Week 5: Simple Linear Regression

Brandon Stewart ${ }^{1}$

Princeton
October 8, 10, 2018

[^0]Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
* mechanics of OLS

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
* mechanics of OLS
* properties of OLS

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
\star mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
\star mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression
* confidence intervals for regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
\star mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression
\star confidence intervals for regression
* goodness of fit

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
* mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression
* confidence intervals for regression
\star goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
* mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression
* confidence intervals for regression
\star goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causal inference

> Questions?

Macrostructure

Macrostructure

The next few weeks,

- Linear Regression with Two Regressors
- Multiple Linear Regression
- Break Week

Macrostructure

The next few weeks,

- Linear Regression with Two Regressors
- Multiple Linear Regression
- Break Week
- What Can Go Wrong and How to Fix It
- Regression in the Social Sciences and Introduction to Causality
- Thanksgiving

Macrostructure

The next few weeks,

- Linear Regression with Two Regressors
- Multiple Linear Regression
- Break Week
- What Can Go Wrong and How to Fix It
- Regression in the Social Sciences and Introduction to Causality
- Thanksgiving
- Causality with Measured Confounding
- Unmeasured Confounding and Instrumental Variables
- Repeated Observations and Panel Data

Macrostructure

The next few weeks,

- Linear Regression with Two Regressors
- Multiple Linear Regression
- Break Week
- What Can Go Wrong and How to Fix It
- Regression in the Social Sciences and Introduction to Causality
- Thanksgiving
- Causality with Measured Confounding
- Unmeasured Confounding and Instrumental Variables
- Repeated Observations and Panel Data

Review session timing.
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review

- Properties Continued
(5) Hypothesis tests for regression
(3) Confidence interval's for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation

The population linear regression function

The population linear regression function

- The (population) simple linear regression model can be stated as the following:

$$
r(x)=E[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

The population linear regression function

- The (population) simple linear regression model can be stated as the following:

$$
r(x)=E[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

- This (partially) describes the data generating process in the population

The population linear regression function

- The (population) simple linear regression model can be stated as the following:

$$
r(x)=E[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

- This (partially) describes the data generating process in the population
- $Y=$ dependent variable

The population linear regression function

- The (population) simple linear regression model can be stated as the following:

$$
r(x)=E[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

- This (partially) describes the data generating process in the population
- $Y=$ dependent variable
- $X=$ independent variable

The population linear regression function

- The (population) simple linear regression model can be stated as the following:

$$
r(x)=E[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

- This (partially) describes the data generating process in the population
- $Y=$ dependent variable
- $X=$ independent variable
- $\beta_{0}, \beta_{1}=$ population intercept and population slope (what we want to estimate)

The sample linear regression function

The sample linear regression function

- The estimated or sample regression function is:

$$
\widehat{r}\left(X_{i}\right)=\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{i}
$$

The sample linear regression function

- The estimated or sample regression function is:

$$
\widehat{r}\left(X_{i}\right)=\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{i}
$$

- $\widehat{\beta}_{0}, \widehat{\beta}_{1}$ are the estimated intercept and slope

The sample linear regression function

- The estimated or sample regression function is:

$$
\widehat{r}\left(X_{i}\right)=\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{i}
$$

- $\widehat{\beta}_{0}, \widehat{\beta}_{1}$ are the estimated intercept and slope
- \widehat{Y}_{i} is the fitted/predicted value

The sample linear regression function

- The estimated or sample regression function is:

$$
\widehat{r}\left(X_{i}\right)=\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{i}
$$

- $\widehat{\beta}_{0}, \widehat{\beta}_{1}$ are the estimated intercept and slope
- \widehat{Y}_{i} is the fitted/predicted value
- We also have the residuals, \widehat{u}_{i} which are the differences between the true values of Y and the predicted value:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

The sample linear regression function

- The estimated or sample regression function is:

$$
\widehat{r}\left(X_{i}\right)=\widehat{Y}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{i}
$$

- $\widehat{\beta}_{0}, \widehat{\beta}_{1}$ are the estimated intercept and slope
- \widehat{Y}_{i} is the fitted/predicted value
- We also have the residuals, \widehat{u}_{i} which are the differences between the true values of Y and the predicted value:

$$
\widehat{u}_{i}=Y_{i}-\widehat{Y}_{i}
$$

- You can think of the residuals as the prediction errors of our estimates.

Overall Goals for the Week

Overall Goals for the Week

- Learn how to run and read regression

Overall Goals for the Week

- Learn how to run and read regression
- Mechanics: how to estimate the intercept and slope?

Overall Goals for the Week

- Learn how to run and read regression
- Mechanics: how to estimate the intercept and slope?
- Properties: when are these good estimates?

Overall Goals for the Week

- Learn how to run and read regression
- Mechanics: how to estimate the intercept and slope?
- Properties: when are these good estimates?
- Uncertainty: how will the OLS estimator behave in repeated samples?

Overall Goals for the Week

- Learn how to run and read regression
- Mechanics: how to estimate the intercept and slope?
- Properties: when are these good estimates?
- Uncertainty: how will the OLS estimator behave in repeated samples?
- Testing: can we assess the plausibility of no relationship $\left(\beta_{1}=0\right)$?

Overall Goals for the Week

- Learn how to run and read regression
- Mechanics: how to estimate the intercept and slope?
- Properties: when are these good estimates?
- Uncertainty: how will the OLS estimator behave in repeated samples?
- Testing: can we assess the plausibility of no relationship $\left(\beta_{1}=0\right)$?
- Interpretation: how do we interpret our estimates?

What is OLS?

- An estimator for the slope and the intercept of the regression line

What is OLS?

- An estimator for the slope and the intercept of the regression line
- We talked last week about ways to derive this estimator and we settled on deriving it by minimizing the squared prediction errors of the regression, or in other words, minimizing the sum of the squared residuals:

What is OLS?

- An estimator for the slope and the intercept of the regression line
- We talked last week about ways to derive this estimator and we settled on deriving it by minimizing the squared prediction errors of the regression, or in other words, minimizing the sum of the squared residuals:
- Ordinary Least Squares (OLS):

$$
\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

What is OLS?

- An estimator for the slope and the intercept of the regression line
- We talked last week about ways to derive this estimator and we settled on deriving it by minimizing the squared prediction errors of the regression, or in other words, minimizing the sum of the squared residuals:
- Ordinary Least Squares (OLS):

$$
\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- In words, the OLS estimates are the intercept and slope that minimize the sum of the squared residuals.

Graphical Example

Graphical Example

How do we fit the regression line $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ to the data?

Graphical Example

How do we fit the regression line $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ to the data?

Graphical Example

How do we fit the regression line $\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} X$ to the data?
Answer: We will minimize the squared sum of residuals

Deriving the OLS estimator

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.
(2) Set each of the partial derivatives to 0

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.
(2) Set each of the partial derivatives to 0
(3) Solve for $\left\{b_{0}, b_{1}\right\}$ and replace them with the solutions

Deriving the OLS estimator

- Let's think about n pairs of sample observations:
$\left(Y_{1}, X_{1}\right),\left(Y_{2}, X_{2}\right), \ldots,\left(Y_{n}, X_{n}\right)$
- Let $\left\{b_{0}, b_{1}\right\}$ be possible values for $\left\{\beta_{0}, \beta_{1}\right\}$
- Define the least squares objective function:

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- How do we derive the LS estimators for β_{0} and β_{1} ? We want to minimize this function, which is actually a very well-defined calculus problem.
(1) Take partial derivatives of S with respect to b_{0} and b_{1}.
(2) Set each of the partial derivatives to 0
(3) Solve for $\left\{b_{0}, b_{1}\right\}$ and replace them with the solutions
- To the board we go!

The OLS estimator

- Now we're done! Here are the OLS estimators:

$$
\begin{gathered}
\widehat{\beta}_{0}=\bar{Y}-\widehat{\beta}_{1} \bar{X} \\
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{gathered}
$$

Intuition of the OLS estimator

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

- The higher the covariance between X and Y, the higher the slope will be.

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

- The higher the covariance between X and Y, the higher the slope will be.
- Negative covariances \rightarrow negative slopes; positive covariances \rightarrow positive slopes

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

- The higher the covariance between X and Y, the higher the slope will be.
- Negative covariances \rightarrow negative slopes; positive covariances \rightarrow positive slopes
- What happens when X_{i} doesn't vary?

Intuition of the OLS estimator

- The intercept equation tells us that the regression line goes through the point (\bar{Y}, \bar{X}) :

$$
\bar{Y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \bar{X}
$$

- The slope for the regression line can be written as the following:

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\text { Sample Covariance between } X \text { and } Y}{\text { Sample Variance of } X}
$$

- The higher the covariance between X and Y, the higher the slope will be.
- Negative covariances \rightarrow negative slopes; positive covariances \rightarrow positive slopes
- What happens when X_{i} doesn't vary?
- What happens when Y_{i} doesn't vary?

