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Papers covered

I Main focus (CDG): Corbett-Davies, S., Goel, S. (2018). The
Measure and Mismeasure of Fairness: A Critical Review of Fair
Machine Learning. arXiv preprint arXiv:1808.00023.

I Others:
I (LKLLM) Lakkaraju, H., Kleinberg, J., Leskovec, J., Ludwig, J.,

Mullainathan, S. (2017, August). The selective labels problem:
Evaluating algorithmic predictions in the presence of unobservables. In
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 275-284). ACM.

I (CR): Chouldechova, A., Roth, A. (2018). The Frontiers of Fairness in
Machine Learning. https://arxiv.org/abs/1810.08810
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Background: prioritizing among units (people; school
districts; etc.) when allocating interventions
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One way of deciding: rank individuals use a scalar
prioritization score and use threshold
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Two types of unfair allocations

Over-allocating a punitive resour-
ce to certain subgroups
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Under-allocating an assistive re-
source to certain subgroups
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How do we generate the rankings? Preliminary notation

I i : individuals
I x : observed

features/attributes/covariates of i
I xu: unprotected attributes we’re

willing to consider when prioritizing
among individuals

I xp: protected attributes we’re not
willing to consider when prioritizing
among individuals

I y ∈ {0, 1}: binary outcome
outcome/target of prediction

I r(x) = Pr(Y = 1|X = x): true risk as a
function of observed features
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r(x) as a function of one feature

Person Recidivate? Juv. felony

Y X

1 1 1

2 1 1

3 1 0

4 0 0

...

n 0 0




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r(x) as a function of one feature

r̂(x) = Pr(recidivate = 1|juv. felony)
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r(x) as a function of one feature: problems with prediction

Person Recidivate? Juv. felony r̂(x)

Y X

1 1 1 0.72

2 1 1 0.72

3 1 0 0.43

4 0 0 0.43

...

n 0 0 0.43




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Usually, want to calculate r(x) as a function of many
features/complex interactions between features...

id sex age race Juv. Juv. Priors Charge
fel. misd.

8670 Female 31 White 0 0 2 Assault
7898 Male 35 Black 0 0 2 Trespassing/Construction Si-

te
4390 Male 66 White 0 0 0 Grand Theft in the 3rd Degree
8613 Male 33 White 0 0 2 DUI Level 0.15 Or Minor In

Veh
6107 Female 24 White 0 0 0 Uttering a Forged Instrument
5449 Male 32 White 0 0 1 Burglary Structure Unoccup
4615 Female 24 Black 0 0 2 Unlaw LicTag/Sticker Attach
1850 Male 32 Black 0 0 4 arrest case no charge
8174 Male 27 Black 0 0 1 Grand Theft (Motor Vehicle)
8759 Female 36 Black 0 0 4 arrest case no charge
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How to use r(x) to make decisions

1. Start with a dis-
tribution of r(x) that
represents an indivi-
dual’s risk of an out-
come conditional on
some combination of
features (X )
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How to use r(x) to make decisions

2. Choose a threshold
t to separate individu-
als into those who re-
ceive the intervention
(d = 1) and those who
do not (d = 0):
d(x) ={

1 if r(x) ≥ t

0 if r(x) < t
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How do we choose (or end up with) a specific t? (scarce
resource)

Scarce resource: rather than choosing t a priori, have a fixed number of
interventions to allocate (e.g., 20 housing vouchers) so may:

1. Rank units by r(x) (estimated in a model as s(x) or r̂(x))

2. Take top-20 units

3. t is just observed risk for the 20th-unit
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How do we choose (or end up with) a specific t?
(non-scarce resource)

I May define threshold with reference to four cells:
(Counterfactual) Outcome

Decision Recidivate Not recidivate
Detain b11 c10
Not detain c01 b00

I In words:
I b11: Benefits of detaining an individual who would have gone on to

recidivate (true positive; public safety)
I b00: Benefits of releasing people who would have gone on to not

recidivate (true negative; preventing unjust detention)
I c10: Costs of detaining people who would have gone on to not

recidivate (false positive; preventing unjust detention)
I c01: Costs of releasing people who would have gone on to recidivate

(false negative; public safety)
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Different weighting of these priorities yields different
thresholds

Shows that even before examining fairness issues with reference to
advantaged/disadvantaged subgroups, choice of threshold can reflect
substantive ideas about fairness

r(x) ≥ b00 + c10 (preventing unjust detention)

b00 + c10 + b11 + c01 (preventing crime)

r(x) ≥ 10 + c10 (preventing unjust detention)

10 + c10 + 10 + 10 (preventing crime)
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Different weighting of these priorities yields different
thresholds
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At a high enough threshold, detain no indviduals
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Introducing subgroups
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Assumptions for now (later, we’ll cover problems with
these assumptions!)

