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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This “Week”
I Monday (5):

F unusual and influential data → robust estimation

I Wednesday (7):
F non-linearity → generalized additive models

I Monday (12):
F unusual errors → sandwich SEs

Next Week
I regression in social science

Long Run
I probability → inference → regression → causal inference

Questions?
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Argument for Next Three Classes

Residuals are important. Look at them.
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Review of the OLS assumptions

1 Linearity: y = Xβ + u

2 Random/iid sample: (yi , x
′
i ) are a iid sample from the population.

3 No perfect collinearity: X is an n × (K + 1) matrix with rank K + 1

4 Zero conditional mean: E[u|X] = 0

5 Homoskedasticity: var(u|X) = σ2
uIn

6 Normality: u|X ∼ N(0, σ2
uIn)

1-4 give us unbiasedness/consistency

1-5 are the Gauss-Markov, allow for large-sample inference

1-6 allow for small-sample inference

Let’s talk about what’s at stake in diagnostics under different views of
what regression is doing.

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 5 / 207



Review of the OLS assumptions

1 Linearity: y = Xβ + u

2 Random/iid sample: (yi , x
′
i ) are a iid sample from the population.

3 No perfect collinearity: X is an n × (K + 1) matrix with rank K + 1

4 Zero conditional mean: E[u|X] = 0

5 Homoskedasticity: var(u|X) = σ2
uIn

6 Normality: u|X ∼ N(0, σ2
uIn)

1-4 give us unbiasedness/consistency

1-5 are the Gauss-Markov, allow for large-sample inference

1-6 allow for small-sample inference

Let’s talk about what’s at stake in diagnostics under different views of
what regression is doing.

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 5 / 207



Review of the OLS Assumptions

!"#$%&'(%)$*
+(,(*+#-'./0%)$*

1)*2#.3#',*4)55/$#(./,6*

7$8/(-#"$#--*
4)$-/-,#$'6*

1)*2#.3#',*4)55/$#(./,6*

9($"):*;(:05/$<*

=/$#(./,6*/$*
2(.(:#,#.-*

>#.)*4)$"/%)$(5*
?#($*

@(A--B?(.C)D*EF=7GH*
I-6:0,)%'*!$3#.#$'#*************

EJ*($"*!KH"

1)*2#.3#',*4)55/$#(./,6*

9($"):*;(:05/$<*

=/$#(./,6*/$*
2(.(:#,#.-*

>#.)*4)$"/%)$(5*
?#($*

L):)-C#"(-%'/,6*

45(--/'(5*=?*EF7GH*
;:(55B;(:05#*!$3#.#$'#***

E,*($"*MH*

1)*2#.3#',*4)55/$#(./,6*

9($"):*;(:05/$<*

=/$#(./,6*/$*
2(.(:#,#.-*

>#.)*4)$"/%)$(5*
?#($*

L):)-C#"(-%'/,6*

1).:(5/,6*)3*G..).-*

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 6 / 207



Example: Buchanan votes in Florida, 2000

Wand et al. show that the ballot caused 2, 000 Democratic voters to vote
by mistake for Buchanan, a number more than enough to have tipped the
vote in FL from Bush to Gore, thus giving him FL’s 25 electoral votes and
the presidency.

county supplied 19.6% of Buchanan’s votes in Florida.
In contrast, only 5.4% of his Florida votes came from
PBC in the 1996 Republican presidential primary,
which did not use a butterfly ballot.4

The butterfly ballot, shown in Figure 1, was an
innovation of Theresa LePore, Supervisor of Elections
for PBC.5 The distinctive format was used only in PBC
and only for election-day ballots for president. It is a
“butterfly” because two columns of names of candi-
dates (the wings of the butterfly), all for the same
office, sandwich a single column of punch holes be-
tween the names. These punch holes are alternately for
the left-hand and right-hand side of the ballot. Thus,
the first valid punch hole (identified on the ballot as
#3) is for Bush, the first candidate on the left-hand
side. The second valid punch hole (identified on the
ballot as #4) is for Buchanan, the first candidate on the
right-hand side. On the left, however, the second

candidate listed is Gore, and someone who scanned
down the left-hand column without looking to the right
could mistakenly conclude that the first two punch
holes corresponded, respectively, to Bush and Gore.
Having made such an incorrect reading, a Bush voter
would still be likely to punch the first hole, but a Gore
voter might mistakenly punch the second and vote for
Buchanan.

Sinclair et al. (2000) report experimental evidence
that a double-column ballot format like the one used in
PBC can be more confusing and cause more voter
errors than a single-column ballot. Other published
research on the effects of ballot design is scarce and
does not provide much guidance regarding the errors
the PBC butterfly ballot may have induced (Campbell
and Miller 1957; Darcy 1986; Hamilton and Ladd
1996).

Did the butterfly ballot cost Gore the presidency?
The lawsuits filed by citizens of PBC were thrown out
because the Supreme Court of Florida ruled that the
ballot was not illegal,6 but the ruling neither depended
upon nor implied anything about the ballot’s effect on

a groundswell of support for Buchanan in a place even he concedes
is not his base.”
4 In 2000, Buchanan received 0.787% of the presidential vote in PBC
while garnering only 0.3% of the overall Florida presidential vote. In
contrast, Ross Perot, the Reform candidate for president in 1996,
received only 7.7% of the PBC vote and garnered 9.1% of the Florida
vote. These data are from the Florida Department of State.
5 Reportedly, LePore “split the names over two pages to make the
type larger.” Two days after the election she was quoted as saying:
“Hindsight is 20-20, but I’ll never do it again” (Engelhardt 2000).
Merzer and Miami Herald (2001) describe how LePore went about
designing the ballot and many other defects in the administration of
the election in Florida.

6 The court stated: “Even accepting appellants’ allegations, we
conclude as a matter of law that the Palm Beach County ballot does
not constitute substantial noncompliance with the statutory require-
ments mandating the voiding of the election” (Supreme Court of
Florida, Fladell, et al. v. Palm Beach County Canvassing Board, etc. et
al. Case Nos. SC 00-2373 and SC 00-2376). The cases did not
progress to hearings regarding the facts.

FIGURE 1. The Palm Beach County Bufferfly Ballot

Source: AP Worldwide Photos, Gary I. Rothstein. Reprinted with permission.

The Butterfly Did It: The Aberrant Vote for Buchanan in Palm Beach County, Florida December 2001

794
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Review of the Normality assumption

In matrix notation:
u|X ∼ N (0, σ2

uI)

Equivalent to:
ui |x′i ∼ N (0, σ2

u)

Fix x′i and the distribution of errors should be Normal
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Consequences of non-Normal errors?

In small samples:

I Sampling distribution of β̂ will not be Normal
I Test statistics will not have t or F distributions
I Probability of Type I error will not be α
I 1− α confidence interval will not have 1− α coverage

In large samples:

I Sampling distribution of β̂ ≈ Normal by the CLT
I Test statistics will be ≈ t or F by the CLT
I Probability of Type I error ≈ α
I 1− α confidence interval will have ≈ 1− α coverage

The sample size (n) needed for approximation to hold depends on
how far the errors are from Normal.
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Marginal versus conditional

Be careful with this assumption: distribution of the error
(u = y − Xβ), not the distribution of the outcome y is the key
assumption

The marginal distribution of y can be non-Normal even if the
conditional distribution is Normal!

The plausibility depends on the X chosen by the researcher.
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Example: Is this a violation?
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How to diagnose?

Assumption is about unobserved errors u = y − Xβ

We can only observe residuals, û = y − Xβ̂

If distribution of residuals ≈ distribution of errors, we could check
residuals as a proxy for the errors.

Unfortunately, this is not true—the distribution of the residuals is
more complicated

Solution: Carefully investigate the residuals numerically and graphically.

To understand the relationship between residuals and errors, we need to
derive the distribution of the residuals (which we will do over the next few
slides).
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If distribution of residuals ≈ distribution of errors, we could check
residuals as a proxy for the errors.

Unfortunately, this is not true—the distribution of the residuals is
more complicated

Solution: Carefully investigate the residuals numerically and graphically.

To understand the relationship between residuals and errors, we need to
derive the distribution of the residuals (which we will do over the next few
slides).

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 14 / 207



Defining the hat matrix

We want to figure out how the distribution of errors u relates to the
distribution of residuals û.

To get there let’s write û in terms of y

Define matrix H = X (X′X)−1 X′

û = y − Xβ̂

= y − X
(
X′X

)−1
X′y

≡ y −Hy

= (I−H)y

H is the hat matrix because it puts the “hat” on y:

ŷ = Hy

it has a few nice properties:
I H is an n × n symmetric matrix
I H is idempotent: HH = H
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û = y − Xβ̂

= y − X
(
X′X

)−1
X′y

≡ y −Hy

= (I−H)y

H is the hat matrix because it puts the “hat” on y:
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To get there let’s write û in terms of y
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Relating the residuals to the errors

With the hat matrix, we are ready to relate the residuals to the errors.

û = (I−H)(y)

= (I−H)(Xβ + u)

= (I−H)Xβ + (I−H)u

= IXβ − X
(
X′X

)−1
X′Xβ + (I−H)u

= Xβ − Xβ + (I−H)u

= (I−H)u

Residuals û are a linear function of the errors, u.

For instance,

û1 = (1− h11)u1 −
n∑

i=2

h1iui

Note that each residual is a function of all of the errors.
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û = (I−H)(y)

= (I−H)(Xβ + u)

= (I−H)Xβ + (I−H)u

= IXβ − X
(
X′X

)−1
X′Xβ + (I−H)u

= Xβ − Xβ + (I−H)u

= (I−H)u
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û = (I−H)(y)

= (I−H)(Xβ + u)

= (I−H)Xβ + (I−H)u

= IXβ − X
(
X′X

)−1
X′Xβ + (I−H)u

= Xβ − Xβ + (I−H)u

= (I−H)u
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Characterizing the distribution of the residuals

What can we say about the distribution of the residuals now that we have
the expression: û = (I−H)u.

E[û] = (I−H)E[u] = 0

Var[û] = σ2
u(I−H)

The variance of the ith residual ûi is V [ûi ] = σ2(1− hii ), where hii is the
ith diagonal element of the matrix H (called the hat value).
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ith diagonal element of the matrix H (called the hat value).

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 17 / 207



Properties of the distribution of residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

1 are not independent
(because they must satisfy the two constraints

∑n
i=1 ûi = 0 and∑n

i=1 ûixi = 0)

2 do not have the same variance.
The variance of the residuals varies across data points
V [ûi ] = σ2(1− hii ), even though the unobserved errors all have the
same variance σ2

These properties make it hard to learn about the errors (which our
assumptions are about and we don’t have access to) from our residuals
(which we have estimated and can examine). This is inconvenient for
diagnostics.

