When It Matters

Versions of Treatment A causal inference debate that sociologists have ignored

<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<10</p>

Ian Lundberg Princeton University Sociology Statistics Reading Group 20 February 2019

Formalizing the Problem

When It Matters

Introductory note for those finding these slides online

These slides were prepared for the Sociology Statistics Reading Group at Princeton. Everyone read the following paper in advance:

Hernán, Miguel A. 2016. Does water kill? A call for less casual causal inferences. *Annals of Epidemiology*, 26(10):674–680. [link]

At times, these slides intentionally emphasize alternative positions to those presented by Hernán (2016), such as the possibility that consistency is not an assumption but is rather a consequence of the assumptions embedded in a causal DAG (Pearl, 2010). I emphasize this alternative view not because my personal position is strongly one way or the other, but because it will promote better discussion among a group that read the former but not the latter. See references at the end for further reading.

Formalizing the Problem

When It Matters

Hernán (2016): Does Water Kill?

London cholera epidemic, 1854. John Snow deduced that the water was the cause of death.

Source: Wikimedia Commons

What To Do

Formalizing the Problem

When It Matters

What To Do

Hernán (2016): Does Water Kill?

Does drinking water kill?

Formalizing the Problem

When It Matters

What To Do

Hernán (2016): Does Water Kill?

Does drinking fresh water kill?

Formalizing the Problem

When It Matters

What To Do

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water kill?

Formalizing the Problem

When It Matters

What To Do

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water from the Broad Street pump kill?

Formalizing the Problem

When It Matters

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water from the Broad Street pump **between August 31 and September 10** kill?

Formalizing the Problem

When It Matters

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water from the Broad Street pump between August 31 and September 10 kill

compared with drinking all your water from other pumps?

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Formalizing the Problem

When It Matters

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨト ヨヨ のへで

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water from the Broad Street pump between August 31 and September 10 and not initiating a rehydration treatment if diarrhea starts kill

compared with drinking all your water from other pumps?

Formalizing the Problem

When It Matters

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨト ヨヨ のへで

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water from the Broad Street pump between August 31 and September 10 and not initiating a rehydration treatment if diarrhea starts kill

compared with drinking all your water from other pumps?

Formalizing the Problem

When It Matters

▲ロト ▲理ト ▲ヨト ▲ヨト 通言 めんぐ

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water from the Broad Street pump between August 31 and September 10 and not initiating a rehydration treatment if diarrhea starts kill

compared with drinking all your water from other pumps?

The **definition** of the causal effect is unclear without details.

Formalizing the Problem

When It Matters

<日 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hernán (2016): Does Water Kill?

Does drinking a swig of fresh water from the Broad Street pump between August 31 and September 10 and not initiating a rehydration treatment if diarrhea starts kill

compared with drinking all your water from other pumps?

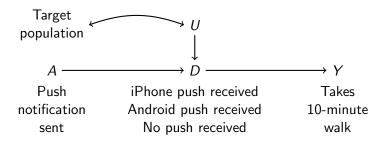
The **definition** of the causal effect is unclear without details.

Recommendation: Specify versions "until no meaningful vagueness remains," (Hernán, 2016)

Formalizing the Problem

When It Matters

What To Do


But some vagueness is **unavoidable**

in both **experimental** and **observational** social science.

Formalizing the Problem

When It Matters

シック・目目・4回×4回×4回×4回×

When It Matters

Continuous treatment

Overwork

Researcher collapses continuous D				
ed by cher	$A = \mathcal{C}(D) = \mathbb{I}(D > 50)$			
llapse seare	D	$\longrightarrow Y$		
S a	Employment	Hourly		
•	hours	wage		

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Collapsed by

Formalizing the Problem

Continuous treatment

Overwork Researcher collapses continuous D

rcher	A = C(D) =	$\mathbb{I}(D > 50)$		
seard	D	$\longrightarrow Y$		
res	Employment	Hourly		
	hours	wage		

When It Matters

Categorical treatment

Occupations

Researcher collapses categorical D

Class scheme: A = C(D)