I Label (recidivism) captures construct of interest (commission of
repeated crime) equally well for both groups

True (unobserved) recidivism

Observed recidivism (y = 1)

I Have enough of each subgroup in the training data to accurately learn
relationships between features and label; likewise, have enough in test
data to accurately evaluate predictions

I We know r(x) (the true distribution of risk in each subgroup) so
differences stem from true differences in that distribution/rather than
differences that emerge through bad estimation of that true risk
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Three definitions of algorithmic fairness vs. stage of the
process in using a model to learn r(x)

1. Choose or generate features as
inputs to r(x)/d(x)

Fairness defs:
anti-classification

2. Find the distribution of r(x) as a
function of features and choose a threshold t

3. Compare decision at r(x) ≥ t
(e.g., detain due to high recidivism risk) to y
(observed recidivism label) separately by subgroup

Fairness defs:
classification parity; calibration
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Anti-classification: definition and problems

I In math: d(x) = d(x ′) for all x , x ′ such that xu = x
′
u

I In words: two individuals with the same values of unprotected
features have the same decision; that is, a protected feature like race
doesn’t change the score/change the decision

I Problems:
I Suppose:

I Original model (OM): r(Xu,Xp)
I Anti-classification model (AM): r(Xu)
I Error:

∑n
i=1(yi − r̂i )

2

I Importance of (protected-attribute) representative training data
suggests #2 is more prevalent than #1

1. erroram ≤ errorom
2. erroram > errorom

I cor(Xp,Xu): proxies for protected attribute
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Classification parity

I Previous steps: allow both Xu and Xp into the model that estimates r(x)
and generate r̂(x)

I Return to the 2× 2 table for judging costs and benefits:
Outcome

Decision Recidivate Not recidivate
Detain b11 (TP) c10 (FP)
(r(x) ≥ t)
Not detain c01 (FN) b00 (TN)
(r(x) < t)

I Calculate table separately by protected attribute
I Compare chosen metric that you think should be equal between the two

groups
I If metrics are unequal, three choices:

1. Change feature set
2. Use same feature set but different model
3. Use same feature set + same model, but different t (either for whole

sample or t(Xp = 1); t(Xp = 0)
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Choice of metric is linked to values about relative harms of
different types of classification errors

I For a punitive intervention like detention, likely:
I Care more about a higher false positive rate discrepancies (higher rate

of inappropriate detention of those who don’t recidivate in
disadvantaged subgroup)...

I Than false negative rate (higher rate of inappropriate release)

I For a helpful intervention like housing, vice versa

23 / 59



Classification parity: focus on false positive rate by group

I Confusion matrix:
Outcome

Decision Recidivate Not recidivate

Detain b11 (TP) c10 (FP)
(r(x) ≥ t)

Not detain c01 (FN) b00 (TN)
(r(x) < t)

I False positive rate (note: depends on t!):

FPR =
FP

FP + TN
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Example of FPR by group at one t: (observed) base rate
differs between groups
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When the base rate differs, the distribution of risk (r(x)), which
incorporates information about other features, will also differ
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Example of FPR by group at one t

t = 0.25; risk scores learn those labels
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Example of FPR by group at one t (0.25)

Race FPR FNR Precision

Black 0.25 0.36 0.40
White 0.10 0.55 0.33
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Or as the authors put it...

