Boosting Methods

Jeremy Cohen

Princeton University

3 May 2018

Jeremy Cohen (Princeton)

Overview

🕽 AdaBoost

- Forward Stagewise Additive Modeling
- The Loss Function
- Selecting a Loss Function
 - Classification
 - Regression
- 3 Boosting Trees
 - Brief Background on CART

- Boosting Trees
- 4 Gradient Boosting
 - Steepest Descent
 - Gradient Boosting
- 5 Tuning and Metaparameter Values
 - Tree Size
 - Regularization
- 6 Implementation in R

- Forward Stagewise Additive Modeling
- The Loss Function
- 2 Selecting a Loss Function
- 3 Boosting Trees
- 4 Gradient Boosting
- 5 Tuning and Metaparameter Values
- Implementation in R

Original boosting algorithm designed for the binary classification problem.

• Given an output variable, $Y \in \{-1,1\}$ and a vector of predictor variables, X, a classifier G(X) produces a prediction taking one of the two values of Y

¹A weak classifier is one that performs only slightly better than random guessing.

Original boosting algorithm designed for the binary classification problem.

- Given an output variable, $Y \in \{-1,1\}$ and a vector of predictor variables, X, a classifier G(X) produces a prediction taking one of the two values of Y
- We begin with a "weak" classifier fit to the data.¹

¹A weak classifier is one that performs only slightly better than random guessing. Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

Original boosting algorithm designed for the binary classification problem.

- Given an output variable, $Y \in \{-1, 1\}$ and a vector of predictor variables, X, a classifier G(X) produces a prediction taking one of the two values of Y
- We begin with a "weak" classifier fit to the data.¹
- We then reweight the observations so that those that were misclassified in this round, y_i ≠ G(x_i)areupweighted

¹A weak classifier is one that performs only slightly better than random guessing. Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

Original boosting algorithm designed for the binary classification problem.

- Given an output variable, $Y \in \{-1,1\}$ and a vector of predictor variables, X, a classifier G(X) produces a prediction taking one of the two values of Y
- We begin with a "weak" classifier fit to the data.¹
- We then reweight the observations so that those that were misclassified in this round, y_i ≠ G(x_i)areupweighted
- We then fit a new classifier and repeat this *M* times.

¹A weak classifier is one that performs only slightly better than random guessing. Jeremy Cohen (Princeton) Boosting 3 May 2018 4 / 48

Original boosting algorithm designed for the binary classification problem.

- Given an output variable, $Y \in \{-1,1\}$ and a vector of predictor variables, X, a classifier G(X) produces a prediction taking one of the two values of Y
- We begin with a "weak" classifier fit to the data.¹
- We then reweight the observations so that those that were misclassified in this round, y_i ≠ G(x_i)areupweighted
- We then fit a new classifier and repeat this *M* times.
- The final classification is given by a weighted vote of all classifiers, with those $G_m(x)$ that are more accurate receiving higher weights.

¹A weak classifier is one that performs only slightly better than random guessing. Jeremy Cohen (Princeton) Boosting 3 May 2018

4 / 48

AdaBoost, Visually

Figure 1: (Hastie et al. 2009:338)

Jeremy Cohen (Princeton)

1 Initialize the observation weights $w_i = \frac{1}{N}$, for i = 1, 2, ..., N

Initialize the observation weights w_i = ¹/_N, for i = 1, 2, ..., N
For m = 1 to M:

- Initialize the observation weights w_i = ¹/_N, for i = 1, 2, ..., N
 For m = 1 to M:
 - Fit a classifier $G_m(x)$ to the training data using weights w_i

- Initialize the observation weights w_i = ¹/_N, for i = 1, 2, ..., N
 For m = 1 to M:
 - Fit a classifier $G_m(x)$ to the training data using weights w_i
 - Compute the error of the classifier as

$$err_m = \frac{\sum_{i=1}^N w_i \mathbf{1}(y_i \neq G_m(x_i))}{\sum_{i=1}^N w_i}$$

- Initialize the observation weights w_i = ¹/_N, for i = 1, 2, ..., N
 For m = 1 to M:
 - Fit a classifier $G_m(x)$ to the training data using weights w_i
 - Compute the error of the classifier as

$$err_m = \frac{\sum_{i=1}^N w_i \mathbf{1}(y_i \neq G_m(x_i))}{\sum_{i=1}^N w_i}$$

• Compute
$$\alpha_m = log(\frac{1 - err_m}{err_m})$$

- Initialize the observation weights w_i = ¹/_N, for i = 1, 2, ..., N
 For m = 1 to M:
 - Fit a classifier $G_m(x)$ to the training data using weights w_i
 - Compute the error of the classifier as

$$err_m = \frac{\sum_{i=1}^N w_i \mathbf{1}(y_i \neq G_m(x_i))}{\sum_{i=1}^N w_i}$$