Occupation

Status

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨト ヨヨ のへで

Continuous treatment Overwork

F	Overwork Researcher collapses continuous <i>D</i>	Occupations Researcher collapses categorical <i>D</i>
Collapsed by researcher	$A = \mathcal{C}(D) = \mathbb{I}(D > 50)$	Class scheme: $A = \mathcal{C}(D)$
laps sear	$D \longrightarrow Y$	$D \longrightarrow Y$
Col	Employment Hourly hours wage	Occupation Status
Self-rated health Respondent collapses continuous D		
Collapsed by espondent	5-point scale: $A = C(D)$	
por	$D \longrightarrow Y$	
Col	Health Lifespan	

When It Matters

Categorical treatment

Versions of Treatmer	t Formalizing the Problem	When It Matters What To Do
	Continuous treatment	Categorical treatment
	Overwork	Occupations
R	esearcher collapses continuous D	Researcher collapses categorical D
Collapsed by researcher	$A = C(D) = \mathbb{I}(D > 50)$	Class scheme: $A = C(D)$
aps	$D \longrightarrow Y$	$D \longrightarrow Y$
Coll	Employment Hourly hours wage	Occupation Status
	Self-rated health	Returns to college
Re	spondent collapses continuous D	Respondent collapses categorical D
Collapsed by respondent	5-point scale: $A = C(D)$	Completed college: $A = C(D)$
aps	$D \longrightarrow Y$	$D \longrightarrow Y$
Coll	Health Lifespan	College degree Earnings (institution and major)

・ロ ・ ・ 日 ・ ・ 王 ・ 王 ・ 王 ・ つ へ ()

When It Matters

<日 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

When It Matters

<日 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- \rightarrow 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
 - 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
 - 3. Recommendations: What to do

- 1. Formalizing the problem
 - → A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

When It Matters

Causal effect =
$$Y_i(a') - Y_i(a)$$

Potential outcomes
 $Y_i(a)$

Potential outcomes: **Deterministic** consequence of *a*

 $= Y_i(A_i)$

Observed outcome: **Random** because A_i is random

▲ロト ▲理ト ▲ヨト ▲ヨト 通言 めんぐ

Imbens and Rubin (2015, p. 10):

... for each unit, there are no different forms or versions of each treatment level which lead to different potential outcomes.

 $A \xrightarrow{} D \xrightarrow{} Y$

Push notification iPhone push received Walks Android push received 10 minutes No push received

 $Y_i(a)$ is deterministic under either:

• Deterministic detailed treatment assignment D given A

$$\mathbb{P}(D_i = d \mid A_i = a) = egin{cases} 1 & ext{for one value of } d \ 0 & ext{for all other values of } d \end{bmatrix} orall a$$

• Treatment variation irrelevance (adapted from VanderWeele 2009)

$$Y_i(d) = Y_i(d') \,\,orall \,\,\{d,d'\}$$
 such that

$$\mathbb{P}(D_i = d \mid A_i = a) > 0$$
 and $\mathbb{P}(D_i = d' \mid A_i = a) > 0$

(4 미) (4 문) (4 문) (4 미)

- 1. Formalizing the problem
 - → A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

- 1. Formalizing the problem
 - A) Potential outcomes
 - → B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

Stochastic counterfactuals¹ allow a more plausible assumption of treatment variation irrelevance.

Under **fixed** counterfactuals

Treatment-variation irrelevance:

$$Y_i(a,d_a)=Y_i(a,d_a') \hspace{1em} orall \hspace{1em} \{d_a,d_a'\}\in \mathcal{D}_a$$

Thus can define $Y_i(a) \equiv Y_i(a, d_a)$ for any d_a .

Consistency:

If
$$A_i = a$$
, $\exists d_a \in \mathcal{D}_a$ such that $Y_i^{\text{Observed}} = Y_i(a, d_a)$

VanderWeele 2009, Imbens and Rubin 2015 p. 12

Stochastic counterfactuals¹ allow a more plausible assumption of treatment variation irrelevance.