Source: https://policylab.stanford.edu/projects/
defining-and-designing-fair-algorithms.html
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How does this changes at different t (but t remaining
equal for both groups)?
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How does this changes at different t (but t remaining
equal for both groups)?
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Summarizing where we’re going next:

I Previous slides/paper show:

1. Distribution of r(x)b 6= r(x)w
2. Because of #1, using the same threshold across the two groups leads

to different error rates

I Leaves two options if we want to equalize error rates across groups:

1. Change the distribution of r(x) by changing the features so that the
distribution is (more) equal between the two groups

2. Keep the distribution but change the threshold used to translate
r(x) into a decision
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First option: can we change the distribution of r(x)? Do
we want to? Two pathways to between-group differences in
r(x)

Observed recidivism (y = 1)

Distribution of (r(x)) equal:
Pr(y = 1|race = black,X )
= Pr(y = 1|race = white,X )

Estimated risk (r̂(x)) equal
Estimated risk (r̂(x)) not equal
(Why? between-group
variation in how well
features predict outcome)

Distribution of (r(x)) not equal:
Pr(y = 1|race = black ,X )
6= Pr(y = 1|race = white,X )

Estimated risk (r̂(x)) not equal
(Why? true difference (and maybe
also between-group variation in
how well features predict outcome))
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In both cases, r(x) of each group is a function of...

I Things we can’t change:
I y (label)

I Things we can do to change r(x) (true
Pr(recid |race, other features)):

I Which features other than race we condition on

I Things we can do to change r̂(x)/s(x) (model-estimated risk)
I Which model we use to estimate r(x) (e.g., basic logistic regression v.

SVM)
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But there are sometimes perverse consequences from
changing the feature set to change r(x)

I One way to get more similar
risk distributions is to remove
informative features in ways
that lead to a less informative
risk distribution for some
subgroup

I E.g., in bottom distribution,
features predict the outcome
less well (more mass near
mean) and model has worst
performance, but it has the
lowest FPR for blacks (smallest
part of the distribution is above
the threshold)

Source: https://policylab.stanford.edu/projects/
defining-and-designing-fair-algorithms.html
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Potentially more promising...second option: keep each
group’s r(x) the same but apply group-specific thresholds

I Way to reduce FPR disparities (or disparities in some other metric):
apply higher threshold for detention to group with higher base
rate/more rightward risk distribution

I Possible ways to choose:
I Threshold to equalize FPR
I Threshold based on some other criteria that (likely) leads to smaller

difference between FPRblack − FPRwhite
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One way to choose group-specific thresholds if we’re
skeptical of real differences in base rate: proportionality

1. Rank all individuals together from highest to lowest r(x)
2. Decide on a fraction of each group to detain that’s a reflection of

some other proportion. E.g.:
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Results of external proportion-driven thresholds

Example: stop detaining members of group when count detained
all arrested ∼ to that

group’s proportion in population; threshold is where you stop
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Arguments for group-specific threshold versus same
threshold

r(x) ≥ b00 + c10 (preventing unjust detention)

b00 + c10 + b11 + c01 (preventing crime)

I Allow thresholds to vary by group:
I Errors are not equally costly across all individuals: assign higher costs

to errors in a group
I Biased labels: justification of using the same threshold is based on

assumption that observed differences in base rate reflect true
differences in base rate

I For assistive interventions, limited resources and prioritize certain
groups

I Keep thresholds the same:
I Allow distribution of interventions to reflect observed distribution of risk
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Other challenges with classification parity and potential
solutions (CR)

I Can’t optimize for equality on all metrics
I Fairness between groups versus fairness between individuals (CR):

I Classification parity focuses on between-group averages: e.g.:
I Black v. white
I Male v. female
I Poverty v. not

I We might think it’s fairer to do more granular comparisons (e.g., Black
male in poverty versus white male in poverty)

I This intuition suggests group-level comparisons are rough proxy for
actual goal of treating similar individuals similarly
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Calibration

I In math:

Pr(Y = recid |s(x), race) = Pr(Y = recid |s(x))

I Similar to classification parity– two individuals with the same risk
score should have the same observed rates of recidivism
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Returning to earlier assumptions, and adding other
concerns...

