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Where We’ve Been and Where We’re Going...

Last Week
I inference and estimator properties
I point estimates, confidence intervals

This Week
I Monday:

F hypothesis testing
F what is regression?

I Wednesday:
F nonparametric regression
F linear approximations

Next Week
I inference for simple regression
I properties of OLS

Long Run
I probability → inference → regression → causal inference

Questions?
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1 Testing: Making Decisions
Hypothesis testing
Forming rejection regions
P-values

2 Review: Steps of Hypothesis Testing

3 The Significance of Significance

4 Preview: What is Regression

5 Fun With Salmon

6 Bonus Example

7 Nonparametric Regression
Discrete X
Continuous X
Bias-Variance Tradeoff

8 Linear Regression
Combining Linear Regression with Nonparametric Regression
Least Squares

9 Interpreting Regression

10 Fun With Linearity
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A Running Example for Testing

Statistics play an important role in determining which drugs are approved
for sale by the FDA.

There are typically three phases of clinical trials before a drug is approved:

Phase I: Toxicity (Will it kill you?)

Phase II: Efficacy (Is there any evidence that it helps?)

Phase III: Effectiveness (Is it better than existing treatments?)

Phase I trials are conducted on a small number of healthy volunteers,
Phase II trial are either randomized experiments or within-patient
comparisons, and Phase III trials are almost always randomized
experiments with control groups.
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Example

Consider a Phase II efficacy trial reported in Sowers et al. (2006), for a
drug combination designed to treat high blood pressure in patients with
metabolic syndrome.

The trial included 345 patients with initial systolic blood pressure
between 140-159.

Each subject was assigned to take the drug combination for 16 weeks.

Systolic blood pressure was measured on each subject before and
after the treatment period.
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Example

Subject SBPbefore SBPafter Decrease

1

147 135 12

2

153 122 31

3

142 119 23

4

141 134 7

...

...
...

...

345

155 115 40
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Example

The drug was administered to 345 patients.

On average, blood pressure was 21 points lower after treatment.

The standard deviation of changes in blood pressure was 14.3.

Question: Should the FDA allow the drug to proceed to the next stage of
testing?
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The FDA’s Decision

We can think of the FDA’s problem in terms of two dimensions:

The true state of the world

The decision made by the FDA

Drug works Drug doesn’t work

FDA approves

Good! Bad!

FDA doesn’t approve

Bad! Good!
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Elements of a Hypothesis Test

Hypothesis testing gives us a systematic framework for making decisions
based on observed data.

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Test Statistic (what we will observe from the sample)

Rejection Region (the basis of our decision)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 10 / 146



Elements of a Hypothesis Test

Hypothesis testing gives us a systematic framework for making decisions
based on observed data.

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Test Statistic (what we will observe from the sample)

Rejection Region (the basis of our decision)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 10 / 146



Elements of a Hypothesis Test

Hypothesis testing gives us a systematic framework for making decisions
based on observed data.

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Test Statistic (what we will observe from the sample)

Rejection Region (the basis of our decision)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 10 / 146



Elements of a Hypothesis Test

Hypothesis testing gives us a systematic framework for making decisions
based on observed data.

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Test Statistic (what we will observe from the sample)

Rejection Region (the basis of our decision)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 10 / 146



Elements of a Hypothesis Test

Hypothesis testing gives us a systematic framework for making decisions
based on observed data.

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Test Statistic (what we will observe from the sample)

Rejection Region (the basis of our decision)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 10 / 146



Elements of a Hypothesis Test

Hypothesis testing gives us a systematic framework for making decisions
based on observed data.

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Test Statistic (what we will observe from the sample)

Rejection Region (the basis of our decision)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 10 / 146



Elements of a Hypothesis Test

Hypothesis testing gives us a systematic framework for making decisions
based on observed data.

Important terms we are about to define:

Null Hypothesis (assumed state of world for test)

Alternative Hypothesis (all other states of the world)

Test Statistic (what we will observe from the sample)

Rejection Region (the basis of our decision)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 10 / 146



Null and Alternative Hypotheses

Null Hypothesis: The conservatively assumed state of the world
(often “no effect”)

Example: The drug does not reduce blood pressure on average
(µdecrease ≤ 0)

Alternative Hypothesis: Claim to be indirectly tested

Example: The drug does reduce blood pressure on average
(µdecrease > 0)
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More Examples

Null Hypothesis Examples (H0):

The drug does not change blood pressure on average (µdecrease = 0)

Alternative Hypothesis Examples (Ha):

The drug does change blood pressure on average (µdecrease 6= 0)
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The FDA’s Decision

Back to the two dimensions of the FDA’s problem:

The true state of the world

The decision made by the FDA

Drug works Drug doesn’t work
(H0 False) (H0 True)

FDA approves

Correct Type I error

(reject H0)

FDA doesn’t approve

Type II error Correct

(don’t reject H0)
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Test Statistics, Null Distributions, and Rejection Regions

Test Statistic: A function of the sample summary statistics, the null
hypothesis, and the sample size. For example:

X − µ0

S√
n

Null Distribution: the sampling distribution of the statistic/test statistic
assuming that the null is true.
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Null Distributions

The CLT tells us that in large samples,

X ∼approx N(µ, σ2/n).

We know from our previous discussion that in large samples,

S/
√
n ≈ σ/

√
n

If we assume that the null hypothesis is true such that µ = µ0, then

X ∼approx N(µ0,S
2/n)

X − µ0

S√
n

∼approx N(0, 1)
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α

α is the probability of Type I error.

We usually pick an α that we are comfortable with in advance, and using
the null distribution for the test statistic and the alternative hypothesis, we
define a rejection region.

Example: Suppose α =5%, the test statistic is X−µ0
S√
n

, the null hypothesis is

H0 : µ = µ0, and the alternative hypothesis is Ha : µ 6= µ0.
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Two-sided rejection region

Rejection region with α = .05, H0 : µ = 0, HA : µ 6= 0:
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One-sided Rejection Region

Rejection region with α = .05, H0 : µ ≤ 0, HA : µ > 0:
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Example

So, should the FDA approve further trials?

