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Where We’ve Been and Where We’re Going...

Last Week
I intro to causal inference

This Week
I Monday:

F experimental Ideal
F identification with measured confounding

I Wednesday:
F regression estimation

Next Week
I identification with unmeasured confounding
I instrumental variables

Long Run
I probability → inference → regression → causal inference

Questions?
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1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Estimation Under No Unmeasured Confounding

4 Regression Estimators

5 Regression and Causality

6 Regression Under Heterogeneous Effects

7 Fun with Visualization, Replication and the NYT
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Lancet 2001: negative correlation between coronary heart disease mortality
and level of vitamin C in bloodstream (controlling for age, gender, blood
pressure, diabetes, and smoking)
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Lancet 2002: no effect of vitamin C on mortality in controlled placebo trial
(controlling for nothing)
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Lancet 2003: comparing among individuals with the same age, gender,
blood pressure, diabetes, and smoking, those with higher vitamin C levels
have lower levels of obesity, lower levels of alcohol consumption, are less
likely to grow up in working class, etc.
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Why So Much Variation?

Confounders

X

T Y
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Observational Studies and Experimental Ideal

Randomization forms gold standard for causal inference, because it
balances observed and unobserved confounders

Cannot always randomize so we do observational studies, where we
adjust for the observed covariates and hope that unobservables are
balanced

Better than hoping: design observational study to approximate an
experiment

I “The planner of an observational study should always ask himself: How
would the study be conducted if it were possible to do it by controlled
experimentation” (Cochran 1965)
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Angrist and Pishke’s Frequently Asked Questions

What is the causal relationship of interest?

What is the experiment that could ideally be used to capture the
causal effect of interest?

What is your identification strategy?

What is your mode of statistical inference?
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Experiment review

An experiment is a study where assignment to treatment is controlled
by the researcher.

I pi = P[Di = 1] be the probability of treatment assignment probability.
I pi is controlled and known by researcher in an experiment.

A randomized experiment is an experiment with the following
properties:

1 Positivity: assignment is probabilistic: 0 < pi < 1

I No deterministic assignment.

2 Unconfoundedness: P[Di = 1|Y(1),Y(0)] = P[Di = 1]

I Treatment assignment does not depend on any potential outcomes.
I Sometimes written as Di⊥⊥(Y(1),Y(0))
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Why do Experiments Help?

Remember selection bias?

E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Yi (1)|Di = 1]− E [Yi (0)|Di = 0]

= E [Yi (1)|Di = 1]− E [Yi (0)|Di = 1] + E [Yi (0)|Di = 1]− E [Yi (0)|Di = 0]

= E [Yi (1)− Yi (0)|Di = 1]︸ ︷︷ ︸
Average Treatment Effect on Treated

+E [Yi (0)|Di = 1]− E [Yi (0)|Di = 0]︸ ︷︷ ︸
selection bias

In an experiment we know that treatment is randomly assigned. Thus we can do
the following:

E [Yi (1)|Di = 1]− E [Yi (0)|Di = 0] = E [Yi (1)|Di = 1]− E [Yi (0)|Di = 1]

= E [Yi (1)]− E [Yi (0)]

When all goes well, an experiment eliminates selection bias.
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Observational studies

Many different sets of identification assumptions that we’ll cover.

To start, focus on studies that are similar to experiments, just without
a known and controlled treatment assignment.

I No guarantee that the treatment and control groups are comparable.

1 Positivity (Common Support): assignment is probabilistic:
0 < P[Di = 1|X,Y(1),Y(0)] < 1

2 No unmeasured confounding: P[Di = 1|X,Y(1),Y(0)] = P[Di = 1|X]

I For some observed X
I Also called: unconfoundedness

, ignorability, selection on observables,
no omitted variables, exogenous, conditionally exchangeable, etc.
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Designing observational studies

Rubin (2008) argues that we should still “design” our observational
studies:

I Pick the ideal experiment to this observational study.
I Hide the outcome data.
I Try to estimate the randomization procedure.
I Analyze this as an experiment with this estimated procedure.

