
Chernozhukov et al. on Double / Debiased
Machine Learning

Slides by Chris Felton
Princeton University, Sociology Department

Sociology Statistics Reading Group
November 2018

Papers

Background:

Robinson, Peter. 1988. “Root-N-Consistent Semiparametric
Regression,” Econometrica 56(4):931-954.

Main paper:

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer,
Esther Duflo, Christian Hansen, Whitney Newey, and James
Robins. 2018. “Double / Debiased Machine Learning for
Treatment and Structural Parameters,” Econometrics Journal
21(1):1-68.

Papers

Background:

Robinson, Peter. 1988. “Root-N-Consistent Semiparametric
Regression,” Econometrica 56(4):931-954.

Main paper:

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer,
Esther Duflo, Christian Hansen, Whitney Newey, and James
Robins. 2018. “Double / Debiased Machine Learning for
Treatment and Structural Parameters,” Econometrics Journal
21(1):1-68.

Papers

Background:

Robinson, Peter. 1988. “Root-N-Consistent Semiparametric
Regression,” Econometrica 56(4):931-954.

Main paper:

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer,
Esther Duflo, Christian Hansen, Whitney Newey, and James
Robins. 2018. “Double / Debiased Machine Learning for
Treatment and Structural Parameters,” Econometrics Journal
21(1):1-68.

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why This Paper?

Provides a general framework for estimating treatment effects
using machine learning (ML) methods

In particular, we can use any (preferably n
1
4 -consistent) ML

estimator with this approach

Enables us to construct valid confidence intervals for our
treatment effect estimates

Introduces a
√
n-consistent estimator

As n→∞, the estimation error θ̂ − θ goes to zero at a rate of
n− 1

2 (or 1/
√
n)

We really like our estimators to be at least
√
n-consistent

1/n
1
2 will approach 0 more quickly than, e.g., 1/n

1
4 as n grows

Why Use ML for Causal Inference, Anyway?

In observational studies, we often estimate causal effects by
conditioning on confounders

We typically condition on confounders by making strong
assumptions about the functional form of our model

E.g., a standard OLS model assumes a linear and additive
conditional expectation function

If we misspecify the functional form, we will end up with
biased estimates of treatment effects even in the absence of
unmeasured confounding

Our parametric specifications often lack strong substantive
justification

ML provides a systematic framework for learning the form of
the conditional expectation function from the data

Why Use ML for Causal Inference, Anyway?

In observational studies, we often estimate causal effects by
conditioning on confounders

We typically condition on confounders by making strong
assumptions about the functional form of our model

E.g., a standard OLS model assumes a linear and additive
conditional expectation function

If we misspecify the functional form, we will end up with
biased estimates of treatment effects even in the absence of
unmeasured confounding

Our parametric specifications often lack strong substantive
justification

ML provides a systematic framework for learning the form of
the conditional expectation function from the data

Why Use ML for Causal Inference, Anyway?

In observational studies, we often estimate causal effects by
conditioning on confounders

We typically condition on confounders by making strong
assumptions about the functional form of our model

E.g., a standard OLS model assumes a linear and additive
conditional expectation function

If we misspecify the functional form, we will end up with
biased estimates of treatment effects even in the absence of
unmeasured confounding

Our parametric specifications often lack strong substantive
justification

ML provides a systematic framework for learning the form of
the conditional expectation function from the data

Why Use ML for Causal Inference, Anyway?

In observational studies, we often estimate causal effects by
conditioning on confounders

We typically condition on confounders by making strong
assumptions about the functional form of our model

E.g., a standard OLS model assumes a linear and additive
conditional expectation function

If we misspecify the functional form, we will end up with
biased estimates of treatment effects even in the absence of
unmeasured confounding

Our parametric specifications often lack strong substantive
justification

ML provides a systematic framework for learning the form of
the conditional expectation function from the data

Why Use ML for Causal Inference, Anyway?

In observational studies, we often estimate causal effects by
conditioning on confounders

We typically condition on confounders by making strong
assumptions about the functional form of our model

E.g., a standard OLS model assumes a linear and additive
conditional expectation function

If we misspecify the functional form, we will end up with
biased estimates of treatment effects even in the absence of
unmeasured confounding

Our parametric specifications often lack strong substantive
justification

ML provides a systematic framework for learning the form of
the conditional expectation function from the data

Why Use ML for Causal Inference, Anyway?

In observational studies, we often estimate causal effects by
conditioning on confounders

We typically condition on confounders by making strong
assumptions about the functional form of our model

E.g., a standard OLS model assumes a linear and additive
conditional expectation function

If we misspecify the functional form, we will end up with
biased estimates of treatment effects even in the absence of
unmeasured confounding

Our parametric specifications often lack strong substantive
justification

ML provides a systematic framework for learning the form of
the conditional expectation function from the data

Why Use ML for Causal Inference, Anyway?

In observational studies, we often estimate causal effects by
conditioning on confounders

We typically condition on confounders by making strong
assumptions about the functional form of our model

E.g., a standard OLS model assumes a linear and additive
conditional expectation function

If we misspecify the functional form, we will end up with
biased estimates of treatment effects even in the absence of
unmeasured confounding

Our parametric specifications often lack strong substantive
justification

ML provides a systematic framework for learning the form of
the conditional expectation function from the data

Why Use ML for Causal Inference, Anyway?

We sometimes find ourselves working with high-dimensional
data

I.e., we have many covariates p relative to the number of
observations n

Two types of high-dimensionality:

1 We simply have many measured covariates (e.g., text data,
genetic data)

2 We have few measured covariates but wish to generate many
non-linear transformations of and interactions between these
covariates

ML models perform much better in high dimensions than
traditional statistical models do

Why Use ML for Causal Inference, Anyway?

We sometimes find ourselves working with high-dimensional
data

I.e., we have many covariates p relative to the number of
observations n

Two types of high-dimensionality:

1 We simply have many measured covariates (e.g., text data,
genetic data)

2 We have few measured covariates but wish to generate many
non-linear transformations of and interactions between these
covariates

ML models perform much better in high dimensions than
traditional statistical models do

Why Use ML for Causal Inference, Anyway?

We sometimes find ourselves working with high-dimensional
data

I.e., we have many covariates p relative to the number of
observations n

Two types of high-dimensionality:

1 We simply have many measured covariates (e.g., text data,
genetic data)

2 We have few measured covariates but wish to generate many
non-linear transformations of and interactions between these
covariates

ML models perform much better in high dimensions than
traditional statistical models do

Why Use ML for Causal Inference, Anyway?

We sometimes find ourselves working with high-dimensional
data

I.e., we have many covariates p relative to the number of
observations n

Two types of high-dimensionality:

1 We simply have many measured covariates (e.g., text data,
genetic data)

2 We have few measured covariates but wish to generate many
non-linear transformations of and interactions between these
covariates

ML models perform much better in high dimensions than
traditional statistical models do

Why Use ML for Causal Inference, Anyway?

We sometimes find ourselves working with high-dimensional
data

I.e., we have many covariates p relative to the number of
observations n

Two types of high-dimensionality:

1 We simply have many measured covariates (e.g., text data,
genetic data)

2 We have few measured covariates but wish to generate many
non-linear transformations of and interactions between these
covariates

ML models perform much better in high dimensions than
traditional statistical models do

Why Use ML for Causal Inference, Anyway?

We sometimes find ourselves working with high-dimensional
data

I.e., we have many covariates p relative to the number of
observations n

Two types of high-dimensionality:

1 We simply have many measured covariates (e.g., text data,
genetic data)

2 We have few measured covariates but wish to generate many
non-linear transformations of and interactions between these
covariates

ML models perform much better in high dimensions than
traditional statistical models do

Why Use ML for Causal Inference, Anyway?

We sometimes find ourselves working with high-dimensional
data

I.e., we have many covariates p relative to the number of
observations n

Two types of high-dimensionality:

1 We simply have many measured covariates (e.g., text data,
genetic data)

2 We have few measured covariates but wish to generate many
non-linear transformations of and interactions between these
covariates

ML models perform much better in high dimensions than
traditional statistical models do

Why Use ML for Causal Inference, Anyway?

1 ML allows us to do causal inference with minimal
assumptions about the functional form of our model

Warning: ML does not help us relax identification
assumptions (e.g., no unmeasured confounding, parallel trends,
exclusion restriction, etc.)

2 ML allows us to do causal inference with
high-dimensional data

Why Use ML for Causal Inference, Anyway?

1 ML allows us to do causal inference with minimal
assumptions about the functional form of our model

Warning: ML does not help us relax identification
assumptions (e.g., no unmeasured confounding, parallel trends,
exclusion restriction, etc.)

2 ML allows us to do causal inference with
high-dimensional data

Why Use ML for Causal Inference, Anyway?