A Visual Intuition for the OLS Estimator

Mechanical properties of OLS

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.
(1) The residuals will be 0 on average:

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}=0
$$

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.
(1) The residuals will be 0 on average:

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}=0
$$

(2) The residuals will be uncorrelated with the predictor ($\widehat{c o v}$ is the sample covariance):

$$
\widehat{\operatorname{cov}}\left(X_{i}, \widehat{u}_{i}\right)=0
$$

Mechanical properties of OLS

- Later we'll see that under certain assumptions, OLS will have nice statistical properties.
- But some properties are mechanical since they can be derived from the first order conditions of OLS.
(1) The residuals will be 0 on average:

$$
\frac{1}{n} \sum_{i=1}^{n} \widehat{u}_{i}=0
$$

(2) The residuals will be uncorrelated with the predictor ($\widehat{c o v}$ is the sample covariance):

$$
\widehat{\operatorname{cov}}\left(X_{i}, \widehat{u}_{i}\right)=0
$$

(3) The residuals will be uncorrelated with the fitted values:

$$
\widehat{\operatorname{cov}}\left(\widehat{Y}_{i}, \widehat{u}_{i}\right)=0
$$

OLS slope as a weighted sum of the outcomes

OLS slope as a weighted sum of the outcomes

- One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

OLS slope as a weighted sum of the outcomes

- One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Where here we have the weights, W_{i} as:

$$
W_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

OLS slope as a weighted sum of the outcomes

- One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Where here we have the weights, W_{i} as:

$$
W_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- This is important for two reasons. First, it'll make derivations later much easier. And second, it shows that is just the sum of a random variable. Therefore it is also a random variable.

OLS slope as a weighted sum of the outcomes

- One useful derivation is to write the OLS estimator for the slope as a weighted sum of the outcomes.

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Where here we have the weights, W_{i} as:

$$
W_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- This is important for two reasons. First, it'll make derivations later much easier. And second, it shows that is just the sum of a random variable. Therefore it is also a random variable.
- To the board!
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review

4) Properties Continued
(3) Hypothesis tests for regression
(6) Confidence intervals for regression

C Goodness of fit
(8) Wrap Up of Univariate Regression

3 Fun with Non-Linearities
(10) Appendix: r^{2} derivation

Sampling distribution of the OLS estimator

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.
- Let's take a simulation approach to demonstrate:

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.
- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest

Sampling distribution of the OLS estimator

- Remember: OLS is an estimator-it's a machine that we plug data into and we get out estimates.

- Just like the sample mean, sample difference in means, or the sample variance
- It has a sampling distribution, with a sampling variance/standard error, etc.
- Let's take a simulation approach to demonstrate:
- Pretend that the AJR data represents the population of interest
- See how the line varies from sample to sample

Simulation procedure

Simulation procedure

(1) Draw a random sample of size $n=30$ with replacement using sample()

Simulation procedure

(1) Draw a random sample of size $n=30$ with replacement using sample()
(2) Use $\operatorname{lm}()$ to calculate the OLS estimates of the slope and intercept

Simulation procedure

(1) Draw a random sample of size $n=30$ with replacement using sample()
(2) Use $\operatorname{lm}()$ to calculate the OLS estimates of the slope and intercept
(3) Plot the estimated regression line

Population Regression

Randomly sample from AJR

Sampling distribution of OLS

Sampling distribution of OLS

- You can see that the estimated slopes and intercepts vary from sample to sample, but that the "average" of the lines looks about right.

Sampling distribution of intercepts
Sampling distribution of slopes

Sampling distribution of OLS

- You can see that the estimated slopes and intercepts vary from sample to sample, but that the "average" of the lines looks about right.

Sampling distribution of intercepts

Sampling distribution of slopes

- Is this unique?

Assumptions for unbiasedness of the sample mean

Assumptions for unbiasedness of the sample mean

- What assumptions did we make to prove that the sample mean was unbiased?

$$
\mathbb{E}[\bar{X}]=\mu
$$

Assumptions for unbiasedness of the sample mean

- What assumptions did we make to prove that the sample mean was unbiased?

$$
\mathbb{E}[\bar{X}]=\mu
$$

- Just one: random sample

Assumptions for unbiasedness of the sample mean

- What assumptions did we make to prove that the sample mean was unbiased?

$$
\mathbb{E}[\bar{X}]=\mu
$$

- Just one: random sample
- We'll need more than this for the regression case

Our goal

Our goal

- What is the sampling distribution of the OLS slope?

$$
\widehat{\beta}_{1} \sim ?(?, ?)
$$

Our goal

- What is the sampling distribution of the OLS slope?

$$
\widehat{\beta}_{1} \sim ?(?, ?)
$$

- We need fill in those ?s.

Our goal

- What is the sampling distribution of the OLS slope?

$$
\widehat{\beta}_{1} \sim ?(?, ?)
$$

- We need fill in those ?s.
- We'll start with the mean of the sampling distribution. Is the estimator centered at the true value, β_{1} ?

Our goal

- What is the sampling distribution of the OLS slope?

$$
\widehat{\beta}_{1} \sim ?(?, ?)
$$

- We need fill in those ?s.
- We'll start with the mean of the sampling distribution. Is the estimator centered at the true value, β_{1} ?
- Most of our derivations will be in terms of the slope but they apply to the intercept as well.

OLS Assumptions Preview

OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified

OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.

OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.

OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.
(1) Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable

OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.
(9) Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable
(5) Homoskedasticity: The error term has the same variance conditional on all values of the explanatory variable.

OLS Assumptions Preview

(1) Linearity in Parameters: The population model is linear in its parameters and correctly specified
(2) Random Sampling: The observed data represent a random sample from the population described by the model.
(3) Variation in X : There is variation in the explanatory variable.
(1) Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable
(5) Homoskedasticity: The error term has the same variance conditional on all values of the explanatory variable.
(0) Normality: The error term is independent of the explanatory variables and normally distributed.

Hierarchy of OLS Assumptions

Hierarchy of OLS Assumptions

OLS Assumption I

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+u
$$

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+u
$$

- Note that it can be nonlinear in variables

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+u
$$

- Note that it can be nonlinear in variables
- OK: $Y=\beta_{0}+\beta_{1} X+u$ or

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X^{2}+u \text { or } \\
& Y=\beta_{0}+\beta_{1} \log (X)+u
\end{aligned}
$$

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+u
$$

- Note that it can be nonlinear in variables
- OK: $Y=\beta_{0}+\beta_{1} X+u$ or

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X^{2}+u \text { or } \\
& Y=\beta_{0}+\beta_{1} \log (X)+u
\end{aligned}
$$

- Not OK: $Y=\beta_{0}+\beta_{1}^{2} X+u$ or

$$
Y=\beta_{0}+\exp \left(\beta_{1}\right) X+u
$$

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+u
$$

- Note that it can be nonlinear in variables
- OK: $Y=\beta_{0}+\beta_{1} X+u$ or

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X^{2}+u \text { or } \\
& Y=\beta_{0}+\beta_{1} \log (X)+u
\end{aligned}
$$

- Not OK: $Y=\beta_{0}+\beta_{1}^{2} X+u$ or

$$
Y=\beta_{0}+\exp \left(\beta_{1}\right) \bar{X}+u
$$

- β_{0}, β_{1} : Population parameters - fixed and unknown

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+u
$$

- Note that it can be nonlinear in variables
- OK: $Y=\beta_{0}+\beta_{1} X+u$ or

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X^{2}+u \text { or } \\
& Y=\beta_{0}+\beta_{1} \log (X)+u
\end{aligned}
$$

- Not OK: $Y=\beta_{0}+\beta_{1}^{2} X+u$ or

$$
Y=\beta_{0}+\exp \left(\beta_{1}\right) X+u
$$

- β_{0}, β_{1} : Population parameters - fixed and unknown
- u : Unobserved random variable with $E[u]=0$ - captures all other factors influencing Y other than X

OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly specified as:

$$
Y=\beta_{0}+\beta_{1} X_{1}+u
$$

- Note that it can be nonlinear in variables
- OK: $Y=\beta_{0}+\beta_{1} X+u$ or

$$
\begin{aligned}
& Y=\beta_{0}+\beta_{1} X^{2}+u \text { or } \\
& Y=\beta_{0}+\beta_{1} \log (X)+u
\end{aligned}
$$

- Not OK: $Y=\beta_{0}+\beta_{1}^{2} X+u$ or

$$
Y=\beta_{0}+\exp \left(\beta_{1}\right) X+u
$$

- β_{0}, β_{1} : Population parameters - fixed and unknown
- u : Unobserved random variable with $E[u]=0$ - captures all other factors influencing Y other than X
- We assume this to be the structural model, i.e., the model describing the true process generating Y

OLS Assumption II

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

Potential Violations:

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

Potential Violations:

- Time series data (regressor values may exhibit persistence)

OLS Assumption II

Assumption (II. Random Sampling)

The observed data:

$$
\left(y_{i}, x_{i}\right) \text { for } i=1, \ldots, n
$$

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

- A cross-sectional survey where the units are sampled randomly

Potential Violations:

- Time series data (regressor values may exhibit persistence)
- Sample selection problems (sample not representative of the population)

OLS Assumption III

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

Why do we need this?

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)
The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

Why do we need this?

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

This assumption is needed just to calculate $\hat{\beta}$.

OLS Assumption III

Assumption (III. Variation in X; a.k.a. No Perfect Collinearity)

The observed data:

$$
x_{i} \text { for } i=1, \ldots, n
$$

are not all the same value.
Satisfied as long as there is some variation in the regressor X in the sample.