Tries to minimize “snooping” by picking the best modeling strategy
before seeing the outcome.
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Discrete covariates

Suppose that we knew that Di was unconfounded within levels of a
binary Xi .

Then we could always estimate the causal effect using iterated
expectations as in a stratified randomized experiment:

EX

{
E[Yi |Di = 1,Xi ]− E[Yi |Di = 0,Xi ]

}
=
(
E[Yi |Di = 1,Xi = 1]− E[Yi |Di = 0,Xi = 1]

)
︸ ︷︷ ︸

diff-in-means for Xi=1

P[Xi = 1]︸ ︷︷ ︸
share of Xi=1

+
(
E[Yi |Di = 1,Xi = 0]− E[Yi |Di = 0,Xi = 0]

)
︸ ︷︷ ︸

diff-in-means for Xi=0

P[Xi = 0]︸ ︷︷ ︸
share of Xi=0

Never used our knowledge of the randomization for this quantity.
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Stratification Example: Smoking and Mortality (Cochran,
1968)

Table 1

Death Rates per 1,000 Person-Years

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5
Cigars/pipes 35.5 20.7 17.4
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Stratification Example: Smoking and Mortality (Cochran,
1968)

Table 2

Mean Ages, Years

Smoking group Canada U.K. U.S.

Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7
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Stratification

To control for differences in age, we would like to compare different
smoking-habit groups with the same age distribution

One possibility is to use stratification:

for each country, divide each group into different age subgroups

calculate death rates within age subgroups

average within age subgroup death rates using fixed weights (e.g.
number of cigarette smokers)
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Stratification: Example

Death Rates # Pipe- # Non-
Pipe Smokers Smokers Smokers

Age 20 - 50 15 11 29

Age 50 - 70 35 13 9

Age + 70 50 16 2

Total 40 40

What is the average death rate for Pipe Smokers?

15 · (11/40) + 35 · (13/40) + 50 · (16/40) = 35.5
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Smoking and Mortality (Cochran, 1968)

Table 3

Adjusted Death Rates using 3 Age groups

Smoking group Canada U.K. U.S.

Non-smokers 20.2 11.3 13.5
Cigarettes 28.3 12.8 17.7
Cigars/pipes 21.2 12.0 14.2
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Continuous covariates

So, great, we can stratify. Why not do this all the time?

What if Xi = income for unit i?

I Each unit has its own value of Xi : $54,134, $123,043, $23,842.
I If Xi = 54134 is unique, will only observe 1 of these:

E[Yi |Di = 1,Xi = 54134]− E[Yi |Di = 0,Xi = 54134]

I  cannot stratify to each unique value of Xi :

Practically, this is massively important: almost always have data with
unique values.

One option is to discretize as we discussed with age, we will discuss more
later this week!
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Identification Under Selection on Observables

Identification Assumption
1 (Y1,Y0)⊥⊥D|X (selection on observables)

2 0 < Pr(D = 1|X ) < 1 with probability one (common support)

Identification Result
Given selection on observables we have

E[Y1 − Y0|X ] = E[Y1 − Y0|X ,D = 1]

= E[Y |X ,D = 1]− E[Y |X ,D = 0]

Therefore, under the common support condition:

τATE = E[Y1 − Y0] =

∫
E[Y1 − Y0|X ] dP(X )

=

∫ (
E[Y |X ,D = 1]− E[Y |X ,D = 0]

)
dP(X )

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 20 / 89



Identification Under Selection on Observables

Identification Assumption
1 (Y1,Y0)⊥⊥D|X (selection on observables)

2 0 < Pr(D = 1|X ) < 1 with probability one (common support)

Identification Result
Similarly,

τATT = E[Y1 − Y0|D = 1]

=

∫ (
E[Y |X ,D = 1]− E[Y |X ,D = 0]

)
dP(X |D = 1)

To identify τATT the selection on observables and common support conditions can
be relaxed to:

Y0⊥⊥D|X (SOO for Controls)

Pr(D = 1|X ) < 1 (Weak Overlap)
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 E[Y1|X = 0,D = 1] E[Y0|X = 0,D = 1]
1 0

