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Where We’ve Been and Where We’re Going...

Last Week
I selection on observables and measured confounding

This Week
I Monday:

F natural experiments
F classical view of instrumental variables

I Wednesday:
F modern view of instrumental variables
F regression discontinuity

The Following Week
I repeated observations and wrap up

Long Run
I probability → inference → regression → causal inference

Questions?
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Unmeasured Confounding

Last week we considered cases of measured confounding

D

X

Y

In this case we block the backdoor path D ← X → Y by conditioning
on X .

What happens in the general case where X is unobserved?

Under selection on unobservables we are going to need a different
approach which we will talk about over the next two weeks.

There is No Free Lunch  we can’t get something for nothing, we
will need new variables, new assumptions and new approaches.

Goal: give you a feel for what is possible, but note that you will need
to do work beyond class if you want to use one of these techniques.
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Approaches to Unmeasured Confounding

Natural Experiments

(today)

Interrupted Time-Series

(today)

Instrumental Variables

(today and Wednesday)

Regression Discontinuity

(Wednesday)

Bounding

Sensitivity Analysis

Front Door Adjustment
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Natural Experiments

Broadly speaking an “experiment” where the treatment is randomized
but the randomization was not controlled by the researcher.

Leverages an exogenous (external to the system) event to measure
the effect of an otherwise endogenous (internal to the system)
phenomenon.

Trickier to analyze than regular experiments
I we ought to be suspicious of randomization we don’t control
I nature may not choose exactly the treatment we want
I not immediately obvious which groups are comparable
I valid comparison may not estimate the causal effect of interest

When available, a useful way to capitalize on randomness in the world
to make causal inferences.

See Dunning (2012) Natural Experiments in the Social Sciences
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Caution on terminology

It is worth nothing that the label “natural experiment” is
perhaps unfortunate. As we shall see, the social and political
forces that give rise to as-if random assignment of interventions
are not generally “natural” in the ordinary sense of that term.
Second, natural experiments are observational studies, not true
experiments, again, because they lack an experimental
manipulation. In sum, natural experiments are neither natural
nor experiments.

—Dunning (2012) pg 16
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Natural Experiment Examples (True Randomization)

Randomness Focus Citation
Vietnam draft labor market Angrist 1990

randomized quotas female leadership in Indian
village council presidencies

Chattopadhyay
& Duflo 2004

randomized term lengths tenure in office on legisla-
tive performance

Dal Bo & Rossi
2010

lottery effect of winnings on polit-
ical attitudes

Doherty, Green
& Gerber 2006

randomized ballot order ballot order effects in CA Ho & Imai
2008
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Natural Experiment Examples (As If Randomization)

Randomness Focus Citation
child abduction by LRA child soldering affecting

political participation
Blattman 2008

election monitor assign-
ment

international election
monitoring on fraud

Hyde 2007

random shelling by drunk
soldiers

indiscriminate violence on
rebellion

Lyall 2009

hurricane study of friendship formu-
lation

Phan and
Airoldi 2015

2006 Israel-Hezbollah war stress on unborn babies Torche and
Shwed 2015

Snowden revelations reading behavior on
wikipedia

Penney 2016

terrorist attacks perception of immigrants Legewie 2013
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Questions to Ask Yourself

From Sekhon and Titiunik (2012) “When Natural Experiments Are
Neither Natural nor Experiments” American Political Science Review

1 “is the proposed treatment-control comparison guaranteed to be valid
by the assumed randomization?”

2 “if not, what is the comparison that is guaranteed by the
randomization, and how does this comparison relate to the
comparison the researcher wishes to make?
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Example: Redistricting
Sekhon and Titiunik 2012 discussion of Ansolabehere et al. 2000

problem: difficult to estimate incumbency
advantage.

proposed solution: redistricting as a natural
experiment

two types of variation: temporal (voting
before and after) and cross-sectional (some
voters move)

key claim: if district is randomly redrawn,
we can attribute voting differences between
new voters in a district and their new
neighbors to a lack of incumbency
advantage

idea is that two groups have same
incumbent, same challenger, same
campaign environment, but different
histories with incumbent
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Example: Redistricting

1) Is the comparison of B’s old voters and B’s new voters guaranteed to be valid if we

assume that voters are redistricted randomly?

I No! only voters in A were subject to randomization
I Natural experiment creates three distinct groups: new voters, new neighbors,

old neighbors and not all comparisons are valid.

2) What comparison is guaranteed to be valid if redistricting is done at random?
I random redistricting guarantees that old neighbors and new voters are

comparable.
I need to find a new design (see Sekhon and Titiunik 2012 for more)
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Pitfalls

We still really need theory to guide our thinking

Understanding the assignment and causal process is extremely
important (was this really random? is the treatment really what we
care about?)

The result only applies to a limited population — is it significant?

Be sure to verify that your “as-if-random” assignment is really
random (e.g. placebo tests, balance tests)

If possible, use sensitivity tests to evaluate susceptibility to
unobserved confounding (e.g. Cinelli and Hazlett 2018)

Convincingly analyzing a natural experiment takes at least as much
careful thought not less!
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random (e.g. placebo tests, balance tests)

If possible, use sensitivity tests to evaluate susceptibility to
unobserved confounding (e.g. Cinelli and Hazlett 2018)

Convincingly analyzing a natural experiment takes at least as much
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Reasons to Be Excited

Now that you know what to look for you may see more natural
experiments out there

Exogenous randomization can help us make credible causal inferences
in places where we never could have run an experiment

It is often pretty easy to communicate these kinds of methods to
non-experts

Salganik (2017) argues that with always-on digital data collection we
will be in better shape moving forward to leverage natural
experiments as the opportunities arise.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 15 / 139



Reasons to Be Excited

Now that you know what to look for you may see more natural
experiments out there

Exogenous randomization can help us make credible causal inferences
in places where we never could have run an experiment

It is often pretty easy to communicate these kinds of methods to
non-experts

Salganik (2017) argues that with always-on digital data collection we
will be in better shape moving forward to leverage natural
experiments as the opportunities arise.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 15 / 139



Reasons to Be Excited

Now that you know what to look for you may see more natural
experiments out there

Exogenous randomization can help us make credible causal inferences
in places where we never could have run an experiment

It is often pretty easy to communicate these kinds of methods to
non-experts

Salganik (2017) argues that with always-on digital data collection we
will be in better shape moving forward to leverage natural
experiments as the opportunities arise.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 15 / 139



Reasons to Be Excited

Now that you know what to look for you may see more natural
experiments out there

Exogenous randomization can help us make credible causal inferences
in places where we never could have run an experiment

It is often pretty easy to communicate these kinds of methods to
non-experts

Salganik (2017) argues that with always-on digital data collection we
will be in better shape moving forward to leverage natural
experiments as the opportunities arise.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 15 / 139



Reasons to Be Excited

Now that you know what to look for you may see more natural
experiments out there

Exogenous randomization can help us make credible causal inferences
in places where we never could have run an experiment

It is often pretty easy to communicate these kinds of methods to
non-experts

Salganik (2017) argues that with always-on digital data collection we
will be in better shape moving forward to leverage natural
experiments as the opportunities arise.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 15 / 139



Interrupted Time Series

A simple construction often used with natural experiment is the
Interrupted Time Series(ITS)

ITS designs convey the basic intuition that when an event abruptly
occurs, we can compare results immediately before and immediately
afterwards.

We can write this as a model:

Yt = f (t) + Dtβ + εt

The key identifying assumption is that the observed values of yt
before the treatment status switches at t∗ can be used to specify f (t)
for the rest of the series used.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 16 / 139



Interrupted Time Series

A simple construction often used with natural experiment is the
Interrupted Time Series(ITS)

ITS designs convey the basic intuition that when an event abruptly
occurs, we can compare results immediately before and immediately
afterwards.

We can write this as a model:

Yt = f (t) + Dtβ + εt

The key identifying assumption is that the observed values of yt
before the treatment status switches at t∗ can be used to specify f (t)
for the rest of the series used.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 16 / 139



Interrupted Time Series

A simple construction often used with natural experiment is the
Interrupted Time Series(ITS)

ITS designs convey the basic intuition that when an event abruptly
occurs, we can compare results immediately before and immediately
afterwards.

We can write this as a model:

Yt = f (t) + Dtβ + εt

The key identifying assumption is that the observed values of yt
before the treatment status switches at t∗ can be used to specify f (t)
for the rest of the series used.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 16 / 139



Interrupted Time Series

A simple construction often used with natural experiment is the
Interrupted Time Series(ITS)

ITS designs convey the basic intuition that when an event abruptly
occurs, we can compare results immediately before and immediately
afterwards.

We can write this as a model:

Yt = f (t) + Dtβ + εt

The key identifying assumption is that the observed values of yt
before the treatment status switches at t∗ can be used to specify f (t)
for the rest of the series used.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 16 / 139



Interrupted Time Series

A simple construction often used with natural experiment is the
Interrupted Time Series(ITS)

ITS designs convey the basic intuition that when an event abruptly
occurs, we can compare results immediately before and immediately
afterwards.