Recall the null and alternative hypotheses:

H0 : µdecrease ≤ 0

Ha : µdecrease > 0
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Example

We can calculate the test statistic:

x = 21.0

s = 14.3

n = 345

Therefore,

T =
21.0− 0

14.3√
345

= 27.3

What is the decision?
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Rejection Region with α = .05
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Rejection Region with α = .05
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P-value

The appropriate level (α) for a hypothesis test depends on the relative
costs of Type I and Type II errors.

What if there is disagreement about these costs?

We might like a quantity that summarizes the strength of evidence against
the null hypothesis without making a yes or no decision.

P-value: Assuming that the null hypothesis is true, the probability of
getting something at least as extreme as our observed test statistic, where
extreme is defined in terms of the alternative hypothesis.
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P-value

The p-value depends on both the realized value of the test statistic and
the alternative hypothesis.

Ha : µ > 0
p = 0.036

Ha : µ 6= 0
p = .072

Ha : µ < 0
p = 0.964
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Rejection Regions and P-values

What is the relationship between p-values and the rejection region of a
test? Assume that α = .05:

Ha : µ > 0 Ha : µ 6= 0 Ha : µ < 0
If p < α, then the test statistic falls in the rejection region for the α-level
test.
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Example 1

Recall the drug testing example, where H0 : µ0 ≤ 0 and Ha : µ0 > 0:

x = 21.0

s = 14.3

n = 345

Therefore,

T =
21.0− 0

14.3√
345

= 27.3

What is the probability of observing a test statistic greater than 27.3 if the
null is true?
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Example 1
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α Rejection Regions and 1− α CIs

Up to this point, we have defined rejection regions in terms of the test
statistic.

In some cases, we can define an equivalent rejection region in terms of the
parameter of interest.

For a two-sided, large-sample test, we reject if:

X−µ0
s√
n
> zα/2 or X−µ0

s√
n
< −zα/2

X − µ0 > zα/2 × s√
n

or X − µ0 < −zα/2 × s√
n

X > µ0 + zα/2 × s√
n

or X < µ0 − zα/2 × s√
n
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α Rejection Regions and 1− α CIs

The rescaled rejection region is
related to 1− α CI:

If the observed X is in the α
rejection region, the 1− α CI
does not contain µ0.

If the observed X is not in the α
rejection region, the 1− α CI
contains µ0.

Therefore, we can use the 1− α CI
to test the null hypothesis at the α
level.

µµ0 µµ0 ++ zαα 2SÊ((X))µµ0 −− zαα 2SÊ((X))
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Another interpretation of CIs

The form of the “fail to reject” region of an α-level hypothesis test is:(
µ0 − zα/2 ×

s√
n
, µ0 + zα/2 ×

s√
n

)

The form of a region of a 1− α CI is:(
X − zα/2 ×

s√
n
,X + zα/2 ×

s√
n

)
So the 1− α CI is the set of null hypotheses µ0 that would not be rejected
at the α level.
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Hypothesis Testing: Setup
Goal: test a hypothesis about the value of a parameter.

Statistical decision theory underlies such hypothesis testing.

Trial Example:

Suppose we must decide whether to convict or acquit a defendant based on
evidence presented at a trial. There are four possible outcomes:

Defendant
Guilty Innocent

Decision Convict

Correct Type I Error

Acquit

Type II Error Correct

We could make two types of errors:

Convict an innocent defendant (type-I error)

Acquit a guilty defendant (type-II error)

Our goal is to limit the probability of making these types of errors.

However, creating a decision rule which minimizes both types of errors at the
same time is impossible. We therefore need to balance them.
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Hypothesis Testing: Error Types

Defendant
Guilty Innocent

Decision Convict Correct Type-I error
Acquit Type-II error Correct

Now, suppose that we have a statistical model for the probability of convicting
and acquitting, conditional on whether the defendant is actually guilty or
innocent.

Then, our decision-making rule can be characterized by two probabilities:

α = Pr(type-I error) = Pr(convict | innocent)

β = Pr(type-II error) = Pr(acquit | guilty)

The probability of making a correct decision is therefore 1− α (if innocent) and
1− β (if guilty).

Hypothesis testing follows an analogous logic, where we want to decide whether
to reject (= convict) or fail to reject (= acquit) a null hypothesis (= defendant)
using sample data.
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Hypothesis Testing: Steps

Null Hypothesis (H0)
False True

Decision Reject 1− β α
Fail to Reject β 1− α

1 Specify a null hypothesis H0 (e.g. the defendant = innocent)

2 Pick a value of α = Pr(reject H0 | H0) (e.g. 0.05). This is the maximum
probability of making a type-I error we decide to tolerate, and called the
significance level of the test.

3 Choose a test statistic T , which is a function of sample data and related to
H0 (e.g. the count of testimonies against the defendant)

4 Assuming H0 is true, derive the null distribution of T (e.g. standard normal)
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Hypothesis Testing: Steps

Null Hypothesis (H0)
False True

Decision Reject 1− β α
Fail to Reject β 1− α

5 Using the critical values from a statistical table, evaluate how unusual the
observed value of T is under the null hypothesis:

I If the probability of drawing a T at least as extreme as the observed T
is less than α, we reject H0.
(e.g. there is an implausible amount of evidence to have observed if
she was innocent, so reject the hypothesis that she is innocent.)

I Otherwise, we fail to reject H0.
(e.g. there is not enough evidence against the defendant to convict.
We don’t know for sure she is innocent, but it is still plausible.)
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Practical versus Statistical Significance

X − µ0

S/
√
n
∼ tn−1

What are the possible reasons for rejecting the null?