2 1 0
3 E[Y1|X = 0,D = 0] E[Y0|X = 0,D = 0]

0 0
4 0 0
5 E[Y1|X = 1,D = 1] E[Y0|X = 1,D = 1]

1 1
6 1 1
7 E[Y1|X = 1,D = 0] E[Y0|X = 1,D = 0]

0 1
8 0 1
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 E[Y1|X = 0,D = 1]
E[Y0|X = 0,D = 1]= 1 0

2 E[Y0|X = 0,D = 0] 1 0
3 E[Y1|X = 0,D = 0] E[Y0|X = 0,D = 0]

0 0
4 0 0
5 E[Y1|X = 1,D = 1]

E[Y0|X = 1,D = 1]= 1 1
6 E[Y0|X = 1,D = 0] 1 1
7 E[Y1|X = 1,D = 0] E[Y0|X = 1,D = 0]

0 1
8 0 1

(Y1,Y0)⊥⊥D|X implies that we conditioned on all confounders. The treat-
ment is randomly assigned within each stratum of X :

E[Y0|X = 0,D = 1] = E[Y0|X = 0,D = 0] and

E[Y0|X = 1,D = 1] = E[Y0|X = 1,D = 0]
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Identification Under Selection on Observables

Potential Outcome Potential Outcome
unit under Treatment under Control

i Y1i Y0i Di Xi

1 E[Y1|X = 0,D = 1]
E[Y0|X = 0,D = 1]= 1 0

2 E[Y0|X = 0,D = 0] 1 0
3 E[Y1|X = 0,D = 0] = E[Y0|X = 0,D = 0]

0 0
4 E[Y1|X = 0,D = 1] 0 0
5 E[Y1|X = 1,D = 1]

E[Y0|X = 1,D = 1]= 1 1
6 E[Y0|X = 1,D = 0] 1 1
7 E[Y1|X = 1,D = 0] = E[Y0|X = 1,D = 0]

0 1
8 E[Y1|X = 1,D = 1] 0 1

(Y1,Y0)⊥⊥D|X also implies

E[Y1|X = 0,D = 1] = E[Y1|X = 0,D = 0] and

E[Y1|X = 1,D = 1] = E[Y1|X = 1,D = 0]
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1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Estimation Under No Unmeasured Confounding

4 Regression Estimators

5 Regression and Causality

6 Regression Under Heterogeneous Effects

7 Fun with Visualization, Replication and the NYT

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 22 / 89



1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Estimation Under No Unmeasured Confounding

4 Regression Estimators

5 Regression and Causality

6 Regression Under Heterogeneous Effects

7 Fun with Visualization, Replication and the NYT

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 22 / 89



What is confounding?

Confounding is the bias caused by common causes of the treatment
and outcome.

I Leads to “spurious correlation.”

In observational studies, the goal is to avoid confounding inherent in
the data.

Pervasive in the social sciences:

I effect of income on voting (confounding: age)
I effect of job training program on employment (confounding:

motivation)
I effect of political institutions on economic development (confounding:

previous economic development)

No unmeasured confounding assumes that we’ve measured all sources
of confounding.
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Big problem

How can we determine if no unmeasured confounding holds if we
didn’t assign the treatment?

Put differently:

I What covariates do we need to condition on?
I What covariates do we need to include in our regressions?

One way, from the assumption itself:

I P[Di = 1|X,Y(1),Y(0)] = P[Di = 1|X]
I Include covariates such that, conditional on them, the treatment

assignment does not depend on the potential outcomes.

Another way: use DAGs and look at back-door paths.
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Backdoor paths and blocking paths

Backdoor path: is a non-causal path from D to Y .

I Would remain if we removed any arrows pointing out of D.

Backdoor paths between D and Y  common causes of D and Y :

D

X

Y

Here there is a backdoor path D ← X → Y , where X is a common
cause for the treatment and the outcome.
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Other types of confounding

D

U X

Y

D is enrolling in a job training program.

Y is getting a job.

U is being motivated

X is number of job applications sent out.

Big assumption here: no arrow from U to Y .
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Other types of confounding

D

U X

Y

D is exercise.

