Week 6: Linear Regression with Two Regressors

Brandon Stewart!

Princeton

October 15, 17, 2018

!These slides are heavily influenced by Matt Blackwell, Adam Glynn, Jens
Hainmueller and Erin Hartman.
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Where We've Been and Where We're Going...
o Last Week

» mechanics of OLS with one variable
» properties of OLS
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Where We've Been and Where We're Going...
o Last Week

» mechanics of OLS with one variable
» properties of OLS

@ This Week
» Monday:

* adding a second variable
* new mechanics

» Wednesday:

* omitted variable bias
* multicollinearity
* interactions
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Where We've Been and Where We're Going...
o Last Week

» mechanics of OLS with one variable
» properties of OLS

@ This Week
» Monday:

* adding a second variable
* new mechanics

» Wednesday:

* omitted variable bias
* multicollinearity
* interactions

o Next Week
» multiple regression
e Long Run
» probability — inference — regression — causal inference

Questions?

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 2 /138



© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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Why Do We Want More Than One Predictor?
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Why Do We Want More Than One Predictor?

@ Summarize more information for descriptive inference
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Why Do We Want More Than One Predictor?

@ Summarize more information for descriptive inference
@ Improve the fit and predictive power of our model

@ Control for confounding factors for causal inference
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Why Do We Want More Than One Predictor?

@ Summarize more information for descriptive inference

Improve the fit and predictive power of our model
@ Control for confounding factors for causal inference

@ Model non-linearities (e.g. Y = B + 81X + B2X?)
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Why Do We Want More Than One Predictor?

@ Summarize more information for descriptive inference

Improve the fit and predictive power of our model
@ Control for confounding factors for causal inference
@ Model non-linearities (e.g. Y = B + 81X + B2X?)

@ Model interactive effects (e.g. Y = 5o + 1. X + 52Xo + B3 X1 X2)
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Example 1: Cigarette Smokers and Pipe Smokers
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y': Deaths per 1,000 Person-Years.
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y': Deaths per 1,000 Person-Years.

@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y': Deaths per 1,000 Person-Years.
@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker

We fit the regression and find:

Death Rate = 17 — 4 Cigarette Smoker
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y: Deaths per 1,000 Person-Years.
@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker
We fit the regression and find:
Death Rate = 17 — 4 Cigarette Smoker
What do we conclude?

@ The average death rate is 17 deaths per 1,000 person-years for pipe smokers
and 13 (17 - 4) for cigarette smokers.
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y: Deaths per 1,000 Person-Years.

@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker
We fit the regression and find:
Death Rate = 17 — 4 Cigarette Smoker
What do we conclude?

@ The average death rate is 17 deaths per 1,000 person-years for pipe smokers
and 13 (17 - 4) for cigarette smokers.

@ So cigarette smoking appears to lower the death rate by 4 deaths per 1,000
person years (relative to pipe smoking).
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y: Deaths per 1,000 Person-Years.

@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker
We fit the regression and find:
Death Rate = 17 — 4 Cigarette Smoker
What do we conclude?

@ The average death rate is 17 deaths per 1,000 person-years for pipe smokers
and 13 (17 - 4) for cigarette smokers.

@ So cigarette smoking appears to lower the death rate by 4 deaths per 1,000
person years (relative to pipe smoking).

When we “control” for age (in years) we find:
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y: Deaths per 1,000 Person-Years.

@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker
We fit the regression and find:

Death Rate = 17 — 4 Cigarette Smoker

What do we conclude?

@ The average death rate is 17 deaths per 1,000 person-years for pipe smokers
and 13 (17 - 4) for cigarette smokers.

@ So cigarette smoking appears to lower the death rate by 4 deaths per 1,000
person years (relative to pipe smoking).

When we “control” for age (in years) we find:

Death Rate = 14 + 4 Cigarette Smoker + 10 Age
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y: Deaths per 1,000 Person-Years.

@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker
We fit the regression and find:

Death Rate = 17 — 4 Cigarette Smoker

What do we conclude?

@ The average death rate is 17 deaths per 1,000 person-years for pipe smokers
and 13 (17 - 4) for cigarette smokers.

@ So cigarette smoking appears to lower the death rate by 4 deaths per 1,000
person years (relative to pipe smoking).

When we “control” for age (in years) we find:

Death Rate = 14 + 4 Cigarette Smoker + 10 Age
Why did the sign switch?
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Example 1: Cigarette Smokers and Pipe Smokers

Consider the following example from Cochran (1968). We have a random sample
of 20,000 smokers and run a regression using:

@ Y: Deaths per 1,000 Person-Years.

@ Xj: 0 if person is pipe smoker; 1 if person is cigarette smoker
We fit the regression and find:
Death Rate = 17 — 4 Cigarette Smoker
What do we conclude?

@ The average death rate is 17 deaths per 1,000 person-years for pipe smokers
and 13 (17 - 4) for cigarette smokers.

@ So cigarette smoking appears to lower the death rate by 4 deaths per 1,000
person years (relative to pipe smoking).

When we “control” for age (in years) we find:

Death Rate = 14 + 4 Cigarette Smoker + 10 Age

Why did the sign switch? Which estimate is more useful?
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Example 2: Berkeley Graduate Admissions
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Example 2: Berkeley Graduate Admissions

o Graduate admissions data from Berkeley, 1973
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o Graduate admissions data from Berkeley, 1973
@ Acceptance rates:
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o Graduate admissions data from Berkeley, 1973
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» Men: 8442 applicants, 44% admission rate
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o Graduate admissions data from Berkeley, 1973
@ Acceptance rates:

» Men: 8442 applicants, 44% admission rate
» Women: 4321 applicants, 35% admission rate
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Example 2: Berkeley Graduate Admissions

o Graduate admissions data from Berkeley, 1973
@ Acceptance rates:

» Men: 8442 applicants, 44% admission rate
» Women: 4321 applicants, 35% admission rate

@ Evidence of discrimination toward women in admissions?
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Example 2: Berkeley Graduate Admissions

Graduate admissions data from Berkeley, 1973
Acceptance rates:

» Men: 8442 applicants, 44% admission rate
» Women: 4321 applicants, 35% admission rate

Evidence of discrimination toward women in admissions?

@ This is a marginal relationship
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Example 2: Berkeley Graduate Admissions

Graduate admissions data from Berkeley, 1973
Acceptance rates:

» Men: 8442 applicants, 44% admission rate
» Women: 4321 applicants, 35% admission rate

Evidence of discrimination toward women in admissions?

This is a marginal relationship

What about the conditional relationship within departments?
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Berkeley gender bias?

@ Within departments:

Men Women
Dept | Applied Admitted | Applied Admitted
A 825 62% 108 82%
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Berkeley gender bias?

@ Within departments:

Men Women
Dept | Applied Admitted | Applied Admitted
A 825 62% 108 82%
B 560 63% 25 68%
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Berkeley gender bias?

@ Within departments:

Men Women
Dept | Applied Admitted | Applied Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
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Berkeley gender bias?

@ Within departments:

Men

Women

Dept

Applied Admitted

Applied Admitted

mMmOoON W >

Stewart (Princeton)
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560
325
417
191
373

62%
63%
37%
33%
28%
6%
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Berkeley gender bias?

@ Within departments:

Men

Women

Dept

Applied  Admitted

Applied Admitted

mMmOoON W >

825
560
325
417
191
373

62%
63%
37%
33%
28%
6%

108
25

593
375
393
341

82%
68%
34%
35%
24%
7%

@ Within departments, women do somewhat better than men!
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Berkeley gender bias?

@ Within departments:

Men Women
Dept | Applied Admitted | Applied Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

@ Within departments, women do somewhat better than men!
@ How? Overall admission rates are lower for the departments women

apply to.
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Berkeley gender bias?

@ Within departments:

Men Women
Dept | Applied Admitted | Applied Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

@ Within departments, women do somewhat better than men!

@ How? Overall admission rates are lower for the departments women
apply to.

@ Marginal relationships (admissions and gender) # conditional
relationship given third variable (department)
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Sex Bias in Graduate Admissions:
Data from Berkeley

Measuring bias is harder than is usually assumed,

and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O’Connell

Determining whether discrimination
because of sex or ethnic identity is be-
ing practiced against persons seeking
passage from one social status or locus
to another is an important problem in
our society today. It is legally impor-
tant and morally important. It is also
often quite difficult. This article is an
exploration of some of the issues of

and involved
in one example of the general prob-
lem, by means of which we hope to
shed some light on the difficulties. We

deceision to admit or to deny admission.
The question we wish to pursue is wheth-
er the decision to admit or to deny was
influenced by the sex of the applicant.
We cannot know with any certainty
the influences on the evaluators in the
Graduate Admissions Office, or on the
faculty reviewing committees, or on
any other administrative personnel par-
ticipating in the chain of actions that
led to a decision on an individual ap-
plication. We can, however, say that
if the admissions decision and the sex

Bickel, Peter J., Eugene A. Hammel, and J. William O’Connell.

by using a familiar statistic, chi-square.
As already noted, we are aware of the
pitfalls ahead in this naive approach,
but we intend to stumble into every
one of them for didactic reasons.

We must first make clear two as-
sumptions that underlie consideration
of the data in this contingency table
approach. Assumption 1 is that in any
given discipline male and female ap-
plicants do not differ in respect of their
intelligence, skill, qualifications, prom-
ise, or other attribute deemed legiti-
mately pertinent to their acceptance as
students, It is precisely this assumption
that makes the study of “sex bias”
meaningful, for if we did not hold it
any differences in acceptance of ap-
plicants by sex could be attributed to
differences in their qualifications, prom-
ise as scholars, and so on. Theoretical-
ly one could test the assumption, for
example, by examining presumably un-
biased esti of academic qualifi
tion such as Graduate Record Exam-
ination scores, undergraduate grade
point averages, and so on. There are,
however, enormous practical difficul-
ties in this. We therefore predicate our
discussion on the validity of assump-
tion 1.

“Sex bias in graduate

admissions: Data from Berkeley.” Science 187, no. 4175 (1975): 398-404.
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Berkeley gender bias?

‘If prejudicial treatment is to be minimized, it must first be
located accurately.
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located accurately. We have shown that it is not characteristic of
the graduate admissions process here examined. . .
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Berkeley gender bias?

‘If prejudicial treatment is to be minimized, it must first be
located accurately. We have shown that it is not characteristic of
the graduate admissions process here examined. .. The bias in the
aggregated data stems not from any pattern of discrimination on
the part of admissions committees, which seem quite fair on the
whole,
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Berkeley gender bias?

‘If prejudicial treatment is to be minimized, it must first be
located accurately. We have shown that it is not characteristic of
the graduate admissions process here examined. .. The bias in the
aggregated data stems not from any pattern of discrimination on
the part of admissions committees, which seem quite fair on the
whole, but apparently from prior screening at earlier levels of the
educational system.
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Berkeley gender bias?

‘If prejudicial treatment is to be minimized, it must first be
located accurately. We have shown that it is not characteristic of
the graduate admissions process here examined. .. The bias in the
aggregated data stems not from any pattern of discrimination on
the part of admissions committees, which seem quite fair on the
whole, but apparently from prior screening at earlier levels of the
educational system. Women are shunted by their socialization
and education toward fields of graduate study that are generally
more crowded, less productive of completed degrees, and less
well funded, and that frequently offer poorer professional
employment prospects.’ (Bickel et al 1975, 403, emphasis mine)
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Berkeley gender bias? (a short digression)

@ Today we are covering the mechanics of how we get these results, but
there is an important leap to their meaning for a particular policy
argument.
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@ Today we are covering the mechanics of how we get these results, but
there is an important leap to their meaning for a particular policy
argument.

@ Bickel et al conclude that there is no evidence of gender bias at the
admissions committee level.

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 12 /138



Berkeley gender bias? (a short digression)
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Berkeley gender bias? (a short digression)

@ Today we are covering the mechanics of how we get these results, but
there is an important leap to their meaning for a particular policy
argument.

@ Bickel et al conclude that there is no evidence of gender bias at the
admissions committee level.
o Key assumption: admits are equally qualified.

@ If the women are stronger admits (because e.g. a pattern of sexist
behavior imposes a high barrier for women to even consider graduate
school), we should expect them to be admitted at better than equal
rates as men in a discrimination-free environment.
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there is an important leap to their meaning for a particular policy
argument.

@ Bickel et al conclude that there is no evidence of gender bias at the
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Key assumption: admits are equally qualified.

@ If the women are stronger admits (because e.g. a pattern of sexist
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school), we should expect them to be admitted at better than equal
rates as men in a discrimination-free environment.