1 ML allows us to do causal inference with minimal
assumptions about the functional form of our model

Warning: ML does not help us relax identification
assumptions (e.g., no unmeasured confounding, parallel trends,
exclusion restriction, etc.)

2 ML allows us to do causal inference with
high-dimensional data

Why Use ML for Causal Inference, Anyway?

1 ML allows us to do causal inference with minimal
assumptions about the functional form of our model

Warning: ML does not help us relax identification
assumptions (e.g., no unmeasured confounding, parallel trends,
exclusion restriction, etc.)

2 ML allows us to do causal inference with
high-dimensional data

Why Using ML for Causal Inference is Tricky

ML methods were designed for prediction

But off-the-shelf ML methods are biased estimators for
treatment effects

To minimize MSE = bias2 + variance, we trade off variance
for bias

Consistent ML methods converge more slowly than 1√
n

Off-the-shelf methods also fail to provide confidence
intervals for our treatment effect estimates

Why Using ML for Causal Inference is Tricky

ML methods were designed for prediction

But off-the-shelf ML methods are biased estimators for
treatment effects

To minimize MSE = bias2 + variance, we trade off variance
for bias

Consistent ML methods converge more slowly than 1√
n

Off-the-shelf methods also fail to provide confidence
intervals for our treatment effect estimates

Why Using ML for Causal Inference is Tricky

ML methods were designed for prediction

But off-the-shelf ML methods are biased estimators for
treatment effects

To minimize MSE = bias2 + variance, we trade off variance
for bias

Consistent ML methods converge more slowly than 1√
n

Off-the-shelf methods also fail to provide confidence
intervals for our treatment effect estimates

Why Using ML for Causal Inference is Tricky

ML methods were designed for prediction

But off-the-shelf ML methods are biased estimators for
treatment effects

To minimize MSE = bias2 + variance, we trade off variance
for bias

Consistent ML methods converge more slowly than 1√
n

Off-the-shelf methods also fail to provide confidence
intervals for our treatment effect estimates

Why Using ML for Causal Inference is Tricky

ML methods were designed for prediction

But off-the-shelf ML methods are biased estimators for
treatment effects

To minimize MSE = bias2 + variance, we trade off variance
for bias

Consistent ML methods converge more slowly than 1√
n

Off-the-shelf methods also fail to provide confidence
intervals for our treatment effect estimates

Why Using ML for Causal Inference is Tricky

ML methods were designed for prediction

But off-the-shelf ML methods are biased estimators for
treatment effects

To minimize MSE = bias2 + variance, we trade off variance
for bias

Consistent ML methods converge more slowly than 1√
n

Off-the-shelf methods also fail to provide confidence
intervals for our treatment effect estimates

Key Aims of Double / Debiased Machine Learning (DML)

1 Eliminate the bias

2 Achieve
√
n-consistency

3 Construct valid confidence intervals

Key Aims of Double / Debiased Machine Learning (DML)

1 Eliminate the bias

2 Achieve
√
n-consistency

3 Construct valid confidence intervals

Key Aims of Double / Debiased Machine Learning (DML)

1 Eliminate the bias

2 Achieve
√
n-consistency

3 Construct valid confidence intervals

Key Aims of Double / Debiased Machine Learning (DML)

1 Eliminate the bias

2 Achieve
√
n-consistency

3 Construct valid confidence intervals

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Outline of Presentation

1 Introduce partially linear model set-up

2 Explain two sources of estimation bias from ML and how we
overcome them

Correct bias from regularization with Neyman orthogonality

We will see that we can achieve Neyman orthogonality using a
residuals-on-residuals approach reminiscent of Robinson
(1988) and the Frisch–Waugh–Lovell theorem

Correct bias from overfitting using sample-splitting

Employ cross-fitting to avoid the loss of efficiency that
normally comes with sample-splitting

3 Outline a procedure for conducting inference with DML

4 Examine estimators for the ATE and variance that go beyond
the partially linear model set-up

Don’t worry if none of that makes sense yet!

It’s not as complicated as it sounds, and we

will work through it slowly.

Don’t worry if none of that makes sense yet!

It’s not as complicated as it sounds, and we

will work through it slowly.

The Partially Linear Model Set-up

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

Y : Outcome

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

Y : Outcome

D: Treatment

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

Y : Outcome

D: Treatment

X : Measured confounders

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

Y : Outcome

D: Treatment

X : Measured confounders

U and V are our error terms

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

Y : Outcome

D: Treatment

X : Measured confounders

U and V are our error terms

We assume zero conditional mean:

E[U | X ,D] = 0 E[V | X] = 0

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

θ0: The true treatment effect

“theta-naught”
Warning: not necessarily the Average Treatment Effect

Regression gives us a weighted average of individual treatment
effects where weights are determined by the conditional
variance of treatment (see Aronow and Samii 2016)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

θ0: The true treatment effect
“theta-naught”

Warning: not necessarily the Average Treatment Effect

Regression gives us a weighted average of individual treatment
effects where weights are determined by the conditional
variance of treatment (see Aronow and Samii 2016)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

θ0: The true treatment effect
“theta-naught”
Warning: not necessarily the Average Treatment Effect

Regression gives us a weighted average of individual treatment
effects where weights are determined by the conditional
variance of treatment (see Aronow and Samii 2016)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

θ0: The true treatment effect
“theta-naught”
Warning: not necessarily the Average Treatment Effect

Regression gives us a weighted average of individual treatment
effects where weights are determined by the conditional
variance of treatment (see Aronow and Samii 2016)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

θ0: The true treatment effect
“theta-naught”
Warning: not necessarily the Average Treatment Effect

Regression gives us a weighted average of individual treatment
effects where weights are determined by the conditional
variance of treatment (see Aronow and Samii 2016)

g0(·): some function mapping X to Y ,
conditional on D

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

θ0: The true treatment effect
“theta-naught”
Warning: not necessarily the Average Treatment Effect

Regression gives us a weighted average of individual treatment
effects where weights are determined by the conditional
variance of treatment (see Aronow and Samii 2016)

g0(·): some function mapping X to Y ,
conditional on D

m0(·): some function mapping X to D

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

This set-up allows both Y and D to be non-linear and
interactive functions of X in contrast to standard OLS,
which assumes a linear and additive model

However, note that this partially linear model assumes
that the effect of D on Y is additive and linear

Our confounders can interact with one another, but not
with our treatment!

And remember we’re still making the standard
identification assumptions (unconfoundedness conditional
on X , positivity, and consistency)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

This set-up allows both Y and D to be non-linear and
interactive functions of X in contrast to standard OLS,
which assumes a linear and additive model

However, note that this partially linear model assumes
that the effect of D on Y is additive and linear

Our confounders can interact with one another, but not
with our treatment!

And remember we’re still making the standard
identification assumptions (unconfoundedness conditional
on X , positivity, and consistency)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

This set-up allows both Y and D to be non-linear and
interactive functions of X in contrast to standard OLS,
which assumes a linear and additive model

However, note that this partially linear model assumes
that the effect of D on Y is additive and linear

Our confounders can interact with one another, but not
with our treatment!

And remember we’re still making the standard
identification assumptions (unconfoundedness conditional
on X , positivity, and consistency)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

This set-up allows both Y and D to be non-linear and
interactive functions of X in contrast to standard OLS,
which assumes a linear and additive model

However, note that this partially linear model assumes
that the effect of D on Y is additive and linear

Our confounders can interact with one another, but not
with our treatment!

And remember we’re still making the standard
identification assumptions (unconfoundedness conditional
on X , positivity, and consistency)

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

If ML is useful because it allows us to relax linearity and
additivity, why would we assume linearity and additivity in
D?

We’re just using this model for illustration!

We can assume a fully interactive and non-linear model
when we actually use DML

But our partially linear model set-up will allow us to
better explain how DML works

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

If ML is useful because it allows us to relax linearity and
additivity, why would we assume linearity and additivity in
D?

We’re just using this model for illustration!

We can assume a fully interactive and non-linear model
when we actually use DML

But our partially linear model set-up will allow us to
better explain how DML works

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

If ML is useful because it allows us to relax linearity and
additivity, why would we assume linearity and additivity in
D?

We’re just using this model for illustration!

We can assume a fully interactive and non-linear model
when we actually use DML

But our partially linear model set-up will allow us to
better explain how DML works

The Partially Linear Model Set-up

Y = Dθ0 + g0(X) + U

D = m0(X) + V

If ML is useful because it allows us to relax linearity and
additivity, why would we assume linearity and additivity in
D?

We’re just using this model for illustration!

