Deep Learning

Convolutional Neural Networks

Han Zhang

2018-10-04

Table of Contents

- Representation Learning
- Neural Networks
- Convolutional Neural Networks

Example: Facial Recognition

Face detection

Prediction

Stalin

Internal Representation

RGB Representation

Sub-matrix that contains faces

Predicted Label

Lightening

https://alitarhini.wordpress.com/2010/12/05/face-recognition-an-introduction/

Angle

https://alitarhini.wordpress.com/2010/12/05/face-recognition-an-introduction/

Background

Jain, Vidit, and Erik Learned-Miller. Fddb: A benchmark for face detection in unconstrained settings. Vol. 88. Technical Report UM-CS-2010-009, University of Massachus Amherst, 2010.

multiple faces/ no faces

https://alitarhini.wordpress.com/2010/12/05/face-recognition-an-introduction/

- Feature engineering is hard
 - Requires domain-knowledge;
 - Hard to find a general feature extractor
- Feature engineering and prediction are two separate steps.

Representation Learning

 Learning representations of the raw data that makes it easier to extract useful information when building prediction models.

- PCA:
 - reduce the dimension of the raw data.
 - does not work when data does not line on linear manifold

Roweis, Sam T., and Lawrence K. Saul. "Nonlinear dimensionality reduction by locally linear embedding." Science, no. 5500 (2000): 2323-2326.

• PCA:

- reduce the dimension of the raw data.
- does not work when data does not line on linear manifold

- PCA:
 - reduce the dimension of the raw data.
 - does not work when data does not line on linear manifold

Roweis, Sam T., and Lawrence K. Saul. "Nonlinear dimensionality reduction by locally linear embedding." Science, no. 5500 (2000): 2323-2326.

- PCA:
 - reduce the dimension of the raw data.
 - does not work when data does not line on linear manifold

Roweis, Sam T., and Lawrence K. Saul. "Nonlinear dimensionality reduction by locally linear embedding." Science, no. 5500 (2000): 2323-2326.

- Kernel tricks:
 - project the data to higher dimensions to make them linear separable.
 - does not explicitly learn representations.

Data in R^3 (separable)

- Kernel tricks:
 - project the data to higher dimensions to make them linear separable.
 - does not explicitly learn representations.

Deep Learning

- Deep Neural Networks
 - General feature extractor, with multiple levels of representation.
 - Automatically discover the representations needed for subsequent prediction tasks.

Neurons

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

http://cs231n.github.io/neural-networks-1/

Multi-layer Neural Networks

- f() :activation function
 - Activation function are usually nonlinear
 - When they are linear, reduces to linear models.
- w_{ij} :weights
- z_j, z_k : activations, weighted sums of previous layer's units
- y_j, y_k : hidden units
- Each unit is obtained by applying the activation function on activations

Learning

- Goal: with inputs and outputs observed, learn the weights.
- Algorithm:
 - Gradient descent
 - Error Back propagation

Gradient descent algorithm

https://www.youtube.com/watch?v=b4Vyma9wPHo

Error Back Propagation

• To use gradient descent, we need to know the value of $\frac{\partial E_l}{\partial w_{\nu l}}$

$$\bullet \quad \frac{\partial E_l}{\partial w_{kl}} = \frac{\partial E_l}{\partial z_l} \frac{\partial z_l}{\partial w_{kl}}$$

$$\frac{\partial E_l}{\partial z_l} = \frac{\partial E_l}{\partial y_l} \frac{\partial y_l}{\partial z_l} = \frac{\partial E_l}{\partial y_l} \frac{\partial f(z_l)}{\partial z_l}$$

Compare outputs with correct answer to get error derivatives

Neural Network: learning

- Initialize: randomly assign some weights (often small random values around 0).
- Forward pass: take some input units X and calculate activations of all layers
- Back propagation: obtain partial derivatives of weights using back prop
- 3. Update weights using gradient descent
- 4. Repeat 1 3 until convergence.