Y is having a disease.

U is lifestyle.

X is smoking

Big assumption here: no arrow from U to Y .
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What’s the problem with backdoor paths?

D

U X

Y

A path is blocked if:

1 we control for or stratify a non-collider on that path OR
2 we do not control for a collider.

Unblocked backdoor paths  confounding.

In the DAG here, if we condition on X , then the backdoor path is
blocked.
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Not all backdoor paths

D

U1

X

Y

Conditioning on the posttreatment covariates opens the non-causal
path.

I  selection bias.
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Don’t condition on post-treatment variables

Every time you do, a puppy cries.
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M-bias

D

U1 U2

X

Y

Not all backdoor paths induce confounding.

This backdoor path is blocked by the collider X that we don’t control
for.

If we control for X  opens the path and induces confounding.

I Sometimes called M-bias.

Controversial because of differing views on what to control for:

I Rubin thinks that M-bias is a “mathematical curiosity” and we should
control for all pretreatment variables

I Pearl and others think M-bias is a real threat.
I See the Elwert and Winship piece for more!
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Backdoor criterion

Can we use a DAG to evaluate no unmeasured confounders?

Pearl answered yes, with the backdoor criterion, which states that the
effect of D on Y is identified if:

1 No backdoor paths from D to Y OR
2 Measured covariates are sufficient to block all backdoor paths from D

to Y .

First is really only valid for randomized experiments.

The backdoor criterion is fairly powerful. Tells us:

I if there is confounding given this DAG,
I if it is possible to remove the confounding, and
I what variables to condition on to eliminate the confounding.
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Example: Sufficient Conditioning Sets

●

U1
●

U3

● Z1 ●Z2 ●Z3

●

X
●

Z5
●

Y

●

U9

●

U11

●

Z4

●

U2

●

U5

●

U4

●

U6

●U7

●

U10

●

U8

●● ●●

●● ●●

●●

●●

●●

●●

●●

●●

●●

Remove arrows out of X .
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Example: Non-sufficient Conditioning Sets
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Example: Non-sufficient Conditioning Sets
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Implications (via Vanderweele and Shpitser 2011)

1 Choose all pre-treatment covariates

(would condition on C2 inducing M-bias)

2 Choose all covariates which directly cause the treatment and the outcome

(would leave open a backdoor path A← C3 ← U3 → Y .)
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No unmeasured confounders is not testable

No unmeasured confounding places no restrictions on the observed
data. (

Yi (0)
∣∣Di = 1,Xi

)︸ ︷︷ ︸
unobserved

d
=
(
Yi (0)

∣∣Di = 0,Xi

)︸ ︷︷ ︸
observed

Here,
d
= means equal in distribution.

No way to directly test this assumption without the counterfactual
data, which is missing by definition!

With backdoor criterion, you must have the correct DAG.
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Assessing no unmeasured confounders

Can do “placebo” tests, where Di cannot have an effect (lagged
outcomes, etc)

Della Vigna and Kaplan (2007, QJE): effect of Fox News availability
on Republican vote share

I Availability in 2000/2003 can’t affect past vote shares.

Unconfoundedness could still be violated even if you pass this test!
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Alternatives to no unmeasured confounding

Without explicit randomization, we need some way of identifying
causal effects.

No unmeasured confounders ≈ randomized experiment.

I Identification results very similar to experiments.

With unmeasured confounding are we doomed? Maybe not!

Other approaches rely on finding plausibly exogenous variation in
assignment of Di :

I Instrumental variables (randomization + exclusion restriction)
I Over-time variation (diff-in-diff, fixed effects)
I Arbitrary thresholds for treatment assignment (RDD)
I All discussed in the next couple of weeks!
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Where We’ve Been and Where We’re Going...