@ Two general takeaways:
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argument.

@ Bickel et al conclude that there is no evidence of gender bias at the
admissions committee level.

Key assumption: admits are equally qualified.

@ If the women are stronger admits (because e.g. a pattern of sexist
behavior imposes a high barrier for women to even consider graduate
school), we should expect them to be admitted at better than equal
rates as men in a discrimination-free environment.

@ Two general takeaways:

@ interpreting results requires assumptions about the world
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Berkeley gender bias? (a short digression)

@ Today we are covering the mechanics of how we get these results, but
there is an important leap to their meaning for a particular policy
argument.

o Bickel et al conclude that there is no evidence of gender bias at the
admissions committee level.

Key assumption: admits are equally qualified.

@ If the women are stronger admits (because e.g. a pattern of sexist
behavior imposes a high barrier for women to even consider graduate
school), we should expect them to be admitted at better than equal
rates as men in a discrimination-free environment.

@ Two general takeaways:

@ interpreting results requires assumptions about the world
@ the story of how people select into the group we are studying is
important.
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Berkeley gender bias? (a short digression)

@ Today we are covering the mechanics of how we get these results, but
there is an important leap to their meaning for a particular policy
argument.

o Bickel et al conclude that there is no evidence of gender bias at the
admissions committee level.

Key assumption: admits are equally qualified.

@ If the women are stronger admits (because e.g. a pattern of sexist
behavior imposes a high barrier for women to even consider graduate
school), we should expect them to be admitted at better than equal
rates as men in a discrimination-free environment.

@ Two general takeaways:

@ interpreting results requires assumptions about the world
@ the story of how people select into the group we are studying is
important.

@ This general pattern repeats in many debates, often because of the
limits of data collection.
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Simpson's paradox
The smoking and gender bias patterns are instances of Simpson’s Paradox.
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Simpson's paradox
The smoking and gender bias patterns are instances of Simpson’s Paradox.

Core idea: a relationship in one direction between Y; and X; but the

opposite relationship within strata defined by Z;.
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Simpson's paradox

@ Simpson’s paradox arises in many contexts- particularly where there is
selection on ability
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Simpson's paradox

@ Simpson’s paradox arises in many contexts- particularly where there is
selection on ability

@ It is a particular problem in medical or demographic contexts, e.g.
kidney stones, low-birth weight paradox.
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Simpson's paradox

@ Simpson’s paradox arises in many contexts- particularly where there is
selection on ability

@ It is a particular problem in medical or demographic contexts, e.g.
kidney stones, low-birth weight paradox.

@ It isn't clear that one version (the marginal or conditional) is

necessarily the right way to examine the data. They just have
different meanings.
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Simpson's paradox

@ Simpson’s paradox arises in many contexts- particularly where there is
selection on ability

@ It is a particular problem in medical or demographic contexts, e.g.
kidney stones, low-birth weight paradox.

@ It isn't clear that one version (the marginal or conditional) is
necessarily the right way to examine the data. They just have
different meanings.

@ In my opinion, this is often an issue of not being clear what we want.
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Simpson's paradox

@ Simpson’s paradox arises in many contexts- particularly where there is
selection on ability

@ It is a particular problem in medical or demographic contexts, e.g.
kidney stones, low-birth weight paradox.

@ It isn't clear that one version (the marginal or conditional) is
necessarily the right way to examine the data. They just have
different meanings.

@ In my opinion, this is often an issue of not being clear what we want.

Instance of a more general problem called the ecological inference fallacy
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Basic idea of Two Variable Regressions

@ Old goal: estimate the mean of Y as a function of one independent
variable, X:
E[Y;]Xi]
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Basic idea of Two Variable Regressions

@ Old goal: estimate the mean of Y as a function of one independent
variable, X:
E[Y;]Xi]

@ For continuous X's, we modeled the CEF /regression function with a
line:
Yi = Bo+ B1Xi + uj
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Basic idea of Two Variable Regressions

@ Old goal: estimate the mean of Y as a function of one independent
variable, X:
E[Y;]Xi]

@ For continuous X's, we modeled the CEF /regression function with a
line:
Yi = Bo+ B1Xi + uj

o New goal: estimate the relationship of two variables, Y; and X;,
conditional on a third variable, Z;:

Yi = Bo + B Xi + poZi + u;

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 16 / 138



Basic idea of Two Variable Regressions

@ Old goal: estimate the mean of Y as a function of one independent
variable, X:
E[Y;|Xi]

@ For continuous X's, we modeled the CEF /regression function with a
line:
Yi = fo+ b1Xi + ui

o New goal: estimate the relationship of two variables, Y; and X;,
conditional on a third variable, Z;:

Yi = Bo + B1Xi + B2 Zi + u;

@ [('s are the population parameters we want to estimate
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Why control for another variable

@ Descriptive
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Why control for another variable

@ Descriptive

> get a sense for the relationships in the data.
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Why control for another variable

@ Descriptive

> get a sense for the relationships in the data.
» describe more precisely our quantity of interest

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 17 / 138



Why control for another variable

@ Descriptive

> get a sense for the relationships in the data.
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Why control for another variable

@ Descriptive

> get a sense for the relationships in the data.
» describe more precisely our quantity of interest
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» describe more precisely our quantity of interest
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only appears to because a third variable Z causally affects both of
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» describe more precisely our quantity of interest

@ Predictive

» We can usually make better predictions about the dependent variable
with more information on independent variables.
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@ Descriptive

» get a sense for the relationships in the data.
» describe more precisely our quantity of interest

@ Predictive

» We can usually make better predictions about the dependent variable
with more information on independent variables.

o Causal
» Block potential confounding, which is when X doesn’t cause Y, but
only appears to because a third variable Z causally affects both of
them.
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Why control for another variable

@ Descriptive

» get a sense for the relationships in the data.
» describe more precisely our quantity of interest

@ Predictive

» We can usually make better predictions about the dependent variable
with more information on independent variables.

@ Causal

» Block potential confounding, which is when X doesn’t cause Y, but
only appears to because a third variable Z causally affects both of
them.

> X;: ice cream sales on day i

> Y;: drowning deaths on day /

> Z,'Z 7
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© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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© Adding a Binary Variable
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Regression with Two Explanatory Variables

Example: data from Fish (2002) “Islam and Authoritarianism.” World
Politics. 55: 4-37. Data from 157 countries.
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Regression with Two Explanatory Variables
Example: data from Fish (2002) “Islam and Authoritarianism.” World
Politics. 55: 4-37. Data from 157 countries.

@ Variables of interest:

» Y: Level of democracy, measured as the 10-year average of Freedom
House ratings
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Regression with Two Explanatory Variables
Example: data from Fish (2002) “Islam and Authoritarianism.” World
Politics. 55: 4-37. Data from 157 countries.

@ Variables of interest:
» Y: Level of democracy, measured as the 10-year average of Freedom

House ratings
» Xi: Country income, measured as log(GDP per capita in $1000s)

» X;: Ethnic heterogeneity (continuous) or British colonial heritage

(binary)
@ With one predictor we ask: Does income (X;) predict or explain the

level of democracy (Y)?
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Regression with Two Explanatory Variables

Example: data from Fish (2002) “Islam and Authoritarianism.” World
Politics. 55: 4-37. Data from 157 countries.
@ Variables of interest:

» Y: Level of democracy, measured as the 10-year average of Freedom
House ratings

» Xi: Country income, measured as log(GDP per capita in $1000s)
» X;: Ethnic heterogeneity (continuous) or British colonial heritage
(binary)
@ With one predictor we ask: Does income (X;) predict or explain the
level of democracy (Y)?

e With two predictors we ask questions like: Does income (X7) predict
or explain the level of democracy (Y'), once we “control” for ethnic
heterogeneity or British colonial heritage (X2)?
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Regression with Two Explanatory Variables

Example: data from Fish (2002) “Islam and Authoritarianism.” World
Politics. 55: 4-37. Data from 157 countries.
@ Variables of interest:

» Y: Level of democracy, measured as the 10-year average of Freedom
House ratings

» Xi: Country income, measured as log(GDP per capita in $1000s)
» X;: Ethnic heterogeneity (continuous) or British colonial heritage
(binary)
@ With one predictor we ask: Does income (X;) predict or explain the
level of democracy (Y)?

e With two predictors we ask questions like: Does income (X7) predict
or explain the level of democracy (Y'), once we “control” for ethnic
heterogeneity or British colonial heritage (X2)?

@ The rest of this lecture is designed to explain what is meant by
“controlling for another variable” with linear regression.
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Simple Regression of Democracy on Income
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Simple Regression of Democracy on Income

@ Let's look at the bivariate regression
of Democracy on Income:

}7:':30+B\1X1 w®

Democracy
4

Demo = —1.26 + 1.6 Log(GDP)

2.0 25 3.0 35 4.0 45

Income
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Simple Regression of Democracy on Income

@ Let's look at the bivariate regression
of Democracy on Income:

}7:':30+B\1X1 w®

Democracy
4

Demo = —1.26 + 1.6 Log(GDP)

2.0 25 3.0 35 4.0 45

Income

Interpretation:
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Simple Regression of Democracy on Income

@ Let's look at the bivariate regression
of Democracy on Income:

}7:':30—!-31& w®

Democracy
4

Demo = —1.26 + 1.6 Log(GDP)

Income

Interpretation: A one percent increase in GDP increases our prediction of
democracy by .016.
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Simple Regression of Democracy on Income

@ But we can use more information in
our prediction equation.

Democracy

Income
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@ But we can use more information in
our prediction equation.

@ For example, some countries were
originally British colonies and others
were not:
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@ But we can use more information in
our prediction equation.

@ For example, some countries were
originally British colonies and others

Democracy

were not:

» Former British colonies tend to
have higher levels of democracy \ —

Income
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Simple Regression of Democracy on Income

@ But we can use more information in
our prediction equation.

@ For example, some countries were
originally British colonies and others

Democracy

were not:

» Former British colonies tend to
have higher levels of democracy

> Non-colony countries tend to ncome
have lower levels of democracy
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Adding a Covariate
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Adding a Covariate

How do we do this? We can generalize the prediction equation:
Yi = Bo + Bixai + Baxai

This implies that we want to predict y using the information we have about x;
and x>, and we are assuming a linear functional form.
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Yi = Bo + Bixai + Baxai

This implies that we want to predict y using the information we have about x;
and x>, and we are assuming a linear functional form.

Notice that now we write Xj; where:

@ j=1,...,k is the index for the explanatory variables
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@ i=1,...,nis the index for the observation
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Adding a Covariate

How do we do this? We can generalize the prediction equation:

i = Bo + Buxai + Baxai

This implies that we want to predict y using the information we have about x;

and x>, and we are assuming a linear functional form.

Notice that now we write Xj; where:
@ j=1,...,k is the index for the explanatory variables
@ i=1,...,nis the index for the observation

@ we often omit / to avoid clutter
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Adding a Covariate

How do we do this? We can generalize the prediction equation:

i = Bo + Buxai + Baxai

This implies that we want to predict y using the information we have about x;

and x>, and we are assuming a linear functional form.

Notice that now we write Xj; where:
@ j=1,...,k is the index for the explanatory variables
@ i=1,...,nis the index for the observation

@ we often omit / to avoid clutter

In words: . R R
Democracy = By + 51 Log(GDP) + B, Colony
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Interpreting a Binary Covariate
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Interpreting a Binary Covariate

Assume Xy, indicates whether country i used to be a British colony.

When X, = 0, the model becomes:
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Interpreting a Binary Covariate

Assume Xy, indicates whether country i used to be a British colony.

When X, = 0, the model becomes:

¥ = Bo+ Brx1 + B2 0
=Bo+31X1

When X = 1, the model becomes:
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Interpreting a Binary Covariate

Assume Xy, indicates whether country i used to be a British colony.