• Compute
$$\alpha_m = log(\frac{1-err_m}{err_m})$$

• Set $w_i \leftarrow w_i \cdot exp[\alpha_m \cdot G_m(x_i)]$

- Initialize the observation weights w_i = ¹/_N, for i = 1, 2, ..., N
 For m = 1 to M:
 - Fit a classifier $G_m(x)$ to the training data using weights w_i
 - Compute the error of the classifier as

$$err_m = \frac{\sum_{i=1}^N w_i \mathbf{1}(y_i \neq G_m(x_i))}{\sum_{i=1}^N w_i}$$

• Compute
$$\alpha_m = log(\frac{1 - err_m}{err_m})$$

• Set $w_i \leftarrow w_i \cdot exp[\alpha_m \cdot G_m(x_i)]$
3 Output $G(x) = sign\left[\sum_{m=1}^M \alpha_m G_m(x)\right]$

++

Θ

_

Jeremy Cohen (Princeton)

- Forward Stagewise Additive Modeling
- The Loss Function
- 2 Selecting a Loss Function
- 3 Boosting Trees
- 4 Gradient Boosting
- 5 Tuning and Metaparameter Values
- Implementation in R

Boosting Implements an Additive Model

• What is AdaBoost doing and how can we generalize it to other classification problems and to regression?

Boosting Implements an Additive Model

- What is AdaBoost doing and how can we generalize it to other classification problems and to regression?
- It turns out that AdaBoost implements Forward Stagewise Additive Modeling (FSAM) using an exponential loss function. Let's take these one at a time.

- Initialize $f_0(x) = 0$
- **2** For m = 1 to M:

- 1 Initialize $f_0(x) = 0$
- **2** For m = 1 to M:
 - Compute:

$$(\beta_m, \gamma_m) = \underset{\beta, \gamma}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i); \gamma))$$

- 1 Initialize $f_0(x) = 0$
- **2** For m = 1 to M:
 - Compute:

$$(\beta_m, \gamma_m) = \operatorname*{argmin}_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i); \gamma))$$

• Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$

1 Initialize
$$f_0(x) = 0$$

2 For
$$m = 1$$
 to M :

• Compute:

$$(\beta_m, \gamma_m) = \operatorname*{argmin}_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i); \gamma))$$

• Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$

At each iteration, we fit the optimal basis function and corresponding coefficient β_m to add to the current expansion, $f_{m-1}(x)$. We do not update the parameters of previously estimated functions

- Forward Stagewise Additive Modeling
- The Loss Function
- 2 Selecting a Loss Function
- 3 Boosting Trees
- 4 Gradient Boosting
- 5 Tuning and Metaparameter Values
- Implementation in R

• AdaBoost minimizes an exponential loss function. But let's look at the more familiar case of squared-error loss familiar from linear regression

$$L(y, f(x)) = (y - f(x))^{2}$$

$$L(y_{i}, f_{m-1}(x_{i}) + \beta b(x_{i}; \gamma)) = (y_{i} - f_{m-1}(x_{i}) - \beta b(x_{i}; \gamma))^{2}$$

$$= (r_{im} - \beta b(x_{i}; \gamma))^{2}$$

 AdaBoost minimizes an exponential loss function. But let's look at the more familiar case of squared-error loss familiar from linear regression

$$L(y, f(x)) = (y - f(x))^{2}$$

$$L(y_{i}, f_{m-1}(x_{i}) + \beta b(x_{i}; \gamma)) = (y_{i} - f_{m-1}(x_{i}) - \beta b(x_{i}; \gamma))^{2}$$

$$= (r_{im} - \beta b(x_{i}; \gamma))^{2}$$

• So the basis function that best fits the residuals from the *last* iteration will minimize the loss and be added to the model.

2 Selecting a Loss Function

- Classification
- Regression
- 3 Boosting Trees
- 4 Gradient Boosting
- Tuning and Metaparameter Values
- Implementation in R

• Will depend on the problem at hand.

2 Selecting a Loss Function

- Classification
- Regression
- 3 Boosting Trees
- 4 Gradient Boosting
- Tuning and Metaparameter Values
- Implementation in R

- In the binary classification situation outlined above, the margin, yf(x), plays a role analogous to the residuals y f(x) in regression. Positive margins are classified correctly; negative margins are misclassified.
- We want a loss function that penalizes negative margins more heavily than positive ones.

Loss Functions for Classification

Figure 2: (Hastie et al. 2009:347)
AdaBoost

2 Selecting a Loss Function

- Classification
- Regression
- 3 Boosting Trees
- 4 Gradient Boosting
- Tuning and Metaparameter Values
- Implementation in R

- In the regression setting we can look at squared error loss (seen above) or absolute loss, L(y, f(x)) = |y f(x)|
- We can also use the Huber loss criterion used in robust regression to address the strengths of each

Loss Functions for Regression

Figure 3: (Hastie et al. 2009:350)

- 3 Boosting Trees
 - Brief Background on CART
 - Boosting Trees
- 4 Gradient Boosting
- 5 Tuning and Metaparameter Values
- Implementation in R

Let's boost some trees!