Under stochastic counterfactuals

Treatment-variation irrelevance:

$$Y_i(a,d_a) \stackrel{D}{\sim} Y_i(a,d_a') \hspace{0.3cm} orall \hspace{0.3cm} \left\{ d_a,d_a'
ight\} \in \mathcal{D}_a$$

Thus can define $Y_i(a) \sim Y_i(a, d_a)$ for any d_a .

Consistency:

If
$$A_i = a$$
, $\exists d_a \in \mathcal{D}_a$ such that $Y_i^{\text{Observed}} = Y_i(a, d_a)$

VanderWeele 2009, Imbens and Rubin 2015 p. 12

- 1. Formalizing the problem
 - A) Potential outcomes
 - → B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

<日 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - → C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

When It Matters

In causal graphs, the absence of hidden versions is a **theorem** rather than an **assumption** (Pearl, 2010).

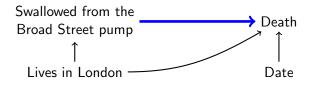
When It Matters

In causal graphs, the absence of hidden versions is a **theorem** rather than an **assumption** (Pearl, 2010).

Treatment effects are defined by the DAG.

When It Matters

In causal graphs, the absence of hidden versions is a **theorem** rather than an **assumption** (Pearl, 2010).

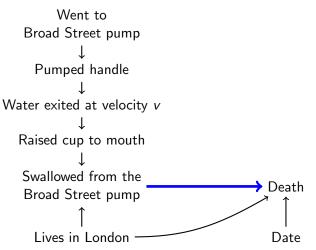

Treatment effects are defined by the DAG.

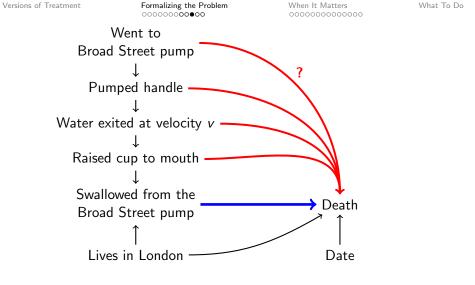
A correct DAG implies a well-defined effect.

Formalizing the Problem

When It Matters

What To Do

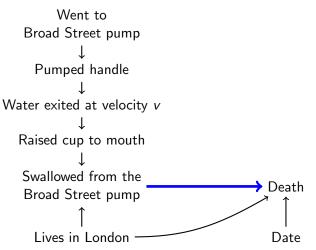




Formalizing the Problem ○○○○○○○○●○○ When It Matters

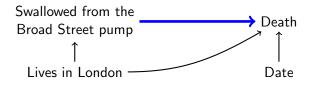
What To Do

シック・目目・4回×4回×4回×4回×


シック・目目・4回×4回×4回×4回×

Formalizing the Problem ○○○○○○○○●○○ When It Matters

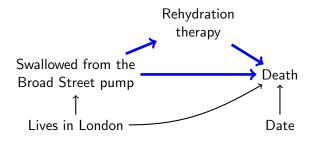
What To Do


シック・目目・4回×4回×4回×4回×

Formalizing the Problem

When It Matters

What To Do

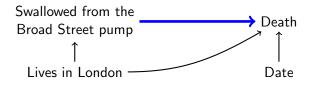


シック・ 単則・ イヨッ イヨッ イロッ

Formalizing the Problem

When It Matters

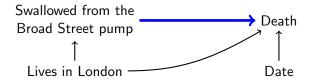
What To Do



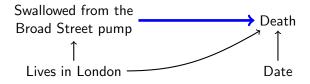
<ロト < 団ト < 豆ト < 豆ト < 豆ト 三日 のへで</p>

Formalizing the Problem

When It Matters


What To Do

When It Matters


◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

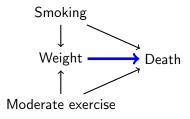
$$\begin{split} &\mathbb{E}\left(\mathsf{Death}\mid \underset{\mathsf{Living in London on August 31-September 10}^{\mathsf{do}(\mathsf{Swallowed from Broad Street pump)},}\right) \\ &-\mathbb{E}\left(\mathsf{Death}\mid \underset{\mathsf{Living in London on August 31-September 10}^{\mathsf{do}(\mathsf{Did not swallow from Broad Street pump)},}\right) \end{split}$$

When It Matters

Things are vague only if the **graph** is insufficiently precise (and thus wrong).