We can write this as a model:

Yt = f (t) + Dtβ + εt

The key identifying assumption is that the observed values of yt
before the treatment status switches at t∗ can be used to specify f (t)
for the rest of the series used.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 16 / 139



Interrupted Time Series Example
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Motivating Instrumental Variables

We saw how to identify and estimate effects under no unmeasured
confounding and just now when nature happens to randomize the
treatment we want.

Are we doomed if neither happens?

Instrumental variables (IV) allow us to exploit an exogenous source of
variation that drives the treatment but does not otherwise affect the
outcome.

If we have an instrument, we can deal with unmeasured confounding
in the treatment-outcome relationship.

It is going to turn out that the same construction will let us deal with
non-compliance in experiments.
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Angrist (1990): Draft lottery as an instrument to study the relationship
between military service and income

https://en.wikipedia.org/wiki/Draft_lottery_(1969)#/media/

File:1969_draft_lottery_photo.jpg
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Graphical Model

Z D

U

Y

exclusion restriction and exogeneity

Notation: Z is the instrument, D is the treatment, and U is the
unmeasured confounder

(Approximate) assumptions (3 of 4)

1) instrument/treatment and instrument/outcome don’t share
unmeasured common causes (exogeneity of the instrument)

2) no direct or indirect effect of the instrument on the outcome not
through the treatment (exclusion restriction)

3) Z affects D (first stage relationship)

We will need one more later which we will come back to.
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Some Examples

Angrist (1990): Draft lottery as an IV for military service (income as
outcome)

Acemoglu et al (2001): settler mortality as an IV for institutional
quality (GDP/capita as outcome)

Levitt (1997): being an election year as IV for police force size (crime
as outcome)

Miguel, Satayanath & Sergenti (2004): lagged rainfall as IV for GDP
per capita effect (outcome is civil war onset).

Kern & Hainmueller (2009): having West German TV reception in
East Berlin as an instrument for West German TV watching (outcome
is support for the East German regime)

Nunn & Wantchekon (2011): historical distance of ethnic group to
the coast as a instrument for the slave raiding of that ethnic group
(outcome are trust attitudes today)
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Core Idea

The world has randomized something (the instrument)
just maybe not the thing you want (the treatment).

Subject to four assumptions you may be able to get
(approximately) what you want anyway.
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Non-Compliance Motivation for Instrumental Variables

Problem

Often we cannot force subjects to take specific treatments

Units choosing to take the treatment may differ in unobserved
characteristics from units that refrain from doing so

Example: Non-compliance in JTPA Experiment
Not Enrolled Enrolled Total
in Training in Training

Assigned to Control 3,663 54 3,717

Assigned to Training 2,683 4,804 7,487

Total 6,346 4,858 11,204
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Two Views on Instrumental Variables

1 Traditional Econometric Framework
I strong assumptions

F constant effects
F linearity in case of a continuous treatment

I Identifies the average treatment effect

2 Potential Outcome Model of IV
I Weaker assumptions

F monotonicity
F allows heterogeneous treatment effect

I Only identifies Local Average Treatment Effect (LATE)
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The Problem (informal)

Suppose want to know the average effect of X on Y.

Two Problems:

1 We may not be able to measure all variables that affect both X and Y.

2 We may not be able to measure X without error.

Both of these conditions will induce bias in our effect estimates.
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The Problem (formal)

Assume a linear structural equation model but suppose that the classical
“exogeneity” condition (E [Ui |Xi ] = 0) does not hold:

Yi = β0 + β1Xi + Ui

This can happen for a number of reasons including:

omitted variables (which is a common cause of X and Y )

measurement error in X

included variables (post-treatment or M-structures)

simultaneous equations (endogenous feedback loops)

We will typically formulate the problem as resulting from omitted
confounding.
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A Potential Solution: Instrumental Variables (IV)

Yi = β0 + β1Xi + Ui

E [Ui |Xi ] 6= 0

Xi = γ0 + γ1Zi + Ui

E [Ui |Zi ] = 0

Cov [Xi ,Zi ] 6= 0

●

X
●

Y

●

U

●

Z

γ1 β1
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Commonly Used Instrumental Variables

Assigned status in randomized
trials with noncompliance

I assigned vs. enrolled in job
training

I “received” versus “read” the
mailing in the social pressure
experiment

Rainfall, earthquakes, ...

...

●

X
●

Y

●

U

●

Z γ1 β1
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Z γ1 β1
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The IV Estimator

With our assumed model,

Yi = β0 + β1Xi + Ui

Xi = γ0 + γ1Zi + Ui

Assuming the model is true,

regressing X on Z consistently
estimates γ1

regressing Y on Z consistently
estimates γ1 · β1

γ̂1·β1
γ̂1

consistently estimates
γ1·β1
γ1

= β1

●

X
●

Y

●

U

●

Z

γ1 β1
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Preview: The Problem of Weak Instruments

Notice that the IV technique uses a
ratio γ1·β1

γ1
= β1.

Dividing by zero (or near zero) makes
things blow up.

Therefore, if the instrument is weak
(γ1 ≈ 0), and our estimates of γ1

and γ1 · β1 are not perfect, we can
get inaccurate estimates of β1:

medium sample size ⇒ high
variance

small violations of assumptions
⇒ large bias
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Preview of Modern Approaches: Relaxing Constant Effects

Suppose we believe that the effects
of Z and X are different for different
units.

Yi = β0i + β1iXi + Ui

Xi = γ0i + γ1iZi + Vi

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 32 / 139



Preview of Modern Approaches: Relaxing Constant Effects

Suppose we believe that the effects
of Z and X are different for different
units.

Yi = β0i + β1iXi + Ui

Xi = γ0i + γ1iZi + Vi

●

X
●

Y

●

U

●

Z

γ1i β1i

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 32 / 139



IV Estimator with Heterogeneous Effects

●

X
●

Y

●

U

●

Z

γ1i β1i

regressing X on Z now only
identifies γ1

regressing Y on Z identifies
only γ1 · β1

γ1 · β1 6= γ1 · β1

Therefore the IV estimator does
not estimate even the average

β1 (γ1·β1
γ1
6= β1)

With additional assumptions (γi1 ≥ 0
for all i), the IV estimator identifies a
weighted average effect of X on Y
according to the effects of Z on X .
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Why IV?
Let’s have a small notation change, and consider OLS:

True model: Y = α0 + α1D + u2
I D is the treatment variable (e.g. training)
I D may be endogenous so that Cov [D, u2] 6= 0

Recall that the OLS estimator for α1 is given by:

α̂1,OLS =
Ĉov [Y ,D]

V̂ar [D]
=

Ĉov [α0 + α1D + u2,D]

V̂ar [D]

α̂1,OLS =
α1V̂ar [D] + Ĉov [D, u2]

V̂ar [D]

α̂1,OLS = α1 +
Ĉov [D, u2]

V̂ar [D]

E [α̂1,OLS ] = α1 + E [
Ĉov [D, u2]

V̂ar [D]
]

so bias depends on correlation between u2 and D
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V̂ar [D]

α̂1,OLS = α1 +
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Ĉov [D, u2]

V̂ar [D]
]

so bias depends on correlation between u2 and D

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 35 / 139



Why IV?
Let’s have a small notation change, and consider OLS:

True model: Y = α0 + α1D + u2
I D is the treatment variable (e.g. training)
I D may be endogenous so that Cov [D, u2] 6= 0

Recall that the OLS estimator for α1 is given by:

α̂1,OLS =
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Instrumental Variable Estimator Assumptions

Imagine we have two equations:

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

I Z is our instrumental variable (e.g. randomized encouragement)
I π1 is effect of Z on D

Instrumental Variable Assumptions:

1 π1 6= 0 so Z creates some variation in D
(called first stage or relevance)

2 Z is exogenous meaning Cov [u1,Z ] = 0 and Cov [u2,Z ] = 0. The
latter is an exclusion restriction, it implies that the only reason why Z
is correlated with Y is through the correlation between Z and D. So
Z has no independent effect on Y .
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Instrumental Variable Estimator Assumptions

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

IV assumptions: Cov [u1,Z ] = 0, π1 6= 0, and Cov [u2,Z ] = 0

Based on these IV assumptions we can identify three effects:

1 The first stage effect: Effect of Z on D.

2 Reduced form or intent-to-treat effect: Effect of Z on Y .

3 The instrumental variable treatment effect: Effect of D on Y , using
only the exogenous variation in D that is induced by Z .
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First Stage Effect

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

IV assumptions: Cov [u1,Z ] = 0, π1 6= 0, and Cov [u2,Z ] = 0

First stage effect: Z on D

π̂1 =
Ĉov [D,Z ]

V̂ [Z ]
=

Ĉov [π0 + π1Z + u1,Z ]