Why do we need this?

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

This assumption is needed just to calculate $\hat{\beta}$.
Only assumption needed for using OLS as a pure data summary.

Stuck in a moment

- Why does this matter?

Stuck in a moment

- Why does this matter?

Stuck in a moment

- Why does this matter? How would you draw the line of best fit through this scatterplot, which is a violation of this assumption?

OLS Assumption IV

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E[u \mid X]=0
$$

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E[u \mid X]=0
$$

- $E[u \mid X]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E[u \mid X]=0
$$

- $E[u \mid X]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$
- Given random sampling, $E[u \mid X]=0$ also implies $E\left[u_{i} \mid x_{i}\right]=0$ for all i

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E[u \mid X]=0
$$

- $E[u \mid X]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$
- Given random sampling, $E[u \mid X]=0$ also implies $E\left[u_{i} \mid x_{i}\right]=0$ for all i

How does this assumption get violated? Let's generate data from the following model:

$$
Y_{i}=1+0.5 X_{i}+u_{i}
$$

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E[u \mid X]=0
$$

- $E[u \mid X]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$
- Given random sampling, $E[u \mid X]=0$ also implies $E\left[u_{i} \mid x_{i}\right]=0$ for all i

How does this assumption get violated? Let's generate data from the following model:

$$
Y_{i}=1+0.5 X_{i}+u_{i}
$$

But let's compare two situations:
(1) Where the mean of u_{i} depends on X_{i} (they are correlated)

OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the explanatory variable:

$$
E[u \mid X]=0
$$

- $E[u \mid X]=0$ implies a slightly weaker condition $\operatorname{Cov}(X, u)=0$
- Given random sampling, $E[u \mid X]=0$ also implies $E\left[u_{i} \mid x_{i}\right]=0$ for all i

How does this assumption get violated? Let's generate data from the following model:

$$
Y_{i}=1+0.5 X_{i}+u_{i}
$$

But let's compare two situations:
(1) Where the mean of u_{i} depends on X_{i} (they are correlated)
(2) No relationship between them (satisfies the assumption)

Violating the zero conditional mean assumption

Assumption 4 violated

Unbiasedness (to the blackboard)

With Assumptions 1-4, we can show that the OLS estimator for the slope is unbiased, that is $E\left[\widehat{\beta}_{1}\right]=\beta_{1}$.

Unbiasedness (to the blackboard)

With Assumptions 1-4, we can show that the OLS estimator for the slope is unbiased, that is $E\left[\widehat{\beta}_{1}\right]=\beta_{1}$.

$$
\begin{aligned}
& \text { TO THE } \\
& \text { BLACKBCARD! }
\end{aligned}
$$

Unbiasedness of OLS

Theorem (Unbiasedness of OLS)
Given OLS Assumptions I-IV:

$$
E\left[\hat{\beta}_{0}\right]=\beta_{0} \quad \text { and } \quad E\left[\hat{\beta}_{1}\right]=\beta_{1}
$$

The sampling distributions of the estimators $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are centered about the true population parameter values β_{1} and β_{0}.

Where are we?

Where are we?

- Now we know that, under Assumptions 1-4, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, ?\right)
$$

Where are we?

- Now we know that, under Assumptions 1-4, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, ?\right)
$$

- That is we know that the sampling distribution is centered on the true population slope, but we don't know the population variance.

Sampling variance of estimated slope

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors

Sampling variance of estimated slope

- In order to derive the sampling variance of the OLS estimator,
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors
(0) Homoskedasticity

Variance of OLS Estimators

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)
- Taken together, Assumptions I-V imply:

$$
\begin{gathered}
E[Y \mid X]=\beta_{0}+\beta_{1} X \\
\operatorname{Var}[Y \mid X]=\sigma_{u}^{2}
\end{gathered}
$$

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)
- Taken together, Assumptions I-V imply:

$$
\begin{gathered}
E[Y \mid X]=\beta_{0}+\beta_{1} X \\
\operatorname{Var}[Y \mid X]=\sigma_{u}^{2}
\end{gathered}
$$

- Violation: $\operatorname{Var}\left[u \mid X=x_{1}\right] \neq \operatorname{Var}\left[u \mid X=x_{2}\right]$ called heteroskedasticity.

Variance of OLS Estimators

How can we derive $\operatorname{Var}\left[\hat{\beta}_{0}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$? Let's make the following additional assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a function of the explanatory variable:

$$
\operatorname{Var}[u \mid X]=\sigma_{u}^{2}
$$

- This implies $\operatorname{Var}[u]=\sigma_{u}^{2}$
\rightarrow all errors have an identical error variance ($\sigma_{u_{i}}^{2}=\sigma_{u}^{2}$ for all i)
- Taken together, Assumptions I-V imply:

$$
\begin{gathered}
E[Y \mid X]=\beta_{0}+\beta_{1} X \\
\operatorname{Var}[Y \mid X]=\sigma_{u}^{2}
\end{gathered}
$$

- Violation: $\operatorname{Var}\left[u \mid X=x_{1}\right] \neq \operatorname{Var}\left[u \mid X=x_{2}\right]$ called heteroskedasticity.
- Assumptions I-V are collectively known as the Gauss-Markov assumptions

Deriving the sampling variance

$$
\operatorname{var}\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=? ?
$$

Deriving the sampling variance

$$
\operatorname{var}\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=? ?
$$

Variance of OLS Estimators

Theorem (Variance of OLS Estimators)
Given OLS Assumptions I-V (Gauss-Markov Assumptions):

$$
\begin{gathered}
\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
\operatorname{Var}\left[\hat{\beta}_{0} \mid X\right]=\sigma_{u}^{2}\left\{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right\}
\end{gathered}
$$

where $\operatorname{Var}[u \mid X]=\sigma_{u}^{2}$ (the error variance).

Understanding the sampling variance

$$
\operatorname{var}\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?

Understanding the sampling variance

$$
\operatorname{var}\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?
- The higher the variance of $Y_{i} \mid X_{i}$, the higher the sampling variance

Understanding the sampling variance

$$
\operatorname{var}\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?
- The higher the variance of $Y_{i} \mid X_{i}$, the higher the sampling variance
- The lower the variance of X_{i}, the higher the sampling variance

Understanding the sampling variance

$$
\operatorname{var}\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?
- The higher the variance of $Y_{i} \mid X_{i}$, the higher the sampling variance
- The lower the variance of X_{i}, the higher the sampling variance
- As we increase n, the denominator gets large, while the numerator is fixed and so the sampling variance shrinks to 0 .

Understanding the sampling variance

$$
\operatorname{var}\left[\widehat{\beta}_{1} \mid X_{1}, \ldots, X_{n}\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- What drives the sampling variability of the OLS estimator?
- The higher the variance of $Y_{i} \mid X_{i}$, the higher the sampling variance
- The lower the variance of X_{i}, the higher the sampling variance
- As we increase n, the denominator gets large, while the numerator is fixed and so the sampling variance shrinks to 0 .
- But, this formula depends upon an unobserved term: σ_{u}^{2}

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$?

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$? We can derive an estimator based on the residuals:

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Recall: The errors u_{i} are NOT the same as the residuals \hat{u}_{i}.

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$?
We can derive an estimator based on the residuals:

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Recall: The errors u_{i} are NOT the same as the residuals \hat{u}_{i}.
Intuitively, the scatter of the residuals around the fitted regression line should reflect the unseen scatter about the true population regression line.

We can measure scatter with the mean squared deviation:

$$
\operatorname{MSD}(\hat{u}) \equiv \frac{1}{n} \sum_{i=1}^{n}\left(\hat{u}_{i}-\overline{\hat{u}}\right)^{2}=
$$

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$?
We can derive an estimator based on the residuals:

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Recall: The errors u_{i} are NOT the same as the residuals \hat{u}_{i}.
Intuitively, the scatter of the residuals around the fitted regression line should reflect the unseen scatter about the true population regression line.

We can measure scatter with the mean squared deviation:

$$
\operatorname{MSD}(\hat{u}) \equiv \frac{1}{n} \sum_{i=1}^{n}\left(\hat{u}_{i}-\overline{\hat{u}}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$?
We can derive an estimator based on the residuals:

$$
\hat{u}_{i}=y_{i}-\hat{y}_{i}=y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}
$$

Recall: The errors u_{i} are NOT the same as the residuals \hat{u}_{i}.
Intuitively, the scatter of the residuals around the fitted regression line should reflect the unseen scatter about the true population regression line.
We can measure scatter with the mean squared deviation:

$$
M S D(\hat{u}) \equiv \frac{1}{n} \sum_{i=1}^{n}\left(\hat{u}_{i}-\overline{\hat{u}}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

Intuitively, which line is likely to be closer to the observed sample values on X and Y, the true line $y_{i}=\beta_{0}+\beta_{1} x_{i}$ or the fitted regression line $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$?