・ロト < 団ト < 三ト < 三ト < 団ト < ロト

Consistency: $Y_i^{\text{Observed}} = Y_i(a_i)$. Is this an assumption?


Consistency: $Y_i^{\text{Observed}} = Y_i(a_i)$. Is this an assumption?

Hernán (2016): Potential death Y under weight a depends on whether weight is set by smoking or by moderate exercise.

Consistency: $Y_i^{\text{Observed}} = Y_i(a_i)$. Is this an assumption?

Hernán (2016): Potential death Y under weight a depends on whether weight is set by smoking or by moderate exercise.

But we could just label these as confounding variables. Not clear that consistency is an assumption.

・ロト・4日×・4日×・4日× 900

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - → C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

When It Matters

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- \rightarrow 2. When it matters: **Consequences** of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
 - 3. Recommendations: What to do

When It Matters

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - → A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

Formalizing the Problem

When It Matters

What To Do

Experiments identify causal effects with minimal assumptions, but they often seek to generalize to a **target population**.

Formalizing the Problem

When It Matters

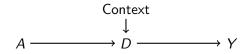

What To Do

*ロト * 母 * * ミ * * ミ * ヨ * う * *

Experiments identify causal effects with minimal assumptions, but they often seek to generalize to a **target population**.

Versions of treatment make generalization difficult. (Hernán and VanderWeele, 2011)

If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.



() 비로 (로) (로) (로) (립) (ロ)

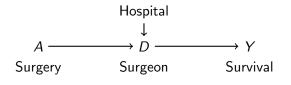
◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□▶ ◆○○

If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.


If this arises from variation in $A \rightarrow D$, then measuring D may promote transportability of inference.

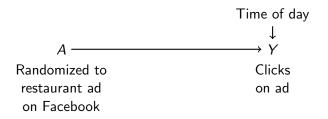
◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□▶ ◆○○

If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.


If this arises from variation in $A \rightarrow D$, then measuring D may promote transportability of inference.

$A \rightarrow Y$ may differ across hospitals

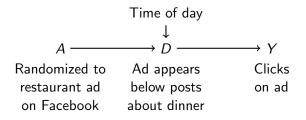
If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.


If this arises from variation in $A \rightarrow D$, then measuring D may promote transportability of inference.

$A \rightarrow Y$ may differ across hospitals

If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.

If this arises from variation in $A \rightarrow D$, then measuring D may promote transportability of inference.



A o Y may differ by time of day

<日 > < 同 > < 目 > < 目 > < 目 > < 日 > < 回 > < 0 < 0</p>

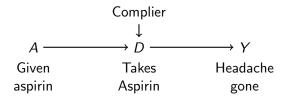
If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.

If this arises from variation in $A \rightarrow D$, then measuring D may promote transportability of inference.

 $A \rightarrow Y$ may differ by time of day

If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.

If this arises from variation in $A \rightarrow D$, then measuring D may promote transportability of inference.

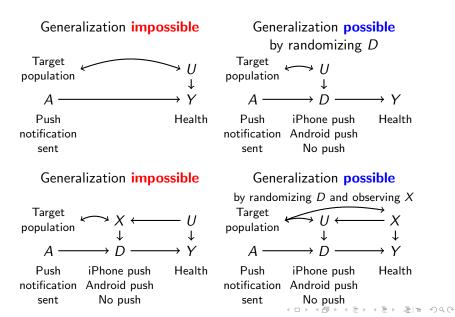


$A \rightarrow Y$ may differ by rates of compliance

<□> <0><</p>
<□> <0</p>
<0</p>
<0</p>
<0</p>
<0</p>
<0</p>

If there is **contextual variation** in $A \rightarrow Y$, then the effect may not generalize to new contexts.

If this arises from variation in $A \rightarrow D$, then measuring D may promote transportability of inference.