1 X − µ0 is large (big difference between sample mean and mean
assumed by H0)

2 n is large (you have a lot of data so you have a lot of precision)

3 S is small (the outcome has low variability)

We need to be careful to distinguish:

I practical significance (e.g. a big effect)

I statistical significance (i.e. we reject the null)

In large samples even tiny effects will be significant, but the results may not
be very important substantively. Always discuss both!
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Star Chasing (aka there is an XKCD for everything)
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Multiple Testing

If we test all of the coefficients separately with a t-test, then we
should expect that 5% of them will be significant just due to random
chance.

Illustration: randomly draw 21 variables, and run a regression of the
first variable on the rest.

By design, no effect of any variable on any other, but when we run
the regression:
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Multiple Test Example

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0280393 0.1138198 -0.246 0.80605

## X2 -0.1503904 0.1121808 -1.341 0.18389

## X3 0.0791578 0.0950278 0.833 0.40736

## X4 -0.0717419 0.1045788 -0.686 0.49472

## X5 0.1720783 0.1140017 1.509 0.13518

## X6 0.0808522 0.1083414 0.746 0.45772

## X7 0.1029129 0.1141562 0.902 0.37006

## X8 -0.3210531 0.1206727 -2.661 0.00945 **

## X9 -0.0531223 0.1079834 -0.492 0.62412

## X10 0.1801045 0.1264427 1.424 0.15827

## X11 0.1663864 0.1109471 1.500 0.13768

## X12 0.0080111 0.1037663 0.077 0.93866

## X13 0.0002117 0.1037845 0.002 0.99838

## X14 -0.0659690 0.1122145 -0.588 0.55829

## X15 -0.1296539 0.1115753 -1.162 0.24872

## X16 -0.0544456 0.1251395 -0.435 0.66469

## X17 0.0043351 0.1120122 0.039 0.96923

## X18 -0.0807963 0.1098525 -0.735 0.46421

## X19 -0.0858057 0.1185529 -0.724 0.47134

## X20 -0.1860057 0.1045602 -1.779 0.07910 .

## X21 0.0021111 0.1081179 0.020 0.98447

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.9992 on 79 degrees of freedom

## Multiple R-squared: 0.2009, Adjusted R-squared: -0.00142

## F-statistic: 0.993 on 20 and 79 DF, p-value: 0.4797
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Multiple Testing Gives False Positives

Notice that out of 20 variables, one of the variables is significant at
the 0.05 level (in fact, at the 0.01 level).

But this is exactly what we expect: 1/20 = 0.05 of the tests are false
positives at the 0.05 level

Also note that 2/20 = 0.1 are significant at the 0.1 level. Totally
expected!

The procedure by which data or collections or tests are showed to us
matters! (e.g. anecdotes and prediction scams)
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Problem of Multiple Testing

The multiple testing (or “multiple comparison”) problem occurs when
one considers a set of statistical tests simultaneously.

Consider k = 1, ...,m independent hypothesis tests (e.g. control
versus various treatment groups). Even if each test is carried out at a
low significance level (e.g., α = 0.05) the overall type I error rate
grows very fast: αoverall = 1− (1− αk)m.

That’s right - it grows exponentially. E.g., given test 7 tests at
α = .1 level the overall type I error is .52.

Even if all null hypotheses are true we will reject at least one of them
with probability .52.

Same for confidence intervals: probability that all 7 CI cover the true
values simultaneously over repeated samples is .52.
So for each coefficient you have a .90 confidence interval, but overall
a .52 percent confidence interval.
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Problem of Multiple Testing

Several statistical techniques have been developed to “adjust” for this
inflation of overall type I errors for multiple testing.

To compensate for the number of tests, these corrections generally
require a stronger level of evidence to be observed in order for an
individual comparison to be deemed “significant”

The most prominent adjustments include:
I Bonferroni: for each individual test use significance level of
αk,BFer = αk/m

I Sidak: for each individual test use significance level of
αk,Sid = 1− (1− αk)1/m

I Scheffe (for confidence intervals)
I False Discovery Rate (bound a different quantity)

There are many competing approaches (we will come back to some
later)
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Summary of Testing

Key points:
I hypothesis testing provides a principled framework for making decisions

between alternatives.
I the level of a test determines how often the researcher is willing to

reject a correct null hypothesis.
I reporting p-values allows the researcher to separate the analysis from

the decision.
I there is a close relationship between the results of an α level hypothesis

test and the coverage of a (1− α)% confidence interval.

Frequently overlooked points:
I evidence against a null isn’t necessarily evidence in favor of the specific

alternative hypothesis you care about.
I lack of evidence against a null is absolutely not strong evidence in favor

of no effect (or whatever the null is)

Other topics to be generally aware of:
I permutation/randomization inference
I equivalence tests
I power analysis
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Taking Stock

What we’ve been up to: estimating parameters of population
distributions. Generally we’ve been learning about a single variable.

We will return to tease out the intricacies of confidence intervals,
hypotheses and p-values later in the semester once you’ve had a
chance to do some more practice on the problem sets.

From here on out, we’ll be interested in the relationships between
variables. How does one variable change as we change the values of
another variable? This question will be the bread and butter of the
class moving forward.
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What is a relationship and why do we care?

Most of what we want to do in the social science is learn about how
two variables are related

Examples:

I Does turnout vary by types of mailers received?
I Is the quality of political institutions related to average incomes?
I Does parental incarceration affect intergenerational mobility for child?
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Notation and conventions

Y - the dependent variable or outcome or regressand or left-hand-side
variable or response

I Voter turnout
I Log GDP per capita
I Income relative to parent

X - the independent variable or explanatory variable or regressor or
right-hand-side variable or treatment or predictor

I Social pressure mailer versus Civic Duty Mailer
I Average Expropriation Risk
I Incarcerated parent

Generally our goal is to understand how Y varies as a function of X :

Y = f (X ) + error
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Three uses of regression

1 Description - parsimonious summary of the data

2 Prediction/Estimation/Inference - learn about parameters of the joint
distribution of the data

3 Causal Inference - evaluate counterfactuals
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Describing relationships

Remember that we had ways to summarize the relationship between
variables in the population.