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations
- So the spread of the residuals $\operatorname{MSD}(\hat{u})$ will slightly underestimate the error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$ on average

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations
- So the spread of the residuals $\operatorname{MSD}(\hat{u})$ will slightly underestimate the error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$ on average
- In fact, we can show that with a single regressor X we have:

$$
E[M S D(\hat{u})]=\frac{n-2}{n} \sigma_{u}^{2} \text { (degrees of freedom adjustment) }
$$

Estimating the Variance of OLS Estimators

- By construction, the regression line is closer since it is drawn to fit the sample we observe
- Specifically, the regression line is drawn so as to minimize the sum of the squares of the distances between it and the observations
- So the spread of the residuals $\operatorname{MSD}(\hat{u})$ will slightly underestimate the error variance $\operatorname{Var}[u]=\sigma_{u}^{2}$ on average
- In fact, we can show that with a single regressor X we have:

$$
E[M S D(\hat{u})]=\frac{n-2}{n} \sigma_{u}^{2}(\text { degrees of freedom adjustment })
$$

- Thus, an unbiased estimator for the error variance is:

$$
\hat{\sigma}_{u}^{2}=\frac{n}{n-2} M S D(\hat{u})=\frac{n}{n-2} \frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}=\frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

We plug this estimate into the variance estimators for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Now we know the mean and sampling variance of the sampling distribution.

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Now we know the mean and sampling variance of the sampling distribution.
- Next Time: how does this compare to other estimators for the population slope?

Where We've Been and Where We're Going...

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
^ mechanics of OLS

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
\star mechanics of OLS
* properties of OLS

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
\star mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
* mechanics of OLS
\star properties of OLS
- Wednesday:
\star hypothesis tests for regression
* confidence intervals for regression

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
\star mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression
* confidence intervals for regression
* goodness of fit

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
\star mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression
* confidence intervals for regression
\star goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity

Where We've Been and Where We're Going...

- Last Week
- hypothesis testing
- what is regression
- This Week
- Monday:
* mechanics of OLS
* properties of OLS
- Wednesday:
\star hypothesis tests for regression
\star confidence intervals for regression
\star goodness of fit
- Next Week
- mechanics with two regressors
- omitted variables, multicollinearity
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causal inference

> Questions?
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
4) Properties Continued
(5) Hypothesis tests for regression
(3) Confidence interva's for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(1) Appendix: r^{2} derivation

Example: Epstein and Mershon SCOTUS data

Example: Epstein and Mershon SCOTUS data

- Data on 27 justices from the Warren, Burger, and Rehnquist courts (can be interpreted as a census)

Example: Epstein and Mershon SCOTUS data

- Data on 27 justices from the Warren, Burger, and Rehnquist courts (can be interpreted as a census)
- Percentage of votes in liberal direction for each justice in a number of issue areas

Example: Epstein and Mershon SCOTUS data

- Data on 27 justices from the Warren, Burger, and Rehnquist courts (can be interpreted as a census)
- Percentage of votes in liberal direction for each justice in a number of issue areas
- Segal-Cover scores for each justice

Example: Epstein and Mershon SCOTUS data

- Data on 27 justices from the Warren, Burger, and Rehnquist courts (can be interpreted as a census)
- Percentage of votes in liberal direction for each justice in a number of issue areas
- Segal-Cover scores for each justice
- Party of appointing president

How to get β_{0} and β_{1}

$$
\begin{gathered}
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} . \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
\end{gathered}
$$

(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(Goodness of fit
(8) Wrap Up of Univariate Regression
(3) Fun with Non-Linearities
(10) Appendix: r^{2} derivation

Where are we?

Where are we?

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Now we know the mean and sampling variance of the sampling distribution.
- How does this compare to other estimators for the population slope?

OLS is BLUE :(

OLS is BLUE :(

Theorem (Gauss-Markov)
Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(1) Linear: Among Linear estimators

- Unbiased: Among Linear Unbiased estimators
- Estimator.

OLS is BLUE :(

Theorem (Gauss-Markov)
Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(1) Linear: Among Linear estimators

- Unbiased: Among Linear Unbiased estimators
- Estimator.
- Assumptions 1-5: the "Gauss Markov Assumptions"

OLS is BLUE :(

Theorem (Gauss-Markov)

Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(2) Linear: Among Linear estimators
(3) Unbiased: Among Linear Unbiased estimators
(9) Estimator.

- Assumptions 1-5: the "Gauss Markov Assumptions"
- The proof is detailed and doesn't yield insight, so we skip it. (We will explore the intuition some more in a few slides)

OLS is BLUE :(

Theorem (Gauss-Markov)

Given OLS Assumptions I-V, the OLS estimator is BLUE, i.e. the
(1) Best: Lowest variance in class
(2) Linear: Among Linear estimators
(3) Unbiased: Among Linear Unbiased estimators
(9) Estimator.

- Assumptions 1-5: the "Gauss Markov Assumptions"
- The proof is detailed and doesn't yield insight, so we skip it. (We will explore the intuition some more in a few slides)
- Fails to hold when the assumptions are violated!

Gauss-Markov Theorem

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution?

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution?

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution? Uniform?

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution? Uniform? t?

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution? Uniform? t? Normal?

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution? Uniform? t? Normal? Exponential?

Where are we?

- Under Assumptions 1-5, we know that

$$
\widehat{\beta}_{1} \sim ?\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- And we know that $\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$ is the lowest variance of any linear estimator of β_{1}
- What about the last question mark? What's the form of the distribution? Uniform? t? Normal? Exponential? Hypergeometric?

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:
"the sums and means of r.v.'s tend to be Normally distributed in large samples."

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:
"the sums and means of r.v.'s tend to be Normally distributed in large samples."
- True here as well, so we know that in large samples:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

Large-sample distribution of OLS estimators

- Remember that the OLS estimator is the sum of independent r.v.'s:

$$
\widehat{\beta}_{1}=\sum_{i=1}^{n} W_{i} Y_{i}
$$

- Mantra of the Central Limit Theorem:
"the sums and means of r.v.'s tend to be Normally distributed in large samples."
- True here as well, so we know that in large samples:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Can also replace $S E$ with an estimate:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

Where are we?

Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Where are we?

Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Sampling distribution in small samples

- What if we have a small sample? What can we do then?

Sampling distribution in small samples

- What if we have a small sample? What can we do then?
- Can't get something for nothing, but we can make progress if we make another assumption:

Sampling distribution in small samples

- What if we have a small sample? What can we do then?
- Can't get something for nothing, but we can make progress if we make another assumption:
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors
(3) Homoskedasticity

Sampling distribution in small samples

- What if we have a small sample? What can we do then?
- Can't get something for nothing, but we can make progress if we make another assumption:
(1) Linearity
(2) Random (iid) sample
(3) Variation in X_{i}
(9) Zero conditional mean of the errors
(5) Homoskedasticity
(6) Errors are conditionally Normal

OLS Assumptions VI

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \quad \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \quad \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \quad \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)
- Non-normality of the errors is a serious concern in small samples. We can partially check this assumption by looking at the residuals (more in coming weeks)

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \quad \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)
- Non-normality of the errors is a serious concern in small samples. We can partially check this assumption by looking at the residuals (more in coming weeks)
- Variable transformations can help to come closer to normality

OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, $u \Perp X$, and is normally distributed with mean zero and variance σ_{u}^{2} :

$$
u \sim N\left(0, \sigma_{u}^{2}\right), \quad \text { which implies } Y \mid X \sim N\left(\beta_{0}+\beta_{1} X, \sigma_{u}^{2}\right)
$$

Note: This also implies homoskedasticity and zero conditional mean.

- Together Assumptions I-VI are the classical linear model (CLM) assumptions.
- The CLM assumptions imply that OLS is BUE (i.e. minimum variance among all linear or non-linear unbiased estimators)
- Non-normality of the errors is a serious concern in small samples. We can partially check this assumption by looking at the residuals (more in coming weeks)
- Variable transformations can help to come closer to normality
- Reminder: we don't need normality assumption in large samples

Sampling Distribution for $\widehat{\beta}_{1}$

Sampling Distribution for $\widehat{\beta}_{1}$

Theorem (Sampling Distribution of $\widehat{\beta}_{1}$)
Under Assumptions I-VI,

$$
\begin{gathered}
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \operatorname{Var}\left[\widehat{\beta}_{1} \mid X\right]\right) \\
\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{gathered}
$$

where
which implies

Sampling Distribution for $\widehat{\beta}_{1}$

Theorem (Sampling Distribution of $\widehat{\beta}_{1}$)
Under Assumptions I-VI,

	$\widehat{\beta}_{1} \sim N\left(\beta_{1}, \operatorname{Var}\left[\widehat{\beta}_{1} \mid X\right]\right)$
where	$\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
which implies	$\frac{\widehat{\beta}_{1}-\beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]}}=\frac{\widehat{\beta}_{1}-\beta_{1}}{\operatorname{SE}(\hat{\beta})} \sim N(0,1)$

Sampling Distribution for $\widehat{\beta}_{1}$

Theorem (Sampling Distribution of $\widehat{\beta}_{1}$)
Under Assumptions I-VI,
$\widehat{\beta}_{1} \sim N\left(\beta_{1}, \operatorname{Var}\left[\widehat{\beta}_{1} \mid X\right]\right)$
where

$$
\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

which implies

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]}}=\frac{\widehat{\beta}_{1}-\beta_{1}}{S E(\hat{\beta})} \sim N(0,1)
$$

Proof.