We can assume a fully interactive and non-linear model
when we actually use DML

But our partially linear model set-up will allow us to
better explain how DML works

Where We Are and Where We’re Going

We’ve introduced the partially linear model set-up

Next, we will introduce an intuitive procedure—“the naive
approach”—for estimating θ0 with ML assuming a
partially linear model

We will show that this estimation procedure is biased and
not
√
n-consistent

Then we’re going to illustrate two sources of this bias and
show how DML avoids these two types of bias

Where We Are and Where We’re Going

We’ve introduced the partially linear model set-up

Next, we will introduce an intuitive procedure—“the naive
approach”—for estimating θ0 with ML assuming a
partially linear model

We will show that this estimation procedure is biased and
not
√
n-consistent

Then we’re going to illustrate two sources of this bias and
show how DML avoids these two types of bias

Where We Are and Where We’re Going

We’ve introduced the partially linear model set-up

Next, we will introduce an intuitive procedure—“the naive
approach”—for estimating θ0 with ML assuming a
partially linear model

We will show that this estimation procedure is biased and
not
√
n-consistent

Then we’re going to illustrate two sources of this bias and
show how DML avoids these two types of bias

Where We Are and Where We’re Going

We’ve introduced the partially linear model set-up

Next, we will introduce an intuitive procedure—“the naive
approach”—for estimating θ0 with ML assuming a
partially linear model

We will show that this estimation procedure is biased and
not
√
n-consistent

Then we’re going to illustrate two sources of this bias and
show how DML avoids these two types of bias

Where We Are and Where We’re Going

We’ve introduced the partially linear model set-up

Next, we will introduce an intuitive procedure—“the naive
approach”—for estimating θ0 with ML assuming a
partially linear model

We will show that this estimation procedure is biased and
not
√
n-consistent

Then we’re going to illustrate two sources of this bias and
show how DML avoids these two types of bias

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]

That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model

In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Causal Inference with ML: The Naive Approach

The naive approach: estimate Y = D θ̂0 + ĝ0(X) + Û using
ML

θ̂0: our naive estimate of θ0, “theta-naught-hat”

How might we estimate θ̂0 and ĝ0(X)?

Remember, m0(X) = E[D | X], but g0(X) 6= E[Y | X]
That’s because Dθ0 is also included in this model
In the paper, the authors use `0(X) for E[Y | X]

To estimate both θ̂0 and ĝ0(X), we could use an iterative
method that alternates between using random forest for
estimating ĝ0(X) and OLS for estimating θ̂0

Alternatively, we could generate many non-linear
transformations of the covariates in X as well as interactions
between these covariates and use LASSO to estimate the
model

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization

This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...

...but introduces bias and prevents
√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting

Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal

More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance

Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

1 Bias from regularization

To avoid overfitting the data with complex functional forms,
ML algorithms use regularization
This decreases the variance of the estimator and reduces
overfitting...
...but introduces bias and prevents

√
n-consistency

2 Bias from overfitting

Sometimes our efforts to regularize fail to prevent overfitting
Overfitting: mistaking noise for signal
More carefully, we overfit when we model the idiosyncrasies of
our particular sample too closely, which may lead to poor
out-of-sample performance
Overfitting → bias and slow convergence

Two Sources of Bias in Our Naive Estimator

For clarity, we will isolate each type of bias

When we look at regularization bias, we will assume we have
used sample-splitting to avoid bias from overfitting

When we look at bias from overfitting, we will assume we
have used orthogonalization to prevent regularization bias

We’ll explain how sample-splitting and orthogonalization work
soon

Two Sources of Bias in Our Naive Estimator

For clarity, we will isolate each type of bias

When we look at regularization bias, we will assume we have
used sample-splitting to avoid bias from overfitting

When we look at bias from overfitting, we will assume we
have used orthogonalization to prevent regularization bias

We’ll explain how sample-splitting and orthogonalization work
soon

Two Sources of Bias in Our Naive Estimator

For clarity, we will isolate each type of bias

When we look at regularization bias, we will assume we have
used sample-splitting to avoid bias from overfitting

When we look at bias from overfitting, we will assume we
have used orthogonalization to prevent regularization bias

We’ll explain how sample-splitting and orthogonalization work
soon

Two Sources of Bias in Our Naive Estimator

For clarity, we will isolate each type of bias

When we look at regularization bias, we will assume we have
used sample-splitting to avoid bias from overfitting

When we look at bias from overfitting, we will assume we
have used orthogonalization to prevent regularization bias

We’ll explain how sample-splitting and orthogonalization work
soon

Two Sources of Bias in Our Naive Estimator

For clarity, we will isolate each type of bias

When we look at regularization bias, we will assume we have
used sample-splitting to avoid bias from overfitting

When we look at bias from overfitting, we will assume we
have used orthogonalization to prevent regularization bias

We’ll explain how sample-splitting and orthogonalization work
soon

Regularization Bias

Let’s start by looking at the scaled estimation error
in θ̂0 when we use sample-splitting without

orthogonalization

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

This looks scary, so let’s take it one term at a time

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

This looks scary, so let’s take it one term at a time
√
n(θ̂0 − θ0) represents our scaled estimation error

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

This looks scary, so let’s take it one term at a time
√
n(θ̂0 − θ0) represents our scaled estimation error

If we want consistency, we want our estimation error to go to
zero

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

This looks scary, so let’s take it one term at a time
√
n(θ̂0 − θ0) represents our scaled estimation error

If we want consistency, we want this term to go to zero

a N(0, Σ̄). Great!

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

b is the sum of terms that do not have mean zero divided by√
n

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

b is the sum of terms that do not have mean zero divided by√
n

Specifically, g0(Xi)− ĝ0(Xi) will not have mean zero because
ĝ0 is biased

Regularization Bias

√
n(θ̂0 − θ0) =

(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

DiUi︸ ︷︷ ︸
:=a

+
(1

n

∑
i∈I

D2
i

)−1 1√
n

∑
i∈I

Di (g0(Xi)− ĝ0(Xi))︸ ︷︷ ︸
:=b

b is the sum of terms that do not have mean zero divided by√
n

Specifically, g0(Xi)− ĝ0(Xi) will not have mean zero because
ĝ0 is biased

b will approach 0, but too slowly for our estimator to be√
n-consistent!

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model
2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive

approach, our outcome model
3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model
2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive

approach, our outcome model
3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model
2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive

approach, our outcome model
3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model

2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive
approach, our outcome model

3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model
2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive

approach, our outcome model

3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model
2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive

approach, our outcome model
3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model
2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive

approach, our outcome model
3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

To overcome this regularization bias, let’s use
orthogonalization

Instead of fitting one ML model, we fit two:

1 Estimate D = m̂0(X) + V̂ , our treatment model
2 Estimate Y = D θ̂0 + ĝ0(X) + Û as we do in the naive

approach, our outcome model
3 Regress Y − ĝ0(X) on V̂

The resulting θ̌0 (“theta-naught-check”) is free of
regularization bias!

We can call this a “partialling-out” approach because we have
partialled out the associations between X and D and between
Y and X (conditional on D)

Causal Inference with ML using Orthogonalization

In notation:

θ̌0 =
(1

n

∑
i∈I

V̂iDi

)−1 1

n

∑
i∈I

V̂ (Yi − ĝ0(Xi))

Look familiar?

Causal Inference with ML using Orthogonalization

In notation:

θ̌0 =
(1

n

∑
i∈I

V̂iDi

)−1 1

n

∑
i∈I

V̂ (Yi − ĝ0(Xi))

Look familiar?

Causal Inference with ML using Orthogonalization

In notation:

θ̌0 =
(1

n

∑
i∈I

V̂iDi

)−1 1

n

∑
i∈I

V̂ (Yi − ĝ0(Xi))

Look familiar?

What about now?

β̂IV = (Z ′D)−1Z ′y

It’s very similar to our standard linear instrumental variable
estimator, two-stage least squares!

Causal Inference with ML using Orthogonalization

In notation:

θ̌0 =
(1

n

∑
i∈I

V̂iDi

)−1 1

n

∑
i∈I

V̂ (Yi − ĝ0(Xi))

Look familiar?

What about now?

β̂IV = (Z ′D)−1Z ′y

It’s very similar to our standard linear instrumental variable
estimator, two-stage least squares!