Joint densities, covariance, and correlation were all ways to
summarize the relationship between two variables.

But these were population quantities and we only have samples, so we
may want to estimate these quantities using their sample analogs
(plug-in principle or analogy principle)
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Scatterplots

Sample version of joint probability density.

Shows graphically how two variables are related
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Scatterplots

Sample version of joint probability density.

Shows graphically how two variables are related
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Non-linear relationship

Example of a non-linear relationship, where we use the unlogged
version of GDP and settler mortality:
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Sample Covariance

The sample version of population covariance,
σXY = E [(X − E [X ])(Y − E [Y ])].

Definition (Sample Covariance)

The sample covariance between Yi and Xi is

SXY =
1

n − 1

n∑
i=1

(Xi − X n)(Yi − Y n)
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Sample Correlation

The sample version of population correlation, ρ = σXY /σXσY .

Definition (Sample Correlation)

The sample correlation between Yi and Xi is

ρ̂ = r =
SXY
SXSY

=

∑n
i=1(Xi − X n)(Yi − Y n)√∑n

i=1(Xi − X n)2
∑n

i=1(Yi − Y n)2
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Regression is About Conditioning on X

Regression quantifies how an outcome variable Y varies as a function of one
or more predictor variables X

Many methods, but the common idea: conditioning on X

Goal is to characterize f (Y |X ), the conditional probability distribution of Y
for different levels of X

Instead of modeling the whole conditional density of Y given X , in regression
we usually only model the conditional mean of Y given X : E [Y |X = x ]

Our key goal is to approximate the conditional expectation function E [Y |X ],
which summarizes how the average of Y varies across all possible levels of X
(also called the population regression function)

Once we have estimated E [Y |X ], we can use it for prediction and/or causal
inference, depending on what assumptions we are willing to make
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Review: Conditional expectation

It will be helpful to review a core concept:

Definition (Conditional Expectation Function)

The conditional expectation function (CEF) or the regression function
of Y given X , denoted

r(x) = E [Y |X = x ]

is the function that gives the mean of Y at various values of x .

Note that this is a function of the population distributions. We will
want to produce estimates r̂(x).
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CEF for binary covariates

We’ve been writing µ1 and µ0 for the means in different groups.

For example, on the homework, you are looking at the expected value
of the loan amount conditional on gender. There we had µm and µw .

Note that these are just conditional expectations. Define Y to be the
loan amount, X = 1 to indicate a man, and X = 0 to indicate a
woman and then we have:

µm = r(1) = E [Y |X = 1]

µw = r(0) = E [Y |X = 0]

Notice here that since X can only take on two values, 0 and 1, then
these two conditional means completely summarize the CEF.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 58 / 146



CEF for binary covariates

We’ve been writing µ1 and µ0 for the means in different groups.

For example, on the homework, you are looking at the expected value
of the loan amount conditional on gender. There we had µm and µw .

Note that these are just conditional expectations. Define Y to be the
loan amount, X = 1 to indicate a man, and X = 0 to indicate a
woman and then we have:

µm = r(1) = E [Y |X = 1]

µw = r(0) = E [Y |X = 0]

Notice here that since X can only take on two values, 0 and 1, then
these two conditional means completely summarize the CEF.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 58 / 146



CEF for binary covariates

We’ve been writing µ1 and µ0 for the means in different groups.

For example, on the homework, you are looking at the expected value
of the loan amount conditional on gender. There we had µm and µw .

Note that these are just conditional expectations. Define Y to be the
loan amount, X = 1 to indicate a man, and X = 0 to indicate a
woman and then we have:

µm = r(1) = E [Y |X = 1]

µw = r(0) = E [Y |X = 0]

Notice here that since X can only take on two values, 0 and 1, then
these two conditional means completely summarize the CEF.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 58 / 146



CEF for binary covariates

We’ve been writing µ1 and µ0 for the means in different groups.

For example, on the homework, you are looking at the expected value
of the loan amount conditional on gender. There we had µm and µw .

Note that these are just conditional expectations. Define Y to be the
loan amount, X = 1 to indicate a man, and X = 0 to indicate a
woman and then we have:

µm = r(1) = E [Y |X = 1]

µw = r(0) = E [Y |X = 0]

Notice here that since X can only take on two values, 0 and 1, then
these two conditional means completely summarize the CEF.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 58 / 146



Estimating the CEF for binary covariates

How do we estimate r̂(x)?

We’ve already done this: it’s just the usual sample mean among the
men and then the usual sample mean among the women:

r̂(1) =
1

n1

∑
i :Xi=1

Yi

r̂(0) =
1

n0

∑
i :Xi=0

Yi

Here we have n1 =
∑n

i=1 Xi is the number of men in the sample and
n0 = n − n1 is the number of women.

The sum here
∑

i :Xi=1 is just summing only over the observations i
such that have Xi = 1, meaning that i is a man.

This is very straightforward: estimate the mean of Y conditional on
X by just estimating the means within each group of X .
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Binary covariate example CEF plot
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CEF: Estimands, Estimators, and Estimates

The conditional expectation function E [Y |X ] is the estimand (or
parameter) we are interested in

Ê [Y |X ] is the estimator of this parameter of interest, which is a
function of X

For a given sample dataset, we obtain an estimate of E [Y |X ].

We want to extend the regression idea to the case of multiple X
variables, but we will start this week with the simple bivariate case
where we have a single X
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1 Testing: Making Decisions
Hypothesis testing
Forming rejection regions
P-values

2 Review: Steps of Hypothesis Testing
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Fun With Salmon

Bennett, Baird, Miller and Wolford. (2009). “Neural correlates of
interspecies perspective taking in the post-mortem Atlantic Salmon: an
argument for multiple comparisons correction.”
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Methods

(a.k.a. the greatest methods section of all time)

Subject
“One mature Atlantic Salmon (Salmo salar) participated in the fMRI
study. The salmon was approximately 18 inches long, weighed 3.8 lbs,
and was not alive at the time of scanning.”