V̂ [Z ]

π̂1 =
π1Ĉov [Z ,Z ] + Ĉov [Z , u1]

V̂ [Z ]

π̂1 = π1 +
Ĉov [Z , u1]

V̂ [Z ]

E [π̂1] = π1 + E

[
Ĉov [Z , u1]

V̂ [Z ]

]
= π1

π̂1 is consistent since Cov [u1,Z ] = 0
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Ĉov [π0 + π1Z + u1,Z ]

V̂ [Z ]

π̂1 =
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Ĉov [Z , u1]

V̂ [Z ]

E [π̂1] = π1 + E

[
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First Stage Effect in JTPA

First stage effect: Z on D: π̂1 = Ĉov [D,Z ]

V̂ [Z ]
R Code

> cov(d[,c("earnings","training","assignmt")])

earnings training assignmt

earnings 2.811338e+08 685.5254685 257.0625061

training 6.855255e+02 0.2456123 0.1390407

assignmt 2.570625e+02 0.1390407 0.221713

R Code
> 0.1390407/0.2217139

[1] 0.6271177
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First Stage Effect in JTPA
R Code

> summary(lm(training~assignmt,data=d))

Call:

lm(formula = training ~ assignmt, data = d)

Residuals:

Min 1Q Median 3Q Max

-0.64165 -0.01453 -0.01453 0.35835 0.98547

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.014528 0.006529 2.225 0.0261 *

assignmt 0.627118 0.007987 78.522 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.398 on 11202 degrees of freedom

Multiple R-squared: 0.355, Adjusted R-squared: 0.355

F-statistic: 6166 on 1 and 11202 DF, p-value: < 2.2e-1
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Reduced Form/Intent-to-treat Effect

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

IV assumptions: Cov [u1,Z ] = 0, π1 6= 0, and Cov [u2,Z ] = 0

Reduced Form/Intent-to-treat Effect: Z on Y : Plug first into second stage:

Y = α0 + α1(π0 + π1Z + u1) + u2

Y = (α0 + α1π0) + (α1π1)Z + (α1u1 + u2)

Y = γ0 + γ1Z + u3

where γ0 = α0 + α1π0, γ1 = α1π1, and u3 = α1u1 + u2. Note that

γ̂1 =
Ĉov [Y ,Z ]

Ĉov [Z ,Z ]
=

Ĉov [γ0 + γ1Z + u3,Z ]

Ĉov [Z ,Z ]

E [γ̂1] = γ1 + E

[
Ĉov [Z , u3]

Ĉov [Z ,Z ]

]
= γ1

γ̂1 is consistent since Cov [u1,Z ] = 0 and Cov [u2,Z ] = 0 implies Cov [u3,Z ] = 0
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Ĉov [Z ,Z ]
=
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Ĉov [Y ,Z ]
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Ĉov [γ0 + γ1Z + u3,Z ]

Ĉov [Z ,Z ]

E [γ̂1] = γ1 + E

[
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Ĉov [Z ,Z ]
=
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Ĉov [Z ,Z ]

]
= γ1

γ̂1 is consistent since Cov [u1,Z ] = 0 and Cov [u2,Z ] = 0 implies Cov [u3,Z ] = 0

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 41 / 139



Reduced Form/Intent-to-treat Effect

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

IV assumptions: Cov [u1,Z ] = 0, π1 6= 0, and Cov [u2,Z ] = 0

Reduced Form/Intent-to-treat Effect: Z on Y : Plug first into second stage:

Y = α0 + α1(π0 + π1Z + u1) + u2

Y = (α0 + α1π0) + (α1π1)Z + (α1u1 + u2)

Y = γ0 + γ1Z + u3

where γ0 = α0 + α1π0, γ1 = α1π1, and u3 = α1u1 + u2. Note that

γ̂1 =
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Ĉov [Z ,Z ]

E [γ̂1] = γ1 + E

[
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Reduced Form/Intent-to-treat Effect
R Code

> summary(lm(earnings~assignmt,data=d))

Call:

lm(formula = earnings ~ assignmt, data = d)

Residuals:

Min 1Q Median 3Q Max

-16200 -13803 -4817 8950 139560

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15040.5 274.9 54.716 < 2e-16 ***

assignmt 1159.4 336.3 3.448 0.000567 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 16760 on 11202 degrees of freedom

Multiple R-squared: 0.00106, Adjusted R-squared: 0.000971

F-statistic: 11.89 on 1 and 11202 DF, p-value: 0.000566
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Instrumental Variable Effect: Wald Estimator

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

IV assumptions: Cov [u1,Z ] = 0, π1 6= 0, and Cov [u2,Z ] = 0

IV Effect: D on Y using exogenous variation in D that is induced by Z . Recall

Y = (α0 + α1π0) + (α1π1)Z + (α1u1 + u2)

Y = γ0 + γ1Z + u3

where γ0 = α0 + α1π0, γ1 = α1π1, and u3 = α1u1 + u2. Given this, we can identify α1:

α1 =
γ1

π1
=

Effect of Z on Y

Effect of Z on D
=

Cov [Y ,Z ]/Cov [Z ,Z ]

Cov [D,Z ]/Cov [Z ,Z ]
=

Cov [Y ,Z ]

Cov [D,Z ]

=
Cov [α0 + α1D + u2,Z ]

Cov [D,Z ]
=
α1Cov [D,Z ] + Cov [u2,Z ]

Cov [D,Z ]
= α1 +

Cov [u2,Z ]

Cov [D,Z ]

E [α̂1] = α1 + E

[
Ĉov [u2,Z ]

Ĉov [D,Z ]

]

α̂1 is consistent if Cov [u2,Z ] = 0 but has a bias which decreases with instrument strength.
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Ĉov [u2,Z ]
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Ĉov [u2,Z ]
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Instrumental Variable Effect: Wald Estimator

Instrumental Variable Effect: α1 = Effect of Z on Y
Effect of Z on D = Cov [Y ,Z ]

Cov [D,Z ]

R Code
> cov(d[,c("earnings","training","assignmt")])

earnings training assignmt

earnings 2.811338e+08 685.5254685 257.0625061

training 6.855255e+02 0.2456123 0.1390407

assignmt 2.570625e+02 0.1390407 0.221713

R Code
> 257.0625061/0.1390407

[1] 1848.829
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Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

α1 =
γ1

π1
=

Cov [Y ,Z ]

Cov [D,Z ]

is numerically equivalent to the following two step procedure:

1 Fit first stage and obtain fitted values D̂ = π̂0 + π̂1Z

2 Plug into second stage:

Y = α0 + α1D̂ + u2

Y = α0 + α1(π̂0 + π̂1Z ) + u2

Y = (α0 + α1π̂0) + α1(π̂1Z ) + u2

α1 is solely identified based on variation in D that comes from Z

Point estimates from second regression are equivalent to IV estimator, the standard errors
are not quite correct since they ignore the estimation uncertainty in π̂0 and π̂1.
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Instrumental Variable Effect: Two Stage Least Squares

R Code
> training_hat <- lm(training~assignmt,data=d)$fitted

> summary(lm(earnings~training_hat,data=d))

Call:

lm(formula = earnings ~ training_hat, data = d)

Residuals:

Min 1Q Median 3Q Max

-16200 -13803 -4817 8950 139560

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15013.6 281.3 53.375 < 2e-16 ***

training_hat 1848.8 536.2 3.448 0.000567 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 16760 on 11202 degrees of freedom

Multiple R-squared: 0.00106, Adjusted R-squared: 0.000971

F-statistic: 11.89 on 1 and 11202 DF, p-value: 0.0005669
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Instrumental Variable Effect: Two Stage Least Squares

R Code
> library(AER)

> summary(ivreg(earnings ~ training | assignmt,data = d))

Call:

ivreg(formula = earnings ~ training | assignmt, data = d)

Residuals:

Min 1Q Median 3Q Max

-16862 -13716 -4943 8834 140746

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15013.6 280.6 53.508 < 2e-16 ***

training 1848.8 534.9 3.457 0.000549 ***

---

Residual standard error: 16720 on 11202 degrees of freedom

Multiple R-Squared: 0.00603, Adjusted R-squared: 0.005941

Wald test: 11.95 on 1 and 11202 DF, p-value: 0.0005491
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Judging the Credibility of IV Estimates

The probability limit of the IV estimator is given by:

plimαD,IV = αD +
Corr(Z , u2)

Corr(Z ,D)

σu2

σD

so to obtain consistent estimates the instrument Z must:

Be Relevant: Cov(Z ,D) 6= 0 (testable)
I if Cov(Z ,D) is small, the instrument is weak.
I weak instruments increases bias, but estimator remains consistent.
I bias can be substantial even for very large sample sizes when the

instrument is weak.