When X, = 0, the model becomes:
Y =Bo+ B + B2 0
= Bo + lel
When X = 1, the model becomes:
Y =Bo+ Bux+ B2l
= (Bo + B2) + Bixa

What does this mean?
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Interpreting a Binary Covariate

Assume Xy, indicates whether country i used to be a British colony.
When X, = 0, the model becomes:
¥ = Bo+ Bx1 + 520
= Bo + Pixa
When X = 1, the model becomes:
Y= B0+ Bixi+ Bl
= (Bo + B2) + Bixa

What does this mean? We are fitting two lines with the same slope but
different intercepts.
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Regression of Democracy on Income
From R, we obtain estimates

/807 /817 62:
Coefficients:
Estimate
(Intercept) -1.5060
GDP9OLGN 1.7059 ~ R
BRITCOL 0.5881 L e

Demacracy
4
L

Income
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Regression of Democracy on Income
From R, we obtain estimates

/807 /Bla 62:
Coefficients:
Estimate
(Intercept) -1.5060
GDPOOLGN 1.7059 ~ I
BRITCOL 0.5881 . L ey

@ Non-British colonies:

= Bo + Ble -
=—-154+17x1

Demacracy
4

y
y

Income
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Regression of Democracy on Income
From R, we obtain estimates

/807 /Bla 62:

Coefficients:
Estimate
(Intercept) -1.5060
GDPOOLGN 1.7059 ~ 4 RS
BRITCOL 0.5881 . Lo

@ Non-British colonies:

= Bo + Ble -
=—-154+17x1

Demacracy
4

y
y

@ Former British colonies:

v = (Bo+ B2) + Bixt
5/\ =—-92+1.7x1

Income
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Regression of Democracy on Income

Our prediction equation is:
5/\ =—15+1.7x1+ .58 x»

Where do these quantities appear on
the graph?

Democracy

Income
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Regression of Democracy on Income

Our prediction equation is:
5/\ =—15+1.7x1+ .58 x»

Where do these quantities appear on 1
the graph?

) ﬁo = —1.5 is the intercept for the
prediction line for non-British colonies.

Democracy
2
L

Income
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Regression of Democracy on Income

Our prediction equation is:
5/\ =—15+1.7x1+ .58 x»

Where do these quantities appear on 1
the graph?
] B\o = —1.5 is the intercept for the ’ 4

Democracy

prediction line for non-British colonies.

2
I

-} ,/6\1 = 1.7 is the slope for both lines.

-2
I

Income

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 25 /138



Regression of Democracy on Income

Our prediction equation is:
5/\ =—15+1.7x1+ .58 x»

Where do these quantities appear on 1
the graph?

) 30 = —1.5 is the intercept for the
prediction line for non-British colonies.

Democracy
2
L

° ,/6\1 = 1.7 is the slope for both lines. °

) 82 = .58 is the vertical distance o 4
between the two lines for Ex-British o 1 2 3 a4 s
colonies and non-colonies respectively income
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© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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e Adding a Continuous Covariate
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Fitting a regression plane

@ We have considered an example of
multiple regression with one
continuous explanatory variable and
one binary explanatory variable.
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Fitting a regression plane

@ We have considered an example of
multiple regression with one
continuous explanatory variable and
one binary explanatory variable.

@ This is easy to represent graphically in
two dimensions because we can use
colors to distinguish the two groups in
the data.
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Regression of Democracy on Income

@ These observations are actually . .
located in a three-dimensional .
space.

1.0

Democracy

0.8
0.6
0.4

0.2

o 0.0
20 25 3.0 35 4.0 45 5.0

Income
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Regression of Democracy on Income

@ These observations are actually . .0
located in a three-dimensional .
space. N C .. .
@ We can try to represent this ° .
using a 3D scatterplot. Lot
> s
g YT
g
E . . . 10
a s 4 0.8
« Ao . 06
- o, ." . o 04
0.2
o 0.0
20 25 3.0 35 4.0 45 5.0

Income
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Regression of Democracy on Income

@ These observations are actually
located in a three-dimensional
space.

@ We can try to represent this
using a 3D scatterplot.

@ In this view, we are looking at
the data from the Income side;
the two regression lines are
drawn in the appropriate
locations.
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Regression of Democracy on Income

@ We can also look at the 3D
scatterplot from the British
colony side.

Democracy

0.0 0.2 0.4 0.6 0.8 1.0

Colony

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 29 /138



Regression of Democracy on Income

@ We can also look at the 3D
scatterplot from the British
colony side.

@ While the British colonial
status variable is either 0 or 1,
there is nothing in the
prediction equation that ©
requires this to be the case.

Democracy

0.0 0.2 0.4 0.6 0.8 1.0

Colony

Stewart (Princeton) Two Regressors October 15, 17, 2018 29 /138




Regression of Democracy on Income

@ We can also look at the 3D
scatterplot from the British
colony side.

@ While the British colonial

status variable is either 0 or 1, )

there is nothing in the ¢

prediction equation that ©

requires this to be the case. g - i,
@ In fact, the prediction equation g - . -

defines a regression plane that ~ o s *

connects the lines when x; =0 N . 20

and xo = 1. . o 2

0.0 0.2 0.4 0.6 0.8 1.0

Colony
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Regression with two continuous variables

@ Since we fit a regression plane to the data whenever we have two
explanatory variables, it is easy to move to a case with two
continuous explanatory variables.
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Regression with two continuous variables

@ Since we fit a regression plane to the data whenever we have two

explanatory variables, it is easy to move to a case with two
continuous explanatory variables.

@ For example, we might want to use:

» Xi Income and X, Ethnic Heterogeneity
» Y Democracy

Deﬁ)c\racy = BO + Bllncome + ﬁAgEthnic Heterogeneity
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Regression of Democracy on Income

@ We can plot the points in a 3D
scatterplot.

Democracy
4

EthnicHeterogeneity

Income
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Regression of Democracy on Income

@ We can plot the points in a 3D

scatterplot.
@ R returns:
4 ﬂo =-71 ©
» (31 = 1.6 for Income .
» 3, = —.6 for Ethnic g R
Heterogeneity g H
How does this look . PP . 508 N %
graphically? ’ 5o g
0.0

20 25 30 35 40 45 50

Income
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Regression of Democracy on Income

@ We can plot the points in a 3D
scatterplot.

@ R returns:

4 5\0 =-71

> (1 = 1.6 for Income

> (3, = —.6 for Ethnic
Heterogeneity

Democracy

How does this look
graphically?

EthnicHeterogeneity

@ These estimates define a
regression plane through the
data.

Income
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Regression of Democracy on Income

@ We can plot the points in a 3D
scatterplot.

@ R returns:

4 5\0 =-71

> (1 = 1.6 for Income

> (3, = —.6 for Ethnic
Heterogeneity

Democracy

Income

How does this look
graphically?

@ These estimates define a
regression plane through the
data.

EthnicHeterogeneity
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Interpreting a Continuous Covariate

@ The coefficient estimates have a similar interpretation in this case as
they did in the Income-British Colony example.
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Interpreting a Continuous Covariate

@ The coefficient estimates have a similar interpretation in this case as
they did in the Income-British Colony example.

@ For example, 31 = 1.6 represents our prediction of the difference in
Democracy between two observations that differ by one unit of
Income but have the same value of Ethnic Heterogeneity.
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Interpreting a Continuous Covariate

@ The coefficient estimates have a similar interpretation in this case as
they did in the Income-British Colony example.

@ For example, 31 = 1.6 represents our prediction of the difference in
Democracy between two observations that differ by one unit of
Income but have the same value of Ethnic Heterogeneity.

@ The slope estimates have partial effect or ceteris paribus
interpretations:

Ay = Bo + B1X1 + B2X2)
0Xq
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Interpreting a Continuous Covariate

@ The coefficient estimates have a similar interpretation in this case as
they did in the Income-British Colony example.

@ For example, 31 = 1.6 represents our prediction of the difference in
Democracy between two observations that differ by one unit of
Income but have the same value of Ethnic Heterogeneity.

@ The slope estimates have partial effect or ceteris paribus
interpretations:

Oy = Bo+ P1X1 + B X2) 3
OXq -
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Interpreting a Continuous Covariate

@ Again, we can think of this as
defining a regression line for
the relationship between
Democracy and Income at
every level of Ethnic
Heterogeneity.
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Interpreting a Continuous Covariate

@ Again, we can think of this as
defining a regression line for
the relationship between
Democracy and Income at
every level of Ethnic
Heterogeneity.

@ All of these lines are parallel
since they have the slope
B1=1.6
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Interpreting a Continuous Covariate

@ Again, we can think of this as
defining a regression line for ~
the relationship between
Democracy and Income at
every level of Ethnic ©
Heterogeneity.

Democracy
4
1

@ All of these lines are parallel
since they have the slope
31 = 16 —_— Ethnic Helerogeneityzo
— Ethn!c Helerogene!ty =0.25
@ The lines shift up or down T Emeneemgmaly 208
based on the value of Ethnic ‘ ‘ ‘ ‘ ‘ ‘

. 20 25 3.0 35 4.0 45
Heterogeneity.

Income

Stewart (Princeton) Two Regressors October 15, 17, 2018 33 /138




Interpreting a Continuous Covariate

@ Again, we can think of this as
defining a regression line for ~
the relationship between
Democracy and Income at
every level of Ethnic ©
Heterogeneity.

Democracy
4
1

@ All of these lines are parallel
since they have the slope
B1=1.6 o

@ The lines shift up or down

based on the value of Ethnic ‘ ‘ ‘ ‘ ‘ ‘

. 20 25 3.0 35 4.0 45
Heterogeneity.

Ethnic Heterogeneity = 0
Ethnic Heterogeneity = 0.25
Ethnic Heterogeneity = 0.5
Ethnic Heterogeneity = 0.75

Income
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More Complex Predictions

@ We can also use the coefficient estimates for more complex
predictions that involve changing multiple variables simultaneously.
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More Complex Predictions
@ We can also use the coefficient estimates for more complex
predictions that involve changing multiple variables simultaneously.

@ Consider our results for the regression of democracy on X income
and X; ethnic heterogeneity:

> @\0 =-71
4 @\1 =1.6
> fo=—.6
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More Complex Predictions
@ We can also use the coefficient estimates for more complex
predictions that involve changing multiple variables simultaneously.

@ Consider our results for the regression of democracy on X income
and X5 ethnic heterogeneity:

> @\0 =-71
> @\1 =16
> Sp=—.6

@ What is the predicted difference in democracy between

» Chile with X; = 3.5 and X, = .06?
» China with Xy = 2.5 and X, = .57
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More Complex Predictions
@ We can also use the coefficient estimates for more complex
predictions that involve changing multiple variables simultaneously.

@ Consider our results for the regression of democracy on X income
and X5 ethnic heterogeneity:

> @\0 =-71
> @\1 =16
> Sp=—.6

@ What is the predicted difference in democracy between
» Chile with X; = 3.5 and X, = .06?
» China with Xy = 2.5 and X, = .57

@ Predicted democracy is
» —714+1.6-35—.6-.06 =4.8 for Chile
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More Complex Predictions
@ We can also use the coefficient estimates for more complex
predictions that involve changing multiple variables simultaneously.

@ Consider our results for the regression of democracy on X income
and X5 ethnic heterogeneity:

> @\0 =-71
> @\1 =16
> Sp=—.6

@ What is the predicted difference in democracy between
» Chile with X; = 3.5 and X, = .06?
» China with Xy = 2.5 and X, = .57

@ Predicted democracy is

» —71+1.6-3.5—.6-.06 =4.8 for Chile
» —714+1.6-25—.6-0.5=3 for China.
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More Complex Predictions
@ We can also use the coefficient estimates for more complex
predictions that involve changing multiple variables simultaneously.

@ Consider our results for the regression of democracy on X income
and X5 ethnic heterogeneity:

> @\0 =-71
> @\1 =16
> Sp=—.6

@ What is the predicted difference in democracy between
» Chile with X; = 3.5 and X, = .06?
» China with Xy = 2.5 and X, = .57
@ Predicted democracy is
» —714+1.6-35—.6-.06 =4.8 for Chile
» —714+1.6-2.5—.6-0.5 =3 for China.

