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Example: Facial
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Feature engineering is hard

Lightening

https://alitarhini.wordpress.com/2010/12/05/face-recognition-an-introduction/



Feature engineering is hard

Angle

https://alitarhini.wordpress.com/2010/12/05/face-recognition-an-introduction/



Feature engineering is hard

Background

Jain, Vidit, and Erik Learned-Miller. Fddb: A benchmark for face detection in unconstrained settings. Vol. 88. Technical Report UM-CS-2010-009, University of Massachu:
Amherst, 2010.



Feature engineering is hard

multiple faces/ no faces

https://alitarhini.wordpress.com/2010/12/05/face-recognition-an-introduction/



Feature engineering is hard

* Feature engineering is hard
* Requires domain-knowledge;
e Hard to find a general feature extractor

* Feature engineering and prediction are two separate
steps.



Representation Learning

* | earning representations of the raw data that makes it
easier to extract useful information when building
prediction models.



Some existing
representation examples

o PCA:

e reduce the dimension of the
raw data.

e does not work when data
does not line on linear
manifold

"Nonlinear dimensionality
reduction by locally linear

embedding." Science, no.
5500 (2000): 2323-2326.
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Some existing
representation examples

o PCA:

e reduce the dimension of the
raw data.

e does not work when data
does not line on linear
manifold

Roweis, Sam T., and
Lawrence K. Saul.
"Nonlinear dimensionality
reduction by locally linear
embedding." Science, no.
5500 (2000): 2323-2326.




Some existing
representation examples

o Kernel tricks:

e project the data to higher dimensions to
make them linear separable.

e does not explicitly learn representations.



Some existing
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Some existing
representation examples

o Kernel tricks:

e project the data to higher dimensions to
make them linear separable.

e does not explicitly learn representations.



Deep Learning

e Deep Neural Networks

e (General feature extractor, with multiple levels of
representation.

e Automatically discover the representations needed for
subsequent prediction tasks.
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Multi-layer Neural Networks

e f() :activation function

* Activation function are usually c
nonlinear CB =)
Output units
_ 0 4 = Z Wi Yk
* When they are linear, reduces to W, ke H2
linear models.
_ Hidden units H2 Ve =1
e w;; :weights =Y Wiy
jeH1
* zj, 2k activations, yveighted sums of Hidden units H1 (3 y, =1(z)
previous layer’s units z=S wx
i € Input

e Y5, Yk: hidden units Input units

e Each unit is obtained by applying the
activation function on activations



Learning

e Goal: with inputs and outputs observed, learn the weights.
e Algorithm:
e Gradient descent

* Error Back propagation



https://www.youtube.com/watch?v=b4Vyma9wPHo



Gradient descent algorithm

loss Initial Oloss
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Global loss minimum

https://www.youtube.com/watch?v=b4Vyma9wPHo



Error Back Propagation

* Jo use gradient descent,

d Compare outputs with correct
we need tO knOW the answer to get error derivatives
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Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." Nature 323, no. 6088 (1986): 533.



Neural Network: learning

* Initialize: randomly assign some
weights (often small random
values around 0).

1. Forward pass: take some input
units X and calculate activations
of all layers

2. Back propagation: obtain partial
derivatives of weights using
back prop

3. Update weights using gradient
descent

4. Repeat 1 - 3 until convergence.
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d Compare outputs with correct
answer to get error derivatives

Y =1(z) )
Output units (g (1) l l £=y _t
4=:28‘Md”( e

(')y/

keH2 dE _oE oy
0z, dy, 0z
v =1(2) k_vwE
0 Z
2 = E ijy/ (yk | € out o<l
e H1
J dE _ oE oy,
— ()zk (')yk (')Zk oE _ oE
y; =1(z) 7_ gy
C / ( k
[ z, = E W X ke H?
i - dE _ oE 9y,
i € npu w; o
g 0z; dy; 0z;

Input units



Choice of activation
function

e Activation function adds non-linearity to the linear
weighted sum of hidden units.

e Common choices: Sigmoid and Relu (Rectified Linear
Unit)

e Sigmoid has the “vanishing gradient” problem: g(f)) = f(z)- (1= f(z))

sigmoid 5 RelLU

R(z) =max(0, z)
8




Basic neural networks

e Free parameters:
e the number of hidden layers
e the number of units per layer.
e # of hidden units increase ->
e model complexity increases

e more likely to overfit.



Convolutional Neural
Networks

e Sparse connectivity (local
connections): each units depends 0 Q °
on only on local regions of the |
previous layer.

e rationale: local groups of
values are often highly
correlated

* n-grams in 1D texts and
speeches;

e subregions in 2D photos

* video clip from a longer
video (3D).

Figure 9.2, Goodfellow et al., 2015



Convolutional Neural Networks

 Parameter sharing

* rationale: a particular layer fulfills some feature extraction
tasks.

* This task should be invariant to the location of subregion.