Satisfy Exclusion Restriction: Cov(Z , u2) = 0 (untestable)
I if Z has an independent effect on Y other than through D we have

Cov(Z , u2) 6= 0
I if assumption not met estimates are inconsistent
I small violations can lead to significant large sample bias unless

instruments are strong

Failure of either condition is a problem! But both conditions can be hard to
satisfy at the same time. There often is a tradeoff.
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When Should We Believe The Exclusion Restriction?

Does a randomly assigned instrument Z always satisfy
Cov(Z , u2) = 0?

No! Encouragement may still have independent effect on outcome
other than through the treatment.For example,

I being draft eligible might encourage people to go to school and that
might impact their earnings (Angrist 1990, 330)

I having a low draft number might encourage an employer to invest less
in the employee because of concerns they will be drafted (Wooldridge
2010, 94)

When designing an encouragement experiment we need to be careful
to design encouragements so that they are relevant, but also narrowly
constructed to only create variation in treatment intake.

In observational work, imagining the ideal experiment (and associated
compliance problem) can be helpful.

Requires understanding of the context!
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General Words of Caution

These methods are not a panacea. Even if someone calls them a “natural
experiment” that doesn’t actually make it like an experiment.

“The general lesson is once again the ultimate futility of trying
to avoid thinking about how and why things work”
- Angus Deaton (2010)

“[there is a] risk [of] transforming the methodologic dream of
avoiding unmeasured confounding into a nightmare of conflicting
biased estimates”
- Hernán and Robins (2006)
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Conclusion

Core logic of IV: inflate the intention to treat effect by the inverse of the
compliance.

IV works only under very specific circumstances
(e.g. well designed encouragement design experiments)

Often, it will be difficult to find instruments that are both relevant (strong
enough) and satisfy the exclusion restriction

Violations of assumptions can lead to large biases and estimation theory is
complicated

So far, we have assumed constant treatment effects αD which seems
unrealistic in most settings. Often an instrument affects only a
subpopulation of interest and we have little information about treatment
effects for other units that may not be affected by the instrument at all.

Next time we’ll discuss modern IV with heterogeneous potential outcomes
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1 Approaches to Unmeasured Confounding

2 Natural Experiments

3 Motivating Instrumental Variables

4 Traditional Econometric View of Instrumental Variables

5 Fun with Coarsening Bias

6 Modern Approaches to Instrumental Variables

7 Regression Discontinuity

8 Fun with Extremists

9 Appendix
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Fun With Coarsening Bias
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The Idea
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Design

Data: British Election Survey 1979-2010

Outcome: voting for conservative party in most recent election

Instrument: respondents turning 14 in 1947 or later who were affected
by the 1947 school leaving reform (increased age from 14 to 15)

Treatment: either years of schooling or coarsened indicator for
completed high school or not
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Data
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Findings

Finding: Using the dichotomous version of the treatment inflates the
result by a factor of three

Suggestion: Use the linear version of the treatment (although see the
article for more details!)
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Where We’ve Been and Where We’re Going...

Last Week
I selection on observables and measured confounding

This Week
I Monday:

F natural experiments
F classical view of instrumental variables

I Wednesday:
F modern view of instrumental variables
F regression discontinuity

The Following Week
I repeated observations

Long Run
I causality with measured confounding → unmeasured confounding →

repeated data

Questions?

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 58 / 139



Where We’ve Been and Where We’re Going...

Last Week
I selection on observables and measured confounding

This Week
I Monday:

F natural experiments
F classical view of instrumental variables

I Wednesday:
F modern view of instrumental variables
F regression discontinuity

The Following Week
I repeated observations

Long Run
I causality with measured confounding → unmeasured confounding →

repeated data

Questions?

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 58 / 139



1 Approaches to Unmeasured Confounding

2 Natural Experiments

3 Motivating Instrumental Variables

4 Traditional Econometric View of Instrumental Variables

5 Fun with Coarsening Bias

6 Modern Approaches to Instrumental Variables

7 Regression Discontinuity

8 Fun with Extremists

9 Appendix

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 59 / 139



1 Approaches to Unmeasured Confounding

2 Natural Experiments

3 Motivating Instrumental Variables

4 Traditional Econometric View of Instrumental Variables

5 Fun with Coarsening Bias

6 Modern Approaches to Instrumental Variables

7 Regression Discontinuity

8 Fun with Extremists

9 Appendix

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 59 / 139



Identification with Traditional Instrumental Variables

Two equations:
I Y = γ + αD + ε (Second Stage)
I D = τ + ρZ + η (First Stage)

Four Assumptions
1 Exogeneity: Cov(Z , η) = 0
2 Exclusion: Cov(Z , ε) = 0
3 First Stage Relevance: ρ 6= 0
4 Homogeneity: α = Y1,i − Y0,i constant for all units i .

Or in the case of a multivalued treatment with s levels we assume
α = Ys,i − Ys−1,i .
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Instrumental Variables and Potential Outcomes

Basic idea of IV:
I Di not randomized, but Zi is
I Zi only affects Yi through Di

Di now depends on Zi  two potential treatments:
Di (1) = Di (z = 1) and Di (0).

Outcome can depend on both the treatment and the instrument:
Yi (d , z) is the outcome if unit i had received treatment Di = d and
instrument value Zi = z .
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Potential Outcome Model for Instrumental Variables

Definition (Instrument)

Zi : Binary instrument for unit i .

Zi =

{
1 if unit i “encouraged” to receive treatment
0 if unit i “encouraged” to receive control

Definition (Potential Treatments)

D(z) indicates potential treatment status given Z = z

Di (1) = 1 encouraged to take treatment and takes treatment

Assumption

Observed treatments are realized as

Di = Zi · Di (1) + (1− Zi ) · Di (0) so Di =

{
Di (1) if Zi = 1
Di (0) if Zi = 0
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Key Assumptions in the Modern Approach

Z D

U

Y

exclusion restriction and exogeneity

Assumptions:

1 Exogeneity of the Instrument

2 Exclusion Restriction

3 First-stage relationship

4 Monotonicity

You may sometimes see assumptions 1 and 2 collapsed into an assumption
called something like “Ignorability of the Instrument”. I find it helpful to
assess them separately though.
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Assumption 1: Exogeneity of the Instrument

Essentially we want the instrument to be randomized:

[{Yi (d , z), ∀d , z},Di (1),Di (0)]⊥⊥Zi

We can weaken this to conditional ignorability. But why believe
conditional ignorability for the instrument but not the treatment?

Best instruments are truly randomized.

This assumption alone gets us the intent-to-treat (ITT) effect:

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (Di (1), 1)− Yi (Di (0), 0)]

Sometimes the ITT is interesting in its own right and should probably
be reported regardless.
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Assumption 2: Exclusion Restriction

The instrument has no direct effect on the outcome, once we fix the
value of the treatment.

Yi (d , 1) = Yi (d , 0) for d = 0, 1

Given this exclusion restriction, we know that the potential outcomes
for each treatment status only depend on the treatment, not the
instrument:

Yi (1) ≡ Yi (1, 1) = Yi (1, 0)

Yi (0) ≡ Yi (0, 1) = Yi (0, 0)

Random assignment of the instrument is not sufficient for exclusion

NOT A TESTABLE ASSUMPTION
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Assumption 3: First Stage Relationship

The instrument must have an effect on the treatment.

E [Di (1)− Di (0)] 6= 0

Implies that
I Cov(D,Z ) 6= 0 (instrument and treatment are linearly related)

I 0 < P(Zi = 1) < 1 (all units have some chance of getting instrument)

I P(D(1) = 1) 6= P(D(0) = 1) (proportion treated would be different if all

received instrument than if all didn’t)

This is testable by regressing D on Z (or making a scatter plot of D
and Z )

Note that the finite-sample bias of the IV estimator depends inversely
on the strength of the instrument. Thus, for practical sample sizes
you need a strong first stage effect.
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Assumption 4: Monotonicity

To allow for heterogenous effects we need to make a new assumption
about the relationship between the instrument and the treatment.

Monotonicity says that the presence of the instrument never dissuades
someone from taking the treatment:

Di (1)− Di (0) ≥ 0

Note if this holds in the opposite direction Di (1)− Di (0) ≤ 0, we can
always rescale Di to make the assumption hold.
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Principal Strata

Following Angrist, Imbens, and Rubin (1996), we can define four
subpopulations (for cases with a binary treatment and a binary
instrument):

Definition

Compliers: Di (1) > Di (0) (Di (0) = 0 and Di (1) = 1).

Always-takers: Di (1) = Di (0) = 1.

Never-takers: Di (1) = Di (0) = 0.

Defiers: Di (1) < Di (0) (Di (0) = 1 and Di (1) = 0).

Only one of the potential treatment indicators (Di (0),Di (1)) is observed,
so in the general case we cannot identify exactly which group any
particular individual belongs to (although we can rule some out).
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Monotonicity means no defiers

Name Di (1) Di (0)

Always Takers 1 1
Never Takers 0 0
Compliers 1 0
Defiers 0 1

We sometimes call assumption 4 no defiers because the monotonicity
assumption rules out the existence of defiers.