Predicted difference is thus: 1.8 or (3.5 — 2.5)53; + (.06 — .5)3,
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© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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@ Once More With Feeling
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AJR Example

The Colonial Origins of Comparative Development:
An Empirical Investigation

By DARON ACEMOGLU, SIMON JOHNSON, AND JAMES A. ROBINSON*

http://www. jstor.org/stable/2677930
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AJR Example
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Basics

@ Ye olde model: N
Yi = Bo + B X
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Basics

@ Ye olde model: N
Yi = Bo + B X

@ Z; =1 to indicate that i is an African country
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Basics

@ Ye olde model: o
Yi = Bo + B1Xi
@ Z; =1 to indicate that i is an African country

@ Z; = 0 to indicate that i is an non-African country
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Basics

@ Ye olde model:
Yi = Bo+ 51X
@ Z; =1 to indicate that i is an African country
@ Z; = 0 to indicate that i is an non-African country

@ Concern: AJR might be picking up an “African effect”:
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Basics

@ Ye olde model:
Y = Bo + B1X;
@ Z; =1 to indicate that i is an African country
@ Z; = 0 to indicate that i is an non-African country
@ Concern: AJR might be picking up an “African effect”:

» African countries have low incomes and weak property rights
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Basics

@ Ye olde model:
Y = Bo + B1X;
@ Z; =1 to indicate that i is an African country
@ Z; = 0 to indicate that i is an non-African country
@ Concern: AJR might be picking up an “African effect”:

» African countries have low incomes and weak property rights
» “Control for” country being in Africa or not to remove this
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Basics

@ Ye olde model:
Y = Bo + B1X;
@ Z; =1 to indicate that i is an African country
@ Z; = 0 to indicate that i is an non-African country
@ Concern: AJR might be picking up an “African effect”:

» African countries have low incomes and weak property rights
» “Control for” country being in Africa or not to remove this
» Effects are now within Africa or within non-Africa, not between
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Basics

@ Ye olde model: N
Yi = Bo + B X

Z; = 1 to indicate that 7 is an African country

Z; = 0 to indicate that / is an non-African country

Concern: AJR might be picking up an “African effect”:

» African countries have low incomes and weak property rights
» “Control for” country being in Africa or not to remove this
» Effects are now within Africa or within non-Africa, not between

New model:

Y; = Bo + B1X; + BaZi
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AJR model

#i
#i#
#i#
#i#
##
#i#
#i
#i#
#i#
#i#
##
#i#
#i#

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.65556 0.31344 18.043 < 2e-16 *x*

avexpr 0.42416 0.03971 10.681 < 2e-16 *xx*

africa -0.87844 0.14707 -5.973 3.03e-08 *x*x

Signif. codes: O ’#**’ 0.001 ’x*’ 0.01 ’%’ 0.05 ’.” 0.1’ ’ 1
Residual standard error: 0.6253 on 108 degrees of freedom

(62 observations deleted due to missingness)
Multiple R-squared: 0.7078, Adjusted R-squared: 0.7024
F-statistic: 130.8 on 2 and 108 DF, p-value: < 2.2e-16
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Two lines in one regression

@ How can we interpret this model?
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Two lines in one regression

@ How can we interpret this model?

@ Plug in two possible values for Z; and rearrange
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange

@ When Z; = 0: L R
Yi = Bo+ 51 Xi + B2Z;
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange

@ When Z; = 0: L R
Yi = Bo+ 51 Xi + B2Z;
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange

@ When Z; = 0: L R
Yi = Bo + b1 Xi + p2Z;
= Bo+BiX;i+ B2 x0
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange
@ When Z; = 0:
Y: = Bo+ B1Xi + B2Z;
= Bo+ BiX; + B2 x 0
= Bo + BLXi
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange
@ When Z; = 0:
Y: = Bo+ B1Xi + B2Z;
= Bo+ BiX; + B2 x 0

= Bo + 1 Xi
@ When Z; = 1:
Yi = Bo + B1Xi + B2Zi
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange
@ When Z; = 0:
Y: = Bo+ B1Xi + B2Z;
= Bo+ BiX; + B2 x 0

= Bo + 1 Xi
@ When Z; = 1:
Yi = Bo + B1Xi + B2Zi
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange
@ When Z; = 0:
Y: = Bo+ B1Xi + B2Z;
= Bo+ BiX; + B2 x 0

= Bo + 1 Xi
@ When Z; = 1:
Yi = Bo + B1Xi + B2Zi
=Bo+pXi+ B2 x1
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Two lines in one regression

@ How can we interpret this model?
@ Plug in two possible values for Z; and rearrange
@ When Z; = 0:
Y: = Bo+ B1Xi + B2Z;
= Bo+ BiX; + B2 x 0

= Bo + PuXi
o When Z; =1: L R
Yi = Bo+ B51Xi + B2Z;
= Bo+BiXi + B2 x 1
= (Bo + B2) + B Xi
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Two lines in one regression

How can we interpret this model?

Plug in two possible values for Z; and rearrange

@ When Z; = 0: L R

Yi = Bo + B1Xi + B2Zi
= Bo+ BiX; + B2 x 0
= Bo + BLXi

When Z; = 1: L R
Yi = Bo + B1Xi + B2Z;
=Bo+PXi+Bax1
= (Bo + Bz) + BiX;

@ Two different intercepts, same slope
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Example interpretation of the coefficients

@ Let’'s review what we've seen so far:
‘ Intercept for X; Slope for X;
Non-African country (Z; = 0) | 5o b1
African country (Z; = 1) BO + Bz 31
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Example interpretation of the coefficients

@ Let’'s review what we've seen so far:
‘ Intercept for X; Slope for X;
Non-African country (Z; = 0) | /o b1
African country (Z; = 1) BO + Bz 31

@ In this example, we have:

~

Y: = 5.656 4 0.424 x X; — 0.878 x Z:
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Example interpretation of the coefficients

@ Let’'s review what we've seen so far:
‘ Intercept for X; Slope for X;
Non-African country (Z; = 0) | /o b1
African country (Z; = 1) BO + Bz 31

@ In this example, we have:

~

Y: = 5.656 4 0.424 x X; — 0.878 x Z:

@ We can read these as:
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Example interpretation of the coefficients

@ Let’'s review what we've seen so far:
‘ Intercept for X; Slope for X;
Non-African country (Z; = 0) | /o b1
African country (Z; = 1) 30 + 52 31

@ In this example, we have:

~

Y: = 5.656 4+ 0.424 x X; — 0.878 x Z:

@ We can read these as:

> B\O: average log income for non-African country (Z; = 0) with property
rights measured at 0 is 5.656
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Example interpretation of the coefficients

@ Let's review what we've seen so far:
‘ Intercept for X; Slope for X;
Non-African country (Z; =0) | SBo 51
African country (Z; = 1) BO + 32 31

@ In this example, we have:
Y: = 5.656 4+ 0.424 x X; — 0.878 x Z;

® We can read these as:
> B\O: average log income for non-African country (Z; = 0) with property
rights measured at 0 is 5.656
> B\l: A one-unit increase in property rights is associated with a 0.424
increase in average log incomes for two African countries (or for two
non-African countries)
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Example interpretation of the coefficients

@ Let's review what we've seen so far:
‘ Intercept for X; Slope for X;
Non-African country (Z; =0) | SBo 51
African country (Z; = 1) Bg + Bg 31

@ In this example, we have:
Y; = 5.656 + 0.424 x X; — 0.878 x Z;

@ We can read these as:

> B\O: average log income for non-African country (Z; = 0) with property
rights measured at 0 is 5.656

> B\l: A one-unit increase in property rights is associated with a 0.424
increase in average log incomes for two African countries (or for two
non-African countries)

> B\g: there is a -0.878 average difference in log income per capita
between African and non-African counties conditional on property
rights

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 41 /138



General interpretation of the coefficients

Y; = Bo + BiXi + B Zi

Stewart (Princeton) Week 6: Two Regressors



General interpretation of the coefficients

Y; = Bo + BiXi + B Zi

° Bo: average value of Y; when both X; and Z; are equal to 0
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General interpretation of the coefficients

Y: = Bo+ B1Xi + B2Z;
° Bo: average value of Y; when both X; and Z; are equal to 0

° ,3\1: A one-unit change in X; produces a Bl-unit change in our
prediction of Y; conditional on Z;
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General interpretation of the coefficients

Y; = Bo + BiXi + B Zi

° BO: average value of Y; when both X; and Z; are equal to 0

° ,3\1: A one-unit change in X; produces a Bl-unit change in our
prediction of Y; conditional on Z;

° Bzi average difference in Y; between Z; = 1 group and Z; = 0 group
conditional on X;
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Adding a binary variable, visually

—
—
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Log GDP per capita
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Adding a binary variable, visually
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Adding a continuous variable

@ Ye olde model: N
Yi = Bo + 51X
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Adding a continuous variable

@ Ye olde model: N
Yi = Bo + 51X

@ Z;: mean temperature in country i (continuous)
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Adding a continuous variable

@ Ye olde model: L

Yi = Bo+ 51X
@ Z;: mean temperature in country i (continuous)
@ Concern: geography is confounding the effect
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Adding a continuous variable

@ Ye olde model: L

Yi = Bo+ 51X
@ Z;: mean temperature in country i (continuous)
@ Concern: geography is confounding the effect

» geography might affect political institutions
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Adding a continuous variable

@ Ye olde model: L

Yi = Bo+ 51X
@ Z;: mean temperature in country i (continuous)
@ Concern: geography is confounding the effect

» geography might affect political institutions
» geography might affect average incomes (through diseases like malaria)
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Adding a continuous variable

@ Ye olde model: L

Yi = Bo+ 51X
@ Z;: mean temperature in country i (continuous)
@ Concern: geography is confounding the effect

» geography might affect political institutions
» geography might affect average incomes (through diseases like malaria)

@ New model: R R R R
Yi = Bo+ /1 Xi + B2Z;
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AJR model, revisited

#i
#i#
#i#
#i#
##
#i#
#i
#i#
#i#
#i#
##
#i#
#i#

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 6.80627 0.75184 9.053 1.27e-12
avexpr 0.40568 0.06397 6.342 3.94e-08
meantemp -0.06025 0.01940 -3.105 0.00296

Signif. codes: O ’*¥x’ 0.001 ’**x’ 0.01 ’*’ 0.05

Residual standard error: 0.6435 on 57 degrees of
(103 observations deleted due to missingness)
Multiple R-squared: 0.6155, Adjusted R-squared:

kK
*kk
*%
.2 0.1 1

freedom

0.602

F-statistic: 45.62 on 2 and 57 DF, p-value: 1.48le-12
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Interpretation with a continuous Z
| Intercept for X; Slope for X;

Z=0°C | fo e
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Interpretation with a continuous Z
| Intercept for X; Slope for X;

fo A
Z; =21°C ,30—{-,32><21 ,81

N
I
N O
o
(@)
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Interpretation with a continuous Z

| Intercept for X; Slope for X;
Z; =0°C éo ~ ,@\1
Z; =21°C ,BQ-{-,BQXQ]. 51
Z; =24°C | By + B2 x 24 051
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Interpretation with a continuous Z

Stewart (Princeton)

Week 6: Two Regressors

Intercept for X; Slope for X;
Z; =0°C éo R él
Z; =21°C | Bo+ B2 x 21 b1
Z; =24°C Bo—l-gg x 24 ,8\1
Z;=26°C | fo+Pax26 P
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Interpretation with a continuous Z

Stewart (Princeton)

Week 6: Two Regressors

Intercept for X; Slope for X;
Z; =0°C éo R él
Z; =21°C | Bo+ B2 x 21 b1
Z; =24°C Bo—l-gg x 24 ,8\1
Z;=26°C | fo+Pax26 P

October 15, 17, 2018

46 / 138



Interpretation with a continuous Z

Intercept for X; Slope for X;
=0°C | fo b1
=21°C | fo+FBax2l  f
=24°C Bo—l-gz x 24 ,8\1
Zi=26°C | Bo+Pax26  pi

NN

@ In this example we have:

~

Y; = 6.806 + 0.406 x X; + —0.06 x Z;
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Interpretation with a continuous Z

Intercept for X;

Slope for X;

Z =

NN

fo

Bo + B2 x 21
Bo + Ba x 24
Bo + B2 x 26

@ In this example we have:

~

1
A
B
b1

Y; = 6.806 + 0.406 x X; + —0.06 x Z;

° Bo: average log income for a country with property rights measured
at 0 and a mean temperature of 0 is 6.806

Stewart (Princeton)

Week 6: Two Regressors

October 15, 17, 2018 46 / 138



Interpretation with a continuous Z

Intercept for X;

Slope for X;

NN

Z;

=0°C

=21°C
=24°C
=26°C

fo

Po + B2 x 21
Bo + Ba x 24
Bo + B2 x 26

@ In this example we have:

temperature

Stewart (Princeton)

~

1
B
B
b1

Y; = 6.806 + 0.406 x X; + —0.06 x Z;

° Bo: average log income for a country with property rights measured
at 0 and a mean temperature of 0 is 6.806

° Bli A one-unit change in property rights is associated with a 0.406
change in average log incomes conditional on a country’s mean

Week 6: Two Regressors
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Interpretation with a continuous Z

Intercept for X; Slope for X;
Z; =0°C éo R @1
Z,':21°C ﬁ0+ﬂ2X21 ,81
Z,':24OC Bo—l—gz X 24 ,@1
Zi=26°C | o+ x26 B

@ In this example we have:

change in average log incomes conditional on a country’s mean

temperature

~

Y; = 6.806 + 0.406 x X; + —0.06 x Z;

° Bo: average log income for a country with property rights measured
at 0 and a mean temperature of 0 is 6.806
@ f1: A one-unit change in property rights is associated with a 0.406

@ [32: A one-degree increase in mean temperature is associated with a

-0.06 change in average log incomes conditional on strength of

property rights

Stewart (Princeton)

Week 6: Two Regressors

October 15, 17, 2018

46 / 138



General interpretation

Yi = Bo + BuXi + B Zi

@ The coefficient Bl measures how the predicted outcome varies in X;
for a fixed value of Z;.
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General interpretation

Yi = Bo + BuXi + B Zi

@ The coefficient Bl measures how the predicted outcome varies in X;
for a fixed value of Z;.