 $A \rightarrow Y$ may differ by rates of compliance

Formalizing the Problem

When It Matters

Generalizing experimental evidence

What To Do

Y

Health

Health

When It Matters

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - \rightarrow A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

When It Matters

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
- B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
 - 3. Recommendations: What to do

Versions of Treatmer	t Formalizing the Problem	When It Matters What To Do 000000000000000000000000000000000000
Continuous treatment		Categorical treatment
Overwork		Occupations
Researcher collapses continuous D		D Researcher collapses categorical D
Collapsed by researcher	$A = \mathcal{C}(D) = \mathbb{I}(D > 50)$	Class scheme: $A = C(D)$
	$D \longrightarrow Y$	$D \longrightarrow Y$
	Employment Hourly hours wage	Occupation Status
Self-rated health		Returns to college
Re	espondent collapses continuous	D Respondent collapses categorical D
Collapsed by respondent	5-point scale: $A = C(D)$	Completed college: $A = C(D)$
	$D \longrightarrow Y$	$D \longrightarrow Y$
	Health Lifespan	College degree Earnings (institution and major)

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

Formalizing the Problem

When It Matters

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三日 めんで

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined.

When It Matters

<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<10</p>

 $D \longrightarrow Y$

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

When It Matters

 $D \longrightarrow Y$

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

One causal contrast

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c') - \mathbb{E}(Y \mid \mathcal{C}(D) = c)$$

シック・目前、(用)、(用)、(用)、(日)、

When It Matters

<日 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $D \longrightarrow Y$

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

One causal contrast

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c') - \mathbb{E}(Y \mid \mathcal{C}(D) = c)$$

Observed detailed treaments d mapping to collapsed treatment c'

When It Matters

 $D \longrightarrow Y$

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

One causal contrast

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c') - \mathbb{E}(Y \mid \mathcal{C}(D) = c)$$

Observed detailed treaments d mapping to collapsed treatment c'

Observed detailed treaments d mapping to collapsed treatment c

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When It Matters

 $D \longrightarrow Y$

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

One causal contrast

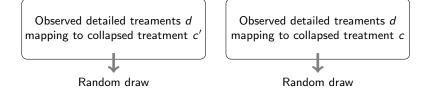
$$\mathbb{E}(Y \mid \mathcal{C}(D) = c') - \mathbb{E}(Y \mid \mathcal{C}(D) = c)$$

Observed detailed treaments dmapping to collapsed treatment c'Random draw

Observed detailed treaments d mapping to collapsed treatment c

When It Matters

<日 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <


 $D \longrightarrow Y$

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

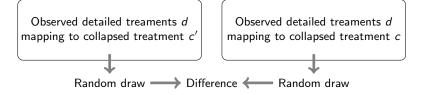
$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

One causal contrast

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c') - \mathbb{E}(Y \mid \mathcal{C}(D) = c)$$

When It Matters

<日 > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <


 $D \longrightarrow Y$

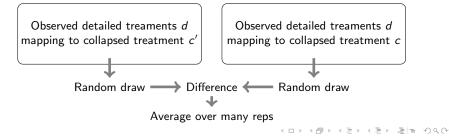
Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

One causal contrast

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c') - \mathbb{E}(Y \mid \mathcal{C}(D) = c)$$

When It Matters


 $D \longrightarrow Y$

Because the collapsed C(D) is not in the causal graph, the effect of a collapsed treatment is undefined. We might examine: (VanderWeele and Hernàn (2013, Prop. 8), though notation differs.)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d)) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c))$$

One causal contrast

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c') - \mathbb{E}(Y \mid \mathcal{C}(D) = c)$$

When It Matters

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□▶ ◆○○

With covariates. (equivalent to VanderWeele and Hernàn 2013, Prop. 8) $\mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d), \vec{X} = \vec{x}) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c), \vec{X} = \vec{x})$ One causal contrast Versions of Treatment

Formalizing the Problem

When It Matters

うしん 三回 ふゆとうせん (中) くうて

With covariates. (equivalent to
VanderWeele and Hernàn 2013, Prop. 8)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d), \vec{X} = \vec{x}) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c), \vec{X} = \vec{x})$$
One causal contrast

$$\sum_{\vec{x}} \mathbb{P}(\vec{X} = \vec{x}) \left(\mathbb{E}(Y \mid \mathcal{C}(D) = c', \vec{X} = \vec{x}) - \mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) \right)$$