This means we can now sometimes identify the subgroup

Anyone with Di = 1 when Zi = 0 must be an always-taker and
anyone with Di = 0 when Zi = 1 must be a never-taker.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 69 / 139



Monotonicity means no defiers

Name Di (1) Di (0)

Always Takers 1 1
Never Takers 0 0
Compliers 1 0
Defiers 0 1

We sometimes call assumption 4 no defiers because the monotonicity
assumption rules out the existence of defiers.

This means we can now sometimes identify the subgroup

Anyone with Di = 1 when Zi = 0 must be an always-taker and
anyone with Di = 0 when Zi = 1 must be a never-taker.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 69 / 139



Monotonicity means no defiers

Name Di (1) Di (0)

Always Takers 1 1
Never Takers 0 0
Compliers 1 0
Defiers 0 1

We sometimes call assumption 4 no defiers because the monotonicity
assumption rules out the existence of defiers.

This means we can now sometimes identify the subgroup

Anyone with Di = 1 when Zi = 0 must be an always-taker and
anyone with Di = 0 when Zi = 1 must be a never-taker.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 69 / 139



Local Average Treatment Effect (LATE)

Under these four assumptions, we can use the Wald estimator to
estimate the local average treatment effect (LATE) — sometimes
called the complier average treatment effect.

This is the ATE among the compliers: those that take the treatment
when encouraged to do so.

That is, the LATE theorem (proof in the appendix), states that:

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
= E [Yi (1)− Yi (0)|Di (1) > Di (0)]

This may seem mundane in that we have simply changed our
assumptions and not our estimation, but this fact was a massive
intellectual jump in our understanding of IV. Angrist, Imbens and
Rubin (1996) is amazing, you should read it!
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Who are the Compliers?

Study Outcome Treatment Instrument 

Angrist and Evans 
(1998) 

Earnings More than 2 
Children 

Multiple Second 
Birth (Twins) 

Angrist and Evans 
(1998) 

Earnings More than 2 
Children 

First Two Children 
are Same Sex 

Levitt (1997) Crime Rates Number of 
Policemen 

Mayoral Elections 

Angrist and Krueger 
(1991) 

Earnings Years of Schooling Quarter of Birth 

Angrist (1990) Earnings Veteran Status Vietnam Draft 
Lottery 

Miguel, Satyanath 
and Sergenti (2004) 

Civil War Onset GDP per capita Lagged Rainfall 

Acemoglu, Johnson 
and Robinson (2001) 

Economic 
performance 

Current Institutions Settler Mortality in 
Colonial Times 

Cleary and Barro 
(2006) 

Religiosity GDP per capita Distance from 
Equator 

 

                                                                               
       _cons     14605.09   209.7698    69.62   0.000      14193.9    15016.27
    training     2791.088    318.567     8.76   0.000      2166.64    3415.535
                                                                              
    earnings        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    3.1495e+12 11203   281133832           Root MSE      =   16711
                                                       Adj R-squared =  0.0067
    Residual    3.1281e+12 11202   279245396           R-squared     =  0.0068
       Model    2.1435e+10     1  2.1435e+10           Prob > F      =  0.0000
                                                       F(  1, 11202) =   76.76
      Source         SS       df       MS              Number of obs =   11204

. reg  earnings training
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Is the LATE useful?

Once we allow for heterogeneous effects, all we can estimate with IV
is the effect of treatment among compliers.

This is an unknown subset of the data.

I Treated units are a mix of always takers and compliers.
I Control units are a mix of never takers and compliers.

Without further assumptions, τLATE 6= τATE .

Complier group depends on the instrument  different IVs will lead
to different estimands!

How much we care largely depends on our theory and what the
instrument is.

The traditional framework “cheats” by assuming that the effect is
constant, so it is the same for compliers and non-compliers.
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Randomized trials with one-sided noncompliance

Will the LATE ever be equal to a usual causal quantity?

When non-compliance is one-sided, then the LATE is equal to the
ATT.

Think of a randomized experiment:

I Randomized treatment assignment = instrument (Zi )
I Non-randomized actual treatment taken = treatment (Di )

One-sided noncompliance: only those assigned to treatment (control)
can actually take the treatment (control). Or

Di (0) = 0∀i  Pr[Di = 1|Zi = 0] = 0

Maybe this is because only those treated actually get pills or only
they are invited to the job training location.

Note: this can be very difficult to do practically in many settings.
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Benefits of one-sided noncompliance
One-sided noncompliance  no “always-takers” and since there are no
defiers,

Treated units must be compliers.

ATT is the same as the LATE.

Proof.
E [Yi |Zi = 1]− E [Yi |Zi = 0] =E[Yi (0) + (Yi (1)− Yi (0))Di |Zi = 1]− E[Yi (0)|Zi = 0]

(exclusion restriction + one-sided noncompliance)

=E[Yi (0)|Zi = 1] + E [(Yi (1)− Yi (0))Di |Zi = 1]− E[Yi (0)|Zi = 0]

=E[Yi (0)] + E[(Yi (1)− Yi (0))Di |Zi = 1]− E[Yi (0)]

(randomization)

=E[Yi (1)− Yi (0)|Di = 1,Zi = 1] Pr[Di = 1|Zi = 1]

(law of iterated expectations + binary treatment)

=E[Yi (1)− Yi (0)|Di = 1] Pr[Di = 1|Zi = 1]

(one-sided noncompliance)
Noting that Pr[Di = 1|Zi = 0] = 0, then the Wald estimator is just the ATT:
E [Yi |Zi=1]−E [Yi |Zi=0]

Pr[Di=1|Zi=1]
= E [Yi (1)− Yi (0)|Di = 1] Thus, under the additional assumption of

one-sided compliance, we can estimate the ATT using the usual IV approach
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Example: The Vietnam Draft Lottery (Angrist (1990))

Effect of military service on civilian earnings

Simple comparison between Vietnam veterans and non-veterans are
likely to be a biased measure

Angrist (1990) used draft-eligibility, determined by the Vietnam era
draft lottery, as an instrument for military service in Vietnam

Draft eligibility is random and affected the probability of enrollment

Estimate suggest a 15% negative effect of veteran status on earnings
in the period 1981-1984 for white veterans born in 1950-51; although
the estimators are quite imprecise

This is only identified for compliers (i.e. those who if draft eligible
would serve but otherwise would not)
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Wald Estimates for Vietnam Draft Lottery (Angrist (1990))
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Estimating the Size of the Complier Group

Since we never observe both potential treatment assignments for the same
unit, we cannot identify individual units as compliers

However, we can easily identify the proportion of compliers in the population
using the first stage effect:

P(Di (1) > Di (0)) = E [Di (1)− Di (0)] = E [Di (1)]− E [Di (0)]

= E [Di |Zi = 1]− E [Di |Zi = 0]

Using a similar logic we can identify the proportion of compliers among the
treated or controls only. For example:

P(Di (1) > Di (0)|Di = 1) =
P(Zi = 1)(E [Di |Zi = 1]− E [Di |Zi = 0])

P(Di = 1)

Note: this estimate is pinned down entirely by the assumptions of
monotonicity and exogeneity

Abadie (2003) shows how to use covariate information to calculate other
characteristics of the complier group (kappa weighting)
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Size of Complier Group
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TABLE 4.4.2 
Probabilities of compliance in instrumental variables studies 

Compliance Probabilities 
Endogenous First Stage, 

Source 
(1) 

Variable (D) 
(2) 

Instrument (z) 
(3) 

Sample 
(4) 

P[o= IJ 
(5) 

P[ol > 00J 
(6) 

Plz= lJ 
(7) 

PIDI > DOlo = lJ 
(8) 

PIDI >oOID=O] 
(9) 

Angrist (1990) Veteran status Draft eligibility White men born in .267 .159 .534 .318 .101 
1950 
Non-white men born in .163 .060 .534 .197 .033 
1950 

Angrist and Evans More than two Twins at second Married women aged .381 .603 .008 .013 .966 
(1998) children birth 21-35 with two or 

more children in 1980 
First two children .381 .060 .506 .080 .048 
are same sex 

Angrist and High school grad· Third- or fourth- Men born between .770 .016 .509 .011 .034 
Krueger (1991) uate quarter birth 1930 and 1939 
Acemoglu and High school grad· State requires 11 White men aged 40-49 .617 .037 .300 .018 .068 
Angrisr (2000) uate or more years of 

school attendance 

Notes: The table computes the absolute and relative size of the complier population for a number of instrumental variables. The first 
stage, reported in column 6, gives the absolute size of the complier group. Columns 8 and 9 show the size of the complier population 
relative to the treated and untreated populations. 
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Do we care about the complier effect?

IV estimates the effect for compliers. How do we feel about that?