@ The coefficient Bg measures how the predicted outcome varies in Z;
for a fixed value of X;.
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© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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© OLS Mechanics and Partialing Out
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Fitted values and residuals

@ Where do we get our hats?
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Fitted values and residuals

@ Where do we get our hats?
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Fitted values and residuals

@ Where do we get our hats? Bo, 31,32
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Fitted values and residuals

@ Where do we get our hats? [y, 81, B2
@ To answer this, we first need to redefine some terms from simple
linear regression.
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Fitted values and residuals

@ Where do we get our hats? 30, 31,32

@ To answer this, we first need to redefine some terms from simple
linear regression.

o Fitted values for i =1,...,n:

Yi = Bo+ X + BaZi
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Fitted values and residuals

@ Where do we get our hats? 30, 31,32

@ To answer this, we first need to redefine some terms from simple
linear regression.

o Fitted values for i =1,...,n:

Y; = Bo + BiXi + B2Z;
@ Residuals fori=1,...,n:

i =Yi— Y,
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Least squares is still least squares

@ How do we estimate 50, Bl, and Bz?
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Least squares is still least squares

@ How do we estimate 30, Bl, and Bg?
@ Minimize the sum of the squared residuals, just like before:

(Bo, B1, B2) = argmin Y (Vi — by — by X; — by Z;)?

bo,b1,b2 i=1
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Least squares is still least squares

@ How do we estimate ,/8\0, Bl, and Bg?
@ Minimize the sum of the squared residuals, just like before:

(Bo, By, B2) = argmin Y (V; — by — by X; — by Z;)?

bo,b1,b2 i=1

@ The calculus is the same as last week, with 3 partial derivatives
instead of 2
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Least squares is still least squares

How do we estimate ,/8\0, Bl, and Bg?
@ Minimize the sum of the squared residuals, just like before:

(Bo, By, B2) = argmin Y (V; — by — by X; — by Z;)?

bo,b1,b2 i=1

@ The calculus is the same as last week, with 3 partial derivatives
instead of 2
Let's start with a simple recipe and then rigorously show that it holds
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OLS estimator recipe using two steps

@ "Partialling out” OLS recipe:
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OLS estimator recipe using two steps

@ "Partialling out” OLS recipe:
@ Run regression of X; on Z;:
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OLS estimator recipe using two steps

@ "Partialling out” OLS recipe:
@ Run regression of X; on Z;:

Xi =00 + 01Z;
@ Calculate residuals from this regression:

lez,i = Xi = X;
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OLS estimator recipe using two steps

@ "Partialling out” OLS recipe:
@ Run regression of X; on Z;:

X; = 0o+ 01 Z;
@ Calculate residuals from this regression:
Tizyi = Xi — X;
© Run a simple regression of Y; on residuals, 7y, ;:

Yi = Po+ Bl
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OLS estimator recipe using two steps

@ "Partialling out” OLS recipe:
@ Run regression of X; on Z;:

X; = 0o+ 01 Z;
@ Calculate residuals from this regression:
Tizyi = Xi — X;
© Run a simple regression of Y; on residuals, 7y, ;:

Yi = Po+ Bl

@ Estimate of 51 will be the same as running:

Y: = Bo+ BiXi + BaZ;
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Regression property rights on mean temperature

##

## Coefficients:

#i# Estimate Std. Error t value Pr(>|t])

## (Intercept) 9.95678 0.82015 12.140 < 2e-16 *xx*

## meantemp -0.14900 0.03469 -4.295 6.73e-05 **x*

## ———

## Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ 7 1
##

## Residual standard error: 1.321 on 58 degrees of freedom
## (103 observations deleted due to missingness)

## Multiple R-squared: 0.2413, Adjusted R-squared: 0.2282
## F-statistic: 18.45 on 1 and 58 DF, p-value: 6.733e-05
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Regression of log income on the residuals

## (Intercept) avexpr.res
##  8.0542783  0.4056757

## (Intercept) avexpr meantemp
## 6.80627375 0.40567575 -0.06024937
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Residual /partial regression plot
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Residual /partial regression plot

Useful for plotting the conditional relationship between property rights and
income given temperature:
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Residual /partial regression plot

Useful for plotting the conditional relationship between property rights and
income given temperature:

10 ° ® P

Log GDP per capita

Residuals(Property Right ~ Mean Temperature)
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Deriving the Linear Least Squares Estimator

@ In simple regression, we chose (/3p, 1) to minimize the sum of the
squared residuals
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Deriving the Linear Least Squares Estimator

@ In simple regression, we chose (/3p, 1) to minimize the sum of the
squared residuals

@ We use the same principle for picking (3\0,31,32) for regression with
two regressors (x; and z;):

(30731732) = argmanu = argmlnz
Bo,81,82 i=1 BosB1,82 =1

= argmlnz 0 - Xlﬁl - 2152)
Bo,81,82 =1
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Deriving the Linear Least Squares Estimator

@ In simple regression, we chose (/3p, 1) to minimize the sum of the
squared residuals

@ We use the same principle for picking (3\0,31,32) for regression with
two regressors (x; and z;):

(30,31732) = argmanu = argmlnz

Bo,B1,82 =1 Bo,81,P2 =1
= argmmz Bo — xiP1 — ziB2)?
Bo,B1,02 =1

@ (The same works more generally for k regressors, but this is done
more easily with matrices as we will see next week)
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Deriving the Linear Least Squares Estimator

We want to minimize the following quantitity with respect to (Bo, B, 52):

S(Bo. B1, B2) =Y _(vi — o — Brxi — azi)?

i=1

Plan is conceptually the same as before
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Deriving the Linear Least Squares Estimator

We want to minimize the following quantitity with respect to (Bo, B, 52):

S(Bo. B1, B2) =Y _(vi — o — Brxi — azi)?

i=1

Plan is conceptually the same as before
© Take the partial derivatives of S with respect to (o, 51 and .
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Deriving the Linear Least Squares Estimator

We want to minimize the following quantitity with respect to (ﬁo, 1, 52):

S(Bo. B1, B2) =Y _(vi — o — Brxi — azi)?

i=1

Plan is conceptually the same as before
© Take the partial derivatives of S with respect to Bo, B1 and fs.

@ Set each of the partial derivatives to 0 to obtain the first order
conditions.
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Deriving the Linear Least Squares Estimator

We want to minimize the following quantitity with respect to (Bo, 1, 52):

S(Bo. B1, B2) =Y _(vi — o — Brxi — azi)?

i=1
Plan is conceptually the same as before
© Take the partial derivatives of S with respect to Bo, B1 and fs.

@ Set each of the partial derivatives to 0 to obtain the first order
conditions.

© Substitute 30,31,32 for 50,51,52 and solve for 30,51,32 to obtain
the OLS estimator.
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First Order Conditions

Setting the partlal derivatives equal to zero leads to a system of 3 linear equations
in 3 unknowns: /3’0,61 and ﬁg

0B

oS

9B

oS

0B

oS

Z(Yi — Bo = Bix; — Pazi) = 0

i=1
n

ZXI(YI - 30 - BlXi - B2Zi) =

i=1

Z zi(yi — Bo — Brxi — 3221') =
i=1

When will this linear system have a unique solution?
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First Order Conditions

Setting the partlal derivatives equal to zero leads to a system of 3 linear equations

in 3 unknowns: ﬁo,ﬁl and ﬂg
oS :

B > (vi—Bo— bixi — Bozi) = 0
i=1

88_51 = ;XI(YI — fo = Prxi — 522:) =

oS "~

= = Zzi(}’i — o= Brxi — Bzi) = 0
9p2 i=1
When will this linear system have a unique solution?

@ More observations than predictors (i.e. n > 2)

@ x and z are linearly independent, i.e.,

> neither x nor z is a constant
> x is not a linear function of z (or vice versa)

@ Wooldridge calls this assumption no perfect collinearity
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The OLS Estimator

The OLS estimator for (30,31,62) can be written as

Bo = 7—Bix— Pz

B = Cov(x,y)Var(z) — Cov(z, y)Cov(x, z)
v Var(x) Var(z) — Cov(x, z)?
B — Cov(z,y)Var(x) — Cov(x,y)Cov(z,x)

Var(x)Var(z) — Cov(x, z)?
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The OLS Estimator

The OLS estimator for (30,31,32) can be written as

Bo = 7—Pix—poz

Cov(x,y)Var(z) — Cov(z,y)Cov(x, z)
Var(x)Var(z) — Cov(x, z)?

~ Cov(z,y)Var(x) — Cov(x,y)Cov(z,x)

Pz = Var(x) Var(z) — Cov(x, z)?

For (B0, A1, 52) to be well-defined we need:

Var(x)Var(z) # Cov(x, z)?
Condition fails if:
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The OLS Estimator

The OLS estimator for (30,31,32) can be written as

Bo = 7—Pix—poz

Cov(x,y)Var(z) — Cov(z,y)Cov(x, z)
Var(x)Var(z) — Cov(x, z)?

~ Cov(z,y)Var(x) — Cov(x,y)Cov(z,x)

Pz = Var(x) Var(z) — Cov(x, z)?

For (B0, A1, 52) to be well-defined we need:

Var(x)Var(z) # Cov(x, z)?
Condition fails if:

Q If x or z is a constant (= Var(x)Var(z) = Cov(x,z) = 0)
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The OLS Estimator

The OLS estimator for (30,31,32) can be written as

Bo = 7—Pix—poz

Cov(x,y)Var(z) — Cov(z,y)Cov(x, z)
Var(x)Var(z) — Cov(x, z)?

~ Cov(z,y)Var(x) — Cov(x,y)Cov(z,x)

Pz = Var(x) Var(z) — Cov(x, z)?

For (B0, A1, 52) to be well-defined we need:

Var(x)Var(z) # Cov(x, z)?
Condition fails if:
Q If x or z is a constant (= Var(x)Var(z) = Cov(x,z) = 0)

@ One explanatory variable is an exact linear function of another
(= Cor(x,z) =1 = Var(x)Var(z) = Cov(x, z)?)
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“Partialling Out” Interpretation of the OLS Estimator
Assume Y = By + B1X + B2Z + u. Another way to write the OLS estimator is:

B _ 27 sz,iyi
1 — "—nao
27 r)gz,i

where 7, ; are the residuals from the regression of X on Z:

X=A+0Z+ 1y,
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“Partialling Out” Interpretation of the OLS Estimator
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

n A
S Z I'xz,i Yi
b=
Ei rxz,i
where 7, ; are the residuals from the regression of X on Z:
X=A+06Z+ry

In other words, both of these regressions yield identical estimates BAlz

Yy ="+ bihe and y = fo+ fix + oz
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“Partialling Out” Interpretation of the OLS Estimator
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

n A
S Z I'xz,i Yi
b=
Ei rxz,i
where 7, ; are the residuals from the regression of X on Z:
X=A+06Z+ry

In other words, both of these regressions yield identical estimates BAlz

Yy ="+ bihe and y = fo+ fix + oz

@ ¢ is correlation between X and Z.
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“Partialling Out” Interpretation of the OLS Estimator
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

n A
Bl N Z,‘ I'xz,i Yi
- n o
Zi rxz,i
where 7, ; are the residuals from the regression of X on Z:

X=A+6Z+r,

In other words, both of these regressions yield identical estimates BAlz

y=r90+Pife and y=Fo+ fix + foz
@ ¢ is correlation between X and Z. What is our estimator 31 if 6 =07

n A
a N A SRV
rxz:x—)\:x,-—)_( SO 61:%:
i xz,i
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“Partialling Out” Interpretation of the OLS Estimator
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

n A
Bl N Z,‘ I'xz,i Yi
- n o
Zi rxz,i
where 7, ; are the residuals from the regression of X on Z:

X=A+6Z+r,

In other words, both of these regressions yield identical estimates BAlz

Yy ="+ bihe and y = fo+ fix + oz

@ ¢ is correlation between X and Z. What is our estimator 31 if 6 =07

n A n -
Iy = X — 3\ = Xj — X SO 61 = Zi :sz”y' = Zi (X’ X)yl

Zi rxz,i Z?(Xi - )?)2

@ That is, same as the simple regresson of Y on X alone.
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Origin of the Partial Out Recipe
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

B Z rxz i y,
1= "—no
ZI rxz,l
where 7, ; are the residuals from the regression of X on Z:
X=A+6Z+ry

In other words, both of these regressions yield identical estimates B

Yy ="+ bihe and y = fo+ fix + foz
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Origin of the Partial Out Recipe
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

B Z rxz i y,
1= "—no
ZI rxz,l
where 7, ; are the residuals from the regression of X on Z:
X=A+6Z+ry

In other words, both of these regressions yield identical estimates B

Yy ="+ bihe and y = fo+ fix + foz

@ § measures the correlation between X and Z.
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Origin of the Partial Out Recipe
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

B Z rxz i y,
1= "—no
ZI rXZ,I
where 7, ; are the residuals from the regression of X on Z:
X=A+6Z+ry

In other words, both of these regressions yield identical estimates B
y=r0+Pihe and y= o+ fix+ oz

@ § measures the correlation between X and Z.