Sampling Distribution for $\widehat{\beta}_{1}$

Theorem (Sampling Distribution of $\widehat{\beta}_{1}$)

Under Assumptions I-VI,

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \operatorname{Var}\left[\widehat{\beta}_{1} \mid X\right]\right)
$$

where

$$
\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]=\frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

which implies

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1} \mid X\right]}}=\frac{\widehat{\beta}_{1}-\beta_{1}}{S E(\hat{\beta})} \sim N(0,1)
$$

Proof.

Given Assumptions I-VI, $\hat{\beta}_{1}$ is a linear combination of the i.i.d. normal random variables:

$$
\hat{\beta}_{1}=\beta_{1}+\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)}{S S T_{x}} u_{i} \quad \text { where } \quad u_{i} \sim N\left(0, \sigma_{u}^{2}\right)
$$

Any linear combination of independent normals is normal, and we can transform/standarize any normal random variable into a standard normal by subtracting off its mean and dividing by its standard deviation.

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Furthermore, if we replace the true standard error with the estimated standard error, then we get the following:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Furthermore, if we replace the true standard error with the estimated standard error, then we get the following:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

- The standardized coefficient follows a t distribution $n-2$ degrees of freedom. We take off an extra degree of freedom because we had to estimate one more parameter than just the sample mean.

Sampling distribution of OLS slope

- If we have Y_{i} given X_{i} is distributed $N\left(\beta_{0}+\beta_{1} X_{i}, \sigma_{u}^{2}\right)$, then we have the following at any sample size:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{S E\left[\widehat{\beta}_{1}\right]} \sim N(0,1)
$$

- Furthermore, if we replace the true standard error with the estimated standard error, then we get the following:

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

- The standardized coefficient follows a t distribution $n-2$ degrees of freedom. We take off an extra degree of freedom because we had to estimate one more parameter than just the sample mean.
- All of this depends on Normal errors!

The t-Test for Single Population Parameters

- $S E\left[\hat{\beta}_{1}\right]=\frac{\sigma_{u}}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}$ involves the unknown population error variance σ_{u}^{2}
- Replace σ_{u}^{2} with its unbiased estimator $\hat{\sigma}_{u}^{2}=\frac{\sum_{i=1}^{n} \hat{u}_{i}^{2}}{n-2}$, and we obtain:

Theorem (Sampling Distribution of t -value)
Under Assumptions I-VI, the t-value for β_{1} has a t-distribution with $n-2$ degrees of freedom:

$$
T \equiv \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E\left[\hat{\beta}_{1}\right]}} \sim \tau_{n-2}
$$

The t-Test for Single Population Parameters

- $S E\left[\hat{\beta}_{1}\right]=\frac{\sigma_{u}}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}$ involves the unknown population error variance σ_{u}^{2}
- Replace σ_{u}^{2} with its unbiased estimator $\hat{\sigma}_{u}^{2}=\frac{\sum_{i=1}^{n} \hat{u}_{i}^{2}}{n-2}$, and we obtain:

Theorem (Sampling Distribution of t -value)

Under Assumptions I-VI, the t-value for β_{1} has a t-distribution with $n-2$ degrees of freedom:

$$
T \equiv \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E\left[\hat{\beta}_{1}\right]}} \sim \tau_{n-2}
$$

Proof.

The logic is perfectly analogous to the t -value for the population mean - because we are estimating the denominator, we need a distribution that has fatter tails than $N(0,1)$ to take into account the additional uncertainty.
This time, $\hat{\sigma}_{u}^{2}$ contains two estimated parameters ($\hat{\beta}_{0}$ and $\hat{\beta}_{1}$) instead of one, hence the degrees of freedom $=n-2$.

Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Under Assumptions 1-6 and in any sample, we know that

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Under Assumptions 1-6 and in any sample, we know that

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

Where are we?

- Under Assumptions 1-5 and in large samples, we know that

$$
\widehat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma_{u}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

- Under Assumptions 1-6 and in any sample, we know that

$$
\frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \sim t_{n-2}
$$

Now let's briefly return to some of the large sample properties.

Large Sample Properties: Consistency

Large Sample Properties: Consistency

- We just looked formally at the small sample properties of the OLS estimator, i.e., how ($\hat{\beta}_{0}, \hat{\beta}_{1}$) behaves in repeated samples of a given n.

Large Sample Properties: Consistency

- We just looked formally at the small sample properties of the OLS estimator, i.e., how ($\hat{\beta}_{0}, \hat{\beta}_{1}$) behaves in repeated samples of a given n.
- Now let's take a more rigorous look at the large sample properties, i.e., how ($\hat{\beta}_{0}, \widehat{\beta}_{1}$) behaves when $n \rightarrow \infty$.

Large Sample Properties: Consistency

- We just looked formally at the small sample properties of the OLS estimator, i.e., how ($\hat{\beta}_{0}, \hat{\beta}_{1}$) behaves in repeated samples of a given n.
- Now let's take a more rigorous look at the large sample properties, i.e., how ($\hat{\beta}_{0}, \hat{\beta}_{1}$) behaves when $n \rightarrow \infty$.

Theorem (Consistency of OLS Estimator)

Given Assumptions I-IV, the OLS estimator $\widehat{\beta}_{1}$ is consistent for β_{1} as $n \rightarrow \infty$:

$$
\operatorname{plim}_{n \rightarrow \infty} \widehat{\beta}_{1}=\beta_{1}
$$

- Technical note: We can slightly relax Assumption IV:

$$
E[u \mid X]=0 \quad \text { (any function of } X \text { is uncorrelated with } u \text {) }
$$

to its implication:

$$
\operatorname{Cov}[u, X]=0 \quad(X \text { is uncorrelated with } u)
$$

for consistency to hold (but not unbiasedness).

Large Sample Properties: Consistency

Proof.

Similar to the unbiasedness proof:

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\beta_{1}+\frac{\sum_{i}^{n}\left(x_{i}-\bar{x}\right) u_{i}}{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
\operatorname{plim} \widehat{\beta}_{1} & =\operatorname{plim} \beta_{1}+\operatorname{plim} \frac{\sum_{i}^{n}\left(x_{i}-\bar{x}\right) u_{i}}{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad(\text { Wooldridge C. } 3 \text { Property i) } \\
& =\beta_{1}+\frac{\operatorname{plim} \frac{1}{n} \sum_{i}^{n}\left(x_{i}-\bar{x}\right) u_{i}}{\operatorname{plim} \frac{1}{n} \sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad(\text { Wooldridge C. } 3 \text { Property iii) } \\
& =\beta_{1}+\frac{\operatorname{Cov}[X, u]}{\operatorname{Var}[X]} \quad \text { (by the law of large numbers) } \\
& =\beta_{1} \quad(\operatorname{Cov}[X, u]=0 \text { and } \operatorname{Var}[X]>0)
\end{aligned}
$$

- OLS is inconsistent (and biased) unless $\operatorname{Cov}[X, u]=0$
- If $\operatorname{Cov}[u, X]>0$ then asymptotic bias is upward; if $\operatorname{Cov}[u, X]<0$ asymptotic bias is downwards

Large Sample Properties: Asymptotic Normality

- For statistical inference, we need to know the sampling distribution of $\hat{\beta}$ when $n \rightarrow \infty$.

Theorem (Asymptotic Normality of OLS Estimator)

Given Assumptions I-V, the OLS estimator $\widehat{\beta}_{1}$ is asymptotically normally distributed:

$$
\frac{\hat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\hat{\beta}_{1}\right]} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

where

$$
\widehat{S E}\left[\hat{\beta}_{1}\right]=\frac{\hat{\sigma}_{u}}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

with the consistent estimator for the error variance:

$$
\hat{\sigma}_{u}^{2}=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2} \xrightarrow{p} \sigma_{u}^{2}
$$

Large Sample Inference

Proof.

Proof is similar to the small-sample normality proof:

$$
\begin{gathered}
\hat{\beta}_{1}=\beta_{1}+\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)}{S S T_{x}} u_{i} \\
\sqrt{n}\left(\hat{\beta}_{1}-\beta_{1}\right)=\frac{\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) u_{i}}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{gathered}
$$

where the numerator converges in distribution to a normal random variable by CLT. Then, rearranging the terms, etc. gives you the right formula given in the theorem.
For a more formal and detailed proof, see Wooldridge Appendix 5A.

Large Sample Inference

Proof.

Proof is similar to the small-sample normality proof:

$$
\begin{gathered}
\hat{\beta}_{1}=\beta_{1}+\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)}{S S T_{x}} u_{i} \\
\sqrt{n}\left(\hat{\beta}_{1}-\beta_{1}\right)=\frac{\sqrt{n} \cdot \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) u_{i}}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{gathered}
$$

where the numerator converges in distribution to a normal random variable by CLT. Then, rearranging the terms, etc. gives you the right formula given in the theorem.
For a more formal and detailed proof, see Wooldridge Appendix 5A.

- We need homoskedasticity (Assumption V) for this result, but we do not need normality (Assumption VI).
- Result implies that asymptotically our usual standard errors, t-values, p-values, and Cls remain valid even without the normality assumption! We just proceed as in the small sample case where we assume normality.
- It turns out that, given Assumptions I-V, the OLS asymptotic variance is also the lowest in class (asymptotic Gauss-Markov).

