
Boosting Methods

Jeremy Cohen

Princeton University

3 May 2018

Jeremy Cohen (Princeton) Boosting 3 May 2018 1 / 48

Overview

1 AdaBoost
Forward Stagewise Additive
Modeling
The Loss Function

2 Selecting a Loss Function
Classification
Regression

3 Boosting Trees
Brief Background on CART

Boosting Trees

4 Gradient Boosting
Steepest Descent
Gradient Boosting

5 Tuning and Metaparameter
Values

Tree Size
Regularization

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 2 / 48

1 AdaBoost
Forward Stagewise Additive Modeling
The Loss Function

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 3 / 48

AdaBoost

Original boosting algorithm designed for the binary classification problem.

Given an output variable, Y ∈ {−1, 1} and a vector of predictor
variables, X , a classifier G (X) produces a prediction taking one of the
two values of Y

We begin with a ”weak” classifier fit to the data.1

We then reweight the observations so that those that were
misclassified in this round, yi 6= G (xi)areupweighted

We then fit a new classifier and repeat this M times.

The final classification is given by a weighted vote of all classifiers,
with those Gm(x) that are more accurate receiving higher weights.

1A weak classifier is one that performs only slightly better than random guessing.
Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

AdaBoost

Original boosting algorithm designed for the binary classification problem.

Given an output variable, Y ∈ {−1, 1} and a vector of predictor
variables, X , a classifier G (X) produces a prediction taking one of the
two values of Y

We begin with a ”weak” classifier fit to the data.1

We then reweight the observations so that those that were
misclassified in this round, yi 6= G (xi)areupweighted

We then fit a new classifier and repeat this M times.

The final classification is given by a weighted vote of all classifiers,
with those Gm(x) that are more accurate receiving higher weights.

1A weak classifier is one that performs only slightly better than random guessing.
Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

AdaBoost

Original boosting algorithm designed for the binary classification problem.

Given an output variable, Y ∈ {−1, 1} and a vector of predictor
variables, X , a classifier G (X) produces a prediction taking one of the
two values of Y

We begin with a ”weak” classifier fit to the data.1

We then reweight the observations so that those that were
misclassified in this round, yi 6= G (xi)areupweighted

We then fit a new classifier and repeat this M times.

The final classification is given by a weighted vote of all classifiers,
with those Gm(x) that are more accurate receiving higher weights.

1A weak classifier is one that performs only slightly better than random guessing.
Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

AdaBoost

Original boosting algorithm designed for the binary classification problem.

Given an output variable, Y ∈ {−1, 1} and a vector of predictor
variables, X , a classifier G (X) produces a prediction taking one of the
two values of Y

We begin with a ”weak” classifier fit to the data.1

We then reweight the observations so that those that were
misclassified in this round, yi 6= G (xi)areupweighted

We then fit a new classifier and repeat this M times.

The final classification is given by a weighted vote of all classifiers,
with those Gm(x) that are more accurate receiving higher weights.

1A weak classifier is one that performs only slightly better than random guessing.
Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

AdaBoost

Original boosting algorithm designed for the binary classification problem.

Given an output variable, Y ∈ {−1, 1} and a vector of predictor
variables, X , a classifier G (X) produces a prediction taking one of the
two values of Y

We begin with a ”weak” classifier fit to the data.1

We then reweight the observations so that those that were
misclassified in this round, yi 6= G (xi)areupweighted

We then fit a new classifier and repeat this M times.

The final classification is given by a weighted vote of all classifiers,
with those Gm(x) that are more accurate receiving higher weights.