I Label (recidivism) captures construct of interest (commission of
repeated crime) equally well for both groups

True (unobserved) recidivism

Observed recidivism (y = 1)

I Have enough of each subgroup in the training data to accurately learn
relationships between features and label; likewise, have enough in test
data to compare predictive accuracy by subgroup

I Solution: more attention to generalizability of models fit/evaluated on
a specific sample (e.g., convenience sample of facial images) when we
use model to generate predictions for larger population

I Model interpretability (Kleinberg and Mullainathan, 2017)
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Focus on label bias, which can become feature bias in temporal contexts
when yt−1 may be a feature that is highly predictive of yt
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First form of label bias: observe labels for everyone, but
labels are imperfect proxies for true construct of interest

Person Observed recid. Actual recid. Race Corrupt alderman

Y Y* Xobs Xunobs

1 1 0 B 0

2 1 1 B 0

3 1 1 W 0

4 0 1 B 1

5 0 1 W 0

...

n 0 0 B 0




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First form of label bias: attempts to address

I Assume equal distribution of label across subgroups (so race is not
informative for learning the risk of an individual) (CR discuss;
Johndrow and Lum, 2017)– want to equalize the following:

769

201

645

74

Black White

No recid.
(observed)

Recid.
(observed)

No recid.
(observed)

Recid.
(observed)

0

250

500

750

1000

C
ou

nt

45 / 59



First form of label bias: attempts to address

I Discussed earlier why removing race from the model may lead to
higher estimated risk among a racial subgroup than leaving risk in

I Instead, start with goal of Pr(y |race) = Pr(y)

I Then, transform other Xu covariates (roughly, by finding their
empirical distribution of race and altering in a way that minimizes the
distance between Xu (raw covariate) and X̃u (statistically independent
from race covariate))

46 / 59



Second (related) form of label bias: absence or presence of
a label depends on earlier decision (and that earlier decision
is at least partly a function of unobserved characteristics)

Decision t by decision maker j
on individual i (e.g., whether to grant bail)

ti = 1
(e.g. yes bail)

ti = 0
(e.g., no bail)

yi = 1
(e.g. yes recidivate or
fail to appear)

yi = 0
(e.g. don’t recidivate or
don’t fail appear)

yi = NA

Problem of causal inference/counterfactual y : for ti = 0, don’t know
whether yi = 1 or yi = 0 if that individual had the label-generating

decision of ti = 1
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Missing labels are a problem because to evaluate our
model, we need to compare r̂(x) to true y

Purposes of evaluation: to choose best-performing model; to assess
whether it’s performing better than human decisions; to compare
performance by subgroup; etc.

Person Released Observed recid. r̂(x)

T Y

1 1 1 0.8

2 0 NA 0.7

3 0 NA 0.5

4 1 0 0.3

5 1 0 0.2

...

n 0 NA 0.1




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Way one: assume individuals are missing labels completely
at random and listwise deletion from test set

Assumption: Pr(t = 1|Xobs ,Xunobs) = Pr(t = 1) (e.g., likelihood of judge
granting bail does not depend on observed or unobserved characteristics of
the individual)

Person Released Observed recid. r̂(x)

T Y

1 1 1 0.8

2 0 NA 0.7

3 0 NA 0.5

4 1 0 0.3

5 1 0 0.2

...

n 0 NA 0.1




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Way two: assume individuals are missing labels at random,
perform some form of label imputation, and retain those
individuals for test set evaluation

Assumption: Pr(t = 1|Xobs ,Xunobs) = Pr(t = 1|Xobs) (e.g., likelihood of
judge granting bail depends on observed characteristics of the individual
but not unobserved characteristics)

Person Released Observed recid. r̂(x) Xobs Imputed recid.

T Y Y

1 1 1 0.8 White,F ,HS

2 0 NA 0.7 Black ,M,HS 0

3 0 NA 0.5 White,F ,HS 1

4 1 0 0.3 White,M,Coll .

5 1 0 0.2 Black ,M,HS

...

n 0 NA 0.1 Black,M,HS 0




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Way two: label imputation to form pessimistic and
optimistic bounds on evaluation metrics

Optimistic bounds: ifelse(r̂(x) ≥
t, y == 1, 0)

Person Released Recid. r̂(x)

T Y

1 1 1 0.8

2 0 1 0.7

3 0 1 0.5

4 1 0 0.3

5 1 0 0.2

...

n 0 0 0.1





Pessimistic bounds: ifelse(r̂(x) ≥
t, y == 0, 1)

Person Released Recid. r̂(x)

T Y

1 1 1 0.8

2 0 0 0.7

3 0 0 0.5

4 1 0 0.3

5 1 0 0.2

...

n 0 1 0.1




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Way three: find some source of random variation in t
(Lakkaraju et al., 2017)

Their contraction technique relies on features of the bail
setting/assumptions that (may) generalize to other contexts:

1. Multiple j assigning t (and we know which j was paired with which i):
rather than a single decision-maker, there are multiple
decision-makers who make the label-generating decision (e.g.,
multiple judges who form the overall pool of bail decisions and we
know which defendant saw which judge)

2. Random assignment of i to j : e.g., it’s not that certain judges assess
the cases of defendants with unobserved features that make them a
worse candidate for bail

3. Variation across j in t=1
t

4. The variation stems from differences in leniency rather than
differences in the ability to correctly assess unobservables correlated
with the outcome
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Step one in contraction: find decision-maker with highest
fraction of observed labels

Step one: start with decision-maker who has the highest acceptance rate
(highest proportion of defendants they saw who they gave a ”yes”decision
to that then generates a label)– call him/her q; better if q evaluates
higher N

10
individuals

90
individuals

Detain
(t = 0)

Bail
(t = 1)
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Step two: use all individuals to predict decision to deny bail
(t = 0)

id t (bail) y (recidivate) t̂
1 0 NA 0.8
2 0 NA 0.7
3 0 NA 0.9
4 0 NA 0.2
5 0 NA 0.3
...

10 0 NA 0.4
11 1 0 0.6
12 1 1 0.5
13 1 1 0.6
14 1 0 0.8

...
100 1 1 0.7

54 / 59



Step three: detain the same 10 as the judge (regardless of
their t̂ and rank remaining 90 in order of predicted prob. of
detention

rank t̂(x) y bail
(recid/failure)

1 0.89 1 M + Q det.
2 0.72 1 M + Q det.
3 0.91 1 M + Q det.
4 0.22 0 M + Q det.

.

.

.
10 0.46 0 M + Q det.
11 0.8 0 M det.
12 0.79 1 M det.
13 0.75 1 M det.
14 0.73 1 M det.

.

.

.
30 0.65 1 M det.
31 0.58 0 M rel.
32 0.48 1 M rel.
33 0.46 0 M rel.

.

.

.
100 0.10 0 M rel.

I Quantities: Dq = 100 individuals;
Rq = 90 individuals; RB = 70
individuals

I Model’s failure rate at threshold r if
y = 1 = recid/fail (Note: y =1 and
y = 0 reversed from their paper)

70∑
i=1

1(yi = 1)

100

I Human failure rate at threshold r :
bin humans and look at observed
rate of y = 1 relative to all
considered
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Comments/points of confusion

I Which judges’ observations are used to model t as you lower the
acceptance threshold? Two options:

I Continue to use the most lenient decision-maker
I Pool all decision-makers with leniency > acceptance threshold

I If this, a bit weird because as they show in simulations, it’s better to
have higher N to model t; if you change threshold and change N, two
moving pieces

I Generalizability to other cases:
I Difference between features important for t(x)(label-generating

decision) and features important for y(x)(outcome conditional on
having a label)

I Presence of identifiers in decision data
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Concluding

I Much of what we’ve reviewed focuses on quantifying what counts as over or
under-allocation of a resource on the basis of model predictions (e.g.,
criticisms of defining over-allocation with respect to higher FPR in a
disadvantaged group when translating estimated risk into a decision)

Unit 1

Unit 2Unit 4

Unit 3

Unit 6

Unit 5 Detain

Detain

Detain

Prioritization
score (PS)

Higher
recidivism
risk

Lower
recidivism
risk

Unit 1

Unit 5Unit 3

Unit 2

Unit 6

Unit 4 Housing

Housing

Housing

Prioritization
score (PS)

Higher
housing
need

Lower
housing
need

I This maps onto definitions of fairness that look at the outcomes of an
allocation

I Some attention in bail paper and Eubanks (2018), but perhaps role for
sociologists is to think more about fair processes of allocations and how
score-informed allocation processes differ from existing processes in
organizations
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Less interpretable weights on inputs means a lower
potential for organizations to deliberately (and unequally)
manipulate those inputs?

I Example from my own research: weights for presence/absence of
group membership; summed within a school
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Less interpretable weights on inputs means a lower
potential for organizations to deliberately (and unequally)
manipulate those inputs?

I Chosen by a committee and framed as more interpretable and hence, more
fair

I Same transparency allows organizations to manipulate inputs; would be
more difficult to manipulate inputs to allocation based on district-level
aggregation of predicted risk of some bad outcome (e.g., dropout; not
progressing to college)
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