@ Residuals 7, are the part of X that is uncorrelated with Z. Put differently,
fxz is X, after the effect of Z on X has been partialled out or netted out.
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Origin of the Partial Out Recipe
Assume Y = By + 81X + 52Z + u. Another way to write the OLS estimator is:

B Z rxz i y,
1— "—n~o»
ZI r)gz,l
where 7, ; are the residuals from the regression of X on Z:
X=A+6Z+ry

In other words, both of these regressions yield identical estimates ﬁAl:

Yy ="+ bihe and y = fo+ fix + foz

@ § measures the correlation between X and Z.

@ Residuals 7, are the part of X that is uncorrelated with Z. Put differently,
fxz is X, after the effect of Z on X has been partialled out or netted out.

@ Can use same equation with k explanatory variables; 7, will then come from
a regression of X on all the other explanatory variables.

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 60 / 138



OLS assumptions for unbiasedness
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OLS assumptions for unbiasedness

@ When we have more than one independent variable, we need the
following assumptions in order for OLS to be unbiased:
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OLS assumptions for unbiasedness

@ When we have more than one independent variable, we need the
following assumptions in order for OLS to be unbiased:

@ Linearity
Yi = Bo+ b1 Xi + B2Z; + uj
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OLS assumptions for unbiasedness

@ When we have more than one independent variable, we need the
following assumptions in order for OLS to be unbiased:

@ Linearity
Yi = Bo+ B1Xi + B2Z; + u;

@ Random/iid sample
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OLS assumptions for unbiasedness

@ When we have more than one independent variable, we need the
following assumptions in order for OLS to be unbiased:

@ Linearity
Yi = Bo+ B1Xi + B2Z; + u;

@ Random/iid sample
© No perfect collinearity
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OLS assumptions for unbiasedness

@ When we have more than one independent variable, we need the
following assumptions in order for OLS to be unbiased:

@ Linearity
Yi = Bo+ B1Xi + B2Z; + u;

@ Random/iid sample
© No perfect collinearity
@ Zero conditional mean error

Elui|Xi, Zi] =0
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New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no
exactly linear relationships among the explanatory variables.

@ Two components
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New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no
exactly linear relationships among the explanatory variables.

@ Two components

@ Both X; and Z; have to vary.
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New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no
exactly linear relationships among the explanatory variables.

@ Two components

@ Both X; and Z; have to vary.
@ Z; cannot be a deterministic, linear function of X;.
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New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no
exactly linear relationships among the explanatory variables.

@ Two components

@ Both X; and Z; have to vary.
@ Z; cannot be a deterministic, linear function of X;.

@ Part 2 rules out anything of the form:

Z,-:a+bX,-
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New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no
exactly linear relationships among the explanatory variables.

@ Two components

@ Both X; and Z; have to vary.
@ Z; cannot be a deterministic, linear function of X;.

@ Part 2 rules out anything of the form:
Z,' =a-+ bX,'

@ Notice how this is linear (equation of a line) and there is no error, so
it is deterministic.
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New assumption

Assumption 3: No perfect collinearity

(1) No explanatory variable is constant in the sample and (2) there are no
exactly linear relationships among the explanatory variables.

@ Two components

@ Both X; and Z; have to vary.
@ Z; cannot be a deterministic, linear function of X;.

@ Part 2 rules out anything of the form:
Z,' =a+ bX,'

@ Notice how this is linear (equation of a line) and there is no error, so
it is deterministic.

@ What's the correlation between Z; and X;? 1!
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Perfect collinearity example (1)

@ Simple example:
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Perfect collinearity example (1)

@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
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Perfect collinearity example (1)
@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.
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Perfect collinearity example (1)

@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.

o But, clearly we have the following:

Zi=1-X;
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Perfect collinearity example (1)

@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.

o But, clearly we have the following:
Zi=1-X;

@ These two variables are perfectly collinear.
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Perfect collinearity example (1)

@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.

o But, clearly we have the following:
Zi=1-X;

@ These two variables are perfectly collinear.
@ What about the following:
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Perfect collinearity example (1)

@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.

o But, clearly we have the following:
Zi=1-X;

@ These two variables are perfectly collinear.
@ What about the following:

» X; = income
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Perfect collinearity example (1)

@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.

o But, clearly we have the following:
Zi=1-X;

@ These two variables are perfectly collinear.
@ What about the following:

» X; = income
> Z,' = Xi2
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Perfect collinearity example (1)

@ Simple example:

» X; = 1if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.

o But, clearly we have the following:
Zi=1-X;

@ These two variables are perfectly collinear.
@ What about the following:

» X; = income
> Z,' = Xi2

@ Do we have to worry about collinearity here?
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Perfect collinearity example (1)

@ Simple example:

» X; =1 if a country is not in Africa and 0 otherwise.
» Z; =1 if a country is in Africa and 0 otherwise.

o But, clearly we have the following:
Zi=1-2X;
@ These two variables are perfectly collinear.
@ What about the following:
» X; = income
> Z,' = Xi2
@ Do we have to worry about collinearity here?

@ No! Because while Z; is a deterministic function of X;, it is not a
linear function of X;.
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R and perfect collinearity

@ R, and all other packages, will drop one of the variables if there is
perfect collinearity:
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R and perfect collinearity

@ R, and all other packages, will drop one of the variables if there is
perfect collinearity:
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R and perfect collinearity

##
#i#
#it
#i#
#i
#i
#i#
#i#
#i
##
#i#
#i
#i#

perfect collinearity:

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t])
(Intercept) 8.71638 0.08991 96.941 < 2e-16 **x

africa -1.36119 0.16306 -8.348 4.87e-14 *xx*
nonafrica NA NA NA NA

Signif. codes: O ’**x’ 0.001 ’**x’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1
Residual standard error: 0.9125 on 146 degrees of freedom

(15 observations deleted due to missingness)
Multiple R-squared: 0.3231, Adjusted R-squared: 0.3184
F-statistic: 69.68 on 1 and 146 DF, p-value: 4.87e-14

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018

@ R, and all other packages, will drop one of the variables if there is

64 /138



Perfect collinearity example (Il)

@ Another example:
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Perfect collinearity example (Il)

@ Another example:

» X; = mean temperature in Celsius
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Perfect collinearity example (Il)

@ Another example:

» X; = mean temperature in Celsius
» Z; = 1.8X; 4+ 32 (mean temperature in Fahrenheit)
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Perfect collinearity example (Il)

@ Another example:

» X; = mean temperature in Celsius
» Z; = 1.8X; 4+ 32 (mean temperature in Fahrenheit)
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Perfect collinearity example (Il)

@ Another example:

» X; = mean temperature in Celsius
» Z; = 1.8X; 4+ 32 (mean temperature in Fahrenheit)

## (Intercept) meantemp meantemp.f
## 10.8454999 -0.1206948 NA
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OLS assumptions for large-sample inference
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OLS assumptions for large-sample inference

For large-sample inference and calculating SEs, we need the two-variable
version of the Gauss-Markov assumptions:
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OLS assumptions for large-sample inference

For large-sample inference and calculating SEs, we need the two-variable
version of the Gauss-Markov assumptions:

@ Linearity
Yi = Bo+ B1Xi + B2Z; + u;

@ Random/iid sample
© No perfect collinearity

@ Zero conditional mean error

E[U,"Xi, Z,'] = 0
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OLS assumptions for large-sample inference

For large-sample inference and calculating SEs, we need the two-variable

version of the Gauss-Markov assumptions:

@ Linearity
Yi = Bo+ B1Xi + B2Z; + u;

@ Random/iid sample
© No perfect collinearity

@ Zero conditional mean error

E[U,"Xi, Z,'] = 0

© Homoskedasticity
var[u;| Xi, Z;] = o2
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Inference with two independent variables in large samples

@ We have our OLS estimate 31
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Inference with two independent variables in large samples

@ We have our OLS estimate Bl
@ We have an estimate of the standard error for that coefficient, SE[31].
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Inference with two independent variables in large samples

@ We have our OLS estimate Bl
@ We have an estimate of the standard error for that coefficient, SE[31].
@ Under assumption 1-5, in large samples, we'll have the following:

/31 B1

~ N(0,1
SE[51] 01

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018 67 / 138



Inference with two independent variables in large samples

@ We have our OLS estimate Bl
@ We have an estimate of the standard error for that coefficient, SE[31].
@ Under assumption 1-5, in large samples, we'll have the following:

/31 B1
SE[ﬂl]
@ The same holds for the other coefficient:

By — Ba N
SE[B]

~ N(0,1)

N(0,1)
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Inference with two independent variables in large samples

We have our OLS estimate Bl
We have an estimate of the standard error for that coefficient, SE[f1].

°
@ Under assumption 1-5, in large samples, we'll have the following:
/31 A N(0, 1)
SE[B1]
@ The same holds for the other coefficient:
52 P2 N(O, 1)
SE[B2]

@ Inference is exactly the same in large samples!
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Inference with two independent variables in large samples

We have our OLS estimate 31
We have an estimate of the standard error for that coefficient, SE[f1].

@ Under assumption 1-5, in large samples, we'll have the following:
hob N(0,1)
SE[4]
@ The same holds for the other coefficient:
B2=P2 o, 1)
SE[B]
@ Inference is exactly the same in large samples!
@ Hypothesis tests and Cls are good to go
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Inference with two independent variables in large samples

@ We have our OLS estimate 31
@ We have an estimate of the standard error for that coefficient, SE[31].
@ Under assumption 1-5, in large samples, we'll have the following:

B — B
SE[B1]

~ N(0,1)

The same holds for the other coefficient:

By — Ba
SE[B]

~ N(0,1)

Inference is exactly the same in large samples!
Hypothesis tests and Cls are good to go
The SE’s will change, though
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OLS assumptions for small-sample inference
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OLS assumptions for small-sample inference
For small-sample inference, we need the Gauss-Markov plus Normal errors:
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OLS assumptions for small-sample inference
For small-sample inference, we need the Gauss-Markov plus Normal errors:

@ Linearity
Yi = Bo + p1Xi + f2Z; + uj

@ Random/iid sample
© No perfect collinearity

@ Zero conditional mean error
Elui|Xi, Zi] =0

© Homoskedasticity
var[u,—|X,-, Z,'] = 0’3
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OLS assumptions for small-sample inference

For small-sample inference, we need the Gauss-Markov plus Normal errors:

@ Linearity
Yi = Bo + p1Xi + f2Z; + uj

@ Random/iid sample
© No perfect collinearity

@ Zero conditional mean error
Elui|Xi, Zi] =0
© Homoskedasticity
var[u,—|X,-, Z,'] = 0’3
@ Normal conditional errors
2
u; ~ N(O, O’u)
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Inference with two independent variables in small samples

@ Under assumptions 1-6, we have the following small change to our
small-n sampling distribution:

/31 B ;
SE[B1]
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Inference with two independent variables in small samples

@ Under assumptions 1-6, we have the following small change to our
small-n sampling distribution:

/31 B ;
SE[ﬂl]

@ The same is true for the other coefficient:
B2 — B

——— ~ tp-3
SE[Ba]
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Inference with two independent variables in small samples

@ Under assumptions 1-6, we have the following small change to our
small-n sampling distribution:

/31 B ;
SE[B1]

@ The same is true for the other coefficient:

Ba — Ba

——— ~ tp-3
SE[Ba]

o Why n— 37
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Inference with two independent variables in small samples

@ Under assumptions 1-6, we have the following small change to our
small-n sampling distribution:

51 B ;
SE[B1]

@ The same is true for the other coefficient:
B2 — B
—_— =, tn—3
SE[Ba]

o Why n— 37

» We've estimated another parameter, so we need to take off another
degree of freedom.
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Inference with two independent variables in small samples

@ Under assumptions 1-6, we have the following small change to our
small-n sampling distribution:

51 B _—
SE[B1]

@ The same is true for the other coefficient:

Ba — Ba
—_ = 1.',,_3

SE[B]
o Why n— 37

» We've estimated another parameter, so we need to take off another
degree of freedom.