What if we could transform the residuals to address the two issues above?
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i=1 ûi = 0 and∑n
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V [ûi ] = σ2(1− hii ), even though the unobserved errors all have the
same variance σ2

These properties make it hard to learn about the errors (which our
assumptions are about and we don’t have access to) from our residuals
(which we have estimated and can examine). This is inconvenient for
diagnostics.

What if we could transform the residuals to address the two issues above?

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 18 / 207



Properties of the distribution of residuals

Notice in contrast to the unobserved errors, the estimated residuals have
some different properties. They

1 are not independent
(because they must satisfy the two constraints

∑n
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Standardized Residuals

Let’s address the second problem (unequal variances) by standardizing ûi ,
i.e., dividing by unit i ’s estimated standard deviation.

This produces standardized (or “internally studentized”) residuals:

û′i =
ûi

σ̂
√

1− hii

where σ̂ =
√
σ̂2 and σ̂2 = û′û

n−(k+1) is our usual estimate of the error
variance.

The standardized residuals are still not ideal, since the numerator and
denominator of û′i are not independent. This makes the distribution of û′i
nonstandard. If the distribution is non-standard, we can’t easily check for
violations.
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Studentized residuals

If we remove observation i from the estimation of σ2, then we can
eliminate the dependence and the result will have a standard distribution.

estimate error variance without residual i :

σ̂2
−i =

u′u− u2
i /(1− hii )

n − k − 2

Use this i-free estimate to standardize, which creates the studentized
residuals:

û∗i =
ûi

σ̂−i
√

1− hii

If the errors are Normal, the studentized residuals, û∗i , follow a t
distribution with (n − k − 2) degrees of freedom.

Deviations from this t distribution of the residuals imply violation of
Normality in the errors.

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 20 / 207



Studentized residuals

If we remove observation i from the estimation of σ2, then we can
eliminate the dependence and the result will have a standard distribution.

estimate error variance without residual i :

σ̂2
−i =

u′u− u2
i /(1− hii )

n − k − 2

Use this i-free estimate to standardize, which creates the studentized
residuals:
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Deviations from this t distribution of the residuals imply violation of
Normality in the errors.
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û∗i =
ûi
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distribution with (n − k − 2) degrees of freedom.

Deviations from this t distribution of the residuals imply violation of
Normality in the errors.

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 20 / 207



Example: Buchanan Votes in Florida

Now that our studentized residuals follow a known standard
distribution, we can proceed with diagnostic analysis for the
nonnormal errors.

We examine data from the 2000 presidential election in Florida used
in Wand et al. (2001).

Our analysis takes place at the county level and we will regress the
number of Buchanan votes in each county on the total number of
votes in each county.
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Buchanan Votes and Total Votes
R Code

> mod1 <- lm(buchanan00~TotalVotes00,data=dta)

> summary(mod1)

Residuals:

Min 1Q Median 3Q Max

-947.05 -41.74 -19.47 20.20 2350.54

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.423e+01 4.914e+01 1.104 0.274

TotalVotes00 2.323e-03 3.104e-04 7.483 2.42e-10 ***

---

Residual standard error: 332.7 on 65 degrees of freedom

Multiple R-squared: 0.4628, Adjusted R-squared: 0.4545

F-statistic: 56 on 1 and 65 DF, p-value: 2.417e-10

> residuals <- resid(mod1)

> standardized_residuals <- rstandard(mod1)

> studentized_residuals <- rstudent(mod1)

> dotchart(residuals,dta$name,cex=.7,xlab="Residuals")
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Plotting the residuals
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Plotting the residuals
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Plotting the residuals
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Quantile-Quantile plots

How can we easily compare our actual distribution of residuals to the
theoretical distribution?

Quantile-quantile plot or QQ-plot is useful for comparing distributions

Plots the quantiles of one distribution against those of another
distribution

For example, one point is the (mx ,my ) where mx is the median of the
x distribution and my is the median for the y distribution

If distributions are equal =⇒ 45 degree line
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Good QQ-plot
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Buchanan QQ-plot
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How can we deal with nonnormal errors?

Drop or change problematic observations (could be a bad idea unless you
have some reason to believe the data are wrong or corrupted)

Add variables to X (remember that the errors are defined in terms of
explanatory variables)

Use transformations (this may work, but a transformation affects all the
assumptions of the model)

Use estimators other than OLS that are robust to nonnormality (later this
class)

Consider other causes (next two classes)
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Buchanan revisited

Let’s delete Palm Beach and also use log transformations for both variables

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.48597 0.37889 -6.561 1.09e-08 ***

## log(edaytotal) 0.70311 0.03621 19.417 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.4362 on 64 degrees of freedom

## Multiple R-squared: 0.8549, Adjusted R-squared: 0.8526

## F-statistic: 377 on 1 and 64 DF, p-value: < 2.2e-16
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Buchanan revisited
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Buchanan revisited
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A Note of Caution About Log Transformations

Log transformations are a standard approach in the literature and
intro regression classes

They are extremely helpful for data that is skewed (e.g. a few very
large positive values)

Generally you want to convert these findings back to the original scale
for interpretation

You should know though that estimates of marginal effects in the
untransformed states are not necessarily unbiased.

Jensen’s inequality gives us information on this relation:
f (E [X ]) ≤ E [f (X )] for any convex function f ()

The results will in general be consistent which ensures that the bias
decreases in sample size.
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The trouble with Norway

Lange and Garrett (1985): organizational and political power of labor
interact to improve economic growth

Jackman (1987): relationship just due to North Sea Oil?

Table guide:

I x1 = organizational power of labor
I x2 = political power of labor
I Parentheses contain t-statistics

Constant x1 x2 x1 · x2

Norway Obs Included .814 -.192 -.278 .137
(4.7) (2.0) (2.4) (2.9)

Norway Obs Excluded .641 -.068 -.138 .054
(4.8) (0.9) (1.5) (1.3)
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Creative curve fitting with Norway

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 33 / 207



Creative curve fitting with Norway

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 33 / 207



The Most Important Lesson: Check Your Data

“Do not attempt to build a model on a set of poor data! In human surveys, one
often finds 14-inch men, 1000-pound women, students with ‘no’ lungs, and so on.
In manufacturing data, one can find 10,000 pounds of material in a 100 pound
capacity barrel, and similar obvious errors.

All the planning, and training in the world will not eliminate these sorts of
problems. In our decades of experience with ‘messy data,’ we have yet to find a
large data set completely free of such quality problems.”

Draper and Smith (1981, p. 418)

Always Carefully Examine the Data First!!

1 Examine summary statistics: summary(data)

2 Scatterplot matrix for densities and bivariate relationships:
E.g. scatterplotMatrix(data) from car library.

3 Further conditional plots for multivariate data:
E.g. ggplot2
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Three types of extreme values

1 Outlier: extreme in the y direction

2 Leverage point: extreme in one x direction

3 Influence point: extreme in both directions

Not all of these are problematic

If the data are truly “contaminated” (come from a different
distribution), can cause inefficiency and possibly bias

Can be a violation of iid (not identically distributed)
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Outlier definition
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An outlier is a data point with very large regression errors, ui

Very distant from the rest of the data in the y -dimension

Increases standard errors (by increasing σ̂2)

No bias if typical in the x ’s
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Detecting outliers

Look at standardized residuals, û′i?

I but σ̂2 could be biased upwards by the large residual from the outlier
I Makes detecting residuals harder

Possible solution: use studentized residuals

û∗i =
ûi

σ̂−i
√

1− hi

σ̂ > σ̂−i because we drop the large residual from the outlier, and so
û′i < û∗i
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ûi

σ̂−i
√

1− hi

σ̂ > σ̂−i because we drop the large residual from the outlier, and so
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Cutoff rules for outliers

The studentized residuals follow a t distribution, u∗i ∼ tn−k−2, when
ui ∼ N(0, σ2)

Rule of thumb: |û∗i | > 2 will be relatively rare

Extreme outliers, |û∗i | > 4− 5 are much less likely

People usually adjust cutoff for multiple testing
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Buchanan outliers
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What to do about outliers

Is the data corrupted?

I Fix the observation (obvious data entry errors)
I Remove the observation
I Be transparent either way

Is the outlier part of the data generating process?

I Transform the dependent variable (log(y))
I Use a method that is robust to outliers (robust regression)
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A Cautionary Tale: The “Discovery” of the Ozone Hole

In the late 70s, NASA used an automated data processing program on
satellite measurements of atmospheric data to track changes in atmospheric
variables such as ozone.

This data “quality control” algorithm rejected abnormally low readings of
ozone over the Antarctic as unreasonable.

This delayed the detection of the ozone hole by several years until British
Antarctic Survey scientists discovered it based on analysis of their own
observations (Nature, May 1985).

The ozone hole was detected in satellite data only when the raw data was
reprocessed. When the software was rerun without the pre-processing flags,
the ozone hole was seen as far back as 1976.
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Leverage point definition
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Values that are extreme in the x direction

That is, values far from the center of the covariate distribution

Decrease SEs (more X variation)

No bias if typical in y dimension
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Leverage Points: Hat values
To measure leverage in multivariate data we will go back to the hat matrix H:

ŷ = Xβ̂ = X
(
X′X

)−1
X′y = Hy

H is n × n, symmetric, and idempotent. It generates fitted values as follows:

ŷi = h′iy =
[
hi,1 hi,2 · · · hi,n

]


y1

y2

...
yn

 =
n∑

j=1

hi,jyj

Therefore,

hij dictates how important yj is for the fitted value ŷi (regardless of the actual
value of yj , since H depends only on X)

The diagonal entries hii =
∑n

j=1 h
2
ij , so they summarize how important yi is for all

the fitted values. We call them the hat values or leverages and a single subscript
notation is used: hi = hii

Intuitively, the hat values measure how far a unit’s vector of characteristics xi is
from the vector of means of X

Rule of thumb: examine hat values greater than 2(k + 1)/n
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value of yj , since H depends only on X)

The diagonal entries hii =
∑n

j=1 h
2
ij , so they summarize how important yi is for all

the fitted values. We call them the hat values or leverages and a single subscript
notation is used: hi = hii

Intuitively, the hat values measure how far a unit’s vector of characteristics xi is
from the vector of means of X

Rule of thumb: examine hat values greater than 2(k + 1)/n

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 43 / 207



Leverage Points: Hat values
To measure leverage in multivariate data we will go back to the hat matrix H:
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Buchanan hats

Duval
Lee
Broward
Martin
Collier
Dixie
Pinellas
Osceola
Miami-Dade
Alachua
Glades
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Volusia
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St. Lucie
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Orange
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Indian River
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Influence points
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Influence Point

An influence point is one that is both an outlier (extreme in Y ) and a
leverage point (extreme in X ).