Pros
I it is identified (i.e. it is what we can get)
I if the instrument is the policy lever, these are the people we can help
I we can compute proportion of compliers (and under strong

assumptions) characterize the compliers in terms of observed variables

Cons
I we don’t actually know who the compliers are and every instrument

yields a different group
I monotonicity is a strong unit-level assumption

(i.e. it is unlikely to hold when decision to treat is the result of multiple
criteria that includes risks and benefits, see Hernán and Robins 2018,
pg 63)

I ‘relatively minor violations of conditions [Assumptions 1-4] for IV
estimation may result in large biases of unpredictable or
counter-intuitive direction’
(Hernán and Robins 2018)
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Falsification tests

Z D

U

Y

exclusion restriction

The exclusion restriction cannot be tested directly, but it can be
falsified.

Falsification test Test the reduced form effect of Zi on Yi in situations
where it is impossible or extremely unlikely that Zi could affect Di .

Because Zi can’t affect Di , then the exclusion restriction implies that
this falsification test should have 0 effect.

Nunn & Wantchekon (2011): use distance to coast as an instrument
for Africans, use distance to the coast in an Asian sample as
falsification test.
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Nunn & Wantchekon falsification test
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Other Extensions to IV

Multiple instruments

Covariates and conditional ignorability (see Glynn and Rueda 2018 on
post-instrument bias though)

Overidentification tests (in constant effects)

Compliance modeling for weak instruments

Conditional effects and causal interaction models
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Classical Vs. Modern Instrumental Variables

We dropped the constant effects assumption (assumption 4), which is
usually unrealistic.

We added a weaker monotonicity assumption.

We defined a set of subpopulations: compilers, always-takers,
never-takers, defiers

We clarify that the effects are identified only for a particular
subpopulation — the “complier” subpopulation.
(if constant effects happen to hold, effects for compliers are by
definition same as for entire population.)
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Wait, What Were The Assumptions?

Assumptions given have typically been sufficient but not necessary.

Easy to state assumptions for linear structural equation models
(where we can use covariance of error and variable), harder in general.

Technically can use the following in place of assumptions 1-3:
(see technical point 16.1 of Hernán and Robins)

1) Exogeneity: Yi (d , z)⊥⊥Zi for all d , z .
2) Exclusion: Yi (d , z) = Yi (d , z

′) = Yi (d) for all z , z ′, d and i
3) Relevance: Z 6⊥⊥ D
I all possibly conditional on X

This allows some graphs that don’t meet our original conditions, but
satisfy new assumptions given particular edge configurations.
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Concluding Thoughts on Instrumental Variables

Strong assumptions but powerful results

Enormous care is required in the interpretation

Questions to Always Ask
1 is the instrument weak?

(does Z predict D)
2 is the instrument exogenous?

(was Z randomly assigned?)
3 does the exclusion restriction hold?

(is there a path from Z to Y not through D)
4 do we believe monotonicity?

(are there units where the instrument discourages treatment)
5 do the assumptions identify an effect for the subpopulation of interest?

(is the instrument such that we care about compliers?)

Be sure to evaluate all conditions and remember randomization of Z
does not guarantee the exclusion restriction.
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1 Approaches to Unmeasured Confounding

2 Natural Experiments

3 Motivating Instrumental Variables

4 Traditional Econometric View of Instrumental Variables

5 Fun with Coarsening Bias

6 Modern Approaches to Instrumental Variables

7 Regression Discontinuity

8 Fun with Extremists
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Regression Discontinuity

A different strategy where the core intuition is that identification
comes in a discontinuity in treatment assignment

A widely applicable strategy in rule-based systems or allocations of
limited resources (e.g. administrative programs, elections, admission
systems)

It is a fairly old idea, generally credited to education research by
Thistlethwaite and Campbell 1960 but with a dynamic and interesting
recent history (Hahn et al 2001 and Lee 2008 were big jumps
forward).

The goal here is to get you up to speed with the core idea: if you
want to know how to do this in practice read A Practical Introduction
to Regression Discontinuity Designs Volumes I and II by Matias
Cattaneo, Nicolás Idrodo and Roćıo Titiunik
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Setup

The basic idea behind RDDs:

I Xi is a forcing variable.
I Treatment assignment is determined by a cutoff in Xi .

Di = 1{Xi > c} so Di =

{
Di = 1 if Xi > c
Di = 0 if Xi < c

Xi can be related to the potential outcomes and so comparing treated
and untreated units does not provide causal estimates

assume relationship between X and the potential outcomes Y1 and
Y0 is smooth around the threshold  discontinuity created by the
treatment to estimate the effect of D on Y at the threshold
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Graphical Illustration
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Design

Sharp RD: treatment assignment is a deterministic function of the
forcing variable and the threshold.

Key assumption: no compliance problems (deterministic)

At the threshold, c , we only see treated units and below the threshold
c − ε, we only see control values:

P(Di = 1|Xi = c) = 1

P(Di = 1|Xi = c − ε) = 0

Intuitively, we are interested in the discontinuity in the outcome at
the discontinuity in the treatment assignment.

We want to investigate the behavior of the outcome around the
threshold: limx↓c E [Yi |Xi = x ]− limx↑c E [Yi |Xi = x ]

Under certain assumptions, this quantity identifies the ATE at the
threshold: τSRD = E [Yi (1)− Yi (0)|Xi = c]
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Identification

Identification Assumption

1 Y1,Y0⊥⊥D|X (trivially met by construction)

2 0 < P(D = 1|X = x) < 1 (always violated in Sharp RDD)

3 E [Y1|X ,D] and E [Y0|X ,D] are continuous in X around the threshold X = c
(individuals have imprecise control over X around the threshold)

Identification Result
The treatment effect is identified at the threshold as:

αSRDD = E [Y1 − Y0|X = c]

= E [Y1|X = c]− E [Y0|X = c]

= lim
x↓c

E [Y1|X = x ]− lim
x↑c

E [Y0|X = x ]

Without further assumptions αSRDD is only identified at the threshold.
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Extrapolation and smoothness

Remember the quantity of interest here is the effect at the threshold:

τSRD = E [Yi (1)− Yi (0)|Xi = c]

= E [Yi (1)|Xi = c]− E [Yi (0)|Xi = c]

But we don’t observe E [Yi (0)|Xi = c] ever due to the design, so
we’re going to extrapolate from E [Yi (0)|Xi = c − ε].

Extrapolation, even at short distances, requires smoothness in the
functions we are extrapolating.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 92 / 139



Extrapolation and smoothness

Remember the quantity of interest here is the effect at the threshold:

τSRD = E [Yi (1)− Yi (0)|Xi = c]

= E [Yi (1)|Xi = c]− E [Yi (0)|Xi = c]

But we don’t observe E [Yi (0)|Xi = c] ever due to the design, so
we’re going to extrapolate from E [Yi (0)|Xi = c − ε].

Extrapolation, even at short distances, requires smoothness in the
functions we are extrapolating.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 92 / 139



Extrapolation and smoothness

Remember the quantity of interest here is the effect at the threshold:

τSRD = E [Yi (1)− Yi (0)|Xi = c]

= E [Yi (1)|Xi = c]− E [Yi (0)|Xi = c]

But we don’t observe E [Yi (0)|Xi = c] ever due to the design, so
we’re going to extrapolate from E [Yi (0)|Xi = c − ε].

Extrapolation, even at short distances, requires smoothness in the
functions we are extrapolating.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 92 / 139



What can go wrong?

If the potential outcomes change at the discontinuity for reasons
other than the treatment, then smoothness will be violated.

For instance, if people sort around threshold, then you might get
jumps other than the one you care about.

If things other than the treatment change at the threshold, then that
might cause discontinuities in the potential outcomes.
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Example: Electronic Voting (Hidalgo 2012)
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Figure 6: The effect of electronic voting on the percent of null and blank votes. Each dot is a polling station. Polling
stations to the left of the vertical black line used paper ballots and polling stations to the right used electronic voting.
The black horizontal line is the conditional mean of the outcome estimated with a loess regression.

the discontinuity, except among municipalities with less than a 1996 electorate of about 10,000. The stability of the

conditional expectation over such a large range of the data suggests that the treatment effect at Ej = 40500 may apply

to municipalities far from the threshold.

Formal treatment effect estimates on null and blank votes—separately and together—are reported in the left panel

of figure 7. Focusing on the local linear regression estimates, the effect of the shift in voting technology lowered null

vote rates by an estimated 13.5 percentage points, blank votes by an estimated 10 percentage points, thus increasing

the number of votes affecting political outcomes by about 23 percentage points. This number amounts to about a 34%

increase in the size of the electorate casting valid votes. While null votes were somewhat more affected than blank

votes, the similarity between the two estimates is surprising. A blank vote, in the Brazilian system, is supposed to be

an affirmative choice intended by the voter. A null vote, on the other hand, is a residual category (an “undervote”,

to use the American parlance) for when the voter fails to register any preference at all. Thus, one might expect that

electronic voting would affect null votes much more than blank votes, but these estimates belie that expectation. These

estimates suggest that a large percent of blank votes were actually mistakenly cast or counted.

