Matched Control

Non−matched Control

Treatment

Control units matched and not matched: 
 Mahalanobis distance, 2 controls:treatment, 
 allow replacement of controls
  (size of dot = weight)
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Returning to our general steps...

1. Check the need for matching/imbalance before matching

2. Choose a number of matches

3. Choose a distance metric/matching algorithm

4. Find matches (drop non-matches)5

5. Check balance

6. Repeat 2-5 until balance is acceptable

7. Calculate effect of treatment on the outcome in matched dataset

5Note: the observations with weight = 0 like Woodbridge and Ramsey will be
dropped from analyses as long as we specify to use weights
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Checking balance in matched data

I Just as we used three balance metrics prior to matching to assess
balance/the need for matching, we can return to the same three ways
of assessing balance:

1. Compare summary statistics for each covariate between the treatment
group (Di = 1; receives ad) and control group (Di = 0; doesn’t receive
ad)

2. Visualize density of each variable between treatment and control
3. Multivariate L1 (in cem package in R)

I What changes? We’re now feeding it the matched data...which
means:

I If we did a simpler matching algorithm where each control observation
is either kept with w = 1 or discarded due to w = 0, we can prune the
data to these observations and run the above functions without a
weights argument

I How do we do this? Either filter out all observations where weights = 0
or in the original matchit command, specify discard = "control"

I If we did an algorithm where some control observations have
w 6= {0, 1}, we need to make sure to run the balance functions with a
weights argument
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Checking balance with weighted mean for allowing each
control to match with more than one treated unit

variables <- nj_withz[, c(treatment, vars_of_interest, weights)]

weighted_summary <- t(as.data.frame(variables %>%

group_by_(.dots = treatment) %>%

summarize_each(funs(weighted.mean(.,

w = weights_mahalmult)))))

See .rmd solutions for how to update the balance function we showed on a
previous slide to deal with weighted.means
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Compare balance to data before matching

Control Treatment Control Treatment
Matched Matched NonMatched NonMatched

Inc 55.36 51.60 68.19 51.60
PercentHispanic 0.07 0.06 0.10 0.06

PercentBlack 0.09 0.12 0.08 0.12
density 2564.38 2502.20 4352.91 2502.20

per collegegrads 24.86 21.46 34.79 21.46

New L1 = 0.691

Improved balance, especially on the density covariate!
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Returning to our general steps...

1. Check the need for matching/imbalance before matching

2. Choose a number of matches

3. Choose a distance metric/matching algorithm

4. Find matches (drop non-matches)

5. Check balance

6. Repeat 2-5 until balance is acceptable- If doing in real research, would
probably add more covariates to try to improve the balance further!

7. Calculate effect of treatment on the outcome in matched dataset
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Step 7: calculate the effect of treatment on the outcome in
matched dataset

We will discuss in Monday’s lecture two options; for now, we’re
implementing second:

I Estimate simple (weighted) difference in means between treatment
and control

I What Ho et al. recommend: feed the matched data to the parametric
model one was planning on estimating in the first place; in this case,
that’s a simple linear regression of campaign contributions on the
treatment indicator of ads, controlling for various covariates

I Important to note: we should not be looking at the outcome
variable until this step because we don’t want our matching choices
to be driven by what will produce significance effects between the
matched treatment and control
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Step 7: calculate the effect of treatment on the outcome in
matched dataset

summary(lm(Cont ~ Treatment1 + Inc +

PercentHispanic + PercentBlack + density +

per_collegegrads, data = variables,

weights = weights_mahalmult))
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Matching gets us a more conservative estimate on the
treatment/null results for this particular state

Estimate with non-matched data
Estimate Std. Error t value Pr(>|t|)

(Intercept) -84.4950 13.8492 -6.10 0.0000
Treatment1 20.2604 7.4060 2.74 0.0064

Inc 0.2901 0.2533 1.15 0.2526
PercentHispanic 78.3532 31.4541 2.49 0.0130

PercentBlack 69.1403 21.1332 3.27 0.0011
density 0.0003 0.0005 0.50 0.6150

per collegegrads 2.4498 0.3312 7.40 0.0000

Estimate with matched data
Estimate Std. Error t value Pr(>|t|)

(Intercept) -53.3672 17.1821 -3.11 0.0021
Treatment1 11.1512 7.2010 1.55 0.1225

Inc -0.0003 0.3535 -0.00 0.9994
PercentHispanic 75.3112 49.5881 1.52 0.1298

PercentBlack 16.6408 25.8659 0.64 0.5205
density 0.0002 0.0006 0.34 0.7316

per collegegrads 2.4375 0.3904 6.24 0.0000
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