Causes the regression line to move toward it (bias?)
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Detecting Influence Points/Bad Leverage Points

Influence Points:
Influence on coefficients = Leverage × Outlyingness

More formally: Measure the change that occurs in the slope estimates
when an observation is removed from the data set. Let

Dij = β̂j − β̂j(−i), i = 1, . . . , n, j = 0, . . . , k

where β̂j(−i) is the estimate of the jth coefficient from the same
regression once observation i has been removed from the data set.

Dij is called the DFbeta, which measures the influence of observation
i on the estimated coefficient for the jth explanatory variable.
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Standardized Influence

To make comparisons across coefficients, it is helpful to scale Dij by the
estimated standard error of the coefficients:

D∗ij =
β̂j − β̂j(−i)
ŜE−i (β̂j)

where D∗ij is called DFbetaS.

D∗ij > 0 implies that removing observation i decreases the estimate of
βj → obs i has a positive influence on βj .

D∗ij < 0 implies that removing observation i increases the estimate of
βj → obs i has a negative influence on βj .

Values of |D∗ij | > 2/
√
n are an indication of high influence.

In R: dfbetas(model)
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Buchanan influence

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.935e+01 5.520e+01 -0.532 0.59686

## edaytotal 1.100e-03 4.797e-04 2.293 0.02529 *

## absnbuchanan 6.895e+00 2.129e+00 3.238 0.00195 **

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 317.2 on 61 degrees of freedom

## (3 observations deleted due to missingness)

## Multiple R-squared: 0.5361, Adjusted R-squared: 0.5209

## F-statistic: 35.24 on 2 and 61 DF, p-value: 6.711e-11
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Buchanan influence

## (Intercept) edaytotal absnbuchanan

## 1 0.3454475146 0.4050504921 -0.7505222758

## 2 -0.0234266617 -0.0241000045 -0.0131672181

## 3 0.0650795039 -0.7319311820 0.3401669862

## 4 -0.0333980968 0.0133802934 -0.0087505576

## 5 -0.0397626659 -0.0073746223 0.0096551713

## 6 -0.0009277798 0.0001505476 0.0002210247
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Buchanan influence

-2 0 2 4

0
1

2
3

DFbetaS for Election Day Total

D
F

be
ta

s 
fo

r 
A

bs
en

te
e 

V
ot

e 
T

ot
al

s
Palm Beach

DFbetaS Cutoffs

Palm Beach county moves each of the coefficients by more than 3
standard errors!
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Summarizing Influence across All Coefficients

Leverage tells us how much one data point affects a single coefficient.

A number of summary measures exist for influence of data points across all
coefficients, all involving both leverage and outlyingness.

A popular measure is Cook’s distance:

Di =
û′2i

k + 1︸ ︷︷ ︸
discrepancy

× hi
1− hi︸ ︷︷ ︸
leverage

where û′i is the standardized residual and hi is the hat value.

I It can be shown that Di is a weighted sum of k + 1 DFbetaS’s for
observation i

I In R, cooks.distance(model)
I D > 4/(n − k − 1) is commonly considered large

The influence plot: the studentized residuals plotted against the hat values,
size of points proportional to Cook’s distance.
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Influence Plot Buchanan
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Code for Influence Plot

mod3 <- lm(edaybuchanan ~ edaytotal + absnbuchanan, data = flvote)

symbols(y = rstudent(mod3), x = hatvalues(mod3),

circles = sqrt(cooks.distance(mod3)),

ylab = "Studentized Residuals",

xlab = "Hat Values", xlim = c(-0.05, 1),

ylim = c(-10, 50), las = 1, bty = "n")

cutoffstud <- 2

cutoffhat <- 2 * (3)/nrow(flvote)

abline(v = cutoffhat, col = "indianred")

abline(h = cutoffstud, col = "dodgerblue")

filter <- rstudent(mod3) > cutoffstud | hatvalues(mod3) > cutoffhat

text(y = rstudent(mod3)[filter],

x = hatvalues(mod3)[filter],

flvote$county[filter], pos = 1)
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A Quick Function for Standard Diagnostic Plots
R Code

> par(mfrow=c(2,2))

> plot(mod1)
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The Improved Model
R Code

> par(mfrow=c(2,2))

> plot(mod2)
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Limitations of the standard tools
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What happens when there are two influence points?

Red line drops the red influence point

Blue line drops the blue influence point

Neither of the “leave-one-out” approaches helps recover the line
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The Idea of Robustness

We will cover a few ideas in robust statistics over the next few days
(much of which is due directly or indirectly to Peter Huber)

Robust methods are procedures that are designed to continue to
provide ‘reasonable’ answers in the presence of violation of some
assumptions.

A lot of social scientists use robust standard errors (we will discuss
next week) but far fewer use robust regression tools.

These methods used to be computationally prohibitive but haven’t
been for the last 10-15 years
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But What About Gauss-Markov and BLUE?

One argument here is that even without normality, we know that
Gauss-Markov is the Best Linear Unbiased Estimator (BLUE)

How comforting should this be? Not very.

The Linear point is an artificial restriction. It means the estimator has
to be of the form β̂ = Wy but why only use those?

With normality assumption we get Best Unbiased Estimator (BUE)
which is quite comforting when n� p (number of observations much
larger than number of variables).
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.
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This flies in the face of most conventional wisdom in textbooks.

”[Even without normally distributed errors] OLS
coefficient estimators remain unbiased and

efficient.” - Berry (1993)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

”[The Gauss-Markov theorem] justifies the use of
the OLS method rather than using a variety of
competing estimators” - Wooldridge (2013)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

”We need not look for another linear unbiased
estimator, for we will not find such an estimator

whose variance is smaller than the OLS estimator”
- Gujarati (2004)

Quotes from Rainey and Baissa (2015) presentation
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This Point is Not Obvious

This flies in the face of most conventional wisdom in textbooks.

”The Gauss-Markov theorem allows us to have
considerable confidence in the least squares

estimators.” - Berry and Feldman (1993)

Quotes from Rainey and Baissa (2015) presentation
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Robustly Estimating a Location

Let’s simplify- what if we want to estimate the center of a symmetric
distribution.

Two options (of many): mean and median

Characteristics to consider: efficiency when assumptions hold,
sensitivity to assumption violation.

For normal data yi ∼ N (µ, σ2), median is less efficient:

I V (µ̂mean) = σ2

n

I V (µ̂median) = πσ2

2n
I Median is π

2 times larger (i.e. less efficient)

We can measure sensitivity with the influence function which
measures change in estimator based on corruption in one datapoint.
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Influence Function

Imagine that we had a sample Y from a standard normal: -0.068,
-1.282, 0.013, 0.141, -0.980, 1.63. Ȳ = −1.52

Now imagine we add a contaminated 7th observation which could
range from -10 to +10. How would the estimator change for the
median and mean?
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Breakdown Point

The influence function showed us how one aberrant point can change
the resulting estimate.

We also want to characterize the breakdown point which is the
fraction of arbitrarily bad data that the estimator can tolerate without
being affected to an arbitrarily large extent

The breakdown point of the mean is 0 because (as we have seen) a
single bad data point can change things a lot.

The median has a breakdown point of 50% because half the data can
be bad without causing the median to become completely unstuck.
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M-estimators

We can phrase this more generally than the mean or the median
which will allow us to extend the ideas to regression via M-estimation

M-estimators minimize a sum over an objective function
∑n

i ρ(E )
where E is Yi − µ̂

I The mean has
∑

i ρ(E ) =
∑

i (Yi − µ̂)2

I The median has
∑

i ρ(E ) =
∑

i |(Yi − µ̂)|
The shape of the influence function is determined by the derivative of
the objective function with respect to E .

Other objectives include the Huber objective and Tukey’s biweight
objective which have different properties.

Calculating robust M estimators often requires an iterative procedure
and a careful initialization.
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M-estimation for Regression

We can apply this to regression fairly straightforwardly. In robust
M-estimators we choose ρ() so that observations with large residuals
get less weight.

Can be very robust to outliers in the Y space (less so in the X space
usually)

Some options:
I Least Median Squares: choose β̂ to minimize

median
{

(yi − x′i β̂LMS)2
}n

i=1
. Very high breakdown point, but very

inefficient.
I Least Trimmed Squares: choose β̂ to minimize the sum of the p

smallest elements of
{

(yi − x′i β̂LTS)2
}n

i=1
. High breakdown point and

more efficient, still not as efficient as some.
I MM-estimator: with Huber’s loss is what I recommend in practice

(more in appendix)

You can find an asymptotic covariance matrix for M-estimators but I
would bootstrap it if possible as the asymptotics kick in slowly.
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library(MASS)

set.seed(588)

n <- 50

x <- rnorm(n)

y <- 10 - 2*x + rnorm(n)

x[1:5] <- rnorm(5, mean=5)

y[1:5] <- 10 + rnorm(5)

ols.out <- lm(y~x)

m.out <- rlm(y~x, method="M")

lms.out <- lqs(y~x, method="lms")

lts.out <- lqs(y~x, method="lts")

s.out <- lqs(y~x, method="S")

mm.out <- rlm(y~x, method="MM")
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Simulation Results
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Thoughts on Robust Estimators

Robust estimators aren’t commonly seen in applied social science
work but perhaps they should be.

Even though Gauss-Markov does not require normality, the L in BLUE
is a fairly restrictive condition.

In most cases I personally would start with OLS, do diagnostics and
then consider a robust alternative. If I don’t have time for
diagnostics, maybe robust is better from the outset.

I highly recommend Baissa and Rainey (2016) “When BLUE is Not
Best: Non-Normal Errors and the Linear Model” for more on this
topic.

The Fox textbook Chapter 19 is also quite good on this and points
out to the key references
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Concluding Thoughts for the Day

Regression rests on a number of assumptions

Easy to test some of these and hard to test others.

Always check your data!

Don’t let regression be a magic black box for you- understand what is
in your data that is leading to the findings.
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Fun With Outliers
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Thanks to Matt Salganik for pointing me to this example
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Appendix: Characterizing Estimator Robustness (formally)

Definition (Breakdown Point)

The breakdown point of an estimator is the smallest fraction of the data
that can be changed an arbitrary amount to produce an arbitrarily large
change in the estimate (Seber and Lee 2003, pg 82)

Definition (Influence Function)

Let Fp = (1− p)F + pδz0 where F is a probability measure, δz0 is the
point mass at z0 ∈ Rk , and p ∈ (0, 1).
Let T (·) be a statistical functional. The influence function of T is

IF (z0;T ,F ) = lim
p↓0

T (Fp)− T (F )

p

The influence function is a function of z0 given T and F . It describes how
T changes with small amounts of contamination at z0 (Hampel,
Rousseeuw, Ronchetti, and Stahel, (1986), p. 84).
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Appendix: S Estimators
To talk about MM−estimators we need a type of estimator called an
S-estimator.