Testing and Confidence Intervals

Three ways of making statistical inference out of regression:

Testing and Confidence Intervals

Three ways of making statistical inference out of regression:
(1) Point Estimation: Consider the sampling distribution of our point estimator $\hat{\beta}_{1}$ to infer β_{1}

Testing and Confidence Intervals

Three ways of making statistical inference out of regression:
(1) Point Estimation: Consider the sampling distribution of our point estimator $\hat{\beta}_{1}$ to infer β_{1}
(2) Hypothesis Testing: Consider the sampling distribution of a test statistic to test hypothesis about β_{1} at the α level

Testing and Confidence Intervals

Three ways of making statistical inference out of regression:
(1) Point Estimation: Consider the sampling distribution of our point estimator $\hat{\beta}_{1}$ to infer β_{1}
(2) Hypothesis Testing: Consider the sampling distribution of a test statistic to test hypothesis about β_{1} at the α level
(3) Interval Estimation: Consider the sampling distribution of an interval estimator to construct intervals that will contain β_{1} at least $100(1-\alpha) \%$ of the time.

Testing and Confidence Intervals

Three ways of making statistical inference out of regression:
(1) Point Estimation: Consider the sampling distribution of our point estimator $\hat{\beta}_{1}$ to infer β_{1}
(2) Hypothesis Testing: Consider the sampling distribution of a test statistic to test hypothesis about β_{1} at the α level
(3) Interval Estimation: Consider the sampling distribution of an interval estimator to construct intervals that will contain β_{1} at least $100(1-\alpha) \%$ of the time.

For 2 and 3, we need to know more than just the mean and the variance of the sampling distribution of $\hat{\beta}_{1}$. We need to know the full shape of the sampling distribution of our estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(2) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(4) Appendix: r^{2} derivation

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$
- Claim we want to test

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$
- Claim we want to test
- Almost always "some effect"

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$
- Claim we want to test
- Almost always "some effect"
- Could do one-sided test, but you shouldn't

Null and alternative hypotheses review

- Null: $H_{0}: \beta_{1}=0$
- The null is the straw man we want to knock down.
- With regression, almost always null of no relationship
- Alternative: $H_{a}: \beta_{1} \neq 0$
- Claim we want to test
- Almost always "some effect"
- Could do one-sided test, but you shouldn't
- Notice these are statements about the population parameters, not the OLS estimates.

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- As we saw in the last section, if the errors are conditionally Normal, then under the null hypothesis we have:

$$
T \sim t_{n-2}
$$

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- As we saw in the last section, if the errors are conditionally Normal, then under the null hypothesis we have:

$$
T \sim t_{n-2}
$$

- In large samples, we know that T is approximately (standard) Normal, but we also know that t_{n-2} is approximately (standard) Normal in large samples too, so this statement works there too, even if Normality of the errors fails.

Test statistic

- Under the null of $H_{0}: \beta_{1}=c$, we can use the following familiar test statistic:

$$
T=\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}
$$

- As we saw in the last section, if the errors are conditionally Normal, then under the null hypothesis we have:

$$
T \sim t_{n-2}
$$

- In large samples, we know that T is approximately (standard) Normal, but we also know that t_{n-2} is approximately (standard) Normal in large samples too, so this statement works there too, even if Normality of the errors fails.
- Thus, under the null, we know the distribution of T and can use that to formulate a rejection region and calculate p-values.

Rejection region

- Choose a level of the test, α, and find rejection regions that correspond to that value under the null distribution:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2}<T<t_{\alpha / 2, n-2}\right)=1-\alpha
$$

Rejection region

- Choose a level of the test, α, and find rejection regions that correspond to that value under the null distribution:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2}<T<t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- This is exactly the same as with sample means and sample differences in means, except that the degrees of freedom on the t distribution have changed.

p-value

- The interpretation of the p -value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true

p-value

- The interpretation of the p -value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true
- Mathematically:

$$
\mathbb{P}\left(\left|\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}\right| \geq\left|T_{o b s}\right|\right)
$$

p-value

- The interpretation of the p -value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true
- Mathematically:

$$
\mathbb{P}\left(\left|\frac{\widehat{\beta}_{1}-c}{\widehat{S E}\left[\widehat{\beta}_{1}\right]}\right| \geq\left|T_{o b s}\right|\right)
$$

- If the p -value is less than α we would reject the null at the α level.
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS

2 Properties of the OLS estimator
(3) Example and Review
(a) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(3) Fun with Non-Linearities
(10) Appendix: r^{2} derivation

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- If we rearrange this as before, we can get an expression for confidence intervals:

$$
\mathbb{P}\left(\widehat{\beta}_{1}-t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right] \leq \beta_{1} \leq \widehat{\beta}_{1}+t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]\right)=1-\alpha
$$

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- If we rearrange this as before, we can get an expression for confidence intervals:

$$
\mathbb{P}\left(\widehat{\beta}_{1}-t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right] \leq \beta_{1} \leq \widehat{\beta}_{1}+t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]\right)=1-\alpha
$$

- Thus, we can write the confidence intervals as:

$$
\widehat{\beta}_{1} \pm t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]
$$

Confidence intervals

- Very similar to the approach with sample means. By the sampling distribution of the OLS estimator, we know that we can find t-values such that:

$$
\mathbb{P}\left(-t_{\alpha / 2, n-2} \leq \frac{\widehat{\beta}_{1}-\beta_{1}}{\widehat{S E}\left[\widehat{\beta}_{1}\right]} \leq t_{\alpha / 2, n-2}\right)=1-\alpha
$$

- If we rearrange this as before, we can get an expression for confidence intervals:

$$
\mathbb{P}\left(\widehat{\beta}_{1}-t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right] \leq \beta_{1} \leq \widehat{\beta}_{1}+t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]\right)=1-\alpha
$$

- Thus, we can write the confidence intervals as:

$$
\widehat{\beta}_{1} \pm t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{1}\right]
$$

- We can derive these for the intercept as well:

$$
\widehat{\beta}_{0} \pm t_{\alpha / 2, n-2} \widehat{S E}\left[\widehat{\beta}_{0}\right]
$$

Cls Simulation Example

Returning to our simulation example we can simulate the sampling distributions of the 95% confidence interval estimates for $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$

Cls Simulation Example

Returning to our simulation example we can simulate the sampling distributions of the 95% confidence interval estimates for $\widehat{\beta}_{1}$ and $\widehat{\beta}_{0}$

Cls Simulation Example

Cls Simulation Example

Prediction error

- How do we judge how well a line fits the data?

Prediction error

- How do we judge how well a line fits the data?
- One way is to find out how much better we do at predicting Y once we include X into the regression model.

Prediction error

- How do we judge how well a line fits the data?
- One way is to find out how much better we do at predicting Y once we include X into the regression model.
- Prediction errors without X : best prediction is the mean, so our squared errors, or the total sum of squares $\left(S S_{t o t}\right)$ would be:

$$
S S_{t o t}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Prediction error

- How do we judge how well a line fits the data?
- One way is to find out how much better we do at predicting Y once we include X into the regression model.
- Prediction errors without X : best prediction is the mean, so our squared errors, or the total sum of squares $\left(S S_{t o t}\right)$ would be:

$$
S S_{t o t}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- Once we have estimated our model, we have new prediction errors, which are just the sum of the squared residuals or $S S_{\text {res }}$:

$$
S S_{r e s}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
$$

Sum of Squares

Total Prediction Errors

Sum of Squares

Residuals

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{\text {res }}}{S S_{\text {tot }}}=1-\frac{S S_{\text {res }}}{S S_{\text {tot }}}
$$

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{\text {res }}}{S S_{\text {tot }}}=1-\frac{S S_{\text {res }}}{S S_{\text {tot }}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{r e s}}{S S_{t o t}}=1-\frac{S S_{r e s}}{S S_{t o t}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.
- Alternatively, this is the fraction of the variation in Y is "explained by" X.

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{r e s}}{S S_{t o t}}=1-\frac{S S_{r e s}}{S S_{t o t}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.
- Alternatively, this is the fraction of the variation in Y is "explained by" X.
- $R^{2}=0$ means no relationship

R-square

- By definition, the residuals have to be smaller than the deviations from the mean, so we might ask the following: how much lower is the $S S_{\text {res }}$ compared to the $S S_{t o t}$?
- We quantify this question with the coefficient of determination or R^{2}. This is the following:

$$
R^{2}=\frac{S S_{t o t}-S S_{r e s}}{S S_{t o t}}=1-\frac{S S_{r e s}}{S S_{t o t}}
$$

- This is the fraction of the total prediction error eliminated by providing information on X.
- Alternatively, this is the fraction of the variation in Y is "explained by" X.
- $R^{2}=0$ means no relationship
- $R^{2}=1$ implies perfect linear fit

Is R-squared useful?

Is R-squared useful?

Is R-squared useful?

Is R-squared useful?

(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS

- Properties of the OLS estimator
(3) Example and Review
- Properties Continued
(5) Hypothesis tests for regression
(3) Confidence interval's for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation

OLS Assumptions Summary

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended
- Assumption required: III (variation in X) only

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended
- Assumption required: III (variation in X) only

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended
- Assumption required: III (variation in X) only
(2) Predictive inference:

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended
- Assumption required: III (variation in X) only
(2) Predictive inference:
- Inference about a new observation coming from the same population

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended
- Assumption required: III (variation in X) only
(2) Predictive inference:
- Inference about a new observation coming from the same population
- Example: Wage (Y) and education (X):
"What's my best guess about the wage of a new worker who only has high school education?"