- 3 Boosting Trees
 - Brief Background on CART
 - Boosting Trees
- 4 Gradient Boosting
- 5 Tuning and Metaparameter Values
- Implementation in R

What is a Classification/Regression Tree?

 Trees partition the space of all joint predictor variable values into disjoint regions R_j as represented by the terminal nodes of the tree. A constant γ_j is assigned to each such reagion and the predictive rule is x ∈ R_j ⇒ f(x) = γ_j

What is a Classification/Regression Tree?

- Trees partition the space of all joint predictor variable values into disjoint regions R_j as represented by the terminal nodes of the tree. A constant γ_j is assigned to each such reagion and the predictive rule is x ∈ R_j ⇒ f(x) = γ_j
- So a tree can be formally expressed as:

$$\mathcal{T}(x;\Theta) = \sum_{j=1}^{J} \gamma_j \mathbf{1}(x \in R_j)$$

with
$$\Theta = \{R_j, \gamma_j\}_1^J$$

What is a Classification/Regression Tree

Figure 4: (Murphy 2012:545)

Jeremy	Cohen ((Princeton)
--------	---------	-------------

3 May 2018 26 / 48

- 3 Boosting Trees
 - Brief Background on CART
 - Boosting Trees
- 4 Gradient Boosting
- 5 Tuning and Metaparameter Values
- Implementation in R

Boosting Trees

• The boosted tree model is a sum of trees

$$f_M(x) = \sum_{m=1}^M T(x; \Theta_m)$$

Boosting Trees

• The boosted tree model is a sum of trees

$$f_M(x) = \sum_{m=1}^M T(x; \Theta_m)$$

• We will grow our trees in a FSAM. At each step we must solve:

$$\hat{\Theta}_m = \underset{\Theta_m}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

Boosting Trees

• The boosted tree model is a sum of trees

$$f_M(x) = \sum_{m=1}^M T(x; \Theta_m)$$

• We will grow our trees in a FSAM. At each step we must solve:

$$\hat{\Theta}_m = \underset{\Theta_m}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x_i; \Theta_m))$$

Finding the optimal constants γ_{jm} is easy if we know the regions R_{jm}.
 But finding the regions is difficult.

Two cases where the problem simplifies

• For squared-error loss the solution will be to grow a tree that best predicts the current residuals, and $\hat{\gamma}_{jm}$ is the mean of the residuals in each corresponding region.

But recall that neither exponential nor squared-error loss are robust. Choosing other loss criteria, though, make the solution to the problem more difficult. Two cases where the problem simplifies

- For squared-error loss the solution will be to grow a tree that best predicts the current residuals, and $\hat{\gamma}_{jm}$ is the mean of the residuals in each corresponding region.
- Por two-class classification with exponential loss then (under certain conditions) this gives rise to the AdaBoost method for boosting classification trees. In general, the γ_jm will be the weighted log-odds in each corresponding region.

But recall that neither exponential nor squared-error loss are robust. Choosing other loss criteria, though, make the solution to the problem more difficult.

3 Boosting Trees

Gradient Boosting

Tuning and Metaparameter Values

Implementation in R

In order to solve this complex problem (for any differentiable loss function) we will implement a solution known as gradient boosting.

3 Boosting Trees

Gradient Boosting

Tuning and Metaparameter Values

Implementation in R

The solution we will implement is analogous to the steepest descent numerical optimization procedure.

• At any point in the procedure we evaluate the gradient (\mathbf{g}_m) of the function $L(\mathbf{f})$ at the last update:

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

The solution we will implement is analogous to the steepest descent numerical optimization procedure.

• At any point in the procedure we evaluate the gradient (\mathbf{g}_m) of the function $L(\mathbf{f})$ at the last update:

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

• and take a step of length ρ_m , which is the solution to

$$\rho_m = \underset{\rho}{\operatorname{argmin}} L(\mathbf{f}_{m-1} - \rho \mathbf{g}_m)$$

The solution we will implement is analogous to the steepest descent numerical optimization procedure.

• At any point in the procedure we evaluate the gradient (\mathbf{g}_m) of the function $L(\mathbf{f})$ at the last update:

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x_i) = f_{m-1}(x_i)}$$

• and take a step of length ρ_m , which is the solution to

$$\rho_m = \underset{\rho}{\operatorname{argmin}} L(\mathbf{f}_{m-1} - \rho \mathbf{g}_m)$$

• We then update by subtracting $\rho_m \mathbf{g}_m$ from the previous update.