When It Matters

With covariates. (equivalent to
VanderWeele and Hernàn 2013, Prop. 8)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d), \vec{X} = \vec{x}) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c), \vec{X} = \vec{x})$$
One causal contrast

$$\sum_{\vec{x}} \mathbb{P}(\vec{X} = \vec{x}) \left(\mathbb{E}(Y \mid \mathcal{C}(D) = c', \vec{X} = \vec{x}) - \mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) \right)$$

among $\vec{X} = \vec{x}$

When It Matters

With covariates. (equivalent to
VanderWeele and Hernàn 2013, Prop. 8)

$$\mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) =$$

$$\sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d), \vec{X} = \vec{x}) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c), \vec{X} = \vec{x})$$
One causal contrast

$$\sum_{\vec{x}} \mathbb{P}(\vec{X} = \vec{x}) \left(\mathbb{E}(Y \mid \mathcal{C}(D) = c', \vec{X} = \vec{x}) - \mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) \right)$$

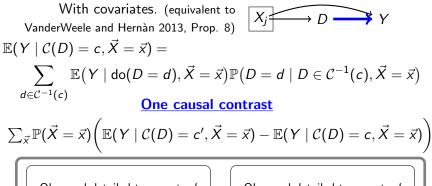
Observed detailed treaments d mapping to collapsed treatment c'

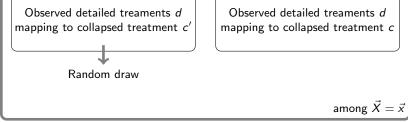
among $\vec{X} = \vec{x}$

When It Matters

With covariates. (equivalent to
VanderWeele and Hernàn 2013, Prop. 8)

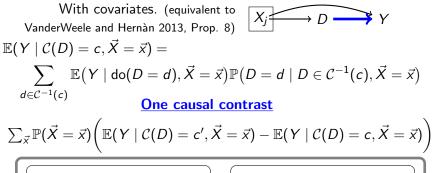
$$\mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) = \sum_{d \in \mathcal{C}^{-1}(c)} \mathbb{E}(Y \mid do(D = d), \vec{X} = \vec{x}) \mathbb{P}(D = d \mid D \in \mathcal{C}^{-1}(c), \vec{X} = \vec{x})$$
One causal contrast

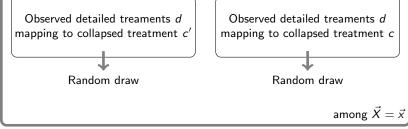

$$\sum_{\vec{x}} \mathbb{P}(\vec{X} = \vec{x}) \left(\mathbb{E}(Y \mid \mathcal{C}(D) = c', \vec{X} = \vec{x}) - \mathbb{E}(Y \mid \mathcal{C}(D) = c, \vec{X} = \vec{x}) \right)$$

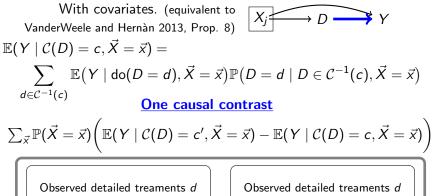

Observed detailed treaments d mapping to collapsed treatment c^\prime

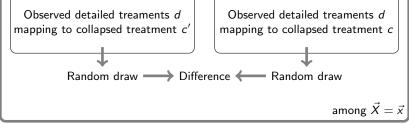
Observed detailed treaments dmapping to collapsed treatment c