.9 1 1 0 || -1

http://cs231n.github.io/convolutional-networks/



Example of Convolution

Kernel is also known as filter

Input
Kernel
c d
w x
g h
Y z
k l
v Output
_>
aw + bx + bw + cx + cw + dx +
ey + fz fy + gz gy + hz
ew + fxr + fw + g + gw + hx +
W+ gz jy + kz ky + Iz

Figure 9.1, Goodfellow et al., 2015

https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-and-cats-5cc01b214e59
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Filter Examples

Operation Filter Convolved
Image
0 0 O
Identity 0 1 0
0 0 O
1 0 -1
0 0
-1 0 1
1 0
Edge detection 1 -4 1
0 1 0
-1 -1 -1
-1 8 -1
-1 -1 -1
0 -1
Sharpen -1 5 -1
0 -1
1
Box blur 1 1
(normalized) 9
1
G ian bl 1 L2
) auss'lant. )ur o 9 4 9
approximation
PO 1 2 1




Feature Maps

e Each convolution extract one type of feature; it is also
called a feature map

e \Weights of a feature map are the same (parameter
sharing)

e There are often multiple feature maps; each aims to
capture a different feature (e.qg., edge, circle, lines).



One convolutional Layer

Figure 2, LeCun et al., 2015



Pooling

e why we need pooling:
e translation invariant: small changes in feature location does not matter.
o down sampling; reduce complexity.

e max-pooling is popular, but there are other types (e.g., average pooling).

224x224x64 : _
ey Single depth slice
A
pool % 1112 )| 4
max pool with 2x2 filters
5167 |8 and stride 2 6 | 8
l ]‘ 3 | 2 . 3|4
1| 2
224 ’ St 112
S — downsampling
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example,
the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that
the volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here
shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

http://cs231n.github.io/convolutional-networks/



Convolutional Layer +
Pooling Layer

Convolutions and RelLU
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Why multiple layers

 Multiple levels of
representation

* lower layers capture
basic motifs such as
edges and circles.

 Upper layers capture

x x x ’ I’, \. —, ' /, aver
combinations of motifs. = aver

W AN = e

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. (ICML '09).






Neural Networks vs Conv
Neural Networks



Neural Networks vs Conv
Neural Networks

e Neural networks are wide

e Fully connected

 Weights between layers are all
different



Neural Networks vs Conv
Neural Networks

e Conv Nets are deep

e Sparsely connected
e Neural networks are wide
e Weights in each feature map
e Fully connected IS the same: extract the

same type of feature well.
 Weights between layers are all

different e weights across feature
maps are different: extract
many different types of
features.



Last step: fully connected
layers

» After several rounds of (Conv Layers + pooling layers), the
last (or last several ) layers produce outputs.

e Without the feature extraction part (Conv Layers + pooling
layers), the network is equivalent to basic neural
networks.

* We can skip the last fully connected layers, and use the
extracted features as input for other algorithms (e.g., SVM
or logistic regression).



AlexNet, 2012

55
27
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224 S\_|~ N T N -
55 384 384 256 2
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224 of 4
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Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing
systems, pp. 1097-1105. 2012.



CNN as a feature extractor

e Visualize the last layer: should contain representation of
the object itself.

e A good representation of feature should naturally put
similar objects in similar positions.



Testimage L2 Nearest neighbors in feature space
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Regularization

e traditional: add regularizer terms, to the loss function
.
e early stopping: a kind of cross-validation strategy. "
e split the data into train, validation and test
e stop when test accuracy begins to drop

e dropout: memorizing the past is not always useful

* randomly remove some nodes in the network
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Regularization

e traditional: add regularizer terms, to the loss function
[wl]?
e early stopping: a kind of cross-validation strategy.
e split the data into train, validation and test

e stop when test accuracy begins to drop

e dropout: memorizing the past |
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Lots of parameter choices

* Number of layers:
e More layers means better representation ability
* may overfit; increase computational complexity.
* Number of feature maps: usually double by each convolutional layers.
o Filter size, stride size.
e |earning rates
e Batch size: how many data points the learning algorithm sees each time

* Number of epochs: # of full pass of data.
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ImageNet Challenge: 1M images and 1000 categories.
* Image classification

» Single-object localization: try to find a bounding box indicating the position and scale of one
instance of each object category

* Object detection: find a list of object categories present in the image


http://wordnet.princeton.edu/
http://image-net.org/about-overview

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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What if you do not have
many data

 Transfer Learning

e ConvNet as a feature extractor: feed images into existing
models, and obtain the output before the last fully
connected layer.

e work if your images is similar to that of ImageNet
e Fine-tuning ConvNet:

* Freeze the weights of beginning layers of existing models

* Train the weights of later layers



CNN iIn other contexts

e Text Classification

. e
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.
et
e

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Kim,. 2014. “Convolutional Neural Networks for Sentence Classification.” ArXiv:
1408.5882, August. http://arxiv.org/abs/1408.5882.



Summary

e | earning representation itself is important
e Deep learning provides general feature extractor

e Extracted features can be used for prediction tasks