How Orthogonalization De-biases

Remember b from the scaled estimation error equation? Now
we have b∗:

b∗ = (E [V 2])−1 1√
n

∑
i∈I

(m̂0(Xi)−m0(Xi))︸ ︷︷ ︸
m̂0 estimation error

(ĝ0(Xi)− g0(Xi))︸ ︷︷ ︸
ĝ0 estimation error

Because this term is based on the product of two estimation
errors, it vanishes more quickly

If ĝ0 and m̂0 are each n
1
4 -consistent, θ̂0 will be

√
n-consistent

To see why, just note that n
1
4 × n

1
4 = n

1
2

How Orthogonalization De-biases

Remember b from the scaled estimation error equation? Now
we have b∗:

b∗ = (E [V 2])−1 1√
n

∑
i∈I

(m̂0(Xi)−m0(Xi))︸ ︷︷ ︸
m̂0 estimation error

(ĝ0(Xi)− g0(Xi))︸ ︷︷ ︸
ĝ0 estimation error

Because this term is based on the product of two estimation
errors, it vanishes more quickly

If ĝ0 and m̂0 are each n
1
4 -consistent, θ̂0 will be

√
n-consistent

To see why, just note that n
1
4 × n

1
4 = n

1
2

How Orthogonalization De-biases

Remember b from the scaled estimation error equation? Now
we have b∗:

b∗ = (E [V 2])−1 1√
n

∑
i∈I

(m̂0(Xi)−m0(Xi))︸ ︷︷ ︸
m̂0 estimation error

(ĝ0(Xi)− g0(Xi))︸ ︷︷ ︸
ĝ0 estimation error

Because this term is based on the product of two estimation
errors, it vanishes more quickly

If ĝ0 and m̂0 are each n
1
4 -consistent, θ̂0 will be

√
n-consistent

To see why, just note that n
1
4 × n

1
4 = n

1
2

How Orthogonalization De-biases

Remember b from the scaled estimation error equation? Now
we have b∗:

b∗ = (E [V 2])−1 1√
n

∑
i∈I

(m̂0(Xi)−m0(Xi))︸ ︷︷ ︸
m̂0 estimation error

(ĝ0(Xi)− g0(Xi))︸ ︷︷ ︸
ĝ0 estimation error

Because this term is based on the product of two estimation
errors, it vanishes more quickly

If ĝ0 and m̂0 are each n
1
4 -consistent, θ̂0 will be

√
n-consistent

To see why, just note that n
1
4 × n

1
4 = n

1
2

How Orthogonalization De-biases

Remember b from the scaled estimation error equation? Now
we have b∗:

b∗ = (E [V 2])−1 1√
n

∑
i∈I

(m̂0(Xi)−m0(Xi))︸ ︷︷ ︸
m̂0 estimation error

(ĝ0(Xi)− g0(Xi))︸ ︷︷ ︸
ĝ0 estimation error

Because this term is based on the product of two estimation
errors, it vanishes more quickly

If ĝ0 and m̂0 are each n
1
4 -consistent, θ̂0 will be

√
n-consistent

To see why, just note that n
1
4 × n

1
4 = n

1
2

How Orthogonalization De-biases

Remember b from the scaled estimation error equation? Now
we have b∗:

b∗ = (E [V 2])−1 1√
n

∑
i∈I

(m̂0(Xi)−m0(Xi))︸ ︷︷ ︸
m̂0 estimation error

(ĝ0(Xi)− g0(Xi))︸ ︷︷ ︸
ĝ0 estimation error

Because this term is based on the product of two estimation
errors, it vanishes more quickly

If ĝ0 and m̂0 are each n
1
4 -consistent, θ̂0 will be

√
n-consistent

To see why, just note that n
1
4 × n

1
4 = n

1
2

A Quick Detour

Chernozhukov et al. use a second partialling-out estimator for
partially linear models as well

This estimator is very similar to Robinson’s partialling-out
estimator, which is in turn very similar the
Frisch–Waugh–Lovell partialling-out estimator

If you’ve taken an introductory statistics course, you’ve
probably learned about the Frisch–Waugh–Lovell theorem

But even if you haven’t (or don’t remember!), reviewing
Frisch–Waugh–Lovell theorem and Robinson can help us build
intuition for how DML works

A Quick Detour

Chernozhukov et al. use a second partialling-out estimator for
partially linear models as well

This estimator is very similar to Robinson’s partialling-out
estimator, which is in turn very similar the
Frisch–Waugh–Lovell partialling-out estimator

If you’ve taken an introductory statistics course, you’ve
probably learned about the Frisch–Waugh–Lovell theorem

But even if you haven’t (or don’t remember!), reviewing
Frisch–Waugh–Lovell theorem and Robinson can help us build
intuition for how DML works

A Quick Detour

Chernozhukov et al. use a second partialling-out estimator for
partially linear models as well

This estimator is very similar to Robinson’s partialling-out
estimator, which is in turn very similar the
Frisch–Waugh–Lovell partialling-out estimator

If you’ve taken an introductory statistics course, you’ve
probably learned about the Frisch–Waugh–Lovell theorem

But even if you haven’t (or don’t remember!), reviewing
Frisch–Waugh–Lovell theorem and Robinson can help us build
intuition for how DML works

A Quick Detour

Chernozhukov et al. use a second partialling-out estimator for
partially linear models as well

This estimator is very similar to Robinson’s partialling-out
estimator, which is in turn very similar the
Frisch–Waugh–Lovell partialling-out estimator

If you’ve taken an introductory statistics course, you’ve
probably learned about the Frisch–Waugh–Lovell theorem

But even if you haven’t (or don’t remember!), reviewing
Frisch–Waugh–Lovell theorem and Robinson can help us build
intuition for how DML works

A Quick Detour

Chernozhukov et al. use a second partialling-out estimator for
partially linear models as well

This estimator is very similar to Robinson’s partialling-out
estimator, which is in turn very similar the
Frisch–Waugh–Lovell partialling-out estimator

If you’ve taken an introductory statistics course, you’ve
probably learned about the Frisch–Waugh–Lovell theorem

But even if you haven’t (or don’t remember!), reviewing
Frisch–Waugh–Lovell theorem and Robinson can help us build
intuition for how DML works

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

The Frisch–Waugh–Lovell Theorem

Let’s say we want to estimate the following model using OLS:

Y = β0 + β1D + β2X + U

The Frisch–Waugh–Lovell Theorem shows us that we can recover
the OLS estimate of β1 using a residuals-on-residuals OLS
regression:

1 Regress D on X using OLS

Let D̂ be the predicted values of D and let the residuals
V̂ = D − D̂

2 Regress Y on X using OLS

Let Ŷ be the predicted values of Y and let the residuals
Ŵ = Y − Ŷ

3 Regress Ŵ on V̂ using OLS

The estimated coefficient on V̂ will be the same as the estimated
coefficient β̂1 from regressing Y on D and X using OLS!

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X

2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X

3 Linear regression of the residuals from 2 on the residuals
from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X

2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X

3 Linear regression of the residuals from 2 on the residuals
from 1

Robinson

The Frisch–Waugh–Lovell procedure:

1 Linear regression of D on X
2 Linear regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Robinson’s innovation: let’s replace the linear regressions
from 1 and 2 with some non-parametric regression

Robinson’s procedure:

1 Kernel regression of D on X
2 Kernel regression of Y on X
3 Linear regression of the residuals from 2 on the residuals

from 1

Another Way to Orthogonalize

DML using residuals-on-residuals regression:

1 Estimate D = m̂0(X) + V̂
2 Estimate Y = ˆ̀

0(X) + Û

Note the absence of D and the switch from g0(·) to `0(·),
which is essentially E[Y | X]

3 Regress Û on V̂ using OLS for an estimate θ̌0

Another Way to Orthogonalize

DML using residuals-on-residuals regression:

1 Estimate D = m̂0(X) + V̂
2 Estimate Y = ˆ̀

0(X) + Û

Note the absence of D and the switch from g0(·) to `0(·),
which is essentially E[Y | X]

3 Regress Û on V̂ using OLS for an estimate θ̌0

Another Way to Orthogonalize

DML using residuals-on-residuals regression:

1 Estimate D = m̂0(X) + V̂

2 Estimate Y = ˆ̀
0(X) + Û

Note the absence of D and the switch from g0(·) to `0(·),
which is essentially E[Y | X]

3 Regress Û on V̂ using OLS for an estimate θ̌0

Another Way to Orthogonalize

DML using residuals-on-residuals regression:

1 Estimate D = m̂0(X) + V̂
2 Estimate Y = ˆ̀

0(X) + Û

Note the absence of D and the switch from g0(·) to `0(·),
which is essentially E[Y | X]

3 Regress Û on V̂ using OLS for an estimate θ̌0

Another Way to Orthogonalize

DML using residuals-on-residuals regression:

1 Estimate D = m̂0(X) + V̂
2 Estimate Y = ˆ̀

0(X) + Û

Note the absence of D and the switch from g0(·) to `0(·),
which is essentially E[Y | X]

3 Regress Û on V̂ using OLS for an estimate θ̌0

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression
2 Predict Y with X using kernel regression
3 Linear regression of the residuals from 2 on the residuals

from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression
2 Predict Y with X using kernel regression
3 Linear regression of the residuals from 2 on the residuals

from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression

2 Predict Y with X using kernel regression
3 Linear regression of the residuals from 2 on the residuals

from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression
2 Predict Y with X using kernel regression