Last Week
I intro to causal inference

This Week
I Monday:

F experimental Ideal
F identification with measured confounding

I Wednesday:
F regression estimation

Next Week
I identification with unmeasured confounding
I instrumental variables

Long Run
I probability → inference → regression → causal inference

Questions?
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1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Estimation Under No Unmeasured Confounding

4 Regression Estimators

5 Regression and Causality

6 Regression Under Heterogeneous Effects

7 Fun with Visualization, Replication and the NYT
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Identification vs. Estimation

An approximately ordered causal workflow:

1) Question ← the thing we care about
2) Ideal Experiment ← what’s the counterfactual we care about
3) Estimand ← the causal quantity of interest
4) Identification Strategy ← how we connect features of a probability

distribution of observed data to causal estimand.
5) Estimation ← how we estimate a feature of a probability distribution

from observed data.
6) Inference/Uncertainty ← what would have happened if we observed a

different treatment assignment? (and possibly sampled a different
population)

‘Whats your identification strategy?’ means ‘what are the
assumptions that allow you to claim that the association you’ve
estimated has a causal interpretation?’

Selection on observables is an identification strategy

Identification depends on assumptions not statistical models.
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Estimation

Estimation is secondary to identification.

Selection on observables generally requires estimating at least one
conditional expectation function and there are many ways to do that.

An incomplete list of strategies:
I matching
I weighting
I regression
I combinations of the above

Today we will talk about regression because that’s the subject of the
class.

A big topic I’m skipping over as outside the scope of class is the
propensity score (conditional expectation of the treatment given the
covariates).
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Regression

David Freedman:

I sometimes have a nightmare about Kepler. Suppose a few of us
were transported back in time to the year 1600, and were invited
by the Emperor Rudolph II to set up an Imperial Department of
Statistics in the court at Prague. Despairing of those circular
orbits, Kepler enrolls in our department. We teach him the
general linear model, least squares, dummy variables, everything.
He goes back to work, fits the best circular orbit for Mars by
least squares, puts in a dummy variable for the exceptional
observation - and publishes. And that’s the end, right there in
Prague at the beginning of the 17th century.

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 48 / 89



Regression and Causality

Regression is an estimation strategy that can be used with an
identification strategy to estimate a causal effect

When is regression causal? When the CEF is causal.

This means that the question of whether regression has a causal
interpretation is a question about identification
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Identification under Selection on Observables: Regression

Consider the linear regression of Yi = β0 + τDi + X ′
i β + εi .

Given selection on observables, there are mainly three identification
scenarios:

1 Constant treatment effects and outcomes are linear in X

I τ will provide unbiased and consistent estimates of ATE.

2 Constant treatment effects and unknown functional form

I τ will provide well-defined linear approximation to the average causal
response function E[Y |D = 1,X ]− E[Y |D = 0,X ]. Approximation
may be very poor if E[Y |D,X ] is misspecified and then τ may be
biased for the ATE.

3 Heterogeneous treatment effects (τ differs for different values of X )

I If outcomes are linear in X , τ is unbiased and consistent estimator for
conditional-variance-weighted average of the underlying causal effects.
This averagecan be different from the ATE.
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Identification under Selection on Observables: Regression

Identification Assumption

1 Constant treatment effect: τ = Y1i − Y0i for all i

2 Control outcome is linear in X : Y0i = β0 + X ′
i β + εi with εi⊥⊥Xi (no

omitted variables and linearly separable confounding)

Identification Result

Then τATE = E[Y1 − Y0] is identified by a regression of the observed
outcome on the covariates and the treatment indicator
Yi = β0 + τDi + X ′

i β + εi
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Ideal Case: Linear Constant Effects Model
Assume constant linear effects and linearly separable confounding:

Yi (d) = Yi = β0 + τDi + ηi

Linearly separable confounding: assume that E[ηi |Xi ] = X ′
i β,

which means that ηi = X ′
i β + εi where E[εi |Xi ] = 0.

Under this model, (Y1,Y0)⊥⊥D|X implies εi |X⊥⊥D
As a result,

Yi = β0 + τDi + E[ηi ]

= β0 + τDi + X ′
i β + E[εi ]

= β0 + τDi + X ′
i β

Thus, a regression where Di and Xi are entered linearly can recover
the ATE.
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Implausible  Plausible

Constant effects and linearly separable confounding aren’t very
appealing or plausible assumptions

To understand what happens when they don’t hold, we need to
understand the properties of regression with minimal assumptions:
this is often called an agnostic view of regression.