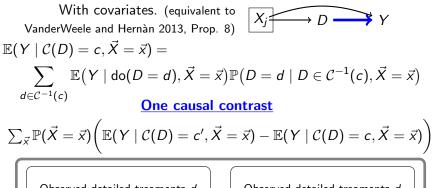
among
$$\vec{X} = \vec{x}$$

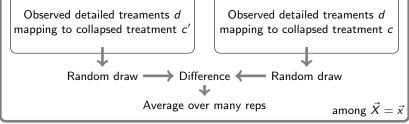

When It Matters



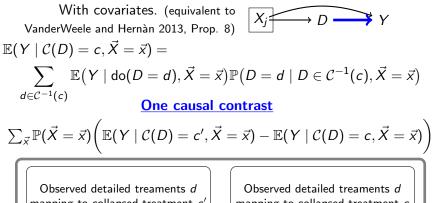

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>


When It Matters


When It Matters



<ロト < 目 < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>


When It Matters



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When It Matters

When It Matters

Versions of Treatment A Causal Inference Debate Sociologists Have Ignored

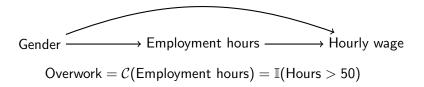
- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

When It Matters

Versions of Treatment A Causal Inference Debate Sociologists Have Ignored

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

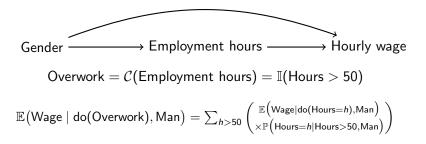
When It Matters


<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<10</p>

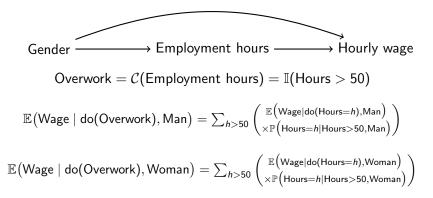
What is the effect of **overwork** (> 50 hours) on the **hourly wage** of those working at least 40 hours per week? Suppose **gender** is the only source of confounding.

When It Matters

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□▶ ◆○○


What is the effect of **overwork** (> 50 hours) on the **hourly wage** of those working at least 40 hours per week? Suppose **gender** is the only source of confounding.

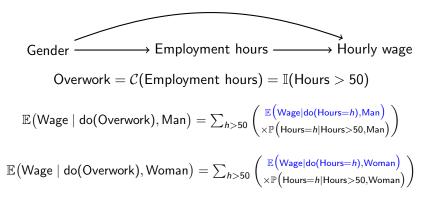
When It Matters


◆□▶ ◆□▶ ★∃▶ ★∃▶ ★目★ 少々で

What is the effect of **overwork** (> 50 hours) on the **hourly wage** of those working at least 40 hours per week? Suppose **gender** is the only source of confounding.

When It Matters

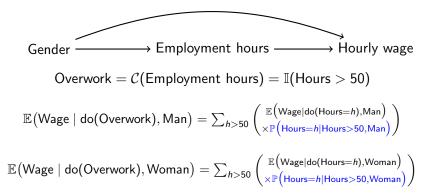
What is the effect of **overwork** (> 50 hours) on the **hourly wage** of those working at least 40 hours per week? Suppose **gender** is the only source of confounding.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When It Matters

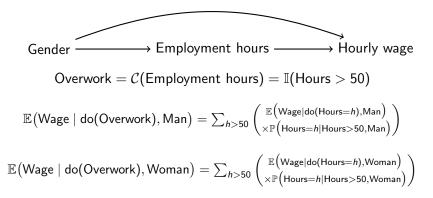
・ロト・4日ト・4日ト・4日ト・4日ト


What is the effect of **overwork** (> 50 hours) on the **hourly wage** of those working at least 40 hours per week? Suppose **gender** is the only source of confounding.

Heterogeneous treatment effects

When It Matters

What is the effect of **overwork** (> 50 hours) on the **hourly wage** of those working at least 40 hours per week? Suppose **gender** is the only source of confounding.



Effects of heterogeneous treatments

NPC 目目 (目) (目) (日) (日) (日)

When It Matters

What is the effect of **overwork** (> 50 hours) on the **hourly wage** of those working at least 40 hours per week? Suppose **gender** is the only source of confounding.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Versions of Treatment A Causal Inference Debate Sociologists Have Ignored

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

Versions of Treatment A Causal Inference Debate Sociologists Have Ignored

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□▶ ◆○○

What To Do

In randomized experiments aiming to generalize:

- Randomize a detailed treatment
- Theorize context-specific versions likely to remain
- In observational studies:
 - Estimate at the finest level of detail measured
 - Promotes a simple definition of the effect
 - Promotes transportability
 - Promotes clear policy implications
 - If treatment remains vague, state the implied intervention.