3 Linear regression of the residuals from 2 on the residuals
from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression
2 Predict Y with X using kernel regression
3 Linear regression of the residuals from 2 on the residuals

from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression
2 Predict Y with X using kernel regression
3 Linear regression of the residuals from 2 on the residuals

from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression
2 Predict Y with X using kernel regression
3 Linear regression of the residuals from 2 on the residuals

from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Another Way to Orthogonalize

Robinson’s procedure:

1 Predict D with X using kernel regression
2 Predict Y with X using kernel regression
3 Linear regression of the residuals from 2 on the residuals

from 1

DML residuals-on-residuals procedure:

1 Predict D with X using any n 1
4 -consistent ML model

2 Predict Y with X using any n 1
4 -consistent ML model

3 Linear regression of the residuals from 2 on the residuals
from 1

Where We Are and Where We’re Going

We saw that can eliminate regularization bias
using orthogonalization

Now we’re going to show how we can eliminate
bias from overfitting using sample-splitting and
cross-fitting

Where We Are and Where We’re Going

We saw that can eliminate regularization bias
using orthogonalization

Now we’re going to show how we can eliminate
bias from overfitting using sample-splitting and
cross-fitting

Where We Are and Where We’re Going

We saw that can eliminate regularization bias
using orthogonalization

Now we’re going to show how we can eliminate
bias from overfitting using sample-splitting and
cross-fitting

Bias from Overfitting

ML algorithms sometimes overfit our data due to their
flexibility, and this can lead to bias and slower convergence

Let’s say we estimate θ̌0 using orthogonalization but without
sample-splitting

That is, we fit our machine learning models and estimate our
target parameter θ̌0 on the same set of observations

Our scaled estimation error
√
n(θ̌0 − θ0) = a∗ + b∗ + c∗

We looked at b∗ before, and we don’t have to worry about a∗

Bias from Overfitting

ML algorithms sometimes overfit our data due to their
flexibility, and this can lead to bias and slower convergence

Let’s say we estimate θ̌0 using orthogonalization but without
sample-splitting

That is, we fit our machine learning models and estimate our
target parameter θ̌0 on the same set of observations

Our scaled estimation error
√
n(θ̌0 − θ0) = a∗ + b∗ + c∗

We looked at b∗ before, and we don’t have to worry about a∗

Bias from Overfitting

ML algorithms sometimes overfit our data due to their
flexibility, and this can lead to bias and slower convergence

Let’s say we estimate θ̌0 using orthogonalization but without
sample-splitting

That is, we fit our machine learning models and estimate our
target parameter θ̌0 on the same set of observations

Our scaled estimation error
√
n(θ̌0 − θ0) = a∗ + b∗ + c∗

We looked at b∗ before, and we don’t have to worry about a∗

Bias from Overfitting

ML algorithms sometimes overfit our data due to their
flexibility, and this can lead to bias and slower convergence

Let’s say we estimate θ̌0 using orthogonalization but without
sample-splitting

That is, we fit our machine learning models and estimate our
target parameter θ̌0 on the same set of observations

Our scaled estimation error
√
n(θ̌0 − θ0) = a∗ + b∗ + c∗

We looked at b∗ before, and we don’t have to worry about a∗

Bias from Overfitting

ML algorithms sometimes overfit our data due to their
flexibility, and this can lead to bias and slower convergence

Let’s say we estimate θ̌0 using orthogonalization but without
sample-splitting

That is, we fit our machine learning models and estimate our
target parameter θ̌0 on the same set of observations

Our scaled estimation error
√
n(θ̌0 − θ0) = a∗ + b∗ + c∗

We looked at b∗ before, and we don’t have to worry about a∗

Bias from Overfitting

ML algorithms sometimes overfit our data due to their
flexibility, and this can lead to bias and slower convergence

Let’s say we estimate θ̌0 using orthogonalization but without
sample-splitting

That is, we fit our machine learning models and estimate our
target parameter θ̌0 on the same set of observations

Our scaled estimation error
√
n(θ̌0 − θ0) = a∗ + b∗ + c∗

We looked at b∗ before, and we don’t have to worry about a∗

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

V : the error term (not the estimated residuals) from
D = m0(X) + V
ĝ0(Xi)− g0(Xi): estimation error in ĝ0 from
Y = D θ̂0 + ĝ0(X) + Û

What happens if we estimate θ̌0 with the same set of
observations we used to fit m̂0(X) and ĝ0(X)?

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

V : the error term (not the estimated residuals) from
D = m0(X) + V

ĝ0(Xi)− g0(Xi): estimation error in ĝ0 from
Y = D θ̂0 + ĝ0(X) + Û

What happens if we estimate θ̌0 with the same set of
observations we used to fit m̂0(X) and ĝ0(X)?

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

V : the error term (not the estimated residuals) from
D = m0(X) + V
ĝ0(Xi)− g0(Xi): estimation error in ĝ0 from
Y = D θ̂0 + ĝ0(X) + Û

What happens if we estimate θ̌0 with the same set of
observations we used to fit m̂0(X) and ĝ0(X)?

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

V : the error term (not the estimated residuals) from
D = m0(X) + V
ĝ0(Xi)− g0(Xi): estimation error in ĝ0 from
Y = D θ̂0 + ĝ0(X) + Û

What happens if we estimate θ̌0 with the same set of
observations we used to fit m̂0(X) and ĝ0(X)?

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

Overfitting: modeling the noise too closely

When ĝ0 is overfit, it will pick up on some of the noise U
from the outcome model

If our noise terms V and U are associated, estimation error in
ĝ0 from overfitting might be associated with V

Note: ĝ0 and V might also be associated if we have any
unmeasured confounding, but we’re assuming that away

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

Overfitting: modeling the noise too closely

When ĝ0 is overfit, it will pick up on some of the noise U
from the outcome model

If our noise terms V and U are associated, estimation error in
ĝ0 from overfitting might be associated with V

Note: ĝ0 and V might also be associated if we have any
unmeasured confounding, but we’re assuming that away

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

Overfitting: modeling the noise too closely

When ĝ0 is overfit, it will pick up on some of the noise U
from the outcome model

If our noise terms V and U are associated, estimation error in
ĝ0 from overfitting might be associated with V

Note: ĝ0 and V might also be associated if we have any
unmeasured confounding, but we’re assuming that away

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

Overfitting: modeling the noise too closely

When ĝ0 is overfit, it will pick up on some of the noise U
from the outcome model

If our noise terms V and U are associated, estimation error in
ĝ0 from overfitting might be associated with V

Note: ĝ0 and V might also be associated if we have any
unmeasured confounding, but we’re assuming that away

Bias from Overfitting

But c∗ contains terms like this:

1√
n

∑
i∈I

Vi (ĝ0(Xi)− g0(Xi))

Overfitting: modeling the noise too closely

When ĝ0 is overfit, it will pick up on some of the noise U
from the outcome model

If our noise terms V and U are associated, estimation error in
ĝ0 from overfitting might be associated with V

Note: ĝ0 and V might also be associated if we have any
unmeasured confounding, but we’re assuming that away

How to Avoid Bias from Overfitting

To break the association between V and ĝ0 and avoid bias
from overfitting, we employ sample-splitting:

1 Randomly partition our data into two subsets
2 Fit your ML models ĝ0 and m̂0 on the first subset
3 Estimate θ̌0 in the second subset using the ĝ0 and m̂0

functions we fit in the first subset

Key: We never estimate θ̌0 using the same observations that
we used to fit ĝ0 and m̂0

How to Avoid Bias from Overfitting

To break the association between V and ĝ0 and avoid bias
from overfitting, we employ sample-splitting:

1 Randomly partition our data into two subsets
2 Fit your ML models ĝ0 and m̂0 on the first subset
3 Estimate θ̌0 in the second subset using the ĝ0 and m̂0

functions we fit in the first subset

Key: We never estimate θ̌0 using the same observations that
we used to fit ĝ0 and m̂0

How to Avoid Bias from Overfitting

To break the association between V and ĝ0 and avoid bias
from overfitting, we employ sample-splitting:

1 Randomly partition our data into two subsets

2 Fit your ML models ĝ0 and m̂0 on the first subset
3 Estimate θ̌0 in the second subset using the ĝ0 and m̂0

functions we fit in the first subset

Key: We never estimate θ̌0 using the same observations that
we used to fit ĝ0 and m̂0

How to Avoid Bias from Overfitting

To break the association between V and ĝ0 and avoid bias
from overfitting, we employ sample-splitting:

1 Randomly partition our data into two subsets
2 Fit your ML models ĝ0 and m̂0 on the first subset

3 Estimate θ̌0 in the second subset using the ĝ0 and m̂0

functions we fit in the first subset

Key: We never estimate θ̌0 using the same observations that
we used to fit ĝ0 and m̂0

How to Avoid Bias from Overfitting

To break the association between V and ĝ0 and avoid bias
from overfitting, we employ sample-splitting:

1 Randomly partition our data into two subsets
2 Fit your ML models ĝ0 and m̂0 on the first subset
3 Estimate θ̌0 in the second subset using the ĝ0 and m̂0

functions we fit in the first subset

Key: We never estimate θ̌0 using the same observations that
we used to fit ĝ0 and m̂0

How to Avoid Bias from Overfitting

To break the association between V and ĝ0 and avoid bias
from overfitting, we employ sample-splitting:

1 Randomly partition our data into two subsets
2 Fit your ML models ĝ0 and m̂0 on the first subset
3 Estimate θ̌0 in the second subset using the ĝ0 and m̂0

functions we fit in the first subset

Key: We never estimate θ̌0 using the same observations that
we used to fit ĝ0 and m̂0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets

2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset

3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset

4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset

5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset

6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Cross-Fitting

The standard approach to sample-splitting will reduce
efficiency and statistical power

We can avoid the loss of efficiency and power using
cross-fitting:

1 Randomly partition your data into two subsets
2 Fit two ML models ĝ0,1 and m̂0,1 in the first subset
3 Estimate θ̌0,1 in the second subset using the ĝ0,1 and m̂0,1

functions we fit in the first subset
4 Fit two ML models ĝ0,2 and m̂0,2 in the second subset
5 Estimate θ̌0,2 in the first subset using the ĝ0,2 and m̂0,2

functions we fit in the second subset
6 Average our two estimates θ̌0,1 and θ̌0,2 for our final estimate
θ̌0

Where We Are and Where We’re Going

We now (hopefully) have a good intuition for
how fitting two ML models allows us to remove
bias and achieve faster convergence

Next we’re going to look at how the authors
formally define Neyman orthogonality and DML

Where We Are and Where We’re Going

We now (hopefully) have a good intuition for
how fitting two ML models allows us to remove
bias and achieve faster convergence

Next we’re going to look at how the authors
formally define Neyman orthogonality and DML

Where We Are and Where We’re Going

We now (hopefully) have a good intuition for
how fitting two ML models allows us to remove
bias and achieve faster convergence

Next we’re going to look at how the authors
formally define Neyman orthogonality and DML

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are
We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are
We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are
We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are
We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are
We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are

We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are
We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Remember: orthogonalize D with respect to X → eliminate
regularization bias

Now we formalize this “Neyman orthogonality” condition

Let
η0 = (g0,m0), η = (g ,m)

We have a new friend! Her name is η0 (“eta-naught”)

η0 is our nuisance parameter

We don’t really care what g0 and m0 are
We just want to use them to get good estimates of θ0

The exact form of our nuisance parameter isn’t a scientifically
substantive quantity of interest

Defining Neyman Orthogonality

Introduce the following score function:

ψ(W ; θ, η0) = (D −m0(X))︸ ︷︷ ︸
V

× (Y − g0(X)− (D −m0(X))θ)︸ ︷︷ ︸
U

Looks scary! Let’s break it down

ψ: our score function “psi”

W : our data

Each underbraced term represents a noise term from our
partially linear model

Defining Neyman Orthogonality

Introduce the following score function:

ψ(W ; θ, η0) = (D −m0(X))︸ ︷︷ ︸
V

× (Y − g0(X)− (D −m0(X))θ)︸ ︷︷ ︸
U

Looks scary! Let’s break it down

ψ: our score function “psi”

W : our data

Each underbraced term represents a noise term from our
partially linear model

Defining Neyman Orthogonality

Introduce the following score function:

ψ(W ; θ, η0) = (D −m0(X))︸ ︷︷ ︸
V

× (Y − g0(X)− (D −m0(X))θ)︸ ︷︷ ︸
U

Looks scary! Let’s break it down

ψ: our score function “psi”

W : our data

Each underbraced term represents a noise term from our
partially linear model

Defining Neyman Orthogonality

Introduce the following score function:

ψ(W ; θ, η0) = (D −m0(X))︸ ︷︷ ︸
V

× (Y − g0(X)− (D −m0(X))θ)︸ ︷︷ ︸
U

Looks scary! Let’s break it down

ψ: our score function “psi”

W : our data

Each underbraced term represents a noise term from our
partially linear model

Defining Neyman Orthogonality

Introduce the following score function:

ψ(W ; θ, η0) = (D −m0(X))︸ ︷︷ ︸
V

× (Y − g0(X)− (D −m0(X))θ)︸ ︷︷ ︸
U

Looks scary! Let’s break it down

ψ: our score function “psi”

W : our data

Each underbraced term represents a noise term from our
partially linear model

Defining Neyman Orthogonality

Introduce the following score function:

ψ(W ; θ, η0) = (D −m0(X))︸ ︷︷ ︸
V

× (Y − g0(X)− (D −m0(X))θ)︸ ︷︷ ︸
U

Looks scary! Let’s break it down

ψ: our score function “psi”

W : our data

Each underbraced term represents a noise term from our
partially linear model

Defining Neyman Orthogonality

Introduce the following moment condition:

ψ(W ; θ, η0) = (D −m0(X))×(Y − g0(X)− (D −m0(X))θ) = 0

So we want our score function to = 0. Why?

Y = V θ0 + g0(X) + U

Y = (D −m0(X))θ0 + g0(X) + U

V = (D −m0(X)) is our regressor

U = (Y − g0(X)− (D −m0(X))θ) is our error term

Defining Neyman Orthogonality

Introduce the following moment condition:

ψ(W ; θ, η0) = (D −m0(X))×(Y − g0(X)− (D −m0(X))θ) = 0

So we want our score function to = 0. Why?

Y = V θ0 + g0(X) + U

Y = (D −m0(X))θ0 + g0(X) + U

V = (D −m0(X)) is our regressor

U = (Y − g0(X)− (D −m0(X))θ) is our error term

Defining Neyman Orthogonality

Introduce the following moment condition:

ψ(W ; θ, η0) = (D −m0(X))×(Y − g0(X)− (D −m0(X))θ) = 0

So we want our score function to = 0. Why?

Y = V θ0 + g0(X) + U

Y = (D −m0(X))θ0 + g0(X) + U

V = (D −m0(X)) is our regressor

U = (Y − g0(X)− (D −m0(X))θ) is our error term

Defining Neyman Orthogonality

Introduce the following moment condition:

ψ(W ; θ, η0) = (D −m0(X))×(Y − g0(X)− (D −m0(X))θ) = 0

So we want our score function to = 0. Why?

Y = V θ0 + g0(X) + U

Y = (D −m0(X))θ0 + g0(X) + U

V = (D −m0(X)) is our regressor

U = (Y − g0(X)− (D −m0(X))θ) is our error term

Defining Neyman Orthogonality

Introduce the following moment condition:

ψ(W ; θ, η0) = (D −m0(X))×(Y − g0(X)− (D −m0(X))θ) = 0

So we want our score function to = 0. Why?

Y = V θ0 + g0(X) + U

Y = (D −m0(X))θ0 + g0(X) + U

V = (D −m0(X)) is our regressor

U = (Y − g0(X)− (D −m0(X))θ) is our error term

Defining Neyman Orthogonality

Introduce the following moment condition:

ψ(W ; θ, η0) = (D −m0(X))×(Y − g0(X)− (D −m0(X))θ) = 0

So we want our score function to = 0. Why?

Y = V θ0 + g0(X) + U

Y = (D −m0(X))θ0 + g0(X) + U

V = (D −m0(X)) is our regressor

U = (Y − g0(X)− (D −m0(X))θ) is our error term

Defining Neyman Orthogonality

We’re saying we want our regressor V and our error term U
to be orthogonal to one another1

Two vectors are orthogonal to one another when their dot
product equals 0

This moment condition is very similar to saying we want our
error to be uncorrelated with our regressor

It is also very similar to (but slightly weaker than) the
standard zero conditional mean assumption for OLS

1Moment conditions like this will look more familiar to people who know
Generalized Method of Moments (GMM). My understanding is that while
GMM is popular in economics, it’s less common in political science and
sociology, which is why I explain what’s going on in a little more depth here.

Defining Neyman Orthogonality

We’re saying we want our regressor V and our error term U
to be orthogonal to one another1

Two vectors are orthogonal to one another when their dot
product equals 0

This moment condition is very similar to saying we want our
error to be uncorrelated with our regressor

It is also very similar to (but slightly weaker than) the
standard zero conditional mean assumption for OLS

1Moment conditions like this will look more familiar to people who know
Generalized Method of Moments (GMM). My understanding is that while
GMM is popular in economics, it’s less common in political science and
sociology, which is why I explain what’s going on in a little more depth here.