1A weak classifier is one that performs only slightly better than random guessing.
Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

AdaBoost, Visually

Figure 1: (Hastie et al. 2009:338)

Jeremy Cohen (Princeton) Boosting 3 May 2018 5 / 48

AdaBoost, More Formally

1 Initialize the observation weights wi = 1
N , for i = 1, 2, ...,N

2 For m = 1 to M:

Fit a classifier Gm(x) to the training data using weights wi

Compute the error of the classifier as

errm =

∑N
i=1 wi1(yi 6= Gm(xi))∑N

i=1 wi

Compute αm = log(1−errm
errm

)
Set wi ← wi · exp [αm · Gm(xi)]

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]

Jeremy Cohen (Princeton) Boosting 3 May 2018 6 / 48

AdaBoost, More Formally

1 Initialize the observation weights wi = 1
N , for i = 1, 2, ...,N

2 For m = 1 to M:

Fit a classifier Gm(x) to the training data using weights wi

Compute the error of the classifier as

errm =

∑N
i=1 wi1(yi 6= Gm(xi))∑N

i=1 wi

Compute αm = log(1−errm
errm

)
Set wi ← wi · exp [αm · Gm(xi)]

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]

Jeremy Cohen (Princeton) Boosting 3 May 2018 6 / 48

AdaBoost, More Formally

1 Initialize the observation weights wi = 1
N , for i = 1, 2, ...,N

2 For m = 1 to M:

Fit a classifier Gm(x) to the training data using weights wi

Compute the error of the classifier as

errm =

∑N
i=1 wi1(yi 6= Gm(xi))∑N

i=1 wi

Compute αm = log(1−errm
errm

)
Set wi ← wi · exp [αm · Gm(xi)]

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]

Jeremy Cohen (Princeton) Boosting 3 May 2018 6 / 48

AdaBoost, More Formally

1 Initialize the observation weights wi = 1
N , for i = 1, 2, ...,N

2 For m = 1 to M:

Fit a classifier Gm(x) to the training data using weights wi

Compute the error of the classifier as

errm =

∑N
i=1 wi1(yi 6= Gm(xi))∑N

i=1 wi

Compute αm = log(1−errm
errm

)
Set wi ← wi · exp [αm · Gm(xi)]

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]

Jeremy Cohen (Princeton) Boosting 3 May 2018 6 / 48

AdaBoost, More Formally

1 Initialize the observation weights wi = 1
N , for i = 1, 2, ...,N

2 For m = 1 to M:

Fit a classifier Gm(x) to the training data using weights wi

Compute the error of the classifier as

errm =

∑N
i=1 wi1(yi 6= Gm(xi))∑N

i=1 wi

Compute αm = log(1−errm
errm

)

Set wi ← wi · exp [αm · Gm(xi)]

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]

Jeremy Cohen (Princeton) Boosting 3 May 2018 6 / 48

AdaBoost, More Formally

1 Initialize the observation weights wi = 1
N , for i = 1, 2, ...,N

2 For m = 1 to M:

Fit a classifier Gm(x) to the training data using weights wi

Compute the error of the classifier as

errm =

∑N
i=1 wi1(yi 6= Gm(xi))∑N

i=1 wi

Compute αm = log(1−errm
errm

)
Set wi ← wi · exp [αm · Gm(xi)]

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]

Jeremy Cohen (Princeton) Boosting 3 May 2018 6 / 48

AdaBoost, More Formally

1 Initialize the observation weights wi = 1
N , for i = 1, 2, ...,N

2 For m = 1 to M:

Fit a classifier Gm(x) to the training data using weights wi

Compute the error of the classifier as

errm =

∑N
i=1 wi1(yi 6= Gm(xi))∑N

i=1 wi

Compute αm = log(1−errm
errm

)
Set wi ← wi · exp [αm · Gm(xi)]

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]

Jeremy Cohen (Princeton) Boosting 3 May 2018 6 / 48

AdaBoost, Visually in More Detail

Jeremy Cohen (Princeton) Boosting 3 May 2018 7 / 48

AdaBoost, Visually in More Detail

Jeremy Cohen (Princeton) Boosting 3 May 2018 7 / 48

AdaBoost, Visually in More Detail

Jeremy Cohen (Princeton) Boosting 3 May 2018 7 / 48

AdaBoost, Visually in More Detail

Jeremy Cohen (Princeton) Boosting 3 May 2018 8 / 48

1 AdaBoost
Forward Stagewise Additive Modeling
The Loss Function

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 9 / 48

Boosting Implements an Additive Model

What is AdaBoost doing and how can we generalize it to other
classification problems and to regression?