For comparison, treatment effect estimates on invalid votes for all other offices are reported in the right panel of

figure 7. Electronic voting lowers invalid vote rates for all other offices, though estimates are smaller in magnitude.

22
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Other Recent RDD Examples

class size on student achievement
I Angrist and Lavy 1999

wage increase on performance of mayors
Ferraz and Finan 2011; Gagliarducci and Nannicini 2013

colonial institutions on development outcomes
Dell 2009

length of postpartum hospital stays on mother and infant mortality
Almond and Doyle 2009

naturalization on political integration of immigrants
Hainmueller and Hangartner 2015

financial aid offers on college enrollment
Van der Klaauw 2002

access to Angel funding on growth of start-ups
Kerr, Lerner and Schoar 2010

RDD that exploits “close” elections is workhorse model for electoral research:
Lee, Moretti and Butler 2004, DiNardo and Lee 2004, Hainmueller and Kern 2008, Leigh 2008,
Pettersson-Lidbom 2008, Broockman 2009, Butler 2009, Dal Bó, Dal Bó and Snyder 2009, Eggers and
Hainmueller 2009, Ferreira and Gyourko 2009, Uppal 2009, 2010, Cellini, Ferreira and Rothstein 2010, Gerber
and Hopkins 2011, Trounstine 2011, Boas and Hidalgo 2011, Folke and Snyder Jr. 2012, and Gagliarducci and
Paserman 2012
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General estimation strategy

The main goal in RD is to estimate the limits of various CEFs such as:

lim
x↑c

E [Yi |Xi = x ]

It turns out that this is a hard problem because we want to estimate
the regression at a single point and that point is a boundary point.

As a result, the usual kinds of nonparametric estimators perform
poorly (polynomials and kernels are particularly bad)

In general, we are going to have to choose some way of estimating
the regression functions around the cutpoint.

Using the entire sample on either side will obviously lead to bias
because those values that are far from the cutpoint are clearly
different than those nearer to the cutpoint.

→ restrict our estimation to units close to the threshold.

Local linear regression is a good way to go: see rdrobust package in
R (Calonico et al 2015)
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Misconceptions

Continuity of the potential outcomes does not imply local
randomization

This has caused a lot of confusion in the literature particularly in
testing with background covariates

Local statistical independence does not imply exclusion restriction
(i.e. forcing variable not directly affecting the outcome)

If you are doing an RDD: be sure to do balance checks and sensitivity
checks (read-up on best practices first!)
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Local Randomization vs. Continuity (Sekhon and Titiunik
2017)
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Fuzzy RD

With fuzzy RD, the treatment assignment is no longer a deterministic
function of the forcing variable, but there is still a discontinuity in the
probability of treatment at the threshold:

Assumption FRD

lim
x↓c

Pr[Di = 1|Xi = x ] 6= lim
x↑c

Pr[Di = 1|Xi = x ]

In the sharp RD, this is also true, but it further required the jump in
probability to be from 0 to 1.

Fuzzy RD is often useful when the a threshold encourages
participation in program, but does not actually force units to
participate.

Sound familiar? Fuzzy RD is just IV!
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Fuzzy RD is IV

Forcing variable is an instrument: affects Yi , but only through Di (at
the threshold)

Let Di (x) be the potential value of treatment when we set the forcing
variable to x , for some small neighborhood around c.

Di (x) = 1 if unit i would take treatment when Xi was x

Di (x) = 0 if unit i would take control when Xi was x
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Fuzzy RD assumptions

Assumption 2: Monotoncity

There exists ε such that Di (c + e) ≥ Di (c − e) for all 0 < e < ε

No one is discouraged from taking the treatment by crossing the threshold.

Assumption 3: Local Exogeneity of Forcing Variable

In a neighborhood of c,
{τi ,Di (x)}⊥⊥Xi

Basically, in an ε-ball around c , the forcing variable is randomly assigned.
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Example: Early Release Program (HDC)

Prison system in many countries is faced with overcrowding and high
recidivism rates after release.

Early discharge of prisoners on electronic monitoring has become a
popular policy

Difficult to estimate impact of early release program on future
criminal behavior: best behaved inmates are usually the ones to be
released early

Marie (2008) considers Home Detention Curfew (HDC) scheme in
England and Wales:

Fuzzy RDD: Only offenders sentenced to more than three months (88
days) in prison are eligible for HDC, but not all those with longer
sentences are offered HDC
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Example: Early Release Program (HDC)

 11

Table 2: Descriptive Statistics for Prisoners Released  
by Length of Sentence and HDC and Non HDC Discharges  

and +/-7 Days Around Discontinuity Threshold 
 

  
Panel A - Released +/- 7 Days of 3 Months (88 Days) Cut-off: 
Discharge Type Non HDC HDC Total 
Percentage Female 10.5 9.7 10.3 
Mean Age at Release 28.9 30.7 29.3 
Percentage Incarcerated for Violence 19.8 18.2 19.4 
Mean Number Previous Offences 9.5 5.7 8.7 
Recidivism within 12 Months 54.6 28.1 48.8 
Sample Size 18,928 5,351 24,279 
  
Panel B - Released +/- 7 Days of 3 Months (88 Days) Cu-off: 
Day of Release around Cut-off - 7 Days + 7 Days Total 
Percentage Female 11 10.2 10.3 
Mean Age at Release 28.8 29.4 29.3 
Percentage Incarcerated for Violence 17.1 19.7 19.4 
Mean Number Previous Offences 9.1 8.6 8.7 
Recidivism within 12 Months 56.8 47.9 48.8 
Percentage Released on HDC 0 24.4 22 
Sample Size 2,333 21,946 24,279 

 

As we are interested in what occurs near the 88 days cut-off for eligibility, Table 

2 shows descriptive characteristics for prisoners discharged a week before or a week after 

this duration. Again we note in Panel A that difference in number of previous offences 

and recidivism are very large between HDC and non HDC discharges. However we see 

in Panel B this difference is much smaller for those characteristics but there is a 24.4 

difference in the proportion treated with HDC a week before and after the threshold. This 

is reassuring as it gives a first indication that on either side of the cut-off individuals have 

relatively similar observable characteristics, one of the assumptions of the RDD 

methodology. Although the sample size pre-threshold is much smaller than post-

threshold, it is still much larger than what is used in most research implementing RDD 

thanks to the very large size of the data used. 
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Example: Early Release Program (HDC)

 12

As discussed above, we need to illustrate the discontinuity of HDC treatment 

graphically and also continuity of covariates which could influence the recidivism 

outcome. Figure 1 begins this by plotting the proportion of prisoners discharged on HDC 

with respect to the length of their sentence**. After the 88 time limit the jump of 24.4 

percent jump afore mentioned in proportion treated is clearly visible and highly 

significant.  

 
Figure 1: Proportion Discharged on HDC by Sentence Length 

 

Discontinuity in Proportion
Discharged on HDC,
Cut-off Point at 88 Days
Difference = .244 (.003)
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**All the graphs are local polynomials with a 7 day bandwidths to be comparable to our chosen window 
around the threshold for RDD estimations. 
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Example: Early Release Program (HDC)

 13

Figure 2: Mean Number of Previous Offence by Sentence Length 
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Figure 3: Mean Age at Discharge by Sentence Length 
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Example: Early Release Program (HDC)

 14

Figure 2 shows the mean number of previous offences by sentence length. 

Although the criminal history of prisoners is very different across the discharge period, 

the graph is very smooth around the HDC release threshold. This reinforces the validity 

of carrying out an RDD estimation of HDC as the number of previous offences could be 

strong selection criteria for scheme participation but is continuous around our assignment 

variable. 

Figure 3 considers the mean age when released on sentence length. Again the 

graph is very continuous and the very small gap of the lines around the cut-off is not 

statistically significant. This again, as with Figure 2, points to a relatively random 

distribution of observable characteristics around the threshold which further validates the 

use of RDD. 

 
Figure 4: Recidivism within 1 Year by Sentence Length 

Apparent Discontinuity
In Proportion Recidivism
At 88 Days Cut-off Point
Difference = -.089 (.011)
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Finally, Figure 4 plots the rate of recidivism within 12 months of release by 

length of sentence. This graphical representation of the changes of our outcome variable 

of interests exhibits a striking jump around the 88 day threshold. This gap corresponds to 

a significant 8.9 percentage point lower re-offending rate of prisoners discharged one 
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Example: Early Release Program (HDC)

 18

 

Table 4: RDD Estimates of HDC Impact on Recidivism – Around Threshold 
 

Dependent Variable =  
Recidivism Within 12 Months 

 
Estimation on Individuals Discharged  

+/- 7 Days of 88 Days Threshold 

  
  

(1) (2) (3) 

Estimated Discontinuity of HDC 
Participation at Threshold ( HDC+– HDC-  ) 

.243 
(.009) 

.223 
(.009) 

.243 
(.003) 

Estimated Difference in Recidivism Around 
Threshold ( Rec+– Rec-  ) 

-.089 
(.011) 

-.059 
(.009) 

-.044 
(.014) 

Estimated Effect of HDC on Recidivism 
Participation (Rec+– Rec- )/ (HDC+– HDC-  ) 

-.366 
(.044) 

-.268 
(.044) 

-.181 
(n.a.) 