@ ~~ small adjustments to the critical values and the t-values for our
hypothesis tests and confidence intervals.
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© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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@ Fun With Red and Blue
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Red State Blue State
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Red and Blue States

2004 election
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Rich States are More Democratic

Republican vote by state in 2004
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But Rich People are More Republican

Bush vote in 2004 by income 2006 House exit polls

70%
1
70%
|
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50%
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Vote share for Bush
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1
Republican vote share

30%
1

30%
|

g
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Paradox Resolved

McCain vote by income in a poor, middle—income, and rich state

Miss.

75%

Ohio

Conn.

Probability of voting for McCain
50%

25%

(p'oor) (ricH)
Voter's income
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If Only Rich People Voted, it Would Be a Landslide

State winners in 2008 State winners in 2008 State winners in 2008
(incomes incomes over $150,000) (incomes $75-150,000) (incomes $40-75,000)

State winners in 2008 State winners in 2008
(incomes $20-40,000) (incomes under $20,000)

by Gy

Stewart (Princeto




A Possible Explanation

Average ideologies of different groups of voters

S
ﬁ — Middle
s Republican States
2
o
© Poor voters
Rich voters
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Where We've Been and Where We're Going...
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Where We've Been and Where We're Going...
o Last Week

» mechanics of OLS with one variable
» properties of OLS

@ This Week
» Monday:

* adding a second variable
* new mechanics

» Wednesday:

* omitted variable bias
* multicollinearity
* interactions

o Next Week
» multiple regression
e Long Run
» probability — inference — regression — causal inference

Questions?
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© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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@ Omitted Variables
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Remember This?

Gauss-Markov (BLUE) Classical LM (BUE)

Identification Unbiasedness

Small-Sample Inference
(tand F)

Asymptotic Inference

Data Description Consistency (zand ¢?)

Variation in X Variation in X Variation in X —{ Variation in X

Random Sampling Random Sampling Random Sampling

Linearity in
Parameters

Linearity in
Parameters

Linearity in
Parameters

Zero Conditional
Mean

Zero Conditional
Mean

Zero Conditional
Mean

i 1 i |

Homoskedasticity Homoskedasticity

Normality of Errors

1+ 1 1 1
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Unbiasedness revisited

@ True model:
Yi = Bo+ B1Xi + BoZi + u;
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Unbiasedness revisited

@ True model:
Yi = Bo+ b1 Xi + foZi + uj

@ Assumptions 1-4 = we get unbiased estimates of the coefficients
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Unbiasedness revisited

@ True model:
Yi = Bo+ b1 Xi + foZi + uj

@ Assumptions 1-4 = we get unbiased estimates of the coefficients
@ What happens if we ignore the Z; and just run the simple linear
regression with just X;?
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Unbiasedness revisited

@ True model:
Yi = Bo+ b1 Xi + foZi + uj

@ Assumptions 1-4 = we get unbiased estimates of the coefficients

@ What happens if we ignore the Z; and just run the simple linear
regression with just X;?
@ Misspecified model:

Yi=PBo+iXi+u  uf =Pz + u
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Unbiasedness revisited

@ True model:
Yi = Bo+ b1 Xi + foZi + uj

@ Assumptions 1-4 = we get unbiased estimates of the coefficients

@ What happens if we ignore the Z; and just run the simple linear
regression with just X;?

@ Misspecified model:

Yi=PBo+iXi+u  uf =Pz + u

o [ is the alternative estimator for 3; when we control only for X;.
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Unbiasedness revisited

@ True model:
Yi = Bo+ b1 Xi + foZi + uj

Assumptions 1-4 = we get unbiased estimates of the coefficients
What happens if we ignore the Z; and just run the simple linear
regression with just X;?

@ Misspecified model:
Yi = Po+ b1 Xi + u} ui = PaZi + u;
° 51 is the alternative estimator for 51 when we control only for X;.

@ OLS estimates from the misspecified model:

Y, = Bo + B X
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u
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Omitted Variable Bias: Simple Case

True Population Model:
Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u
Underspecified Model that we use:

Voted@blican = Bo + 31Watch Fox News
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u

Underspecified Model that we use:

Voted@blican = Bo + 31Watch Fox News

Q: Which statement is correct?
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u

Underspecified Model that we use:

Voted@blican = Bo + 31Watch Fox News

Q: Which statement is correct?
0 51> E[3]
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u

Underspecified Model that we use:

Voted@blican = Bo + 31Watch Fox News

Q: Which statement is correct?
0 51> E[3]
Q@ /51 < E[p]
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u

Underspecified Model that we use:

Voted@blican = Bo + 31Watch Fox News

Q: Which statement is correct?
0 51> E[3]

@ B < E[f]

@ p1 = E[A]
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u

Underspecified Model that we use:

Voted@blican = Bo + B1Watch Fox News

Q: Which statement is correct?
Q b1 > E[B]
@ B < E[f]
@ p1 = E[A]
Q Can't tell
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Omitted Variable Bias: Simple Case

True Population Model:

Voted Republican = 5y + 81 Watch Fox News + 3>Strong Republican + u

Underspecified Model that we use:

Votedﬁep\ublican = Bo + 31Watch Fox News

Q: Which statement is correct?
Q b1 > E[B]

@ B < E[f]

@ p1 = E[A]

Q Can't tell

Answer: /31 is upward biased since being a strong republican is positively
correlated with both watching fox news and voting republican. We have

/1 < E[f].
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Omitted Variable Bias: Simple Case
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Omitted Variable Bias: Simple Case

True Population Model:

Survival = By + S1Hospitalized + SoHealth + u
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Omitted Variable Bias: Simple Case

True Population Model:
Survival = By + S1Hospitalized + SoHealth + u
Under-specified Model that we use:

Survival = fo + /3 Hospitalized
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Omitted Variable Bias: Simple Case

True Population Model:

Survival = By + S1Hospitalized + SoHealth + u

Under-specified Model that we use:

Survival = fo + /3 Hospitalized

Q: Which statement is correct?
Q b1 > E[fi]
@ 51 < E[f]
@ p1 = E[A]
Q Can't tell
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Omitted Variable Bias: Simple Case

True Population Model:

Survival = By + S1Hospitalized + SoHealth + u

Under-specified Model that we use:

Survival = fo + /1 Hospitalized
Q: Which statement is correct?
Q b1 > E[fi]
@ b1 < E[B]
@ p1 = E[A]
Q Can't tell

Answer: The negative coefficient /31 is downward biased compared to the
true 81 so B1 > E[f1]. Being hospitalized is negatively correlated with
health, and health is positively correlated with survival.
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Omitted Variable Bias: Simple Case
True Population Model:

Y = Bo+ 1 X1+ B2 Xo + u
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Omitted Variable Bias: Simple Case
True Population Model:

Y = Bo+ 1 X1+ B2 Xo + u

Underspecified Model that we use:

¥ = Bo+ Pixi
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Omitted Variable Bias: Simple Case

True Population Model:

Y =080+ BiXi+ BoXo+u
Underspecified Model that we use:
¥ = Bo+ bz
We can show that for the same sample, the relationship between 5’1 and 31 is:
Pr=P1+pBd

where:
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Omitted Variable Bias: Simple Case

True Population Model:

Y =080+ BiXi+ BoXo+u
Underspecified Model that we use:
¥ = Bo+ bz
We can show that for the same sample, the relationship between 31 and 31 is:
Pr=P1+pBd
where:

° ‘E is the slope of a regression of x, on x;. If 6 > 0 then cor(xy, x2) > 0 and if
0 < 0 then cor(xy, x2) < 0.
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Omitted Variable Bias: Simple Case
True Population Model:

Y =080+ BiXi+ BoXo+u
Underspecified Model that we use:
¥ = Bo+ bz
We can show that for the same sample, the relationship between 51 and 31 is:
Pr=P1+pBd
where:

° ‘E is the slope of a regression of x, on x;. If 6 > 0 then cor(xy, x2) > 0 and if
0 < 0 then cor(xy, x2) < 0.

@ [, is from the true regression and measures the relationship between x, and
vy, conditional on xi.
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Omitted Variable Bias: Simple Case

True Population Model:

Y =080+ BiXi+ BoXo+u
Underspecified Model that we use:
¥ = Bo+ bz
We can show that for the same sample, the relationship between 51 and 31 is:
Pr=P1+pBd
where:

° ‘E is the slope of a regression of x, on x;. If 6 > 0 then cor(xy, x2) > 0 and if
0 < 0 then cor(xy, x2) < 0.

@ [, is from the true regression and measures the relationship between x, and
vy, conditional on xi.

Q. When will 3; = 3;?
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Omitted Variable Bias: Simple Case
True Population Model:
Y =080+ BiXi+ BoXo+u
Underspecified Model that we use:
¥ = Bo+ bz
We can show that for the same sample, the relationship between 51 and 31 is:
Pr=P1+pBd
where:

° ‘E is the slope of a regression of x, on x;. If 6 > 0 then cor(xy, x2) > 0 and if
0 < 0 then cor(xy, x2) < 0.

@ [, is from the true regression and measures the relationship between x, and
vy, conditional on xj.

Q. When will 3; = 3;?
A lf6=0o0r 5, =0.
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Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

Bl = 51-1-52'5
E[B1| X] =
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Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

Bl = 51-1-52'5
E[Br | X] E[f1+ 25| X]
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Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:
P = Pi+52-0
E[B1| X] E[B1+ B2-0| X]
= E[Bl | X]+ E[Bz | X] -5 (5 nonrandom given x)
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Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

Bl = Bl + Bg 5
E[Br | X] = E[Bi+ 58] X]
= E[Bl | X]+ E[Bz | X] -5 (5 nonrandom given x)
= B1+ B2 b (given assumptions 1-4)
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Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:

Bl = Bl + Bz 5
E[Br | X] = E[Bi+ 58] X]
= E[Bl | X]+ E[Bz | X] -5 (5 nonrandom given x)
= B1+ B2 b (given assumptions 1-4)

So

Bias[f1 | X] = E[B1 | X] = B1 =P 0
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Omitted Variable Bias: Simple Case

We take expectations to see what the bias will be:
Bl = Bl + Bz 5
E[B1 | X] E[p1+ 52-0| X]
= E[Bl | X]+ E[Bz | X] -5 (5 nonrandom given x)
= B1+ B2 b (given assumptions 1-4)

So
Bias[f1 | X] = E[B1 | X] = B1 =P 0

So the bias depends on the relationship between x, and xy, our 5, and the
relationship between x and y, our 3,.
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Omitted Variable Bias: Simple Case

Formula:

Bias[f1 | X] =26
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Omitted Variable Bias: Simple Case

Formula:
Bias[f1 | X] =26
Cinelli and Hazlett (2018) describe this as:

impact times its imbalance

Stewart (Princeton) Week 6: Two Regressors October 15, 17, 2018

87 /138



Omitted Variable Bias: Simple Case

Formula:
Bias[f1 | X] =26
Cinelli and Hazlett (2018) describe this as:

impact times its imbalance

@ impact is how looking at different subgroups of the unobserved
confounder x» ‘impacts’ our best linear prediction of the outcome.
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Omitted Variable Bias: Simple Case

Formula:
Bias[f1 | X] =26
Cinelli and Hazlett (2018) describe this as:

impact times its imbalance

@ impact is how looking at different subgroups of the unobserved
confounder x» ‘impacts’ our best linear prediction of the outcome.