S-estimators work somewhat differently in that the goal is to minimize the
scale estimate subject to a constraint.
An S-estimator for the regression model is defined as the values of β̂S and
s that minimize s subject to the constraint:

1

n

n∑
i=1

ρ

(
yi − x′i β̂S

s

)
≥ K

where K is user-defined constant (typically set to 0.5) and ρ : R→ [0, 1] is
a function with the following properties (Davies, 1990, p. 1653):

1 ρ(0) = 1
2 ρ(u) = ρ(−u), u ∈ R
3 ρ : R+ → [0, 1] is nonincreasing, continuous at 0, and continuous on

the left
4 for some c > 0, ρ(u) > 0 if |u| < c and ρ(u) = 0 if |u| > c
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Appendix: MM-Estimators

MM-estimators are, in some sense, the best of both worlds– very high
breakdown point and good efficiency.

The work by first calculating S-estimates of the scale and coefficients and
then using these as starting values for a particular M-estimator.

Good properties, but costly to compute (usually impossible to compute
exactly).
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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This “Week”
I Monday (5):

F unusual and influential data → robust estimation

I Wednesday (7):
F non-linearity → generalized additive models

I Monday (12):
F unusual errors → sandwich SEs

Next Week
I regression in social science

Long Run
I probability → inference → regression → causal inference

Questions?
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Residuals are still important. Look at them.
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Nonlinearity

Linearity of the Conditional Expectation Function (y = Xβ + u) is a key
assumption. Why?
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Nonlinearity

If E [Y |X] is not linear in X, E [u|X] 6= 0 for all values X = x and β̂
may be biased and inconsistent.

Nonlinearities may be important but few social scientific theories offer
any guidance as to functional form whatsoever.

I Statements like “y increases with x” (monotonicity) are as specific as
most social theories get.

I Possible Exceptions: Returns to scale, constant elasticities, interactive
effects, cyclical patterns in time series data, etc.

Usually we employ “linearity by default” but we should try to make
sure this is appropriate: detect non-linearities and model them
accurately
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Diagnosing Nonlinearity

For marginal relationships Y and X

I Scatterplots with loess lines

For partial relationships Y and X1, controlling for X2, X3,...,Xk the
regression surface is high-dimensional. We need other diagnostic tools
such as:

I Added variables plots and component residual plots (coming soon)

I Semi-parametric regression techniques like Generalized Additive Models
(GAMs)

I Non-parametric multiple regression techniques (beyond the scope of
this course)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 82 / 207



Diagnosing Nonlinearity

For marginal relationships Y and X

I Scatterplots with loess lines

For partial relationships Y and X1, controlling for X2, X3,...,Xk the
regression surface is high-dimensional.

We need other diagnostic tools
such as:

I Added variables plots and component residual plots (coming soon)

I Semi-parametric regression techniques like Generalized Additive Models
(GAMs)

I Non-parametric multiple regression techniques (beyond the scope of
this course)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 82 / 207



Diagnosing Nonlinearity

For marginal relationships Y and X

I Scatterplots with loess lines

For partial relationships Y and X1, controlling for X2, X3,...,Xk the
regression surface is high-dimensional. We need other diagnostic tools
such as:

I Added variables plots and component residual plots (coming soon)

I Semi-parametric regression techniques like Generalized Additive Models
(GAMs)

I Non-parametric multiple regression techniques (beyond the scope of
this course)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 82 / 207



Diagnosing Nonlinearity

For marginal relationships Y and X

I Scatterplots with loess lines

For partial relationships Y and X1, controlling for X2, X3,...,Xk the
regression surface is high-dimensional. We need other diagnostic tools
such as:

I Added variables plots and component residual plots (coming soon)

I Semi-parametric regression techniques like Generalized Additive Models
(GAMs)

I Non-parametric multiple regression techniques (beyond the scope of
this course)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 82 / 207



Diagnosing Nonlinearity

For marginal relationships Y and X

I Scatterplots with loess lines

For partial relationships Y and X1, controlling for X2, X3,...,Xk the
regression surface is high-dimensional. We need other diagnostic tools
such as:

I Added variables plots and component residual plots (coming soon)

I Semi-parametric regression techniques like Generalized Additive Models
(GAMs)

I Non-parametric multiple regression techniques (beyond the scope of
this course)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 82 / 207



Diagnosing Nonlinearity

For marginal relationships Y and X

I Scatterplots with loess lines

For partial relationships Y and X1, controlling for X2, X3,...,Xk the
regression surface is high-dimensional. We need other diagnostic tools
such as:

I Added variables plots and component residual plots (coming soon)

I Semi-parametric regression techniques like Generalized Additive Models
(GAMs)

I Non-parametric multiple regression techniques (beyond the scope of
this course)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 82 / 207



Added variable plot

Need a way to visualize conditional relationship between Y and Xj

How to construct an added variable plot:

1 Get residuals from regression of Y on all covariates except Xj

2 Get residuals from regression of Xj on all other covariates
3 Plot residuals from (1) against residuals from (2)

In R: avPlots(model) from the car package

OLS fit to this plot will have exactly β̂j and 0 intercept (drawing on
the partialing out interpretation we discussed before)

Use local smoother (loess) to detect any non-linearity
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Buchanan AV plot
R Code

par(mfrow = c(1,2))

out <- avPlots(mod3, "edaytotal")

lines(loess.smooth(x = out$edaytotal[,1],

y= out$edaytotal[,2]), col = "dodgerblue", lwd = 2)

out2 <- avPlots(mod3, "absnbuchanan")

lines(loess.smooth(x = out2$absnbuchanan[,1],

y= out2$absnbuchanan[,2]), col = "dodgerblue", lwd = 2)
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Component-Residual plots

CR plots are a refinement of AV plots:

1 Compute residuals from full regression:

ûi = Yi − Ŷi

2 Compute “linear component” of the partial relationship:

Ci = β̂jXij

3 Add linear component to residual:

ûji = ûi + Ci

4 Plot partial residual ûji against Xj

Same slope as AV plots

X-axis is the original scale of Xj , so slightly easier for diagnostics

Use local smoother (loess) to detect non-linearity
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ûi = Yi − Ŷi
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ûi = Yi − Ŷi
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ûi = Yi − Ŷi
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Same slope as AV plots

X-axis is the original scale of Xj , so slightly easier for diagnostics

Use local smoother (loess) to detect non-linearity

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 85 / 207



Component-Residual plots

CR plots are a refinement of AV plots:

1 Compute residuals from full regression:
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ûi = Yi − Ŷi
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Buchanan CR plot

R Code
crPlots(mod3, las = 1)
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Component + Residual Plots
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Limitations of CR Plots

AV plots and CR plots can only reveal partial relationships

Oftentimes, these two-dimensional displays fail to uncover structure in
a higher-dimensional problem

We may detect an interaction between X1 and X2 in a 3D scatterplot
that we could miss in two scatterplots of Y on each X

Cook (1993) shows that CR plots only work when either:

1) The relationship between Y and Xj is linear

2) Other explanatory variables (X1, ...,Xj−1) are linearly related to Xj

I This suggests that linearizing the relationship between the X s through
transformations can be helpful

I Experience suggests weak non-linearities among X s do not invalidate
CR plots
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How should we deal with nonlinearity?

Given we have a linear regression model, our options are somewhat limited.

However we can partially address nonlinearity by:

Breaking categorical or continuous variables into dummy variables (e.g.
education levels)

Including interactions

Including polynomial terms

Transformations such as logs

Generalized Additive Models (GAM)

Many more flexible, nonlinear regression models exist beyond the scope of
this course.

I will teach you some, but many options.
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Transformed Buchanan regression
R Code

mod.nopb2 <- lm(log(edaybuchanan) ~ log(edaytotal) + log(absnbuchanan),

data = flvote, subset = county != "Palm Beach")

crPlots(mod.nopb2, las = 1)
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Component + Residual Plots
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Thanks XKCD for having a comic for everything!
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Bias-Variance Tradeoff
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Example Synthetic Problem

y = sin(1 + x2) + ε

This section adapted from slides by Radford Neal.
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Linear Basis Function Models

We talked before about polynomials x2, x3, x4 for modeling
non-linearities, this is a linear basis function model.

In general the idea is to do a linear regression of y on
φ1(x), φ2(x), . . . , φm−1(x) where φj are basis functions.

The model is now:

y = f (x , β) + ε

f (x , β) = β0 +
m−1∑
j=1

βjφj(x) = βTφ(x)
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Polynomial Basis Functions

We can look at OLS fits with polynomial basis functions of increasing
order.

It appears that the last model is too complex and is overfitting a bit.
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Local Basis Functions

Polynomials are global basis functions, each affecting the prediction over
the whole input space. Often local basis functions are more appropriate.

One choice is a Gaussian basis function

φj(x) = exp(−(x − µj)2)/2s2)
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Gaussian Basis Fits

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 97 / 207



Regularization

We’ve seen that flexible models can lead to overfitting

Two ways to address: limit model flexibility or use a flexible model
and regularize

Regularization is a way of expressing a preference for smoothness in
our function by adding a penalty term to our optimization function.

Here we will consider a penalty of the form λ
∑m−1

j=1 β2
j where λ

controls the strength of the penalty.