Task
“The task administered to the salmon involved completing an
open-ended mentalizing task. The salmon was shown a series of
photographs depicting human individuals in social situations with a
specified emotional valence. The salmon was asked to determine what
emotion the individual in the photo must have been experiencing.”

Design
“Stimuli were presented in a block design with each photo presented
for 10 seconds followed by 12 seconds of rest.A total of 15 photos
were displayed. Total scan time was 5.5 minutes.”
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Results

“Several active voxels were discovered in a cluster located within the
salmon’s brain cavity. The size of this cluster was 81 mm3 with a
cluster-level significance of p = .001.”
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Hypothesis testing example

(Credit for these example slides to Erin Hartman)

Suppose a recent poll found that, on average, on a scale of 1-100 (0 is approve,
100 is disapprove), registered voters put approval of the president at 50.5%, with
a standard deviation of 2 and a sample size of 50. Do voters disapprove of the job
the president is doing?

H0: Disapproval ≤ 50

HA: Disapproval > 50

We want to start by assuming that our null hypothesis is true, and asking how
likely our observed poll was if that null is true. Let’s test this as the α = 0.05
level.
Is this a one-sided or two-sided test? One-sample or two-sample?
So, let’s assume that the true disapproval rate is µ0 = 50 (as in the upper bound
of our null).
What is our critical value?

qt(0.95, 49) = 1.6765509
Which is close to qnorm(0.95) = 1.6448536
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Hypothesis Testing

Suppose a recent poll found that, on average, on a scale of 1-100 (0 is
approve, 100 is disapprove), registered voters put approval of the president
at 50.5%, with a standard deviation of 2 and a sample size of 50. Do
voters disapprove of the job the president is doing?

H0: Disapproval ≤ 50

HA: Disapproval > 50

What is the sampling distribution of our sample mean, if our null is true?
x̄ ≈ N(µ, σ̂/

√
n)

Since we do not know σ from our null, we use the sample standard
deviation s = 2.
x̄ ≈ N(50, 2/

√
50)
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Hypothesis Testing
So, what am I asking? What’s the sampling distribution of the mean?

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

− σ n µ0 σ n
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Hypothesis Testing
Plug in our µ0 from our null, and our estimate of σ, σ̂ (the sample
standard deviation).

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

− 2 50 50 2 50
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Hypothesis Testing
Now we can ask: How likely is our observed outcome of 50.5? But how
could we calculate this?

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

− 2 50 50 2 50 50.5
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Hypothesis Testing

Now we can ask: How likely is our observed outcome of 50.5? But how
could we calculate this?

We could use pnorm if we were using the normal approximation

1 - pnorm(50.5, mean = 50, sd = 2/sqrt(50))

## [1] 0.03854994

But this would mean we’d have to calculate this every time to figure out
our critical value, and it doesn’t work for small samples.
Therefore, it is easier to standardize our test statistic and use the standard
normal (or t, if we have a small sample) table.
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Hypothesis Testing
Now we can ask: How likely is our observed outcome of 50.5? But how
could we calculate this? Let’s standardize!

Sampling Distribution of Sample Mean
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Hypothesis Testing
Now we can ask: How likely is our observed outcome of 50.5? But how
could we calculate this? Let’s standardize!

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

−3 1 49

Observed: 50.5
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Hypothesis Testing
Now we can ask: How likely is our observed outcome of 50.5? But how
could we calculate this? First–demean!

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

−3 1 49

Observed: 50.5 − 50
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Hypothesis Testing
Now we can ask: How likely is our observed outcome of 50.5?
Second–divide by the standard error!

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

−3 −2 −1 0 1 2 3

Observed: 50.5 − 50
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Hypothesis Testing
Now we can ask: How likely is our observed outcome of 50.5? This
standardized number is our t-statistic!

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

−3 −2 −1 0 1 2 3

Observed: 
50.5 − 50

2 50
t = 1.76
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Hypothesis Testing
Now we can ask: Is our t-statistic larger than our critical value? Yes! So
we reject our null.

Sampling Distribution of Sample Mean

Sample Mean

D
en

si
ty

−3 −2 −1 0 1 2 3

Observed: 
50.5 − µ0

s n
t = 1.76

Critical Value:
t_49(0.95)=
1.68
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Hypothesis Testing

Suppose a recent poll found that, on average, on a scale of 1-100 (0 is
approve, 100 is disapprove), registered voters put approval of the president
at 50.5%, with a standard deviation of 2 and a sample size of 50. Do
voters disapprove of the job the president is doing?

H0: Disapproval ≤ 50

HA: Disapproval > 50

We want to start by assuming that our null hypothesis is true, and asking
how likely our observed poll was if that null is true.
We got a t-statistic of 1.76

Which corresponds to a p-value of pt(1.76, 49, lower.tail =

FALSE) = 0.0423246. This is the shaded area in the graph above.

We get this by looking up t > 1.76 in the t-table with 49 degrees of
freedom.

Is this significant at the α = 0.05 level? Do we reject our null?
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Where We’ve Been and Where We’re Going...

Last Week
I inference and estimator properties
I point estimates, confidence intervals

This Week
I Monday:

F hypothesis testing
F what is regression?

I Wednesday:
F nonparametric regression
F linear approximations

Next Week
I inference for simple regression
I properties of OLS

Long Run
I probability → inference → regression → causal inference

Questions?
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Nonparametric Regression with Discrete X

Let’s take a look at some data on education and income from the
American National Election Study

We use two variables:
I Y : income

I X : educational attainment

Goal is to characterize the conditional expectation E [Y |X ], i.e. how
average income varies with education level
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Nonparametric Regression with Discrete X

educ: Respondent’s education:

1. 8 grades or less and no diploma or

2. 9-11 grades

3. High school diploma or equivalency test

4. More than 12 years of schooling, no higher degree

5. Junior or community college level degree (AA degrees)

6. BA level degrees; 17+ years, no postgraduate degree

7. Advanced degree
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Nonparametric Regression with Discrete X

income: Respondent’s family income:

1. None or less than $2,999

2. $3,000-$4,999

3. $5,000-$6,999

4. $7,000-$8,999

5. $9,000-$9,999

6. $10,000-$10,999
...