It turns out that AdaBoost implements Forward Stagewise Additive
Modeling (FSAM) using an exponential loss function. Let’s take these
one at a time.

Jeremy Cohen (Princeton) Boosting 3 May 2018 10 / 48

Boosting Implements an Additive Model

What is AdaBoost doing and how can we generalize it to other
classification problems and to regression?

It turns out that AdaBoost implements Forward Stagewise Additive
Modeling (FSAM) using an exponential loss function. Let’s take these
one at a time.

Jeremy Cohen (Princeton) Boosting 3 May 2018 10 / 48

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0

2 For m = 1 to M:

Compute:

(βm, γm) = argmin
β,γ

N∑
i=1

L(yi , fm−1(xi) + βb(xi); γ))

Set fm(x) = fm−1(x) + βmb(x ; γm)

Jeremy Cohen (Princeton) Boosting 3 May 2018 11 / 48

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0
2 For m = 1 to M:

Compute:

(βm, γm) = argmin
β,γ

N∑
i=1

L(yi , fm−1(xi) + βb(xi); γ))

Set fm(x) = fm−1(x) + βmb(x ; γm)

Jeremy Cohen (Princeton) Boosting 3 May 2018 11 / 48

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0
2 For m = 1 to M:

Compute:

(βm, γm) = argmin
β,γ

N∑
i=1

L(yi , fm−1(xi) + βb(xi); γ))

Set fm(x) = fm−1(x) + βmb(x ; γm)

Jeremy Cohen (Princeton) Boosting 3 May 2018 11 / 48

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0
2 For m = 1 to M:

Compute:

(βm, γm) = argmin
β,γ

N∑
i=1

L(yi , fm−1(xi) + βb(xi); γ))

Set fm(x) = fm−1(x) + βmb(x ; γm)

Jeremy Cohen (Princeton) Boosting 3 May 2018 11 / 48

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0
2 For m = 1 to M:

Compute:

(βm, γm) = argmin
β,γ

N∑
i=1

L(yi , fm−1(xi) + βb(xi); γ))

Set fm(x) = fm−1(x) + βmb(x ; γm)

At each iteration, we fit the optimal basis function and corresponding
coefficient βm to add to the current expansion, fm−1(x). We do not
update the parameters of previously estimated functions

Jeremy Cohen (Princeton) Boosting 3 May 2018 11 / 48

1 AdaBoost
Forward Stagewise Additive Modeling
The Loss Function

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 12 / 48

The Loss Function

AdaBoost minimizes an exponential loss function. But let’s look at
the more familiar case of squared-error loss familiar from linear
regression

L(y , f (x)) = (y − f (x))2

L(yi , fm−1(xi) + βb(xi ; γ)) = (yi − fm−1(xi)− βb(xi ; γ))2

= (rim − βb(xi ; γ))2

So the basis function that best fits the residuals from the last
iteration will minimize the loss and be added to the model.

Jeremy Cohen (Princeton) Boosting 3 May 2018 13 / 48

The Loss Function

AdaBoost minimizes an exponential loss function. But let’s look at
the more familiar case of squared-error loss familiar from linear
regression

L(y , f (x)) = (y − f (x))2

L(yi , fm−1(xi) + βb(xi ; γ)) = (yi − fm−1(xi)− βb(xi ; γ))2

= (rim − βb(xi ; γ))2

So the basis function that best fits the residuals from the last
iteration will minimize the loss and be added to the model.

Jeremy Cohen (Princeton) Boosting 3 May 2018 13 / 48

1 AdaBoost

2 Selecting a Loss Function
Classification
Regression

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 14 / 48

Selecting a Loss Function

Will depend on the problem at hand.