The penalty trades off some bias for an improvement in variance

The trick in general is how to set λ
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Results
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Conclusions from This Example

we can control overfitting by modifying the width of the basis
function s or with penalty

we will need some way in general to tune these

we will also need some way to handle multivariate functions.

next up, Generalized Additive Models
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Generalized Additive Models (GAM)

Recall the linear model,

yi = β0 + x1iβ1 + x2iβ2 + x3iβ3 + ui

For GAMs, we maintain additivity, but instead of imposing linearity we
allow flexible functional forms for each explanatory variable, where
s1(·), s2(·), and s3(·) are smooth functions that are estimated from the
data:

yi = β0 + s1(x1i ) + s2(x2i ) + s3(x3i ) + ui
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Generalized Additive Models (GAM)

yi = β0 + s1(x1i ) + s2(x2i ) + s3(x3i ) + ui

GAMS are semi-parametric, they strike a compromise between
nonparametric methods and parametric regression

sj(·) are usually estimated with locally weighted regression smoothers or
cubic smoothing splines (but many approaches are possible)

They do NOT give you a set of regression parameters β̂. Instead one obtains
a graphical summary of how E [Y |X,X2, ...,Xk ] varies with X1 (estimates of
sj(·) at every value of Xi,j)

Theory and estimation are somewhat involved, but they are easy to use:

I gam.out <- gam(y∼s(x1)+s(x2)+x3)
plot(gam.out)

I Multiple functions but I recommend mgcv package
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Generalized Additive Models (GAM)

The GAM approach can be extended to allow interactions (s12(·)) between
explanatory variables, but this eats up degrees of freedom so you need a
lot of data.

yi = β0 + s12(x1i , x2i ) + s3(x3i ) + ui

It can also be used for hybrid models where we model some variables as
parametrically and other with a flexible function:

yi = β0 + β1x1i + s2(x2i ) + s3(x3i ) + ui
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Attitudes Toward Immigration
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GAM Fit to Dyadic Democracy and Militarized Disputes

(a) Perspective of Non-Democracies (b) Perspective of Democracies 
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Figure 9: Locallinear regression (loess) estimate ofjoint effects ofeach partners democracy score on militarized disputes. The 
estimated effects are defined over the lwo~dimensional space of the predictors. forming a surface. The plots are drawn from the 
perspective of (a) the least democratic dyads and (b) the most democratic dyads. 
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Concluding Thoughts

Non-linearity is pretty easy to detect and can substantially change our
inferences

GAMs are a great way to model/detect non-linearity but
transformations are often simpler

However, be wary of the global properties of transformations and
polynomials

Non-linearity concerns are most relevant for continuous covariates
with a large range (age)
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Fun With Kernels

Hainmueller and Hazlett (2013). “Kernel Regularized Least Squares:
Reducing Misspecification Bias with a Flexible and Interpretable Machine
Learning Approach” Political Analysis.2

2I thank Chad Hazlett for sharing many of the slides that follow
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Motivation: Misspecification Bias
Consider a data generating process such as:

> # Predictors

> GDP = runif(500)

> Polity = .5*GDP^2 + .2*runif(200)

>

> # True Model

> Stability = log(GDP)+rnorm(500)

Regressing Stability on polity and GDP:

> # OLS

> lm(Stability ~ Polity + GDP)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.3000 0.1039 -22.145 < 2e-16 ***

Polity -3.1983 0.7613 -4.201 3.15e-05 ***

GDP 4.3443 0.4237 10.252 < 2e-16 ***

Entirely wrong conclusions!
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Misspecification Bias
Try more flexible method that still reports marginal effects:

> krls(y=Stability,X=cbind(GDP,Polity))

Average Marginal Effects:

Est Std. Error t value Pr(>|t|)

GDP 3.3855912 0.5217110 6.4893996 2.084441e-10

Polity -0.4143114 0.7826758 -0.5293525 5.967968e-01
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Kernel Basics

Kernel

For now, a kernel is a function RP × RP → R

k(xi , xj)→ R

Some kernels are naturally interpretable as a distance metric, e.g. the Gaussian:

Gaussian Kernel

k(·, ·) : RD × RP 7→ R

k(xj , xi ) = e
−
||Xj−Xi ||

2

σ2

where ||Xj − Xi || is the Euclidean distance between Xj and Xi
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Using the Kernel Trick for Regression

A feature map, φ : RP 7→ RP′ , such that: k(Xi ,Xj) = 〈φ(Xi ), φ(Xj)〉

A linear model in the new features: f (Xi ) = φ(Xi )
Tθ, θ ∈ RP′

Regularized (ridge) regression:

argmin
θ∈RP′

N∑
i=1

(Yi − φ(Xi )
Tθ)2 + λ〈θ, θ〉

Solve the F.O.C.s:

R(θ, λ) =
N∑
i=1

(Yi − φ(Xi )
>θ)2 + λθ>θ

∂R(θ, λ)

∂θ
= −2

N∑
i=1

φ(Xi )(Yi − φ(Xi )
T θ) + 2λθ = 0
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How would humans learn this?

1 

2 

3 4 
5 

Linear regression?

E [alt|lat, long ] = β0 + β1lat + β2long + β3lat × long + . . .

Similarity model:

E [alt|lat, long ] = c1(similarity to obs1) + . . .+ c5(similarity to obs5)
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Intuition: Similarity
Think of this function space as built on similarity:

f (X ?) =
N∑
i=1

cik(X ?,Xi )

= c1(similarity of X ? to X1) + . . .+ cN(similarity of X ? to XN)

Some random functions from this space:
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Think of this function space as built on similarity:

f (X ?) =
N∑
i=1

cik(X ?,Xi )

= c1(similarity of X ? to X1) + . . .+ cN(similarity of X ? to XN)

Some random functions from this space:
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A real example: Harff 2003
From summary(krls(y,X))

DV: Genocide onset

βOLS E [ d̂ydxi ]

Prior upheaval 0.009* 0.00
(0.004) 0.00

Prior genocide 0.26* 0.19*
(0.12) (0.08)

Ideological char. elite 0.15* 0.13*
(0.084) (0.08)

Autocracy 0.16* 0.12*
(0.077) (0.07)

Ethnic char. elite 0.12 0.05
(0.084) (0.08)

log(trade openness) -0.17* -0.09*
(0.057) (0.03)
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Behind the averages
plot(krls(X,y))

Distributions of pointwise marginal effects
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Efficiency Comparison

y = 2x + ε, x ∼ N(0, 1), ε ∼ N(0, 1)
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High-dimensional data with non-linearities
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y = (X1X2)− 2(X3X4) + 3(X5X6X7)− (X1X8) + 2(X8X9X10) + X10 + ε where all X are i.i.d.
Bernoulli(p) at varying p, ε ∼ N(0, .5). 1, 000 test points.
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Linear model with bad leverage points
y = .5x + ε where ε ∼ N(0, .3)
One bad point, (yi = −5, xi = 5).
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Interaction or non-linearity?

Truth: y = 5x2
1 + ε, ρ(x1, x2) = .72

ε ∼ (0, .44). x1 ∼ Uniform(0, 2)

OLS Model: y = β0 + β1x1 + β2x2 + β3x1 ∗ x2

KRLS Model: krls(y,[x1 x2])

Estimator OLS KRLS
∂y/∂xij Average Average 1st Qu. Median 3rd Qu.
const -1.50

(0.34)
x1 7.51 9.22 5.22 9.38 14.03

(0.40) (0.52) (0.82) (0.85) (0.79)
x2 -1.28 0.02 -0.08 0.00 0.10

(0.21) (0.13) (0.19) (0.16) (0.20)
(x1 · x2) 1.24

(0.15)
N 250
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Concluding Thoughts

Strengths
I extremely powerful at detecting interactions
I captures increasingly complex functions as data increases
I great as a robustness check

Difficulties/Future Work
I computation scales in number of datapoints (O(N3)) which means it

doesn’t work for more than about 5000 datapoints
I it may model deep interactions but it is still hard to summarize deep

interactions
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Where We’ve Been and Where We’re Going...

Last Week
I multiple regression

This “Week”
I Monday (5):

F unusual and influential data → robust estimation

I Wednesday (7):
F non-linearity → generalized additive models

I Monday (12):
F unusual errors → sandwich SEs

Next Week
I regression in social science

Long Run
I probability → inference → regression → causal inference

Questions?
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1 Assumptions and Violations

2 Non-normality

3 Outliers

4 Robust Regression Methods

5 Fun with Outliers

6 Appendix: Robustness

7 Detecting Nonlinearity

8 Linear Basis Function Models

9 Generalized Additive Models

10 Fun With Kernels

11 Heteroskedasticity

12 Clustering

13 A Contrarian View of Robust Standard Errors

14 Fun with Neighbors

15 Appendix: WLS and Serial Correlation
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Review of the OLS Assumptions
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Review of the OLS Assumptions

1 Linearity: y = Xβ + u

2 Random/iid sample: (yi , x
′
i ) are a iid sample from the population.

3 No perfect collinearity: X is an n × (K + 1) matrix with rank K + 1

4 Zero conditional mean: E[u|X] = 0

5 Homoskedasticity: var(u|X) = σ2
uIn

6 Normality: u|X ∼ N(0, σ2
uIn)

1-4 give us unbiasedness/consistency

1-5 are the Gauss-Markov, allow for large-sample inference

1-6 allow for small-sample inference
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Today: How Do We Deal With This?
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Plan for Today

Talk about different forms of error variance problems

1 Heteroskedasticity

2 Clustering

3 Appendix: Serial Correlation

Each is a violation of homoskedasticity, but each has its own diagnostics
and corrections.

Then we will discuss a contrarian view
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Review of Homoskedasticity

Remember:
β̂ =

(
X′X

)−1
X′y

Let Var[u|X] = Σ

Using assumptions 1 and 4, we can show that we have the following
(derivation in the appendix):

Var[β̂|X] =
(
X′X

)−1
X′ΣX

(
X′X

)−1

With homoskedasticity, Σ = σ2I

Var[β̂|X] = (X′X)
−1

X′ΣX (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2 (X′X)
−1

X′X (X′X)
−1

= σ2 (X′X)
−1

Replace σ2 with estimate σ̂2 will give us our estimate of the
covariance matrix
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Using assumptions 1 and 4, we can show that we have the following
(derivation in the appendix):

Var[β̂|X] =
(
X′X

)−1
X′ΣX

(
X′X

)−1

With homoskedasticity, Σ = σ2I

Var[β̂|X] = (X′X)
−1

X′ΣX (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2 (X′X)
−1

X′X (X′X)
−1

= σ2 (X′X)
−1
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Non-constant Error Variance

Homoskedastic:

V [u|X] = σ2I =


σ2 0 0 . . . 0
0 σ2 0 . . . 0

...
0 0 0 . . . σ2



Heteroskedastic:

V [u|X] =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n


Independent, not identical

Cov(ui , uj |X) = 0

Var(ui |X) = σ2
i
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Classic Heteroskedasticity
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Consequences of Heteroskedasticity

Standard σ̂2 is biased and inconsistent for σ2

Standard error estimates incorrect:

ŜE [β̂1] =
σ̂2∑

i (Xi − X )2

Test statistics won’t have t or F distributions

α-level tests, the probability of Type I error 6= α

Coverage of 1− α CIs 6= 1− α
OLS is not BLUE

However:

I β̂ still unbiased and consistent for β
I degree of the problem depends on how serious the heteroskedasticity is
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Visual diagnostics

1 Plot of residuals versus fitted values

I In R, plot(mod, which = 1)

2 Spread location plots

I y-axis: Square-root of the absolute value of the residuals
(folds the plot in half)

I x-axis: Fitted values
I Usually has loess trend curve to check if variance varies with fitted

values
I In R, plot(mod, which = 3)
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Example: Buchanan votes

flvote <- foreign::read.dta("flbuchan.dta")

mod <- lm(edaybuchanan ~ edaytotal, data = flvote)

summary(mod)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.423e+01 4.914e+01 1.104 0.274

## edaytotal 2.323e-03 3.104e-04 7.483 2.42e-10 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 332.7 on 65 degrees of freedom

## Multiple R-squared: 0.4628, Adjusted R-squared: 0.4545

## F-statistic: 56 on 1 and 65 DF, p-value: 2.417e-10
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Diagnostics

par(mfrow = c(1,2), pch = 19, las = 1, col = "grey50", bty = "n")

plot(mod, which = 1, lwd = 3)

plot(mod, which = 3, lwd = 3)
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Formal Tests for Non-constant Error Variances

Plots are usually sufficient, but formal tests for heteroskedasticity
exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).