Defining Neyman Orthogonality

We’re saying we want our regressor V and our error term U
to be orthogonal to one another1

Two vectors are orthogonal to one another when their dot
product equals 0

This moment condition is very similar to saying we want our
error to be uncorrelated with our regressor

It is also very similar to (but slightly weaker than) the
standard zero conditional mean assumption for OLS

1Moment conditions like this will look more familiar to people who know
Generalized Method of Moments (GMM). My understanding is that while
GMM is popular in economics, it’s less common in political science and
sociology, which is why I explain what’s going on in a little more depth here.

Defining Neyman Orthogonality

We’re saying we want our regressor V and our error term U
to be orthogonal to one another1

Two vectors are orthogonal to one another when their dot
product equals 0

This moment condition is very similar to saying we want our
error to be uncorrelated with our regressor

It is also very similar to (but slightly weaker than) the
standard zero conditional mean assumption for OLS

1Moment conditions like this will look more familiar to people who know
Generalized Method of Moments (GMM). My understanding is that while
GMM is popular in economics, it’s less common in political science and
sociology, which is why I explain what’s going on in a little more depth here.

Defining Neyman Orthogonality

Now we can define Neyman orthogonality!

∂ηE[ψ(W ; θ0, η0)][η − η0] = 0

In words: the (Gateaux) derivative of our score function with
respect to our nuisance parameter is 0

Recall that a derivative represents our instantaneous rate of
change

Thus, when the derivative = 0, our score function is robust
to small perturbations in η0

It doesn’t change much when η0 moves around a little

Defining Neyman Orthogonality

Now we can define Neyman orthogonality!

∂ηE[ψ(W ; θ0, η0)][η − η0] = 0

In words: the (Gateaux) derivative of our score function with
respect to our nuisance parameter is 0

Recall that a derivative represents our instantaneous rate of
change

Thus, when the derivative = 0, our score function is robust
to small perturbations in η0

It doesn’t change much when η0 moves around a little

Defining Neyman Orthogonality

Now we can define Neyman orthogonality!

∂ηE[ψ(W ; θ0, η0)][η − η0] = 0

In words: the (Gateaux) derivative of our score function with
respect to our nuisance parameter is 0

Recall that a derivative represents our instantaneous rate of
change

Thus, when the derivative = 0, our score function is robust
to small perturbations in η0

It doesn’t change much when η0 moves around a little

Defining Neyman Orthogonality

Now we can define Neyman orthogonality!

∂ηE[ψ(W ; θ0, η0)][η − η0] = 0

In words: the (Gateaux) derivative of our score function with
respect to our nuisance parameter is 0

Recall that a derivative represents our instantaneous rate of
change

Thus, when the derivative = 0, our score function is robust
to small perturbations in η0

It doesn’t change much when η0 moves around a little

Defining Neyman Orthogonality

Now we can define Neyman orthogonality!

∂ηE[ψ(W ; θ0, η0)][η − η0] = 0

In words: the (Gateaux) derivative of our score function with
respect to our nuisance parameter is 0

Recall that a derivative represents our instantaneous rate of
change

Thus, when the derivative = 0, our score function is robust
to small perturbations in η0

It doesn’t change much when η0 moves around a little

Defining Neyman Orthogonality

Now we can define Neyman orthogonality!

∂ηE[ψ(W ; θ0, η0)][η − η0] = 0

In words: the (Gateaux) derivative of our score function with
respect to our nuisance parameter is 0

Recall that a derivative represents our instantaneous rate of
change

Thus, when the derivative = 0, our score function is robust
to small perturbations in η0

It doesn’t change much when η0 moves around a little

Defining Neyman Orthogonality

Now we can define Neyman orthogonality!

∂ηE[ψ(W ; θ0, η0)][η − η0] = 0

In words: the (Gateaux) derivative of our score function with
respect to our nuisance parameter is 0

Recall that a derivative represents our instantaneous rate of
change

Thus, when the derivative = 0, our score function is robust
to small perturbations in η0

It doesn’t change much when η0 moves around a little

Now we’re ready to formally define DML!

Defining DML

1 Take a K -fold random partition (Ik)Kk=1 of observation
indices [N] = 1, ...,N such that the size of each fold Ik is
n = N/K . Also, for each k ∈ [K] = 1, ...,K , define
I ck := 1, ...,N \ Ik .

Create K equally sized partitions
I ck is the complement of Ik : if we have 100 observations and
Ik is the set of observations 1–20, then I ck is the set of
observations 21–100

Defining DML

2 For each k ∈ [K], construct an ML estimator

η̂0,k = η̂0((Wi)i∈I ck)

Important: The estimator we use for fold k was fit in I ck !
This is the sample splitting we talked about earlier that
removes bias from overfitting

Defining DML

3 Construct the estimator θ̃0 (“theta-naught-tilde”) as the
solution to

1

K

K∑
k=1

En,k [ψ(W ; θ̃0, ˆη0,k)] = 0

Note that θ̃0 is not indexed by k , but the nuisance parameter
η̂0,k is

We’re finding the θ̃0 that minimizes the average of the scores
across all folds, where the scores vary by fold due to η̂0,k

This is a slightly different2 version of the cross-fitting
approach we talked about earlier that enables us to do sample
splitting without loss of efficiency

2In particular, we are no longer taking the average of k different estimates
of θ̃0 but instead finding one estimate that minimizes the average of the k
different score functions. Chernozhukov et al. recommend this latter approach
because it behaves better in smaller samples.

The ATE

Even under unconfoundedness, OLS does not (necessarily)
give us the ATE

We set up the following moment condition for estimation of
the ATE:

ψ(W ; θ, η) :=

(g(1,X)−g(0,X))+
D(Y − g(1,X))

m(X)
−(1− D)(Y − g(0,X))

1−m(X)
−θ

Recall the score function has to = 0

So we’re saying we want the three big terms in the middle to
= θ

Let’s look at them more closely

The ATE

Even under unconfoundedness, OLS does not (necessarily)
give us the ATE

We set up the following moment condition for estimation of
the ATE:

ψ(W ; θ, η) :=

(g(1,X)−g(0,X))+
D(Y − g(1,X))

m(X)
−(1− D)(Y − g(0,X))

1−m(X)
−θ

Recall the score function has to = 0

So we’re saying we want the three big terms in the middle to
= θ

Let’s look at them more closely

The ATE

Even under unconfoundedness, OLS does not (necessarily)
give us the ATE

We set up the following moment condition for estimation of
the ATE:

ψ(W ; θ, η) :=

(g(1,X)−g(0,X))+
D(Y − g(1,X))

m(X)
−(1− D)(Y − g(0,X))

1−m(X)
−θ

Recall the score function has to = 0

So we’re saying we want the three big terms in the middle to
= θ

Let’s look at them more closely

The ATE

Even under unconfoundedness, OLS does not (necessarily)
give us the ATE

We set up the following moment condition for estimation of
the ATE:

ψ(W ; θ, η) :=

(g(1,X)−g(0,X))+
D(Y − g(1,X))

m(X)
−(1− D)(Y − g(0,X))

1−m(X)
−θ

Recall the score function has to = 0

So we’re saying we want the three big terms in the middle to
= θ

Let’s look at them more closely

The ATE

Even under unconfoundedness, OLS does not (necessarily)
give us the ATE

We set up the following moment condition for estimation of
the ATE:

ψ(W ; θ, η) :=

(g(1,X)−g(0,X))+
D(Y − g(1,X))

m(X)
−(1− D)(Y − g(0,X))

1−m(X)
−θ

Recall the score function has to = 0

So we’re saying we want the three big terms in the middle to
= θ

Let’s look at them more closely

The ATE

Even under unconfoundedness, OLS does not (necessarily)
give us the ATE

We set up the following moment condition for estimation of
the ATE:

ψ(W ; θ, η) :=

(g(1,X)−g(0,X))+
D(Y − g(1,X))

m(X)
−(1− D)(Y − g(0,X))

1−m(X)
−θ

Recall the score function has to = 0

So we’re saying we want the three big terms in the middle to
= θ

Let’s look at them more closely

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)
− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Debiasing terms

g(1,X): predicted outcome given X when D = 1, i.e.,
predicted outcome for treated units

g(0,X): predicted outcome given X when D = 0, i.e.,
predicted outcome for control units

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)
− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Debiasing terms

g(1,X): predicted outcome given X when D = 1, i.e.,
predicted outcome for treated units

g(0,X): predicted outcome given X when D = 0, i.e.,
predicted outcome for control units

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)
− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Debiasing terms

g(1,X): predicted outcome given X when D = 1, i.e.,
predicted outcome for treated units

g(0,X): predicted outcome given X when D = 0, i.e.,
predicted outcome for control units

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Recall that we can define the ATE as E [Y (1)− Y (0)] in
potential outcomes notation, where Y (1) and Y (0) represent
potential outcomes under treatment and control,
respectively