Jeremy Cohen (Princeton) Boosting 3 May 2018 15 / 48

1 AdaBoost

2 Selecting a Loss Function
Classification
Regression

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 16 / 48

Loss Functions for Classification

In the binary classification situation outlined above, the margin, yf (x),
plays a role analogous to the residuals y − f (x) in regression. Positive
margins are classified correctly; negative margins are misclassified.

We want a loss function that penalizes negative margins more heavily
than positive ones.

Jeremy Cohen (Princeton) Boosting 3 May 2018 17 / 48

Loss Functions for Classification

Figure 2: (Hastie et al. 2009:347)

Jeremy Cohen (Princeton) Boosting 3 May 2018 18 / 48

1 AdaBoost

2 Selecting a Loss Function
Classification
Regression

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 19 / 48

Loss Functions for Regression

In the regression setting we can look at squared error loss (seen
above) or absolute loss, L(y , f (x)) = |y − f (x)|
We can also use the Huber loss criterion used in robust regression to
address the strengths of each

Jeremy Cohen (Princeton) Boosting 3 May 2018 20 / 48

Loss Functions for Regression

Figure 3: (Hastie et al. 2009:350)

Jeremy Cohen (Princeton) Boosting 3 May 2018 21 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees
Brief Background on CART
Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 22 / 48

Boosting Trees

Let’s boost some trees!

Jeremy Cohen (Princeton) Boosting 3 May 2018 23 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees
Brief Background on CART
Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 24 / 48

What is a Classification/Regression Tree?

Trees partition the space of all joint predictor variable values into
disjoint regions Rj as represented by the terminal nodes of the tree. A
constant γj is assigned to each such reagion and the predictive rule is
x ∈ Rj ⇒ f (x) = γj

So a tree can be formally expressed as:

T (x ; Θ) =
J∑

j=1

γj1(x ∈ Rj)

with Θ = {Rj , γj}J1

Jeremy Cohen (Princeton) Boosting 3 May 2018 25 / 48

What is a Classification/Regression Tree?

Trees partition the space of all joint predictor variable values into
disjoint regions Rj as represented by the terminal nodes of the tree. A
constant γj is assigned to each such reagion and the predictive rule is
x ∈ Rj ⇒ f (x) = γj

So a tree can be formally expressed as:

T (x ; Θ) =
J∑

j=1

γj1(x ∈ Rj)

with Θ = {Rj , γj}J1

Jeremy Cohen (Princeton) Boosting 3 May 2018 25 / 48

What is a Classification/Regression Tree

Figure 4: (Murphy 2012:545)

Jeremy Cohen (Princeton) Boosting 3 May 2018 26 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees
Brief Background on CART
Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 27 / 48

Boosting Trees

The boosted tree model is a sum of trees

fM(x) =
M∑

m=1

T (x ; Θm)

We will grow our trees in a FSAM. At each step we must solve:

Θ̂m = argmin
Θm

N∑
i=1

L(yi , fm−1(xi) + T (xi ; Θm))

Finding the optimal constants γjm is easy if we know the regions Rjm.
But finding the regions is difficult.

Jeremy Cohen (Princeton) Boosting 3 May 2018 28 / 48

Boosting Trees

The boosted tree model is a sum of trees

fM(x) =
M∑

m=1

T (x ; Θm)

We will grow our trees in a FSAM. At each step we must solve:

Θ̂m = argmin
Θm

N∑
i=1

L(yi , fm−1(xi) + T (xi ; Θm))

Finding the optimal constants γjm is easy if we know the regions Rjm.
But finding the regions is difficult.

Jeremy Cohen (Princeton) Boosting 3 May 2018 28 / 48

Boosting Trees

The boosted tree model is a sum of trees

fM(x) =
M∑

m=1

T (x ; Θm)

We will grow our trees in a FSAM. At each step we must solve:

Θ̂m = argmin
Θm

N∑
i=1

L(yi , fm−1(xi) + T (xi ; Θm))

Finding the optimal constants γjm is easy if we know the regions Rjm.
But finding the regions is difficult.