They are all roughly based on the same idea:
I H0: V [ui |X] = σ2

I Under the zero conditional mean assumption, this is equivalent to
H0: E [u2

i |X] = E [u2
i ] = σ2, a constant unrelated to X

I This implies that, under H0, the squared residuals should also be
unrelated to the explanatory variables

The Breusch-Pagan test:
1 Regression yi on x′i and store residuals, ûi

2 Regress û2
i on x′i

3 Run F -test against null that all slope coefficients are 0

I In R, bptest in the lmtest package
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i on x′i

3 Run F -test against null that all slope coefficients are 0

I In R, bptest in the lmtest package

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 141 / 207



Formal Tests for Non-constant Error Variances

Plots are usually sufficient, but formal tests for heteroskedasticity
exist (e.g. Breusch-Pagan, Cook-Weisberg, White, etc.).

They are all roughly based on the same idea:
I H0: V [ui |X] = σ2

I Under the zero conditional mean assumption, this is equivalent to
H0: E [u2

i |X] = E [u2
i ] = σ2, a constant unrelated to X

I This implies that, under H0, the squared residuals should also be
unrelated to the explanatory variables

The Breusch-Pagan test:
1 Regression yi on x′i and store residuals, ûi

2 Regress û2
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Breush-Pagan Example

library(lmtest)

bptest(mod)

##

## studentized Breusch-Pagan test

##

## data: mod

## BP = 12.59, df = 1, p-value = 0.0003878
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Dealing with Non-Constant Error Variance

1 Transform the dependent variable
(this will affect other model assumptions)

2 Adjust for the heteroskedasticity using known weights and Weighted
Least Squares (WLS) - see appendix.

3 Use an estimator of Var[β̂] that is robust to heteroskedasticity

4 Admit we have the wrong model and use a different approach
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Appendix: Variance Stabilizing Transformations

If the variance for each error (σ2
i ) is proportional to some function of the

mean (xiβ), then a variance stabilizing transformation may be appropriate.

Note: Transformations will affect the other regression assumptions, as well
as interpretation of the regression coefficients.

Examples:

Transformation Mean/Variance Relationship√
Y σ2

i ∝ xiβ
logY σ2

i ∝ (xiβ)2

1/Y σ2
i ∝ (xiβ)4
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Heteroskedasticity Consistent Estimator

Under non-constant error variance:

Var[u] = Σ =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n


When Σ 6= σ2I, we are stuck with this expression:

Var[β̂|X] =
(
X′X

)−1
X′ΣX

(
X′X

)−1

Idea: If we can consistently estimate the components of Σ, we could
directly use this expression by replacing Σ with its estimate, Σ̂.
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White’s Heteroskedasticity Consistent Estimator
Suppose we have heteroskedasticity of unknown form (but zero covariance):

V [u] = Σ =


σ2

1 0 0 . . . 0
0 σ2

2 0 . . . 0
...

0 0 0 . . . σ2
n



then V [β̂|X] = (X′X)
−1 X′ΣX (X′X)

−1
and White (1980) shows that

V̂ [β̂|X] = (X′X)
−1

X′


û2

1 0 0 . . . 0
0 û2

2 0 . . . 0
...

0 0 0 . . . û2
n

X (X′X)
−1

is a consistent estimator of V [β̂|X] under any form of heteroskedasticity
consistent with V [u] above.

The estimate based on the above is called the heteroskedasticity consistent (HC)

or robust standard errors.
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White’s Heteroskedasticity Consistent Estimator
Robust standard errors are easily computed with the “sandwich” formula:

1 Fit the regression and obtain the residuals û

2 Construct the “meat” matrix Σ̂ with squared residuals in diagonal:

Σ̂ =


û2

1 0 0 . . . 0
0 û2

2 0 . . . 0
...

0 0 0 . . . û2
n


3 Plug Σ̂ into the sandwich formula to obtain the robust estimator of the

variance-covariance matrix

V [β̂|X] = (X′X)
−1

X′Σ̂X (X′X)
−1

There are various small sample corrections to improve performance when sample
size is small. The most common variant (sometimes labeled HC1) is:

V [β̂|X] =
n

n − k − 1
·
(
X′X

)−1
X′Σ̂X

(
X′X

)−1
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2 Construct the “meat” matrix Σ̂ with squared residuals in diagonal:

Σ̂ =


û2
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Regular & Robust Standard Errors in Florida Example

R Code
> library(sandwich)

> library(lmtest)

> coeftest(mod1) # homoskedasticity

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.4231e+01 4.9141e+01 1.1036 0.2738

TotalVotes00 2.3229e-03 3.1041e-04 7.4831 2.417e-10 ***

> coeftest(mod1,vcov = vcovHC(mod1, type = "HC0")) # classic White

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.4231e+01 4.0612e+01 1.3353 0.18642

TotalVotes00 2.3229e-03 8.7047e-04 2.6685 0.00961 **

> coeftest(mod1,vcov = vcovHC(mod1, type = "HC1")) # small sample correction

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.4231e+01 4.1232e+01 1.3153 0.19304

TotalVotes00 2.3229e-03 8.8376e-04 2.6284 0.01069 *
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Notes on White’s ‘Robust’ Standard Errors

Doesn’t change estimate β̂ and doesn’t provide a full data-generating
process for Y .

Consistent for Var[β̂] under any form of heteroskedasticity

Core intuition: while Σ̂ is an n × n matrix, X ′Σ̂X is a p × p matrix.
So there is hope of estimating it consistently as sample size grows
even when every true error variance is unique.

Because it relies on consistency, it is a large sample result, best with
large n

For small n, performance might be poor (correction factors exist but
are often insufficient)

We can arrive at White’s heteroskedasticity consistent standard errors
using the plug-in principle and thus in some ways, these are the
natural way of getting standard errors in the agnostic regression
framework.
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Clustered Dependence: Intuition

Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

Their design: randomly sample households and randomly assign them
to different treatment conditions

But the measurement of turnout is at the individual level

Violation of iid/random sampling:

I errors of individuals within the same household are correlated
I  violation of homoskedasticity

Called clustering or clustered dependence
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Clustered Dependence: notation

Clusters: j = 1, . . . ,m

Units: i = 1, . . . , nj

nj is the number of units in cluster j

n =
∑

j nj is the total number of units

Units (usually) belong to a single cluster:

I voters in households
I individuals in states
I students in classes
I rulings in judges

Especially important when outcome varies at the unit-level, yij and
the main independent variable varies at the cluster level, xj .

Ignoring clustering is “cheating”: units not independent
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Clustered Dependence: Example Model

yij = β0 + β1xij + εij

= β0 + β1xij + vj + uij

vj
iid∼ N(0, ρσ2) cluster error component

uij
iid∼ N(0, (1− ρ)σ2) unit error component

vj and uij are assumed to be independent of each other

ρ ∈ (0, 1) is called the within-cluster correlation.

What if we ignore this structure and just use εij as the error?

Variance of the composite error is σ2:

Var[εij ] = Var[vj + uij ]

= Var[vj ] + Var[uij ]

= ρσ2 + (1− ρ)σ2 = σ2
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Lack of Independence

Covariance between two units i and s in the same cluster is ρσ2:

Cov[εij , εsj ] = ρσ2

Correlation between units in the same group is just ρ:

Cor[εij , εsj ] = ρ

Zero covariance of two units i and s in different clusters j and k :

Cov[εij , εsk ] = 0

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 154 / 207



Lack of Independence

Covariance between two units i and s in the same cluster is ρσ2:

Cov[εij , εsj ] = ρσ2

Correlation between units in the same group is just ρ:

Cor[εij , εsj ] = ρ

Zero covariance of two units i and s in different clusters j and k :

Cov[εij , εsk ] = 0

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 154 / 207



Lack of Independence

Covariance between two units i and s in the same cluster is ρσ2:

Cov[εij , εsj ] = ρσ2

Correlation between units in the same group is just ρ:

Cor[εij , εsj ] = ρ

Zero covariance of two units i and s in different clusters j and k :

Cov[εij , εsk ] = 0

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 154 / 207



Example Covariance Matrix

ε =
[
ε1,1 ε2,1 ε3,1 ε4,2 ε5,2 ε6,2

]′

Var[ε] = Σ =



σ2 σ2 · ρ σ2 · ρ 0 0 0
σ2 · ρ σ2 σ2 · ρ 0 0 0
σ2 · ρ σ2 · ρ σ2 0 0 0

0 0 0 σ2 σ2 · ρ σ2 · ρ
0 0 0 σ2 · ρ σ2 σ2 · ρ
0 0 0 σ2 · ρ σ2 · ρ σ2
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Appendix: Example 6 Units, 2 Clusters
ε =

[
ε1,1 ε2,1 ε3,1 ε4,2 ε5,2 ε6,2

]′

V [ε] = Σ =


V [ε1,1] Cov [ε2,1, ε1,1] Cov [ε3,1, ε1,1] . . .