Neural Network: learning

- Initialize: randomly assign some weights (often small random values around 0).
- Forward pass: take some input units X and calculate activations of all layers
- 2. Back propagation: obtain partial derivatives of weights using back prop
- 3. Update weights using gradient descent
- 4. Repeat 1 3 until convergence.

Neural Network: learning

- Initialize: randomly assign some weights (often small random values around 0).
- Forward pass: take some input units X and calculate activations of all layers
- Back propagation: obtain partial derivatives of weights using back prop
- 3. Update weights using gradient descent
- 4. Repeat 1 3 until convergence.

Neural Network: learning

 $\frac{\partial E}{\partial z_k} = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial z_k}$

- Initialize: randomly assign some weights (often small random values around 0).
- 1. Forward pass: take some input units X and calculate activations of all layers
- 2. Back propagation: obtain partial derivatives of weights using back prop
- 3. Update weights using gradient descent
- 4. Repeat 1 3 until convergence.

Compare outputs with correct answer to get error derivatives

C

$$y_{l} = f(z_{l})$$

$$z_{l} = \sum_{k \in H2} w_{kl} y_{k}$$

$$y_k = f(z_k)$$

$$z_k = \sum_j w_{jk} y_j$$

$$j \varepsilon H1$$

$$y_j = f(z_j)$$

 $z_j = \sum_{i \in \text{Input}} w_{ij} x_i$

Compare outputs with correct answer to get error derivatives

Choice of activation function

- Activation function adds non-linearity to the linear weighted sum of hidden units.
- Common choices: Sigmoid and ReLu (Rectified Linear Unit)
- Sigmoid has the "vanishing gradient" problem: $\frac{df(x)}{d(x)} = f(x) \cdot (1 f(x))$

Basic neural networks

- Free parameters:
 - the number of hidden layers
 - the number of units per layer.
 - # of hidden units increase ->
 - model complexity increases
 - more likely to overfit.

Convolutional Neural Networks

- Sparse connectivity (local connections): each units depends on only on local regions of the previous layer.
 - rationale: local groups of values are often highly correlated
 - n-grams in 1D texts and speeches;
 - subregions in 2D photos
 - video clip from a longer video (3D).

Figure 9.2, Goodfellow et al., 2015

Convolutional Neural Networks

- Parameter sharing
 - rationale: a particular layer fulfills some feature extraction tasks.
 - This task should be invariant to the location of subregion.

Example of Convolution

Kernel is also known as filter

Example of Convolution

Kernel is also known as filter

1 _{×1}	1 _{×0}	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Example of Convolution

Kernel is also known as filter

Filter Examples

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Feature Maps

- Each convolution extract one type of feature; it is also called a feature map
- Weights of a feature map are the same (parameter sharing)
- There are often multiple feature maps; each aims to capture a different feature (e.g., edge, circle, lines).

One convolutional Layer

Figure 2, LeCun et al., 2015

Pooling

- why we need pooling:
 - translation invariant: small changes in feature location does not matter.
 - down sampling; reduce complexity.
- max-pooling is popular, but there are other types (e.g., average pooling).

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. **Left**: In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume depth is preserved. **Right**: The most common downsampling operation is max, giving rise to **max pooling**, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

Convolutional Layer + Pooling Layer

Why multiple layers

- Multiple levels of representation
 - lower layers capture basic motifs such as edges and circles.
 - Upper layers capture combinations of motifs.

Layer 3

Layer 2

Layer 1

Neural Networks vs Conv Neural Networks

Neural Networks vs Conv Neural Networks

- Neural networks are wide
- Fully connected
- Weights between layers are all different

Neural Networks vs Conv Neural Networks

- Neural networks are wide
- Fully connected
- Weights between layers are all different

- Conv Nets are deep
- Sparsely connected
 - Weights in each feature map is the same: extract the same type of feature well.
 - weights across feature maps are different: extract many different types of features.

Last step: fully connected layers

- After several rounds of (Conv Layers + pooling layers), the last (or last several) layers produce outputs.
- Without the feature extraction part (Conv Layers + pooling layers), the network is equivalent to basic neural networks.
- We can skip the last fully connected layers, and use the extracted features as input for other algorithms (e.g., SVM or logistic regression).