Jeremy Cohen (Princeton) Boosting 3 May 2018 28 / 48

Boosting Trees

Two cases where the problem simplifies

1 For squared-error loss the solution will be to grow a tree that best
predicts the current residuals, and γ̂jm is the mean of the residuals in
each corresponding region.

2 For two-class classification with exponential loss then (under
certain conditions) this gives rise to the AdaBoost method for
boosting classification trees. In general, the γ̂jm will be the weighted
log-odds in each corresponding region.

But recall that neither exponential nor squared-error loss are robust.
Choosing other loss criteria, though, make the solution to the problem
more difficult.

Jeremy Cohen (Princeton) Boosting 3 May 2018 29 / 48

Boosting Trees

Two cases where the problem simplifies

1 For squared-error loss the solution will be to grow a tree that best
predicts the current residuals, and γ̂jm is the mean of the residuals in
each corresponding region.

2 For two-class classification with exponential loss then (under
certain conditions) this gives rise to the AdaBoost method for
boosting classification trees. In general, the γ̂jm will be the weighted
log-odds in each corresponding region.

But recall that neither exponential nor squared-error loss are robust.
Choosing other loss criteria, though, make the solution to the problem
more difficult.

Jeremy Cohen (Princeton) Boosting 3 May 2018 29 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting
Steepest Descent
Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 30 / 48

Gradient Boosting

In order to solve this complex problem (for any differentiable loss function)
we will implement a solution known as gradient boosting.

Jeremy Cohen (Princeton) Boosting 3 May 2018 31 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting
Steepest Descent
Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 32 / 48

Steepest Descent

The solution we will implement is analogous to the steepest descent
numerical optimization procedure.

At any point in the procedure we evaluate the gradient (gm) of the
function L(f) at the last update:

gim =

[
∂L(yi , f (xi))

∂f (xi)

]
f (xi)=fm−1(xi)

and take a step of length ρm, which is the solution to

ρm = argmin
ρ

L(fm−1 − ρgm)

We then update by subtracting ρmgm from the previous update.

Jeremy Cohen (Princeton) Boosting 3 May 2018 33 / 48

Steepest Descent

The solution we will implement is analogous to the steepest descent
numerical optimization procedure.

At any point in the procedure we evaluate the gradient (gm) of the
function L(f) at the last update:

gim =

[
∂L(yi , f (xi))

∂f (xi)

]
f (xi)=fm−1(xi)

and take a step of length ρm, which is the solution to

ρm = argmin
ρ

L(fm−1 − ρgm)

We then update by subtracting ρmgm from the previous update.

Jeremy Cohen (Princeton) Boosting 3 May 2018 33 / 48

Steepest Descent

The solution we will implement is analogous to the steepest descent
numerical optimization procedure.

At any point in the procedure we evaluate the gradient (gm) of the
function L(f) at the last update:

gim =

[
∂L(yi , f (xi))

∂f (xi)

]
f (xi)=fm−1(xi)

and take a step of length ρm, which is the solution to

ρm = argmin
ρ

L(fm−1 − ρgm)

We then update by subtracting ρmgm from the previous update.

Jeremy Cohen (Princeton) Boosting 3 May 2018 33 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting
Steepest Descent
Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 34 / 48

Gradient Boosting

Steepest descent chooses the direction in which the function is most
rapidly decreasing

We would like to do the same thing but here our solution must be a
tree. Also importantly, we don’t want to simply minimize loss on the
training set but generalize to new data.