Cov [ε1,1, ε2,1] V [ε2,1] Cov [ε3,1, ε2,1] . . .
Cov [ε1,1, ε3,1] Cov [ε2,1, ε3,1] V [ε3,1] . . .
Cov [ε1,1, ε4,2] Cov [ε2,1, ε4,2] Cov [ε3,1, ε4,2] V [ε4,2] . .
Cov [ε1,1, ε5,2] Cov [ε2,1, ε5,2] Cov [ε3,1, ε5,2] Cov [ε4,2, ε5,2] V [ε5,2] .
Cov [ε1,1, ε6,2] Cov [ε2,1, ε6,2] Cov [ε3,1, ε6,2] Cov [ε4,2, ε6,2] Cov [ε5,2, ε6,2] V [ε6,2]



=



σ2 σ2 · ρ σ2 · ρ 0 0 0

σ2 · ρ σ2 σ2 · ρ 0 0 0

σ2 · ρ σ2 · ρ σ2 0 0 0

0 0 0 σ2 σ2 · ρ σ2 · ρ
0 0 0 σ2 · ρ σ2 σ2 · ρ
0 0 0 σ2 · ρ σ2 · ρ σ2



which can be verified as follows:

V [εij ] = V [vj + uij ] = V [vj ] + V [uij ] = ρσ2 + (1− ρ)σ2 = σ2

Cov [εij , εlj ] = E [εijεlj ]− E [εij ]E [εlj ] = E [εijεlj ] = E [(vj + uij )(vj + ulj )]

= E [vj
2] + E [vjuij ] + E [vjulj ] + E [uijulj ]

= E [vj
2] + E [vj ]E [uij ] + E [vj ]E [ulj ] + E [uij ]E [ulj ]

= E [vj
2] = V [vj ] + (E [vj ])

2 = V [vj ] = ρσ2

Cov [εij , εlk ] = E [εijεlk ]− E [εij ]E [εlk ] = E [εijεlk ] = E [(vj + uij )(vk + ulk )]
= E [vj vk ] + E [vjulk ] + E [vkuij ] + E [uijulk ]
= E [vj ]E [vk ] + E [vj ]E [ulk ] + E [vk ]E [uij ] + E [uij ]E [ulk ] = 0
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Error Variance Matrix with Cluster Dependence

The variance-covariance matrix of the error, Σ, is block diagonal:

By independence, the errors are uncorrelated across clusters:

V [ε] = Σ =


Σ1 0 . . . 0
0 Σ2 . . . 0

. . .

0 0 . . . ΣM



But the errors may be correlated for units within the same cluster:

Σj =


σ2 σ2 · ρ . . . σ2 · ρ
σ2 · ρ σ2 . . . σ2 · ρ

. . .

σ2 · ρ σ2 · ρ . . . σ2
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Correcting for Clustering

1 Including a dummy variable for each cluster
(fixed effects)

2 “Random effects” models
(take above model as true and estimate ρ and σ2)

3 Cluster-robust (“clustered”) standard errors

4 Aggregate data to the cluster-level and use OLS y j = 1
nj

∑
i yij

I If nj varies by cluster, then cluster-level errors will have
heteroskedasticity

I Can use WLS with cluster size as the weights
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Cluster-Robust SEs

First, let’s write the within-cluster regressions like so:

yj = Xjβ + εj

yj is the vector of responses for cluster j , and so on

We assume that respondents are independent across clusters, but
possibly dependent within clusters. Thus, we have

Var[εj |Xj ] = Σj

Remember our sandwich expression:

Var[β̂|X] =
(
X′X

)−1
X′ΣX

(
X′X

)−1

Under this clustered dependence, we can write this as:

Var[β̂|X] =
(
X′X

)−1

 m∑
j=1

X′jΣjXj

(X′X)−1
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Estimating the Variance Components: ρ and σ2

The overall error variance σ2 is easily estimated using our usual estimator based
on the regression residuals: σ̂2 = ε̂′ε̂

N−k−1

The within-cluster correlation can be estimated as follows:

1 Subtract from each residual ε̂ij the mean residual within its cluster. Call this
vector of demeaned residuals ε̃, which estimates the unit error component u

2 Compute the variance of the demeaned residuals as: ̂̃σ2
= ε̃′ε̃

N−M−k−1 , which

estimates (1− ρ)σ2

3 The within cluster correlation is then estimated as: ρ̂ = σ̂2−̂̃σ2

σ̂2
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Estimating Cluster Robust Standard Errors
We can now compute the CRSEs using our sandwich formula:

1 Take your estimates of σ̂2 and ρ̂ and construct the block diagonal
variance-covariance matrix Σ̂:

Σ̂ =


Σ̂1 0 . . . 0

0 Σ̂2 . . . 0
. . .

0 0 . . . Σ̂M

 with Σ̂j =


σ̂2 σ̂2 · ρ̂ . . . σ̂2 · ρ̂
σ̂2 · ρ̂ σ̂2 . . . σ̂2 · ρ̂

. . .

σ̂2 · ρ̂ σ̂2 · ρ̂ . . . σ̂2


2 Plug Σ̂ into the sandwich estimator to obtain the cluster “corrected”

estimator of the variance-covariance matrix

V [β̂|X] = (X′X)
−1

X′Σ̂X (X′X)
−1

There are multiple implementations in R including
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Cluster-Robust Standard Errors

CRSE do not change our estimates β̂, cannot fix bias

CRSE is consistent estimator of Var[β̂] given clustered dependence

I Relies on independence between clusters, dependence within clusters
I Doesn’t depend on the model we present
I CRSEs usually > conventional SEs—use when you suspect clustering

Consistency of the CRSE are in the number of groups, not the
number of individuals

I CRSEs can be incorrect with a small (< 50 maybe) number of clusters
(often biased downward)

I Block bootstrap can be a useful alternative (key idea: bootstrap by
resampling the clusters)

There are numerous alternative clustered standard error variants out
there.
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A Contrarian View of Robust Standard Errors

King, Gary and Margaret E. Roberts. “How Robust Standard Errors
Expose Methodological Problems They Do Not Fix, and What to Do

About It” Political Analysis (2015) 23: 159-179.3

3I thank Gary and Molly for the slides that follow.
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Robust Standard Errors: Used Everywhere

Robust standard errors: a widely used technique to fix SEs under
model misspecification

I In Political Science:

F APSR (2009-2012): 66% of articles using regression
F IO (2009-2012): 73% of articles using regression
F AJPS (2009-2012): 45% of articles using regression

I Everywhere else, too:

F All of Google Scholar: 53,900 mentions
F And going up: 1,000 new per month

Robust Standard Errors are a Bright, Red Flag

People think robust se’s will inoculate them from criticism

If you are in a model-based framework, they are a bright, reg flag
saying:

“My model is misspecified!”
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RSEs: Two Possibilities

RSEs and SEs differ

In the best case scenario:

I Some coefficients: unbiased but inefficient
I Other quantities of interest: Biased

In the worst case scenario:

I The functional form,

variance, or dependence specification is wrong

I All quantities of interest will be biased.

RSEs and SEs are the same

Consistent with a correctly specified model

RSEs are not useful, as a “fix”
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Their Alternative Procedure

Robust standard errors:

What they are not:

an elixir

What they are:

Extremely sensitive misspecification detectors!

We should use them to: Test misspecification!

1 Do RSEs and SEs differ?
2 If they do:

I Use model diagnostics (e.g. residual plots, qq-plots, misspecification
tests)

I Evaluate misspecification
I Respecify the model

3 Keeping going, until they don’t differ.
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For RSEs to help: Everything has to be Juuuussttt Right
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Model Correct

RSEs same as SEs

Point estimates correct

Awesome!

Model Misspecified

RSEs differ from SEs

Point estimates biased

Respecify!

Goldilocks Region
Biased just enough to
make RSEs useful,

but not so much as to
bias everything else
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The Goldilocks Region is not Idyllic

In the Goldilocks region,

No fully specified model

Only a few QOI’s can be estimated.

I Suppose DV: Democrat proportion of
two-party vote.

I We can estimate β, but not:

F the probability the Democrat wins,
F the variation in vote outcome,
F or vote predictions with confidence intervals.

I We can’t check: whether model implications
are realistic.

Parts of the model are wrong;

why do we think
the rest are right?
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Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.

I Robust SE: 0.72,

SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.

I Robust SE: 0.72,

SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.

I Robust SE: 0.72,

SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.

I Robust SE: 0.72,

SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.

I Robust SE: 0.72,

SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.

I Robust SE: 0.72,

SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.

I Robust SE: 0.72,

SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.
I Robust SE: 0.72,

SE: 0.37
I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.
I Robust SE: 0.72, SE: 0.37

I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Example: RSEs Expose Non-normality

Replication Neumayer, ISQ 2003

Dependent variable: multilateral aid flows (as percentage of GDP)

Treatment of interest: population

Controls: GDP, former colony status, distance from Western world,
etc . . .

Conclusion: Aid favors less populous countries.

Difference between RSEs and SEs: Large.
I Robust SE: 0.72, SE: 0.37
I ⇒ indicates model misspecification

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 171 / 207



Problem: Highly Skewed Dependent Variable
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Diagnostics: Reveal Misspecification
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After Fix: Different Conclusion
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Concluding Contrarian Thoughts

Their advice:

RSEs: not an elixir.

Should not be used as a patch.

Instead:

a sensitive detector of misspecification.

Evaluate misspecification,

by conducting diagnostic tests.

Respecify the model,

until robust and classical SE’s coincide

Their Examples:

Robust SEs indicate fundamental modelling problems

Easily identified with diagnostics

Fixing these problems

⇒ hugely different substantive conclusions
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Concluding Thoughts on Diagnostics

Residuals are important. Look at them.
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Next ‘Week’

Regression in the Social Sciences and An Introduction to Causal
Inference
Reading:

I Healy Data Visualization: A practical introduction
http://socviz.co/ Chapter 1: Look at Data

I Morgan and Winship Chapter 1: Causality and Empirical Research in
the Social Sciences

I Morgan and Winship Chapter 13.1: Objections to Adoption of the
Counterfactual Approach

I Angrist and Pishke Chapters 1-2
I Hernan and Robins (2016) Chapter 1: A definition of a causal effect

https://www.hsph.harvard.edu/miguel-hernan/

causal-inference-book/

As a side note: if you want to read the argument against the
contrarian response: Aronow (2016) ”A Note on ‘How Robust
Standard Errors Expose Methodological Problems They Do Not Fix,
and What to Do About It.’” It is an interesting piece- feel free to
come talk to me about this debate!
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Fun With Neighbors

We talked about error dependence induced by time and by cluster.

An alternative process is spatial dependence.

Just as with the other types of models we have to specify what it
means to be close to a neighbor, but this choice is often more
influential than anticipated.

Zhukov, Yuri M. and Brandon M. Stewart. “Choosing Your Neighbors:
Networks of Diffusion in International Relations” International Studies
Quarterly 2013; 57: 271-287.
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Our Main Questions

1 Who are a country’s neighbors?

Connectivity Assumption

2 How do neighbor’s affect each other? Spatial Weights Assumption

3 How do we make these assumptions?
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How Do We Generally Choose Neighbors?