@ imbalance is how the expectation of the unobserved confounder x»
varies across levels of xi.
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Omitted Variable Bias: Simple Case

Direction of the bias of 3; compared to /31 is given by:

‘ COV(Xl,Xg) >0 COV(X]_,XQ) <0 COV(X1,X2) =0

B2 >0 Positive bias Negative Bias No bias

B2 < 0| Negative bias Positive Bias No bias

Bo=0 No bias No bias No bias
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Omitted Variable Bias: Simple Case

Direction of the bias of 3; compared to /31 is given by:

‘ COV(Xl,Xz) >0 COV(X]_,XQ) <0 COV(X1,X2) =0

B2 >0 Positive bias Negative Bias No bias
B2 < 0| Negative bias Positive Bias No bias
Bo=0 No bias No bias No bias

Further points:

@ Magnitude of the bias matters too
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Omitted Variable Bias: Simple Case

Direction of the bias of 3; compared to /31 is given by:

‘ COV(Xl,Xz) >0 COV(X]_,XQ) <0 COV(X1,X2) =0

B2 >0 Positive bias Negative Bias No bias
B2 < 0| Negative bias Positive Bias No bias
Bo=0 No bias No bias No bias

Further points:

@ Magnitude of the bias matters too

@ If you miss an important confounder, your estimates are biased and

inconsistent.
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Omitted Variable Bias: Simple Case

Direction of the bias of 31 compared to (3 is given by:

| cov(X1,X2) >0 cov(Xy,X2) <0 cov(Xy,Xp) =0

B2 >0 Positive bias Negative Bias No bias
B2 < 0| Negative bias Positive Bias No bias
B> =0 No bias No bias No bias

Further points:
@ Magnitude of the bias matters too

@ If you miss an important confounder, your estimates are biased and
inconsistent.

@ In the more general case with more than two covariates the bias is
more difficult to discern. It depends on all the pairwise correlations.
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Including an Irrelevant Variable: Simple Case

Stewart (Princeton) Week 6: Two Regressors



Including an Irrelevant Variable: Simple Case

True Population Model:
y = Bo+ Bix1 + Baxo +u where [ =0

and Assumptions |-V hold.
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Including an Irrelevant Variable: Simple Case

True Population Model:
y = Bo+ Bix1 + Baxo +u where [ =0

and Assumptions |-V hold.

Overspecified Model that we use:

¥ = Bo+ Bix1 + Pax
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Including an Irrelevant Variable: Simple Case

True Population Model:

y = Bo+ Pix1+ Paxo +u where [ =0

and Assumptions |-V hold.

Overspecified Model that we use:

¥ = Bo+ Bix1 + Pax

Q: Which statement is correct?
0 p1 > E[f]
@ p1 < E[A]
0 51 = E[B]
Q Can't tell
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Including an Irrelevant Variable: Simple Case
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Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions |-V, we have:

E[Bj] = B
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Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions |-V, we have:
E[B)] = 8;
for all values of f3;. So, if o =0, we get

E[Bo] = Bo, E[$1] = B1, E[B2] =0
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Including an Irrelevant Variable: Simple Case

Recall: Given Assumptions |-V, we have:
E[B)] = 8;
for all values of f3;. So, if o =0, we get

E[Bo] = Bo, E[$1] = B1, E[B2] =0

and thus including the irrelevant variable does not generally affect the
unbiasedness. The sampling distribution of 3> will be centered about zero.
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© Two Examples

© Adding a Binary Variable

e Adding a Continuous Covariate
@ Once More With Feeling

© OLS Mechanics and Partialing Out
@ Fun With Red and Blue

@ Onmitted Variables

© Multicollinearity

@ Dummy Variables

@ Interaction Terms

@ Polynomials

@ Conclusion

@ Fun With Interactions
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© Multicollinearity
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Sampling variance for simple linear regression

@ Under simple linear regression, we found that the distribution of the
slope was the following:
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Sampling variance for simple linear regression

@ Under simple linear regression, we found that the distribution of the

slope was the following:

var(f1) = S (X“ X7
i=1\Ai

e Factors affecting the standard errors (the square root of these
sampling variances):
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Sampling variance for simple linear regression

@ Under simple linear regression, we found that the distribution of the
slope was the following:

2
u

Z?:l(xi - 7)2

e Factors affecting the standard errors (the square root of these
sampling variances):
» The error variance o2 (higher conditional variance of Y; leads to bigger

SEs)

-~ o

var(f1) =
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Sampling variance for simple linear regression

@ Under simple linear regression, we found that the distribution of the
slope was the following:

2
~ s

v = S Xy

e Factors affecting the standard errors (the square root of these
sampling variances):

» The error variance o2 (higher conditional variance of Y; leads to bigger

SEs)
» The total variation in X;: 37 (X; — X)? (lower variation in X; leads

to bigger SEs)
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Sampling variation for linear regression with two covariates

@ Regression with an additional independent variable:

2
Oy

o) = R YL 6 X
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Sampling variation for linear regression with two covariates

@ Regression with an additional independent variable:

2
Oy

o) = R YL 6 X

@ Here, R12 is the R? from the regression of X; on Z;:

)?,' = go + 512,-
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Sampling variation for linear regression with two covariates

@ Regression with an additional independent variable:

2
Oy

o) = R YL 6 X

@ Here, R12 is the R? from the regression of X; on Z;:
X; = 00+ 01Z;

o Factors now affecting the standard errors:
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Sampling variation for linear regression with two covariates

@ Regression with an additional independent variable:

2
Oy

o) = R YL 6 X

@ Here, R12 is the R? from the regression of X; on Z;:
X; = 00+ 01Z;

o Factors now affecting the standard errors:

» The error variance (higher conditional variance of Y; leads to bigger
SEs)
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Sampling variation for linear regression with two covariates

@ Regression with an additional independent variable:

2
Oy

o) = Ry YL G X

@ Here, R12 is the R? from the regression of X; on Z;:
X; = 00+ 01Z;

o Factors now affecting the standard errors:

» The error variance (higher conditional variance of Y; leads to bigger
SEs)
» The total variation of X; (lower variation in X; leads to bigger SEs)
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Sampling variation for linear regression with two covariates
@ Regression with an additional independent variable:
~ o2

o) = R YL 6 X

@ Here, R12 is the R? from the regression of X; on Z;:

?,- = 3\0 + ;5\12,-

o Factors now affecting the standard errors:

» The error variance (higher conditional variance of Y; leads to bigger
SEs)

» The total variation of X; (lower variation in X; leads to bigger SEs)

» The strength of the relationship between X; and Z; (stronger
relationships mean higher R? and thus bigger SEs)
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Sampling variation for linear regression with two covariates
@ Regression with an additional independent variable:
—~ o2

o) = R YL 6 X

@ Here, R12 is the R? from the regression of X; on Z;:

?,- = 3\0 + /5\12,-

o Factors now affecting the standard errors:

» The error variance (higher conditional variance of Y; leads to bigger
SEs)

» The total variation of X; (lower variation in X; leads to bigger SEs)

» The strength of the relationship between X; and Z; (stronger
relationships mean higher R? and thus bigger SEs)

@ What happens with perfect collinearity? R12 = 1 and the variances are
infinite.
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Multicollinearity
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Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between
two independent variables in a regression.
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Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between
two independent variables in a regression.

o With multicollinearity, we'll have Rf ~ 1, but not exactly.
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Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between
two independent variables in a regression.

o With multicollinearity, we'll have Rf ~ 1, but not exactly.

@ The stronger the relationship between X; and Z;, the closer the R12
will be to 1, and the higher the SEs will be:

_ o2
o) = R YL 6 X
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Multicollinearity

Definition

Multicollinearity is defined to be high, but not perfect, correlation between
two independent variables in a regression.

o With multicollinearity, we'll have R12 =~ 1, but not exactly.

@ The stronger the relationship between X; and Z;, the closer the R12
will be to 1, and the higher the SEs will be:
2
-~ o
var(p1) = - —
(1= RP) 271 (Xi = X)?

@ Given the symmetry, it will also increase var(ﬁg) as well.
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Intuition for multicollinearity

@ Remember the OLS recipe:

Stewart (Princeton) Week 6: Two Regressors



Intuition for multicollinearity

@ Remember the OLS recipe:

» 1 from regression of Y; on 7y, ;
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Intuition for multicollinearity

@ Remember the OLS recipe:

» (1 from regression of Y; on Fy, ;
> T,i are the residuals from the regression of X; on Z;
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Intuition for multicollinearity

@ Remember the OLS recipe:

» (1 from regression of Y; on Fy, ;
> T,i are the residuals from the regression of X; on Z;

@ Estimated coefficient:

n ~
a Z':l rxz,iYi
ﬁl — ”7—/\2

Zi:l rxz,i
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Intuition for multicollinearity

@ Remember the OLS recipe:

» (1 from regression of Y; on Fy, ;
> T,i are the residuals from the regression of X; on Z;

@ Estimated coefficient:

ﬁl - z:n—/\z

i=1 "xz,i

@ When Z; and X; have a strong relationship, then the residuals will

have low variation
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Intuition for multicollinearity

@ Remember the OLS recipe:

> (1 from regression of Y; on 7y, ;
> Tk, are the residuals from the regression of X; on Z;

o Estimated coefficient:
n ~
o Zi:l rxz,iYi
r="5w 2
i=1"xz,i
@ When Z; and X; have a strong relationship, then the residuals will

have low variation
@ We explain away a lot of the variation in X; through Z;.
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Intuition for multicollinearity

@ Remember the OLS recipe:
> Bl from regression of Y; on ryz i

> Tk, are the residuals from the regression of X; on Z;

@ Estimated coefficient:

a 27:1 7’;(z,iyi
b=
>oin Fz,i
@ When Z; and X; have a strong relationship, then the residuals will
have low variation
@ We explain away a lot of the variation in X; through Z;.
@ Low variation in an independent variable (here, 7, ;) ~> high SEs
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Intuition for multicollinearity

@ Remember the OLS recipe:

> (1 from regression of Y; on 7y, ;
> Tiz,i are the residuals from the regression of X; on Z;

Estimated coefficient:

B\ o 27:1 7’;(z,iyi
D SN2y
i=1"xz,i
@ When Z; and X; have a strong relationship, then the residuals will
have low variation

We explain away a lot of the variation in X; through Z;.
Low variation in an independent variable (here, 7y, ;) ~ high SEs

Basically, there is less residual variation left in X; after “partialling
out” the effect of Z;
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Effects of multicollinearity
@ No effect on the bias of OLS.
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Effects of multicollinearity

@ No effect on the bias of OLS.
@ Only increases the standard errors.
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Effects of multicollinearity

@ No effect on the bias of OLS.
@ Only increases the standard errors.
@ Really just a sample size problem:
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Effects of multicollinearity

@ No effect on the bias of OLS.
@ Only increases the standard errors.
@ Really just a sample size problem:

> If X; and Z; are extremely highly correlated, you're going to need a
much bigger sample to accurately differentiate between their effects.
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Effects of multicollinearity

@ No effect on the bias of OLS.
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@ Really just a sample size problem:
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Effects of multicollinearity

@ No effect on the bias of OLS.
@ Only increases the standard errors.

@ Really just a sample size problem:

» If X; and Z; are extremely highly correlated, you're going to need a
much bigger sample to accurately differentiate between their effects.

ABIGGER BOAT.
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How Do We Detect Multicollinearity?

@ The best practice is to directly compute Cor(X7, X;) before running your
regression.
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How Do We Detect Multicollinearity?

@ The best practice is to directly compute Cor(X7, X;) before running your
regression.

@ But you might (and probably will) forget to do so. Even then, you can
detect multicollinearity from your regression result:
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How Do We Detect Multicollinearity?

@ The best practice is to directly compute Cor(X7, X;) before running your
regression.

@ But you might (and probably will) forget to do so. Even then, you can
detect multicollinearity from your regression result:

> Large changes in the estimated regression coefficients when a predictor
variable is added or deleted
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How Do We Detect Multicollinearity?

@ The best practice is to directly compute Cor(X7, X;) before running your
regression.

@ But you might (and probably will) forget to do so. Even then, you can
detect multicollinearity from your regression result:

> Large changes in the estimated regression coefficients when a predictor
variable is added or deleted

» Lack of statistical significance despite high R?
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How Do We Detect Multicollinearity?

@ The best practice is to directly compute Cor(X7, X;) before running your
regression.

@ But you might (and probably will) forget to do so. Even then, you can
detect multicollinearity from your regression result:

> Large changes in the estimated regression coefficients when a predictor
variable is added or deleted

» Lack of statistical significance despite high R?

» Estimated regression coefficients have an opposite sign from predicted
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How Do We Detect Multicollinearity?

@ The best practice is to directly compute Cor(X7, X;) before running your
regression.

@ But you might (and probably will) forget to do so. Even then, you can
detect multicollinearity from your regression result:

> Large changes in the estimated regression coefficients when a predictor
variable is added or deleted

» Lack of statistical significance despite high R?
» Estimated regression coefficients have an opposite sign from predicted
@ A more formal indicator is the variance inflation factor (VIF):
1

2
1R

VIF(B;) =

which measures how much V[, | X] is inflated compared to a
(hypothetical) uncorrelated data. (where Rj2 is the coefficient of
determination from the partialing out equation)
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