3 Boosting Trees

Gradient Boosting

Tuning and Metaparameter Values

Implementation in R

• Steepest descent chooses the direction in which the function is most rapidly decreasing

- Steepest descent chooses the direction in which the function is most rapidly decreasing
- We would like to do the same thing but here our solution must be a tree. Also importantly, we don't want to simply minimize loss on the training set but generalize to new data.

- Steepest descent chooses the direction in which the function is most rapidly decreasing
- We would like to do the same thing but here our solution must be a tree. Also importantly, we don't want to simply minimize loss on the training set but generalize to new data.
- A potential solution is to induce a tree at the *m*th iteration whose predictions **t**_m are as close as possible to the negative gradient

$$ilde{\Theta}_m = \operatorname*{argmin}_{\Theta} \sum_{i=1}^N (-g_{im} - T(x_i; \Theta))^2$$

• Initialize
$$f_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, \gamma)$$

1 Initialize
$$f_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, \gamma)$$

2 For m = 1 to M:

• For *i* = 1, 2, ..., *N* compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

1 Initialize
$$f_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, \gamma)$$

2 For m = 1 to M:

• For *i* = 1, 2, ..., *N* compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

• Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$

1 Initialize
$$f_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, \gamma)$$

2 For m = 1 to M:

• For *i* = 1, 2, ..., *N* compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

- Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$
- For $j = 1, 2, ..., J_m$ compute

$$\gamma_{jm} = \operatorname*{argmin}_{\gamma} \sum_{x_i \in \mathcal{R}_{jm}} L(Y - i, f_{m-1}(x_i) + \gamma)$$

• Initialize
$$f_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, \gamma)$$

2 For m = 1 to M:

• For *i* = 1, 2, ..., *N* compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

- Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$
- For $j = 1, 2, ..., J_m$ compute

$$\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{jm}} L(Y - i, f_{m-1}(x_i) + \gamma)$$

• Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} \mathbf{1}(x \in R_{jm})$$

• Initialize
$$f_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^N L(y_i, \gamma)$$

2 For m = 1 to M:

• For *i* = 1, 2, ..., *N* compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}$$

- Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$
- For $j = 1, 2, ..., J_m$ compute

$$\gamma_{jm} = \operatorname*{argmin}_{\gamma} \sum_{x_i \in R_{jm}} L(Y - i, f_{m-1}(x_i) + \gamma)$$

• Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} \mathbf{1}(x \in R_{jm})$$

3 Output $\hat{f}(x) = f_M(x)$

- 3 Boosting Trees
- 4 Gradient Boosting
- Tuning and Metaparameter Values
 Tree Size
 - Regularization

Implementation in R

There are a number of parameters for the algorithm that we might be concerned about setting

- J_m , the number of terminal nodes in each tree
- *M*, the number of boosting iterations
- ν , a shrinkage parameter
- η , fraction of training observations to select at each iteration (stochastic gradient boosting)

- 3 Boosting Trees
- 4 Gradient Boosting
- Tuning and Metaparameter Values
 Tree Size
 - Regularization

Implementation in R

- Set $J_m = J \forall m$
- Selection of J will affect the number of interactions you allow in your model as the interaction order for any tree is given by J 1.
- HT&F recommend $J \simeq 6$

Selecting a Loss Function

- 3 Boosting Trees
- 4 Gradient Boosting
- Tuning and Metaparameter Values
 Tree Size
 - Regularization

Implementation in R

Regularization: Number of Iterations, M

- In setting the number of iterations we want to run enough to maximally reduce error on the test sample but not so much that we overfit to the training sample.
- This implies some optimal M = M* that HT&F recommend finding using an early stopping strategy.

- The simplest implementation of shrinkage is to scale the contributions of each tree by a factor 0 $<\nu<1$
- Because smaller values of ν imply a slower learning, there is a tradeoff between M and ν
- HT&F suggest that the best results are found with $\nu < 0.1$

Regularization: Shrinkage, ν

Figure 5: Hastie et al. 2009:366

Jeremy Cohen (Princeton)

Boosting

- Boootstrap averaging (bagging) can improve the performance of a noisy classifier. We can apply a similar logic here.
- At each iteration we sample without replacement some fraction η of the training observations. A typical value is $\eta = 0.5$. This reduces computational effort while also (often) improving accuracy.

Regularization: Subsampling, η

4–Node Trees

Figure 6: Hastie et al. 2009:367

Boosting

AdaBoost

- 2 Selecting a Loss Function
- 3 Boosting Trees
- 4 Gradient Boosting
- 5 Tuning and Metaparameter Values

Implementation in R

- xgboost implements gradient boosting in R
- command xgboost allows you to control the depth of trees, regularization, subsampling, and the number of rounds of boosting
- also creates visualizations of variable importance plots