1 Contiguity is the most common variable

2 75% of articles with spatial variable in the top 6 IR journals of the
last 10 years

3 Atheoretical choices, rarely justified

4 Different types of neighbors tell different stories
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Visualization of Connections: Contiguity

Figure: Contiguity neighbors with 500 km snap distance
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Visualization of Connections: Minimum Distance

Figure: Minimum distance neighbors (capital cities)
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Visualization of Connections: K-Nearest Neighbors

Figure: k = 4 Nearest Neighbors (capital cities)
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Visualization of Connections: Graph-based Neighbors

Figure: Sphere of Influence Neighbors (capital cities)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 185 / 207



Application: Democratic Diffusion

Gleditsch and Ward (2006)
Changes of political regime modeled as a first-order Markov chain process
with the transition matrix

K =

[
Pr(yi ,t = 0|yi ,t−1 = 0) Pr(yi ,t = 1|yi ,t−1 = 0)
Pr(yi ,t = 0|yi ,t−1 = 1) Pr(yi ,t = 1|yi ,t−1 = 1)

]
where yi ,t = 1 if an (A)utocratic regime exists in country i at time t, and
yi ,t = 0 if the regime is (D)emocratic.
. . . in other words:

K =

[
Pr(D → D) Pr(D → A)
Pr(A→ D) Pr(A→ A)

]
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Equilibrium Effects of Democratic Transition

If a regime transition takes place in country i , what is the change in
predicted probability of a regime transition in country j (country i ’s
neighbor)?

QI = Pr(yj ,t |yi ,t = yi ,t−1)− Pr(yj ,t |yi ,t 6= yi ,t−1)

where yi ,t = 0 if country i is a democracy at time t and yi ,t = 1 if it is an
autocracy. All other covariates are held constant.

Illustrative cases

Iraq transitions from autocracy to democracy.

Russia transitions from democracy to autocracy.
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Iraq’s democratization and regional regime stability

Iraq
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Contiguity + 500 km
0 2,000 4,0001,000 km ´

Iraq transitions from autocracy to democracy
(1998 data)
Monte Carlo simulation (1,000 runs)
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Iraq
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
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Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Contiguity + 500 km
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 189 / 207



Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Minimum Distance
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 189 / 207



Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

k = 4 Nearest Neighbors
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 189 / 207



Russia’s autocratization and regional regime stability

Russia
Regime Type

Democracy
Autocracy

Change in Transition Probability
-0.05- -0.025
-0.025 - -0.001
0
0.001 - 0.025
0.025 - 0.05

Sphere of Influence
0 2,000 4,000 6,0001,000 km ´

Russia transitions from democracy to autocracy
(1998 data)
Monte Carlo simulation (1,000 runs)

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 189 / 207



1 Assumptions and Violations

2 Non-normality

3 Outliers

4 Robust Regression Methods

5 Fun with Outliers

6 Appendix: Robustness

7 Detecting Nonlinearity

8 Linear Basis Function Models

9 Generalized Additive Models

10 Fun With Kernels

11 Heteroskedasticity

12 Clustering

13 A Contrarian View of Robust Standard Errors

14 Fun with Neighbors

15 Appendix: WLS and Serial Correlation

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 190 / 207



1 Assumptions and Violations

2 Non-normality

3 Outliers

4 Robust Regression Methods

5 Fun with Outliers

6 Appendix: Robustness

7 Detecting Nonlinearity

8 Linear Basis Function Models

9 Generalized Additive Models

10 Fun With Kernels

11 Heteroskedasticity

12 Clustering

13 A Contrarian View of Robust Standard Errors

14 Fun with Neighbors

15 Appendix: WLS and Serial Correlation

Stewart (Princeton) Week 8: Diagnostics and Solutions November 5-12, 2018 190 / 207



Appendix: Weighted Least Squares

Suppose that the heteroskedasticity is known up to a multiplicative
constant:

Var[ui |X] = aiσ
2

where ai = ai (x
′
i ) is a positive and known function of x′i

WLS: multiply yi by 1/
√
ai :

yi/
√
ai = β0/

√
ai + β1xi1/

√
ai + · · ·+ βkxik/

√
ai + ui/

√
ai
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Appendix: Weighted Least Squares Intuition

Rescales errors to ui/
√
ai , which maintains zero mean error

But makes the error variance constant again:

Var

[
1
√
ai
ui |X

]
=

1

ai
Var [ui |X]

=
1

ai
aiσ

2

= σ2

If you know ai , then you can use this approach to makes the model
homoskedastic and, thus, BLUE again

When do we know ai?
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Appendix: Weighted Least Squares procedure

Define the weighting matrix:

W =


1/
√
a1 0 0 0

0 1/
√
a2 0 0

...
...

. . .
...

0 0 0 1/
√
an


Run the following regression:

Wy = WXβ + Wu

y∗ = X∗β + u∗

Run regression of y∗ = Wy on X∗ = WX and all Gauss-Markov
assumptions are satisfied

Plugging into the usual formula for β̂:

β̂W = (X′W′WX)−1X′W′Wy
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Appendix: WLS Example

In R, use weights = argument to lm and give the weights squared:
1/ai
With the Buchanan data, maybe we think that the variance is
proportional to the total number of ballots cast:

mod.wls <- lm(edaybuchanan ~ edaytotal, weights = 1/edaytotal,

data = flvote)

summary(mod.wls)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.707e+01 8.507e+00 3.182 0.00225 **

## edaytotal 2.628e-03 2.502e-04 10.503 1.22e-15 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.5645 on 65 degrees of freedom

## Multiple R-squared: 0.6292, Adjusted R-squared: 0.6235

## F-statistic: 110.3 on 1 and 65 DF, p-value: 1.22e-15
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Appendix: Comparing WLS to OLS

par(mfrow=c(1,2), pch = 19, las = 1, col = "grey50", bty = "n")

plot(mod, which = 3, main = "OLS", lwd = 2)

plot(mod.wls, which = 3, main = "WLS", lwd = 2)
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Time Dependence: Serial Correlation

Sometimes we deal with data that is measured over time,
t = 1, . . . ,T

Examples: a country over several years or a person over weeks/months

Often have serially correlated: errors in one time period are correlated
with errors in other time periods

Many different ways for this to happen, but we often assume a very
limited type of dependence called AR(1).
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Time Dependence: Serial Correlation

Suppose we observe a unit at multiple times t = 1, ...,T (e.g. a country over
several years, an individual over several month, etc.).

Such observations are often serially correlated (not independent across time). We
can model this with the following AR(1) model:

yt = β0 + β1xt + ut

where the autoregressive error is

ut = ρ ut−1 + et where |ρ| < 1

et ∼ N(0, σ2
e )

ρ is an unknown autoregressive coefficient (note if ρ = 0 we have classic
errors used before)

Typically assume stationarity meaning that V [ut ] and Cov [ut , ut+h] are
independent of t

Generalizes to higher order serial correlation (e.g. an AR(2) model is given
by ut = ρut−1 + δut−2 + et).
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The Error Structure for the AR(1) Model

We have u =
[
u1 u2 ... uT

]′
and the AR(1) model implies the following

error structure (derivation in appendix):

V [u] = Σ =
σ2

(1− ρ2)


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

ρ2 ρ 1 . . . ρT−3

...
...

...
. . .

...
ρT−1 ρT−2 ρT−3 . . . 1


That is, the covariance between errors in t = 1 and t = 2 is σ2

(1−ρ2)ρ, between

errors in t = 1 and t = 3 is σ2

(1−ρ2)ρ
2, etc.

This implies that the correlation between the errors decays exponentially with the
number of periods separating them.

ρ is usually positive, which implies that we underestimate the variance if we
ignore serial correlation.
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How to Detect and Fix Serial Correlated Errors

Detection:

Plot residuals over time (or more fancy “autocorrelation” plots)

Formal tests (e.g. Durbin-Watson statistics)

Possible Corrections:

Use standard errors that are robust to serial correlation (e.g. Newey-West)

AR corrections (e.g. Prais-Winston, Cochrane-Orcutt, etc.)

Lagged dependent variables or other dynamic panel models

First-differencing the data
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Monthly Presidential Approval Ratings and Gas Prices
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Monthly Presidential Approval Ratings and Gas Prices

R Code
> library(Zelig)

> data(approval)

> mod1 <- lm(approve ~ avg.price, data=approval)

> coeftest(mod1)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.472076 3.567277 28.165 < 2.2e-16 ***

avg.price -0.243885 0.019465 -12.529 < 2.2e-16 ***
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Tests for Serial Correlation: Durbin-Watson
Recall our AR(1) model is:

yt = β0 + β1xt + ut

where ut = ρut−1 + et , et ∼ N(0, σ2), and ρ is our unknown autoregressive
coefficient (with |ρ| < 1).

The null hypothesis (no serial correlation) is: H0: ρ = 0
The alternative (positive serial correlation): H1: ρ > 0

One common test for serial correlation is the Durbin-Watson statistic:

DW =

∑n
t=2 ût − ût−1∑n

t=1 û
2
t

where DW ≈ 2(1− ρ̂)

If DW ≈ 2 then ρ̂ ≈ 0 (Note that 0 ≤ DW ≤ 4)

If DW < 1 we have serious positive serial correlation

If DW > 3 we have serious negative serial correlation
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Monthly Presidential Approval Ratings and Gas Prices

R Code
> library(lmtest)

> dwtest(approve ~ avg.price, data=approval)

Durbin-Watson test

data: approve ~ avg.price

DW = 0.4863, p-value = 1.326e-14

alternative hypothesis: true autocorrelation is greater than 0

The test suggests strong positive serial correlation. Standard errors are
severely downward biased.
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Corrections: HAC Standard Errors

A common way to correct for serial correlation is to use OLS but to
estimate the variances using an estimator that is heteroskedasticity
and autocorrelation consistent (HAC) (Newey and West (1987)).

The theory behind the HAC variance estimator is somewhat
complicated, but the interpretation is similar to our usual OLS robust
standard errors.

I HAC standard errors leave estimate of β̂ unchanged and do not fix
potential bias in β̂

I HAC are consistent estimator for V [β̂] in the presence of
heteroskedasticity and or autocorrelation

I The sandwich package in R implements a variety of HAC estimators

I A common option is NeweyWest
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Monthly Presidential Approval Ratings and Gas Prices

R Code
> mod1 <- lm(approve~avg.price,data=approval)

> coeftest(mod1) # homoskedastic errors

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.472076 3.567277 28.165 < 2.2e-16 ***

avg.price -0.243885 0.019465 -12.529 < 2.2e-16 ***

> coeftest(mod1, vcov = NeweyWest) # HAC errors

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 100.472076 14.499337 6.9294 2.652e-09 ***

avg.price -0.243885 0.071733 -3.3999 0.001174 **

Once we correct for autocorrelation, standard errors increase dramatically.
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Appendix: Derivation of Error Structure for the AR(1)
Model

We have
V [ut ] = V [ρut−1 + et ] = ρ2V [ut−1] + σ2

with stationarity, V [ut ] = V [ut−1], and so

V [ut ](1− ρ2) = σ2 ⇒ V [ut ] =
σ2

(1− ρ2)

also

Cov [ut , ut−1] = E [utut−1] = E [(ρut−1 + et)et−1] = ρV [et−1] = ρ
σ2

(1− ρ2)

or generally

Cov [ut , ut−h] = ρh
σ2

(1− ρ2)
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