A potential solution is to induce a tree at the mth iteration whose
predictions tm are as close as possible to the negative gradient

Θ̃m = argmin
Θ

N∑
i=1

(−gim − T (xi ; Θ))2

Jeremy Cohen (Princeton) Boosting 3 May 2018 35 / 48

Gradient Boosting

Steepest descent chooses the direction in which the function is most
rapidly decreasing

We would like to do the same thing but here our solution must be a
tree. Also importantly, we don’t want to simply minimize loss on the
training set but generalize to new data.

A potential solution is to induce a tree at the mth iteration whose
predictions tm are as close as possible to the negative gradient

Θ̃m = argmin
Θ

N∑
i=1

(−gim − T (xi ; Θ))2

Jeremy Cohen (Princeton) Boosting 3 May 2018 35 / 48

Gradient Boosting

Steepest descent chooses the direction in which the function is most
rapidly decreasing

We would like to do the same thing but here our solution must be a
tree. Also importantly, we don’t want to simply minimize loss on the
training set but generalize to new data.

A potential solution is to induce a tree at the mth iteration whose
predictions tm are as close as possible to the negative gradient

Θ̃m = argmin
Θ

N∑
i=1

(−gim − T (xi ; Θ))2

Jeremy Cohen (Princeton) Boosting 3 May 2018 35 / 48

Gradient Boosting

1 Initialize f0(x) = argmin
γ

∑N
i=1 L(yi , γ)

2 For m = 1 to M:

For i = 1, 2, ...,N compute

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f =fm−1

Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ..., Jm
For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L(Y − i , fm−1(xi) + γ)

Update fm(x) = fm−1(x) +
∑Jm

j=1 γjm1(x ∈ Rjm)

3 Output f̂ (x) = fM(x)

Jeremy Cohen (Princeton) Boosting 3 May 2018 36 / 48

Gradient Boosting

1 Initialize f0(x) = argmin
γ

∑N
i=1 L(yi , γ)

2 For m = 1 to M:

For i = 1, 2, ...,N compute

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f =fm−1

Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ..., Jm
For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L(Y − i , fm−1(xi) + γ)

Update fm(x) = fm−1(x) +
∑Jm

j=1 γjm1(x ∈ Rjm)

3 Output f̂ (x) = fM(x)

Jeremy Cohen (Princeton) Boosting 3 May 2018 36 / 48

Gradient Boosting

1 Initialize f0(x) = argmin
γ

∑N
i=1 L(yi , γ)

2 For m = 1 to M:

For i = 1, 2, ...,N compute

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f =fm−1

Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ..., Jm
For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L(Y − i , fm−1(xi) + γ)

Update fm(x) = fm−1(x) +
∑Jm

j=1 γjm1(x ∈ Rjm)

3 Output f̂ (x) = fM(x)

Jeremy Cohen (Princeton) Boosting 3 May 2018 36 / 48

Gradient Boosting

1 Initialize f0(x) = argmin
γ

∑N
i=1 L(yi , γ)

2 For m = 1 to M:

For i = 1, 2, ...,N compute

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f =fm−1

Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ..., Jm

For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L(Y − i , fm−1(xi) + γ)

Update fm(x) = fm−1(x) +
∑Jm

j=1 γjm1(x ∈ Rjm)

3 Output f̂ (x) = fM(x)

Jeremy Cohen (Princeton) Boosting 3 May 2018 36 / 48

Gradient Boosting

1 Initialize f0(x) = argmin
γ

∑N
i=1 L(yi , γ)

2 For m = 1 to M:

For i = 1, 2, ...,N compute

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f =fm−1

Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ..., Jm
For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L(Y − i , fm−1(xi) + γ)

Update fm(x) = fm−1(x) +
∑Jm

j=1 γjm1(x ∈ Rjm)

3 Output f̂ (x) = fM(x)

Jeremy Cohen (Princeton) Boosting 3 May 2018 36 / 48

Gradient Boosting

1 Initialize f0(x) = argmin
γ

∑N
i=1 L(yi , γ)

2 For m = 1 to M:

For i = 1, 2, ...,N compute

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f =fm−1

Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ..., Jm
For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L(Y − i , fm−1(xi) + γ)