When Ŷ (1) is downwardly biased, our ÂTE will be biased
downward

When Ŷ (0) is downwardly biased, our ÂTE will be biased
upward

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Recall that we can define the ATE as E [Y (1)− Y (0)] in
potential outcomes notation, where Y (1) and Y (0) represent
potential outcomes under treatment and control,
respectively

When Ŷ (1) is downwardly biased, our ÂTE will be biased
downward

When Ŷ (0) is downwardly biased, our ÂTE will be biased
upward

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Recall that we can define the ATE as E [Y (1)− Y (0)] in
potential outcomes notation, where Y (1) and Y (0) represent
potential outcomes under treatment and control,
respectively

When Ŷ (1) is downwardly biased, our ÂTE will be biased
downward

When Ŷ (0) is downwardly biased, our ÂTE will be biased
upward

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Recall that we can define the ATE as E [Y (1)− Y (0)] in
potential outcomes notation, where Y (1) and Y (0) represent
potential outcomes under treatment and control,
respectively

When Ŷ (1) is downwardly biased, our ÂTE will be biased
downward

When Ŷ (0) is downwardly biased, our ÂTE will be biased
upward

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

That’s why we want to add the residuals for the treated units
and subtract the residuals for the control units

To see this, note that, e.g., D(Y − g(1,X)) represents the
observed potential outcome under treatment minus the
predicted potential outcome under treatment

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

That’s why we want to add the residuals for the treated units
and subtract the residuals for the control units

To see this, note that, e.g., D(Y − g(1,X)) represents the
observed potential outcome under treatment minus the
predicted potential outcome under treatment

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X))

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

That’s why we want to add the residuals for the treated units
and subtract the residuals for the control units

To see this, note that, e.g., D(Y − g(1,X)) represents the
observed potential outcome under treatment minus the
predicted potential outcome under treatment

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X)

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Finally, we weight by the inverse probability of treatment 1
m(X)

for the treated units because units with high probability of
treatment will be overrepresented among the treated units

And we weight by the inverse probability of control 1
1−m(X) for

the control units because units with high probability of
control will be overrepresented among the control units

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X)

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Finally, we weight by the inverse probability of treatment 1
m(X)

for the treated units because units with high probability of
treatment will be overrepresented among the treated units

And we weight by the inverse probability of control 1
1−m(X) for

the control units because units with high probability of
control will be overrepresented among the control units

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X)

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Finally, we weight by the inverse probability of treatment 1
m(X)

for the treated units because units with high probability of
treatment will be overrepresented among the treated units

And we weight by the inverse probability of control 1
1−m(X) for

the control units because units with high probability of
control will be overrepresented among the control units

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X)

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Important: be sure to assess common support!

If the probability of treatment or control is very low in some
strata of X , the debiasing terms will blow up

Lack of common support → unstable estimates of treatment
effects

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X)

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Important: be sure to assess common support!

If the probability of treatment or control is very low in some
strata of X , the debiasing terms will blow up

Lack of common support → unstable estimates of treatment
effects

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X)

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Important: be sure to assess common support!

If the probability of treatment or control is very low in some
strata of X , the debiasing terms will blow up

Lack of common support → unstable estimates of treatment
effects

The ATE

(g(1,X)− g(0,X))︸ ︷︷ ︸
Biased treatment effect

estimate from ML models

+
D(Y − g(1,X))

m(X)︸ ︷︷ ︸
Residuals for treated
divided by probability
of receiving treatment

− (1− D)(Y − g(0,X)

1−m(X)︸ ︷︷ ︸
Residuals for control
divided by probability
of receiving control

Important: be sure to assess common support!

If the probability of treatment or control is very low in some
strata of X , the debiasing terms will blow up

Lack of common support → unstable estimates of treatment
effects

Variance and Confidence Intervals

To get valid confidence intervals, we assume that score are
linear in the following sense:

ψ(w ; θ, η) = ψa(w ; η)θ+ψb(w ; η) ∀ w ∈ W, θ ∈ Θ, η ∈ T

We use this new term ψa(w ; η) to estimate the asymptotic
variance of our estimator

Variance and Confidence Intervals

To get valid confidence intervals, we assume that score are
linear in the following sense:

ψ(w ; θ, η) = ψa(w ; η)θ+ψb(w ; η) ∀ w ∈ W, θ ∈ Θ, η ∈ T

We use this new term ψa(w ; η) to estimate the asymptotic
variance of our estimator

Variance and Confidence Intervals

To get valid confidence intervals, we assume that score are
linear in the following sense:

ψ(w ; θ, η) = ψa(w ; η)θ+ψb(w ; η) ∀ w ∈ W, θ ∈ Θ, η ∈ T

We use this new term ψa(w ; η) to estimate the asymptotic
variance of our estimator

Variance and Confidence Intervals

We use the following estimator for the asymptotic variance of
DML:

σ̂2 = Ĵ0
−1︸︷︷︸

Ĵ0 inverse

1

K

K∑
k=1

En,k [ψ(W ; θ̃0, η̂0,k)︸ ︷︷ ︸
Score function

ψ(W ; θ̃0, η̂0,k)′︸ ︷︷ ︸
Score function

transpose

] (Ĵ0
−1)′︸ ︷︷ ︸

Ĵ0 inverse
transpose

where

Ĵ0 =
1

K

K∑
k=1

En,k [ψa(W ; η̂0,k)]

Variance and Confidence Intervals

We use the following estimator for the asymptotic variance of
DML:

σ̂2 = Ĵ0
−1︸︷︷︸

Ĵ0 inverse

1

K

K∑
k=1

En,k [ψ(W ; θ̃0, η̂0,k)︸ ︷︷ ︸
Score function

ψ(W ; θ̃0, η̂0,k)′︸ ︷︷ ︸
Score function

transpose

] (Ĵ0
−1)′︸ ︷︷ ︸

Ĵ0 inverse
transpose

where

Ĵ0 =
1

K

K∑
k=1

En,k [ψa(W ; η̂0,k)]

Variance and Confidence Intervals

We use the following estimator for the asymptotic variance of
DML:

σ̂2 = Ĵ0
−1︸︷︷︸

Ĵ0 inverse

1

K

K∑
k=1

En,k [ψ(W ; θ̃0, η̂0,k)︸ ︷︷ ︸
Score function

ψ(W ; θ̃0, η̂0,k)′︸ ︷︷ ︸
Score function

transpose

] (Ĵ0
−1)′︸ ︷︷ ︸

Ĵ0 inverse
transpose

where

Ĵ0 =
1

K

K∑
k=1

En,k [ψa(W ; η̂0,k)]

Wrapping Up

Useful for selection-on-observables with high-dimensional
confounding

Avoids strong functional form assumptions

Two sources of bias: regularization and overfitting

Two tools for eliminating bias: orthogonalization and
cross-fitting
√
n consistency if both nuisance parameter estimators are

n
1
4 -consistent

Asymptotically valid confidence intervals

Wrapping Up

Useful for selection-on-observables with high-dimensional
confounding

Avoids strong functional form assumptions

Two sources of bias: regularization and overfitting

Two tools for eliminating bias: orthogonalization and
cross-fitting
√
n consistency if both nuisance parameter estimators are

n
1
4 -consistent

Asymptotically valid confidence intervals

Wrapping Up

Useful for selection-on-observables with high-dimensional
confounding

Avoids strong functional form assumptions

Two sources of bias: regularization and overfitting

Two tools for eliminating bias: orthogonalization and
cross-fitting
√
n consistency if both nuisance parameter estimators are

n
1
4 -consistent

Asymptotically valid confidence intervals

Wrapping Up

Useful for selection-on-observables with high-dimensional
confounding

Avoids strong functional form assumptions

Two sources of bias: regularization and overfitting

Two tools for eliminating bias: orthogonalization and
cross-fitting
√
n consistency if both nuisance parameter estimators are

n
1
4 -consistent

Asymptotically valid confidence intervals

Wrapping Up

Useful for selection-on-observables with high-dimensional
confounding

Avoids strong functional form assumptions

Two sources of bias: regularization and overfitting

Two tools for eliminating bias: orthogonalization and
cross-fitting

√
n consistency if both nuisance parameter estimators are

n
1
4 -consistent

Asymptotically valid confidence intervals

Wrapping Up

Useful for selection-on-observables with high-dimensional
confounding

Avoids strong functional form assumptions

Two sources of bias: regularization and overfitting

Two tools for eliminating bias: orthogonalization and
cross-fitting
√
n consistency if both nuisance parameter estimators are

n
1
4 -consistent

Asymptotically valid confidence intervals

Wrapping Up

Useful for selection-on-observables with high-dimensional
confounding

Avoids strong functional form assumptions

Two sources of bias: regularization and overfitting

Two tools for eliminating bias: orthogonalization and
cross-fitting
√
n consistency if both nuisance parameter estimators are

n
1
4 -consistent

Asymptotically valid confidence intervals