17. $35,000-$39,999

18. $40,000-$44,999
...

23. $90,000-$104,999

24. $105,000 and over
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Marginal Distribution of Y

Histogram of income
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Income and Education
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Distribution of income given education p(y |x)
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Nonparametric Regression with Discrete X

Hard to decode what is going on in the histograms

Let’s try to find a more parsimonious summary measure: E [Y |X ]

Here our X variable education has a small number of levels (7) and
there are a reasonable number of observations in each level

In situations like this we can estimate E [Y |X = x ] as the sample
mean of Y at each level of x ∈ X (just like the binary case)
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Nonparametric Regression with Discrete X
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Nonparametric Regression

This approach makes minimal assumptions

It works well as long as
I X is discrete
I there are a small number values of X
I a small number of X variables
I a lot of observations at each X value

This method does not impose any specific functional form on the
relationship between Y and X (i.e. the shape of E [Y |X ])

→ It is called a nonparametric regression

But what do we do when X is continuous and has many values?
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Nonparametric Regression with Continuous X

Consider the Chirot data:

Chirot, D. and C. Ragin (1975). The market, tradition and peasant
rebellion: The case of Romania. American Sociological Review 40,
428-444

Peasant Rebellions in Romanian counties in 1907

Peasants made up 80% of the population

About 60 % of them owned no land which was mostly concentrated
among large landowners

We’re interested in the relationship between:
I Y : intensity of the peasant rebellion
I X : inequality of land tenure

Around 11,000 peasants were killed by Romanian military
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Nonparametric Regression with Continuous X
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Uniform Kernel Regression: Simple Local Averages

One approach is to use a moving local average to estimate E [Y |X ]

Calculate the average of the observed y points that have x values in the
interval [x0 − h , x0 + h]

h = some positive number (called the bandwidth)

Uniform kernel: every observation in the interval is equally weighted
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This gives the uniform kernel regression:

Ê [Y |X = x0] =

∑N
i=1 Kh((Xi − x0)/h)Yi∑N
i=1 Kh((Xi − x0)/h)

where Kh(u) =
1

2
1{|u|≤1}
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Ê [Y |X = x0] =

∑N
i=1 Kh((Xi − x0)/h)Yi∑N
i=1 Kh((Xi − x0)/h)

where Kh(u) =
1

2
1{|u|≤1}

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 92 / 146



Uniform Kernel Regression: Simple Local Averages

One approach is to use a moving local average to estimate E [Y |X ]

Calculate the average of the observed y points that have x values in the
interval [x0 − h , x0 + h]

h = some positive number (called the bandwidth)

Uniform kernel: every observation in the interval is equally weighted
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This gives the uniform kernel regression:

Ê [Y |X = x0] =

∑N
i=1 Kh((Xi − x0)/h)Yi∑N
i=1 Kh((Xi − x0)/h)

where Kh(u) =
1

2
1{|u|≤1}
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Uniform Kernel Regression: Simple Local Averages
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Changing the Bandwidth

Regression as an Asymmetric Summary of Bivariate Data
Regression as a Model of Conditional Expectation

Linear Regression

Changing the Bandwidth
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Kernel Regression: Weighted Local Averages

Another approach is to construct weighted local averages

Data points that are closer to x0 get more weight than points farther away

1 decide on a symmetric, non-negative kernel weight function Kh (e.g.
Epanechnikov)
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2 compute weighted average of the observed y points that have x values in
the bandwidth interval [x0 − h , x0 + h] e.g.

Ê [Y |X = x0] =

∑N
i=1 Kh((Xi − x0)/h)Yi∑N
i=1 Kh((Xi − x0)/h)

where Kh(u) =
3

4
(1− u2) 1{|u|≤1}
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Kernel Regression: Weighted Local Averages

Regression as an Asymmetric Summary of Bivariate Data
Regression as a Model of Conditional Expectation

Linear Regression

Weighted Local Averages
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Changing the Bandwidth

Regression as an Asymmetric Summary of Bivariate Data
Regression as a Model of Conditional Expectation

Linear Regression

Changing the Bandwidth
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Bias-Variance Tradeoff

When choosing an estimator Ê [Y |X ] for E [Y |X ], we face a
bias-variance tradeoff

Notice that we can chose models with various levels of flexibility:
I A very flexible estimator allows the shape of the function to vary (e.g.

a kernel regression with a small bandwidth)

I A very inflexible estimator restricts the shape of the function to a
particular form
(e.g. a kernel regression with a very wide bandwidth)
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When choosing an estimator Ê [Y |X ] for E [Y |X ], we face a
bias-variance tradeoff

Notice that we can chose models with various levels of flexibility:

I A very flexible estimator allows the shape of the function to vary (e.g.
a kernel regression with a small bandwidth)

I A very inflexible estimator restricts the shape of the function to a
particular form
(e.g. a kernel regression with a very wide bandwidth)

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 98 / 146



Bias-Variance Tradeoff
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Hypothetical True Distribution

Let’s conduct a simulation experiment to actually see the tradeoff

Suppose we have the following population distribution:

x

y

f(y|x)
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Hypothetical True Distribution

Another way of representing the same population distribution:
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From this distribution we draw thousands of simulated data sets.
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An Example of Simulated Data Set
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Two Estimators

For each simulated data, we apply two simple estimators of E (Y |X ):
I Divide X into 4 ranges and take the mean for each
I Divide X into 8 ranges and take the mean for each

We then evaluate how well these estimators do in terms of bias and variance.
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Two Estimators

For each simulated data, we apply two simple estimators of E (Y |X ):
I Divide X into 4 ranges and take the mean for each
I Divide X into 8 ranges and take the mean for each