Update fm(x) = fm−1(x) +
∑Jm

j=1 γjm1(x ∈ Rjm)

3 Output f̂ (x) = fM(x)

Jeremy Cohen (Princeton) Boosting 3 May 2018 36 / 48

Gradient Boosting

1 Initialize f0(x) = argmin
γ

∑N
i=1 L(yi , γ)

2 For m = 1 to M:

For i = 1, 2, ...,N compute

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f =fm−1

Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ..., Jm
For j = 1, 2, ..., Jm compute

γjm = argmin
γ

∑
xi∈Rjm

L(Y − i , fm−1(xi) + γ)

Update fm(x) = fm−1(x) +
∑Jm

j=1 γjm1(x ∈ Rjm)

3 Output f̂ (x) = fM(x)

Jeremy Cohen (Princeton) Boosting 3 May 2018 36 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values
Tree Size
Regularization

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 37 / 48

Tuning and Metaparameters

There are a number of parameters for the algorithm that we might be
concerned about setting

Jm, the number of terminal nodes in each tree

M, the number of boosting iterations

ν, a shrinkage parameter

η, fraction of training observations to select at each iteration
(stochastic gradient boosting)

Jeremy Cohen (Princeton) Boosting 3 May 2018 38 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values
Tree Size
Regularization

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 39 / 48

Tree Size, J

Set Jm = J ∀m
Selection of J will affect the number of interactions you allow in your
model as the interaction order for any tree is given by J − 1.

HT&F recommend J ' 6

Jeremy Cohen (Princeton) Boosting 3 May 2018 40 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values
Tree Size
Regularization

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 41 / 48

Regularization: Number of Iterations, M

In setting the number of iterations we want to run enough to
maximally reduce error on the test sample but not so much that we
overfit to the training sample.

This implies some optimal M = M∗ that HT&F recommend finding
using an early stopping strategy.

Jeremy Cohen (Princeton) Boosting 3 May 2018 42 / 48

Regularization: Shrinkage, ν

The simplest implementation of shrinkage is to scale the contributions
of each tree by a factor 0 < ν < 1

Because smaller values of ν imply a slower learning, there is a tradeoff
between M and ν

HT&F suggest that the best results are found with ν < 0.1

Jeremy Cohen (Princeton) Boosting 3 May 2018 43 / 48

Regularization: Shrinkage, ν

Figure 5: Hastie et al. 2009:366

Jeremy Cohen (Princeton) Boosting 3 May 2018 44 / 48

Regularization: Subsampling, η

Boootstrap averaging (bagging) can improve the performance of a
noisy classifier. We can apply a similar logic here.

At each iteration we sample without replacement some fraction η of
the training observations. A typical value is η = 0.5. This reduces
computational effort while also (often) improving accuracy.

Jeremy Cohen (Princeton) Boosting 3 May 2018 45 / 48

Regularization: Subsampling, η

Figure 6: Hastie et al. 2009:367

Jeremy Cohen (Princeton) Boosting 3 May 2018 46 / 48

1 AdaBoost

2 Selecting a Loss Function

3 Boosting Trees

4 Gradient Boosting

5 Tuning and Metaparameter Values

6 Implementation in R

Jeremy Cohen (Princeton) Boosting 3 May 2018 47 / 48

xgboost package

xgboost implements gradient boosting in R

command xgboost allows you to control the depth of trees,
regularization, subsampling, and the number of rounds of boosting

also creates visualizations of variable importance plots

Jeremy Cohen (Princeton) Boosting 3 May 2018 48 / 48

	AdaBoost
	Forward Stagewise Additive Modeling
	The Loss Function

	Selecting a Loss Function
	Classification
	Regression

	Boosting Trees
	Brief Background on CART
	Boosting Trees

	Gradient Boosting
	Steepest Descent
	Gradient Boosting

	Tuning and Metaparameter Values
	Tree Size
	Regularization

	Implementation in R