Versions of Treatment A Causal Inference Debate Sociologists Have Ignored

- 1. Formalizing the problem
 - A) Potential outcomes
 - B) Stochastic counterfactuals
 - C) Causal graphs
- 2. When it matters: Consequences of collapsed versions
 - A) Experimental studies: Effects may not generalize
 - B) Observational studies:
 - "Effects" may be an unusual average
 - Heterogeneous treatment effects may really be the effects of heterogeneous treatments
- 3. Recommendations: What to do

Appendix

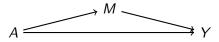
4日 + 4日 + 4日 + 4日 + 4日 - 990

Some define the **assumptions** for causal inference as:

- Ignorable treatment assignment
 - Violated if the treated would do better even without treatment
- Positivity
 - Violated if $\mathbb{P}(\mathsf{Treated})$ is 0 or 1 for some units
- Stable Unit Treatment Value Assumption
 - Violated if there is interference
 - Violated if there are hidden versions of treatment

In this setup, **hidden versions** are the second part of SUTVA. Social scientists often focus on the first assumptions and give less thought to this part of SUTVA.

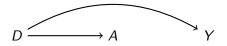
Why not use the $Y(a, d_a)$ notation?


One could state potential outcomes as a function of both treatment and treatment version (VanderWeele, 2009; Hernán and VanderWeele, 2011; VanderWeele and Hernàn, 2013).

Versions of treatment

 $A \longrightarrow D \longrightarrow Y$

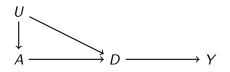
 $Y_i(a, d_a)$ is unnecessary notation, though. Because only one *a* exists for any given *d*, $Y_i(d)$ carries the same information. In contrast, this is useful in mediation.


Mediation

 $Y_i(a, m)$ is valuable. Because A is not fixed given M, there exist multiple $\{a, a'\}$ with $Y_i(a, m) \neq Y_i(a', m)$.

Why not put A on the DAG as a consequence of D?

When the researchers take a detailed treatment D and coarsen it into an aggregate treatment A, Hernán and VanderWeele (2011) put it in the DAG as a consequence of D.



The reasons not to do this are

- 1. In a DAG, it is useful to be able to conceive of an intervention to any given node. Because $D \rightarrow A$ is deterministic, it is hard to imagine an intervention to A which has no consequence for D. By the DAG, this intervention would have no consequence for D. This seems hard to swallow.
- Perhaps A is not deterministic: it is reported D. But this seems like a whole different set of issues, and it is clear even without the DAG that intervening to change a report would have no consequence for Y.

What about when $A \rightarrow D$ is confounded?

When treatment precedes version, Hernán and VanderWeele (2011) also include cases like below:

The reasons not to do this are

- 1. The edge $U \rightarrow A$ implies this is an observational study rather than an experiment. In observational studies, I usually do not believe the story that A is assigned first, followed by D. I think in observational studies D is typically the only variable involved.
- 2. We already have transportability issues from $U \rightarrow D$ alone. Omitting $U \rightarrow A$ helps to highlight these problems in the scenario when A is randomized.

- Hernán, M. A. 2016. Does water kill? A call for less casual causal inferences. *Annals of epidemiology*, 26(10):674–680.
- Hernán, M. A. and T. J. VanderWeele 2011. Compound treatments and transportability of causal inference. *Epidemiology*, 22(3):368.
- Imbens, G. W. and D. B. Rubin 2015. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press.
- Pearl, J. 2010. Brief report: On the consistency rule in causal inference: Axiom, definition, assumption, or theorem? *Epidemiology*, Pp. 872–875.
- VanderWeele, T. J. 2009. Concerning the consistency assumption in causal inference. *Epidemiology*, 20(6):880–883.
- VanderWeele, T. J. and M. A. Hernàn 2013. Causal inference under multiple versions of treatment. *Journal of Causal Inference*, 1(1):1–20.