We then evaluate how well these estimators do in terms of bias and variance.
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Simulated Distribution of Estimates: 4 Intervals
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Simulated Distribution of Estimates: 8 Intervals
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Bias-Variance Tradeoff

A less “flexible” estimator leads to more bias

A more “flexible” estimator leads to more variance

As the name suggests, this problem cannot be “fixed”

If we have more data or fewer variables we can “afford” to use a more
flexible estimator
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Hypothesis testing
Forming rejection regions
P-values
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3 The Significance of Significance
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Parametric Approach: Linear Regression

Linear regression works by assuming linear parametric form for the
conditional expectation function:

E [Y |X ] = β0 + X β1

Conditional expectation defined by only two coefficients which are
estimated from the data:

I β0 is called the intercept or constant
I β1 is called the slope coefficient

Notice that the linear functional form imposes a constant slope

Assumption: Change in E [Y |X ] is the same at all values of X

Geometrically, the linear regression function will look like:
I A line in cases with a single X variable

I A plane in cases with two X variables

I A hyperplane in cases with more than two X variables
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Parametric Approach: Linear Regression
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Parametric Approach: Linear Regression

Warning: the model won’t always be a good fit for the data
(even though it really wants to be)

Figure: ‘If I fits, I sits’

Linear regression always returns a line regardless of the data.
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Interpretation of the regression slope

When we model the regression function as a line, we can interpret the
parameters of the line in appealing ways:

1 Intercept: the average outcome among units with X = 0 is β0:

E [Y |X = 0] = r(0) = β0 + β10 = β0

2 Slope: a one-unit change in X is associated with a β1 change in Y

E [Y |X = x + 1]− E [Y |X = x ] = r(x + 1)− r(x)

= (β0 + β1(x + 1))− (β0 + β1x)

= β0+β1x + β1−β0−β1x

= β1
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Linear regression with a binary covariate

Using the two facts above, it’s easy to see that when X is binary, then
we have the following:

1 Intercept: E [Y |X = 0] = β0

2 Slope: average difference between X = 1 group and X = 0 group:
β1 = E [Y |X = 1]− E [Y |X = 0]

Thus, we can read off the difference in means between two groups as
the slope coefficient on a linear regression
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Linear CEF with a binary covariate
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LOESS

We can combine the nonparametric kernel method idea of using only
local data with a parametric model

Idea: fit a linear regression within each band

Locally weighted scatterplot smoothing (LOWESS or LOESS):
1 Pick a subset of the data that falls in the interval [x − h , x + h]

2 Fit a line to this subset of the data (= local linear regression),
weighting the points by their distance to x using a kernel function

3 Use the fitted regression line to predict the expected value of
E [Y |X = x0]
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Weighted Local Linear Regressions

Regression as an Asymmetric Summary of Bivariate Data
Regression as a Model of Conditional Expectation

Linear Regression

Weighted Local Regressions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

0.3 0.4 0.5 0.6 0.7

−
2

−
1

0
1

2
3

4

inequality

in
te

ns
ity

x

●

Adam Glynn Gov2000: Quantitative Methodology for Political Science I

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 115 / 146



Weighted Local Linear Regressions

Regression as an Asymmetric Summary of Bivariate Data
Regression as a Model of Conditional Expectation

Linear Regression

Weighted Local Regressions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

0.3 0.4 0.5 0.6 0.7

−
2

−
1

0
1

2
3

4

inequality

in
te

ns
ity

x

●

●

Adam Glynn Gov2000: Quantitative Methodology for Political Science I

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 115 / 146



Weighted Local Linear Regressions

Regression as an Asymmetric Summary of Bivariate Data
Regression as a Model of Conditional Expectation

Linear Regression

Weighted Local Regressions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

0.3 0.4 0.5 0.6 0.7

−
2

−
1

0
1

2
3

4

inequality

in
te

ns
ity

x

●

●

●

Adam Glynn Gov2000: Quantitative Methodology for Political Science I

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 115 / 146



Weighted Local Linear Regressions

Regression as an Asymmetric Summary of Bivariate Data
Regression as a Model of Conditional Expectation

Linear Regression

Weighted Local Regressions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

0.3 0.4 0.5 0.6 0.7

−
2

−
1

0
1

2
3

4

inequality

in
te

ns
ity

Adam Glynn Gov2000: Quantitative Methodology for Political Science I

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 115 / 146



1 Testing: Making Decisions
Hypothesis testing
Forming rejection regions
P-values
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Back up and review

To review our approach:

I We wanted to estimate the CEF/regression function
r(x) = E [Y |X = x ], but it may be too hard to do nonparametrically

I So we can model it: place restrictions on its functional form.
I Easiest functional form is a line:

r(x) = β0 + β1x

β0 and β1 are population parameters just like µ or σ2!

Need to estimate them in our samples! But how?
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Simple linear regression model

Let’s write our model as:

Yi = r(Xi ) + ui

Yi = β0 + β1Xi + ui

Now, suppose we have some estimates of the slope, β̂1, and the
intercept, β̂0. Then the fitted or sample regression line is

r̂(x) = β̂0 + β̂1x
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Fitted linear CEF/regression function
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Fitted values and residuals

Definition (Fitted Value)

A fitted value or predicted value is the estimated conditional mean of Yi

for a particular observation with independent variable Xi :

Ŷi = r̂(Xi ) = β̂0 + β̂1Xi

Definition (Residual)

The residual is the difference between the actual value of Yi and the
predicted value, Ŷi :

ûi = Yi − Ŷi = Yi − β̂0 − β̂1Xi
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Why not this line?
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Minimize the residuals

The residuals, ûi = Yi − β̂0 − β̂1Xi , tell us how well the line fits the
data.