Controls No Yes No 

PSM No No Yes 

Sample Size 24,279 24,279 24,279 
 
Note: Robust standard errors in parenthesis. The estimation is based on individuals released 
between 89 and 180 days. The controls included in column (2) are: gender, age, number previous 
offences, month and year of release dummies, and the type of crime incarcerated for (8 types).  
The propensity score matching in column (3) is based on calculating propensity scores for each 
individual using the same variables as the controls in the previous model.  

 

Since controlling for observable characteristics does affect our estimate, we can go 

further and implement mix both PSM and RDD methodologies to obtain even more 

robust policy estimators. This is what we do in column (3) of Table 4. The main change 

now is that the difference in recidivism rates between prisoners discharged pre and post 

cut-off is significantly smaller at -4.4 percent. Consequently we can calculate that HDC 

participation reduces recidivism by about 18 percent‡‡. This is very close to our preferred 

estimated impact from the OLS with PSM above and we therefore conclude that being 

released early on electronic monitoring from prison appears to reduce recidivism 

probability by between 18 and 19 percentage points. 

                                                 
‡‡ This is to our knowledge the first time that PSM and RDD have been combined to estimate a causal 
effect and there is therefore no simple methodology to obtain standard errors for this estimate. The reason 
is that we are not able here to run a local IV as before to generate the standard error. We however believe 
that the .181 coefficient is significant in view of the .044 standard errors in columns (1) and (2) and are 
working on a way to compute it precisely in the near future. 
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Example: Teamwork
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Regression Discontinuity Conclusions

Key idea is to exploit an arbitrary assignment rule to identify a causal
quantity.

Remember that we are only identifying an effect at the boundary.

There are many other nuances to estimation and choosing an
appropriate bandwidth for the comparison- be sure to read more
before trying this at home.

There is an interesting literature on geographic regression
discontinuity designs as well. These are harder but can be useful!
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Conclusion

This week we covered approaches to unmeasured confounding

The trick is to exploit some other feature (No Free Lunch!)

Now that you have seen a few examples, hopefully you can be on the
lookout for your own research.

We talked about natural experiments, instrumental variables and
regression discontinuity

Next week we will talk about more designs for unmeasured
confounding.
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Next Week

Causality with Repeated Data

Reading
I Angrist and Pishke Chapter 5 Parallel Worlds: Fixed Effects,

Differences-in-Differences and Panel Data
I Optional: Imai and Kim “When Should We Use Linear Fixed Effects

Regression Models for Causal Inference with Longitudinal Data”
I Optional: Angrist and Pishke Chapter 6 Regression Discontinuity

Designs
I Optional: Morgan and Winship Chapter 11 Repeated Observations and

the Estimation of Causal Effects

Last day of class plans
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Fun with Extremists

Hall, Andrew. “What Happens When Extremists Win
Primaries?” 2015. American Political Science Review.

I’m grateful to Andy Hall for sharing the following slides with me.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 110 / 139



Fun with Extremists

Hall, Andrew. “What Happens When Extremists Win
Primaries?” 2015. American Political Science Review.

I’m grateful to Andy Hall for sharing the following slides with me.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 110 / 139



What are the Effects of Extremists Winning Primaries?

“...getting a general-election candidate who can
win is the only thing we care about.”

—Nat’l Republican Senatorial Committee

vs.

“The road to hell is paved with electable
candidates.” —Conservative Blogger
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There is a tradeoff between ideology and electability:

Evaluates how the preferences of primary voters map
to legislature.

Shows how general elections react to moderates vs.
extremists.
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Findings: Elections Strongly Prefer Moderates

In the U.S. House, 1980–2010:

Extremist causes 38 percentage-point decrease in win
probability on average.

On average, roll-call voting farther away from primary
voters when they nominate extremists.
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Elections Select Moderate Extremists

Primary voters cannot force in extremists.

House elections choose moderates, but constrained by
candidate pool.

Argument of broader research project: candidate entry
key to electing extremist legislators.
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Empirical Approach

Quantity of interest: effect of extremist nominees

Ideal experiment: randomly assign districts extremist
or moderate nominees.

Compare elections and roll-call voting in “treated”
districts vs. “control” districts.
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Obstacle to Estimating Effects of Extremist Nominees

Selection Bias.

Districts choose extremist nominees because they
prefer them.
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Close Primaries Offer Variation in Nominee Type

Regression discontinuity design (RDD) in primary
elections.

Districts with moderate/extremist nominee otherwise
identical in expectation.

Key assumption for RDD: no sorting
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“Extremists” Defined

M

Dem Primary Rep Primary

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 118 / 139



“Extremists” Defined

M

Dem Primary Rep Primary

“Moderate”“Extremist”

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 119 / 139



“Extremists” Defined

M

Dem Primary Rep Primary

“Moderate” “Extremist”

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 120 / 139



“Extremists” Defined

M

Dem Primary Rep Primary

Moderate? Extremist?
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“Extremists” Defined

M

“Moderate”“Extremist”

Calculate distance between moderate and extremist.

Use races where distance is at or above the median distance.
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Quick Example: Robbie Wills vs. Joyce Elliott

vs.

Joyce Elliott: -0.33 Robbie Wills: -0.07

Wills sent out mailer calling Elliott an “extremist” who was
“unelectable.”

Elliott won close runoff primary and lost general election 62% to
38%.
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38%.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 124 / 139



Estimating the RD: Effects of Extremist Nominations

Yit = β0 + β1Extremist Primary Winit + f (Vit) + εit

Vit ≡ extremist candidate’s vote-share winning margin.

Stewart (Princeton) Week 11: Unmeasured Confounding December 3 and 5, 2018 125 / 139



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

N=233



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

Moderate
Nominees



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

Extremist
Nominees



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

N=233



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

Extremists
Who Lose General

Moderates
Who Lose General



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

N=233



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

N=233



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Extreme Candidate Primary Election Winning Margin

G
en

er
al

 E
le

ct
io

n 
V

ot
e 

S
ha

re

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

−0.2 −0.1 0 0.1 0.2

N=233



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

Vote−share
decrease:

−0.09



Large Electoral Penalty to Nominating Extremist
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How Does Penalty to Extremists Affect Roll-Calls?

1 Penalty makes other party more likely to win seat.

2 Extremist offers more extreme roll-call voting.

Knowing general election prefers moderates not sufficient
to understand tradeoff.
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How Does Penalty to Extremists Affect Roll-Calls?

Ideology
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Effect of Extremists on Roll-Call Voting
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Summary

Primary voters do not make legislature more extreme
by forcing in extreme candidates.

The general election is a huge force for moderation.
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Elections: A Limited Force For Moderation

U.S. House elections select “moderate extremists.”

Argument: Differential entry of extremist candidates
forces voters to elect extremists.
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1 Approaches to Unmeasured Confounding

2 Natural Experiments

3 Motivating Instrumental Variables

4 Traditional Econometric View of Instrumental Variables

5 Fun with Coarsening Bias

6 Modern Approaches to Instrumental Variables

7 Regression Discontinuity

8 Fun with Extremists

9 Appendix
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Proof of the LATE theorem

Under the exclusion restriction and randomization,

E [Yi |Zi = 1] = E [Yi (0) + (Yi (1)− Yi (0))Di |Zi = 1]

= E [Yi (0) + (Yi (1)− Yi (0))Di (1)] (randomization)

The same applies to when Zi = 0, so we have

E [Yi |Zi = 0] = E [Yi (0) + (Yi (1)− Yi (0))Di (0)]

Thus, E [Yi |Zi = 1]− E [Yi |Zi = 0] =

E [(Yi (1)− Yi (0))(Di (1)− Di (0))]

=E [(Yi (1)− Yi (0))(1)|Di (1) > Di (0)] Pr[Di (1) > Di (0)]

+E [(Yi (1)− Yi (0))(−1)|Di (1) < Di (0)] Pr[Di (1) < Di (0)]

=E [Yi (1)− Yi (0)|Di (1) > Di (0)] Pr[Di (1) > Di (0)]

The third equality comes from monotonicity: with this assumption,
Di (1) < Di (0) never occurs.
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Proof (continued)

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (1)− Yi (0)|Di (1) > Di (0)] Pr[Di (1) > Di (0)]

We can use the same argument for the denominator:

E [Di |Zi = 1]− E [Di |Zi = 0] = E [Di (1)− Di (0)]

= Pr[Di (1) > Di (0)]

Dividing these two expressions through gives the LATE.
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