AlexNet, 2012

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." In *Advances in neural information processing systems*, pp. 1097-1105. 2012.

CNN as a feature extractor

- Visualize the last layer: should contain representation of the object itself.
- A good representation of feature should naturally put similar objects in similar positions.

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture12.pdf

traditional: add regularizer terms, to the loss function

 $||w||^2$

- early stopping: a kind of cross-validation strategy.
 - split the data into train, validation and test
 - stop when test accuracy begins to drop
- dropout: memorizing the past is not always useful
 - randomly remove some nodes in the network

traditional: add regularizer terms, to the loss function

 $||w||^2$

- early stopping: a kind of cross-validation strategy.
 - split the data into train, validation and test
 - stop when test accuracy begins to drop

traditional: add regularizer terms, to the loss function

 $||w||^2$

- early stopping: a kind of cross-validation strategy.
 - split the data into train, validation and test
 - stop when test accuracy begins to drop
- dropout: memorizing the past is not always useful
 - randomly remove some nodes in the network

traditional: add regularizer terms, to the loss function

$$||w||^2$$

- early stopping: a kind of cross-validation strategy.
 - split the data into train, validation and test
 - stop when test accuracy begins to drop
- dropout: memorizing the past i
 - randomly remove some node

Lots of parameter choices

- Number of layers:
 - More layers means better representation ability
 - may overfit; increase computational complexity.
- Number of feature maps: usually double by each convolutional layers.
- Filter size, stride size.
- Learning rates
- Batch size: how many data points the learning algorithm sees each time
- Number of epochs: # of full pass of data.

• Rosenblatt, F. (1958, 1962): basic neural networks

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.
- ImageNet: 14 million images organized according to the WordNet hierarchy of nouns

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.
- ImageNet: 14 million images organized according to the WordNet hierarchy of nouns
 - http://image-net.org/about-overview

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.
- ImageNet: 14 million images organized according to the WordNet hierarchy of nouns
 - http://image-net.org/about-overview
 - J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.
- ImageNet: 14 million images organized according to the WordNet hierarchy of nouns
 - http://image-net.org/about-overview
 - J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.
- ImageNet Challenge: 1M images and 1000 categories.

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.
- ImageNet: 14 million images organized according to the WordNet hierarchy of nouns
 - http://image-net.org/about-overview
 - J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.
- ImageNet Challenge: 1M images and 1000 categories.
 - Image classification

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.
- ImageNet: 14 million images organized according to the WordNet hierarchy of nouns
 - http://image-net.org/about-overview
 - J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.
- ImageNet Challenge: 1M images and 1000 categories.
 - Image classification
 - Single-object localization: try to find a bounding box indicating the position and scale of one instance of each object category

- Rosenblatt, F. (1958, 1962): basic neural networks
- Rumelhart, Hinton, and Ronald(1986): Back Prop
- Le Cun et al., (1989): Conv Net.
- ImageNet: 14 million images organized according to the WordNet hierarchy of nouns
 - http://image-net.org/about-overview
 - J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.
- ImageNet Challenge: 1M images and 1000 categories.
 - Image classification
 - Single-object localization: try to find a bounding box indicating the position and scale of one instance of each object category
 - Object detection: find a list of object categories present in the image

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

What if you do not have many data

- Transfer Learning
 - ConvNet as a feature extractor: feed images into existing models, and obtain the output before the last fully connected layer.
 - work if your images is similar to that of ImageNet
 - Fine-tuning ConvNet:
 - Freeze the weights of beginning layers of existing models
 - Train the weights of later layers

CNN in other contexts

Text Classification

Kim,. 2014. "Convolutional Neural Networks for Sentence Classification." ArXiv: 1408.5882, August. http://arxiv.org/abs/1408.5882.

Summary

- Learning representation itself is important
- Deep learning provides general feature extractor
- Extracted features can be used for prediction tasks