I Larger magnitude residuals means that points are very far from the line
I Residuals close to 0 mean points very close to the line

The smaller the magnitude of the residuals, the better we are doing at
predicting Y

Choose the line that minimizes the residuals
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Which is better at minimizing residuals?
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Minimizing the residuals

Let β̃0 and β̃1 be possible values of the intercept and slope

Least absolute deviations (LAD) regression:

(β̂LAD0 , β̂LAD1 ) = arg min
β̃0,β̃1

n∑
i=1

|Yi − β̃0 − β̃1Xi |

Least squares (LS) regression:

(β̂0, β̂1) = arg min
β̃0,β̃1

n∑
i=1

(Yi − β̃0 − β̃1Xi )
2

Sometimes called ordinary least squares (OLS)
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Why least squares?

Easy to derive the least squares estimator

Easy to investigate the properties of the least squares estimator

Least squares is optimal in a certain sense that we’ll see in the coming
weeks
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Linear Regression: Justification

Linear regression imposes a strong assumption on E [Y |X ]

Why would we ever want to do this?

I Theoretical reason to assume linearity

I Ease of interpretation

I Bias-variance tradeoff

I Analytical derivation of sampling distributions (next few weeks)

I We can make the model more flexible, even in a linear framework (e.g.
we can add polynomials, use log transformations, etc.)
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Linear Regression as a Predictive Model

Linear regression can also be used to predict new observations

Basic idea:
I Find estimates β̂0, β̂1 of β0, β1 based on the in-sample data
I To find the expected value of Y for an out-of-sample data point with

X = xnew calculate:

Ê [Y |X = xnew ] = β̂0 + β̂1xnew

While the line is defined over all regions of the data we may be
concerned about:

I interpolation
I extrapolation
I predicting in ranges of X with sparse data
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Which Predictions Do You Trust?
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Example: Tatem, et al. Sprinters Data

In a 2004 Nature article, Tatem et al. use linear regression to conclude
that in the year 2156 the winner of the women’s Olympic 100 meter sprint
may likely have a faster time than the winner of the men’s Olympic 100
meter sprint.

How do the authors make this conclusion?

Using data from 1900 to 2004, they fit linear regression models of the
winning 100 meter time on year for both men and women. They then use
the estimates from these models to extrapolate 152 years into the future.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 134 / 146



Example: Tatem, et al. Sprinters Data

In a 2004 Nature article, Tatem et al. use linear regression to conclude
that in the year 2156 the winner of the women’s Olympic 100 meter sprint
may likely have a faster time than the winner of the men’s Olympic 100
meter sprint.

How do the authors make this conclusion?

Using data from 1900 to 2004, they fit linear regression models of the
winning 100 meter time on year for both men and women. They then use
the estimates from these models to extrapolate 152 years into the future.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 134 / 146



Example: Tatem, et al. Sprinters Data

In a 2004 Nature article, Tatem et al. use linear regression to conclude
that in the year 2156 the winner of the women’s Olympic 100 meter sprint
may likely have a faster time than the winner of the men’s Olympic 100
meter sprint.

How do the authors make this conclusion?

Using data from 1900 to 2004, they fit linear regression models of the
winning 100 meter time on year for both men and women. They then use
the estimates from these models to extrapolate 152 years into the future.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 134 / 146



Example: Tatem, et al. Sprinters Data

In a 2004 Nature article, Tatem et al. use linear regression to conclude
that in the year 2156 the winner of the women’s Olympic 100 meter sprint
may likely have a faster time than the winner of the men’s Olympic 100
meter sprint.

How do the authors make this conclusion?

Using data from 1900 to 2004, they fit linear regression models of the
winning 100 meter time on year for both men and women. They then use
the estimates from these models to extrapolate 152 years into the future.

Stewart (Princeton) Week 4: Testing/Regression October 1/3, 2018 134 / 146



Tatem et al. Extrapolation
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Tatem et al.’s predictions. Men’s times are in blue, women’s times are in red.
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Alternate Models Fit Well, Yield Different Predictions
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The Trouble with Extrapolation

The model only gives the best fitting line where we have data, it says
little about the shape where there isn’t any data.

We can always ask illogical questions and the model gives answers.
I For example, when will women finish the sprint in negative time?

Fundamentally we are assuming that data outside the sample looks
like data inside the sample, and the further away it is the less likely
that is to hold.

Next semester we will talk about how this problem gets much harder
in high dimensions
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A More Subtle Example
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Regression as Description/Prediction

Even for simple problems regression can be challenging

Always think about where we have data and what we are using to
build our claims

Summary: ‘prediction is hard, especially about the future’
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Regression as a Causal Model (A Preview)

Can regression be also used for causal inference?

Answer: A very qualified yes

For example, can we say that a one unit increase in inequality causes a 5.2
point increase in intensity?

To interpret β as a causal effect of X on Y , we need very specific and often
unrealistic assumptions:

(1) E [Y |X ] is correctly specified as a linear function (linearity)
(2) There are no other variables that affect both X and Y (exogeneity)

(1) can be relaxed by:
F Using a flexible nonlinear or nonparametric method
F “Preprocessing” data to make analysis robust to misspecification

(2) can be made plausible by:
F Including carefully-selected control variables in the model
F Choosing a clever research design to rule out confounding

We will return to this later in the course

For now, it is safest to treat β as a purely descriptive/predictive quantity
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(1) can be relaxed by:

F Using a flexible nonlinear or nonparametric method
F “Preprocessing” data to make analysis robust to misspecification

(2) can be made plausible by:
F Including carefully-selected control variables in the model
F Choosing a clever research design to rule out confounding

We will return to this later in the course

For now, it is safest to treat β as a purely descriptive/predictive quantity
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Summary of Today

Regression is about conditioning

Regression can be used for description, prediction,and (sometimes)
causation

Linear regression is a parametrically restricted form of regression
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Next Week

Basic linear regression

Properties of OLS

Reading:
I Aronow and Miller 4.1.2 (OLS Regression)
I Optional: Imai 4.2
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Fun with Linearity

“The Siren’s Song of Linearity”
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Fun with Linearity

Images on following slides courtesy of Tom Griffiths
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The Design

Each learner sees a set of (x , y) pairs

Makes predictions of y for new x values

Predictions are data for the next learner
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Results
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