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended
- Assumption required: III (variation in X) only
(2) Predictive inference:
- Inference about a new observation coming from the same population
- Example: Wage (Y) and education (X) :
"What's my best guess about the wage of a new worker who only has high school education?"
- Assumptions required: III and II (random sampling)

What Do the Regression Coefficients Mean Substantively?

- So far, we have learned the statistical properties of the OLS estimator
- However, these properties do not tell us what types of inference we can draw from the estimates

Three types of inference:
(1) Descriptive inference:

- Summarizing sample data by drawing the "best fitting" line
- No inference about the underlying population intended
- Assumption required: III (variation in X) only
(2) Predictive inference:
- Inference about a new observation coming from the same population
- Example: Wage (Y) and education (X) :
"What's my best guess about the wage of a new worker who only has high school education?"
- Assumptions required: III and II (random sampling)
- Assumptions desired: I (linearity)

What Do the Regression Coefficients Mean Substantively?

What Do the Regression Coefficients Mean Substantively?

(3) Causal inference:

What Do the Regression Coefficients Mean Substantively?

(3) Causal inference:

- Inference about counterfactuals, i.e. hypothetical interventions to the same units

What Do the Regression Coefficients Mean Substantively?

(3) Causal inference:

- Inference about counterfactuals, i.e. hypothetical interventions to the same units
- Example: Wage (Y) and education (X) : "What would the wages of a non-college educated worker be if we sent them to college?"

What Do the Regression Coefficients Mean Substantively?

(3) Causal inference:

- Inference about counterfactuals, i.e. hypothetical interventions to the same units
- Example: Wage (Y) and education (X) : "What would the wages of a non-college educated worker be if we sent them to college?"
- We will come back to this in the last few weeks.

OLS as a Best Linear Predictor (Review of BLUE)

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)
- How to choose a good predictor? A popular criterion is mean squared error:

$$
\text { MSE }=E\left[\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right]=E\left[\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}\right]=E\left[\hat{u}_{i}^{2}\right]
$$

The smaller a predictor makes MSE, the better.

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)
- How to choose a good predictor? A popular criterion is mean squared error:

$$
\text { MSE }=E\left[\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right]=E\left[\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}\right]=E\left[\hat{u}_{i}^{2}\right]
$$

The smaller a predictor makes MSE, the better.

- Now, note that the sample version of $M S E=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)
- How to choose a good predictor? A popular criterion is mean squared error:

$$
\text { MSE }=E\left[\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right]=E\left[\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}\right]=E\left[\hat{u}_{i}^{2}\right]
$$

The smaller a predictor makes MSE, the better.

- Now, note that the sample version of $M S E=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$
- Recall how we got the OLS estimator; we minimized $\sum_{i=1}^{n} \hat{u}^{2}$!

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)
- How to choose a good predictor? A popular criterion is mean squared error:

$$
\text { MSE }=E\left[\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right]=E\left[\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}\right]=E\left[\hat{u}_{i}^{2}\right]
$$

The smaller a predictor makes MSE, the better.

- Now, note that the sample version of $M S E=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$
- Recall how we got the OLS estimator; we minimized $\sum_{i=1}^{n} \hat{u}^{2}$!
- This implies that OLS is the best linear predictor in terms of MSE

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)
- How to choose a good predictor? A popular criterion is mean squared error:

$$
\text { MSE }=E\left[\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right]=E\left[\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}\right]=E\left[\hat{u}_{i}^{2}\right]
$$

The smaller a predictor makes MSE, the better.

- Now, note that the sample version of $M S E=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$
- Recall how we got the OLS estimator; we minimized $\sum_{i=1}^{n} \hat{u}^{2}$!
- This implies that OLS is the best linear predictor in terms of MSE
- Which assumptions did we use to get this result?

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)
- How to choose a good predictor? A popular criterion is mean squared error:

$$
\text { MSE }=E\left[\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right]=E\left[\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}\right]=E\left[\hat{u}_{i}^{2}\right]
$$

The smaller a predictor makes MSE, the better.

- Now, note that the sample version of $M S E=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$
- Recall how we got the OLS estimator; we minimized $\sum_{i=1}^{n} \hat{u}^{2}$!
- This implies that OLS is the best linear predictor in terms of MSE
- Which assumptions did we use to get this result?
- Needed: Assumptions II (random sampling) and III (variation in X)
- Not needed: Assumptions I (linearity) and IV (zero cond. mean)

OLS as a Best Linear Predictor (Review of BLUE)

- Suppose that we want to predict the values of Y given observed X values
- Suppose further that we've decided to use a linear predictor $\hat{\beta}_{0}+\hat{\beta}_{1} X$ (but not necessarily assume a true linear relationship in the population)
- How to choose a good predictor? A popular criterion is mean squared error:

$$
\text { MSE }=E\left[\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right]=E\left[\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}\right]=E\left[\hat{u}_{i}^{2}\right]
$$

The smaller a predictor makes MSE, the better.

- Now, note that the sample version of $M S E=\frac{1}{n} \sum_{i=1}^{n} \hat{u}_{i}^{2}$
- Recall how we got the OLS estimator; we minimized $\sum_{i=1}^{n} \hat{u}^{2}$!
- This implies that OLS is the best linear predictor in terms of MSE
- Which assumptions did we use to get this result?
- Needed: Assumptions II (random sampling) and III (variation in X)
- Not needed: Assumptions I (linearity) and IV (zero cond. mean)
- Note that Assumption I would make OLS the best, not just best linear, predictor, so it is certainly desired

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264 * * *$
bpop $0.35848 \quad 0.0251914 .232<2 e-16 * * *$

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 \mathrm{e}-16$
"African American population is statistically significant ($p<0.001$)"
(no effect size or direction)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264 * * *$
bpop $0.35848 \quad 0.0251914 .232<2 e-16 * * *$

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 \mathrm{e}-16$
"Percent African American legislators increases with African American population ($p<$ 0.001)"
(direction, but no effect size)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264 * * *$
bpop $0.35848 \quad 0.0251914 .232<2 \mathrm{e}-16$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 e-16$
"A one percentage point increase in the African American population causes a 0.35 percentage point increase in the fraction of African American state legislators ($p<0.001$)."
(unwarranted causal language)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264$ ***
bpop $0.35848 \quad 0.0251914 .232<2 e^{-16}$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 e-16$
"A one percentage point increase in the African American population is associated with a 0.35 percentage point increase in the fraction of African American state legislators ($p<0.001$)."
(hints at causality)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264$ ***
bpop $0.35848 \quad 0.0251914 .232<2 \mathrm{e}-16 * * *$

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: $<2.2 e-16$
"In states where an additional .01 proportion of the population is African American, we observe on average . 035 proportion more African American state legislators ($p<0.001$)."
(p value doesn't help people with uncertainty)

State Legislators and African American Population

Interpretations of increasing quality:

```
> summary(lm(beo ~ bpop, data = D))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -1.31489 $0.32775-4.0120 .000264$ ***
bpop $0.35848 \quad 0.02519 \quad 14.232<2 \mathrm{e}-16$ ***

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.317 on 39 degrees of freedom
Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344
F-statistic: 202.6 on 1 and 39 DF, p-value: < $2.2 \mathrm{e}-16$
"In states where an additional .01 proportion of the population is African American, we observe on average . 035 proportion more African American state legislators (between .03 and .04 with 95% confidence)."
(still not perfect, the best will be subject matter specific. is fairly clear it is non-causal, gives uncertainty.)

Graphical

Graphical presentations are often the most informative. We will talk more about them later in the semester.

Ground Rules: Interpretation of the Slope

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units
(2) If the association has a causal interpretation explain why, otherwise do not imply a causal interpretation.

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units
(2) If the association has a causal interpretation explain why, otherwise do not imply a causal interpretation.
(3) Provide a meaningful sense of uncertainty

Ground Rules: Interpretation of the Slope

I almost didn't include the last example in the slides. It is hard to give ground rules that cover all cases. Regressions are a part of marshaling evidence in an argument which makes them naturally specific to context.
(1) Give a short, but precise interpretation of the association using interpretable language and units
(2) If the association has a causal interpretation explain why, otherwise do not imply a causal interpretation.
(3) Provide a meaningful sense of uncertainty
(9) Indicate the practical significance of the finding for your argument.

Next Week

Next Week

- OLS with two regressors

Next Week

- OLS with two regressors
- Omitted Variables and Multicolinearity

Next Week

- OLS with two regressors
- Omitted Variables and Multicolinearity
- Dummy variables, interactions, polynomials

Next Week

- OLS with two regressors
- Omitted Variables and Multicolinearity
- Dummy variables, interactions, polynomials
- Reading:
- Optional Fox Chapters 5-7
- For more on logs, Gelman and Hill (2007) pg 59-61 is nice
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
- Properties Continued
(5) Hypothesis tests for regression
(3) Confidence interval's for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation

Fun with Non-Linearities

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_{1} :

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_{1} :
- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in Y associated with one unit increase in X

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_{1} :
- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in Y associated with one unit increase in X
- Regress Y on $\log (X) \longrightarrow \beta_{1}$ approximates increase in Y associated with a percent increase in X

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_{1} :
- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in Y associated with one unit increase in X
- Regress Y on $\log (X) \longrightarrow \beta_{1}$ approximates increase in Y associated with a percent increase in X
- Note that these approximations work only for small increments

Fun with Non-Linearities

- The linear regression model can accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_{1} :
- Regress $\log (Y)$ on $X \longrightarrow \beta_{1}$ approximates percent increase in Y associated with one unit increase in X
- Regress Y on $\log (X) \longrightarrow \beta_{1}$ approximates increase in Y associated with a percent increase in X
- Note that these approximations work only for small increments
- In particular, they do not work when X is a discrete random variable

Example from the American War Library

$\hat{\beta}_{1}=1.23 \longrightarrow$

Example from the American War Library

$\hat{\beta}_{1}=1.23 \longrightarrow$ One additional soldier killed predicts 1.23 additional soldiers wounded on average

Wounded (Scale in Levels)

World War II
Civil War, North
World War I
Vietnam War
Civil War, South
Korean War
Okinawa
Operation Iraqi Freedom, Iraq
Iwo Jima
Revolutionary War
War ot 1812
Aleutian Campaign
D-Day
Philipp.nes War
Indian Wars
Spanish American War
Terrorism, World Trade Center
Yemen, USS Cole
Terrorism Khobar Towers, Saudi Arabia
Persian Gulf,
Terrorism Oklahoma City
Persian Gulf, Op Desert Shield/Storm
Russia North Expedition
Moro Campaigns
China Boxer Rebellion
Panama
Dominican Republic
Israel Attack/USS Liberty
Lebanon
Texas War Of Independence
South Korea
Grenada
China Yangtze Service
Mexico
Nicaragua
Barbary Wars
Russia Siberia Expedition
Dominican Republic
China Civil War
Terrorism Riyad, Saudi Arabia
North Atlantic Naval War
Franco-Amer Naval War
Operation Enduring Freedom, Afghanistan
Mexican War
Operation Enduring Freedom, Afghanistan Theater
Haiti
Texas Border Cortina War
Nicaragua
Italy Trieste
Japan

Wounded (Logarithmic Scale)

Number of Wounded

```
World War II
Civil War, North
World War I
Vietnam War
Civil War, South
Korean War
Okinawa
Operation Iraqi Freedom, Iraq Iwo Jima
Revolutionary War
War of 1812
Aleutian Campaign
D-Day
hilippines War
ndian Wars
Spanish American War
errorism, World Trade Center
Yerrorism
Terrorism Khobar Towers, Saudi Arabia Persian Gulf
Persian Gulf, Op Desert Shield/Storm
Russia North Expedition
Moro Campaigns
China Boxer Rebellion
Panama
Dominican Republic
Israel Attack/USS Liberty
ebanon
Texas War Of Independence
South Korea
Grenada
China Yangtze Service
Mexico
Vicaragua
Russia Siberia Expedition
Russinican Republic
China Civil War
Terrorism Riyadh, Saudi Arabia
North Atlantic Naval War
Franco-Amer Naval War
Operation Enduring Freedom, Afghanistan Mexican War
Operation Enduring Freedom, Afghanistan Theater taiti
Texas Border Cortina War
Nicaragua
Italy Trieste
Japan
```


Regression: Log-Level

$\hat{\beta}_{1}=0.0000237$

Regression: Log-Level

$\hat{\beta}_{1}=0.0000237 \longrightarrow$ One additional soldier killed predicts 0.0023 percent increase in the number of soldiers wounded on average

Regression: Log-Log

$$
\hat{\beta}_{1}=0.797 \longrightarrow
$$

Regression: Log-Log

$\hat{\beta}_{1}=0.797 \longrightarrow$ A percent increase in deaths predicts 0.797 percent increase in the wounded on average
(1) Mechanics of OLS
(2) Properties of the OLS estimator
(3) Example and Review
(4) Properties Continued
(5) Hypothesis tests for regression
(6) Confidence intervals for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation
(1) Mechanics of OLS

- Properties of the OLS estimator
(3) Example and Review
- Properties Continued
(5) Hypothesis tests for regression
(3) Confidence interva's for regression
(7) Goodness of fit
(8) Wrap Up of Univariate Regression
(9) Fun with Non-Linearities
(10) Appendix: r^{2} derivation

Why $r^{2} ?$

To calculate r^{2}, we need to think about the following two quantities:
(1) TSS: Total sum of squares
(2) SSE: Sum of squared errors

$$
\begin{gathered}
T S S=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
S S E=\sum_{i=1}^{n} u_{i}^{2} \\
r^{2}=1-\frac{S S E}{T S S}
\end{gathered}
$$

SCscore

Derivation

$$
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\hat{y}_{i}-\bar{y}\right)\right\}^{2}
$$

Derivation

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\hat{y}_{i}-\bar{y}\right)\right\}^{2} \\
& =\sum_{i=1}^{n}\left\{\hat{u}_{i}^{2}+2 \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\left(\hat{y}_{i}-\bar{y}\right)^{2}\right\}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\hat{y}_{i}-\bar{y}\right)\right\}^{2} \\
& =\sum_{i=1}^{n}\left\{\hat{u}_{i}^{2}+2 \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\left(\widehat{y}_{i}-\bar{y}\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+2 \sum_{i=1}^{n} \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\hat{y}_{i}-\bar{y}\right)\right\}^{2} \\
& =\sum_{i=1}^{n}\left\{\hat{u}_{i}^{2}+2 \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\left(\widehat{y}_{i}-\bar{y}\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+2 \sum_{i=1}^{n} \hat{u}_{i}\left(\widehat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\widehat{y}_{i}-\bar{y}\right)\right\}^{2} \\
& =\sum_{i=1}^{n}\left\{\hat{u}_{i}^{2}+2 \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\left(\widehat{y}_{i}-\bar{y}\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+2 \sum_{i=1}^{n} \hat{u}_{i}\left(\widehat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2} \\
T S S & =S S E+\operatorname{RegSS}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\widehat{y}_{i}-\bar{y}\right)\right\}^{2} \\
& =\sum_{i=1}^{n}\left\{\hat{u}_{i}^{2}+2 \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\left(\widehat{y}_{i}-\bar{y}\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+2 \sum_{i=1}^{n} \hat{u}_{i}\left(\widehat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
T S S & =S S E+\operatorname{RegSS}
\end{aligned}
$$

Derivation

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\hat{y}_{i}-\bar{y}\right)\right\}^{2} \\
& =\sum_{i=1}^{n}\left\{\hat{u}_{i}^{2}+2 \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\left(\widehat{y}_{i}-\bar{y}\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+2 \sum_{i=1}^{n} \hat{u}_{i}\left(\widehat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

$$
T S S=S S E+\operatorname{Reg} S S
$$

Derivation

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n}\left\{\hat{u}_{i}+\left(\widehat{y}_{i}-\bar{y}\right)\right\}^{2} \\
& =\sum_{i=1}^{n}\left\{\hat{u}_{i}^{2}+2 \hat{u}_{i}\left(\hat{y}_{i}-\bar{y}\right)+\left(\hat{y}_{i}-\bar{y}\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+2 \sum_{i=1}^{n} \hat{u}_{i}\left(\widehat{y}_{i}-\bar{y}\right)+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

$$
T S S=S S E+\operatorname{Reg} S S
$$

Coefficient of Determination

We can divide each side by the TSS:

$$
\frac{S S E}{T S S}+\frac{R e g S S}{T S S}=\frac{T S S}{T S S}
$$

Coefficient of Determination

We can divide each side by the TSS:

$$
\begin{gathered}
\frac{S S E}{T S S}+\frac{R e g S S}{T S S}=\frac{T S S}{T S S} \\
\frac{S S E}{T S S}+\frac{R e g S S}{T S S}=1
\end{gathered}
$$

Coefficient of Determination

We can divide each side by the TSS:

$$
\begin{gathered}
\frac{S S E}{T S S}+\frac{R e g S S}{T S S}=\frac{T S S}{T S S} \\
\frac{S S E}{T S S}+\frac{R e g S S}{T S S}=1 \\
\frac{R e g S S}{T S S}=1-\frac{S S E}{T S S}=r^{2}
\end{gathered}
$$

Coefficient of Determination

We can divide each side by the TSS:

$$
\begin{gathered}
\frac{S S E}{T S S}+\frac{R e g S S}{T S S}=\frac{T S S}{T S S} \\
\frac{S S E}{T S S}+\frac{R e g S S}{T S S}=1 \\
\frac{R e g S S}{T S S}=1-\frac{S S E}{T S S}=r^{2}
\end{gathered}
$$

r^{2} is a measure of how much of the variation in Y is accounted for by X.

References

Acemoglu, Daron, Simon Johnson, and James A. Robinson. "The colonial origins of comparative development: An empirical investigation." 2000. Wooldridge, Jeffrey. 2000. Introductory Econometrics. New York: South-Western.

[^0]: ${ }^{1}$ These slides are heavily influenced by Matt Blackwell, Adam Glynn and Jens Hainmueller. Illustrations by Shay O'Brien.