The Aronow and Miller book (and lecture 7) provide some context
but essentially as long as we have iid sampling, we will asymptotically
obtain the best linear approximation to the CEF.
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Regression and causality

Most econometrics textbooks: regression defined without respect to
causality.

But then when is β̂ “biased”? What does this even mean?

The question, then, is when does knowing the CEF tell us something
about causality?

Angrist and Pishke argues that a regression is causal when the CEF it
approximates is causal. Identification is king.

We will show that under certain conditions, a regression of the
outcome on the treatment and the covariates can recover a causal
parameter, but perhaps not the one in which we are interested.
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Linear constant effects model, binary treatment

Now with the benefit of covering agnostic regression, let’s review again the
simple case.

Experiment: with a simple experiment, we can rewrite the consistency
assumption to be a regression formula:

Yi = DiYi (1) + (1− Di )Yi (0)

= Yi (0) + (Yi (1)− Yi (0))Di

= E[Yi (0)] + τDi + (Yi (0)− E[Yi (0)])

= µ0 + τDi + v0
i

Note that if ignorability holds (as in an experiment) for Yi (0), then it
will also hold for v0

i , since E[Yi (0)] is constant. Thus, this satifies the
usual assumptions for regression.
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Now with covariates

Now assume no unmeasured confounders: Yi (d)⊥⊥Di |Xi .

We will assume a linear model for the potential outcomes:

Yi (d) = α + τ · d + ηi

Remember that linearity isn’t an assumption if Di is binary

Effect of Di is constant here, the ηi are the only source of individual
variation and we have E [ηi ] = 0.

Consistency assumption allows us to write this as:

Yi = α + τDi + ηi .
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Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ]

= α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Covariates in the error

Let’s assume that ηi is linear in Xi : ηi = X ′
i γ + νi

New error is uncorrelated with Xi : E[νi |Xi ] = 0.

This is an assumption! Might be false!

Plug into the above:

E[Yi (d)|Xi ] = E [Yi |Di ,Xi ] = α + τDi + E [ηi |Xi ]

= α + τDi + X ′
i γ + E [νi |Xi ]

= α + τDi + X ′
i γ

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 58 / 89



Summing up regression with constant effects

Reviewing the assumptions we’ve used:

I no unmeasured confounders
I constant treatment effects
I linearity of the treatment/covariates

Under these, we can run the following regression to estimate the ATE,
τ :

Yi = α + τDi + X ′
i γ + νi

Works with continuous or ordinal Di if effect of these variables is truly
linear.
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Heterogeneous effects, binary treatment

Completely randomized experiment:

Yi = DiYi (1) + (1− Di )Yi (0)

= Yi (0) + (Yi (1)− Yi (0))Di

= µ0 + τiDi + (Yi (0)− µ0)

= µ0 + τDi + (Yi (0)− µ0) + (τi − τ) · Di

= µ0 + τDi + εi

Error term now includes two components:

1 “Baseline” variation in the outcome: (Yi (0)− µ0)
2 Variation in the treatment effect, (τi − τ)

We can verify that under experiment, E[εi |Di ] = 0

Thus, OLS estimates the ATE with no covariates.
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Adding covariates

What happens with no unmeasured confounders? Need to condition
on Xi now.

Remember identification of the ATE/ATT using iterated expectations.

ATE is the weighted sum of Conditional Average Treatment Effects
(CATEs):

τ =
∑
x

τ(x) Pr[Xi = x ]

ATE/ATT are weighted averages of CATEs.

What about the regression estimand, τR? How does it relate to the
ATE/ATT?
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Heterogeneous effects and regression

Let’s investigate this under a saturated regression model:

Yi =
∑
x

Bxiαx + τRDi + ei .

Use a dummy variable for each unique combination of Xi :
Bxi = I(Xi = x)

Linear in Xi by construction!
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Investigating the regression coefficient

How can we investigate τR? Well, we can rely on the regression
anatomy:

τR =
Cov(Yi ,Di − E [Di |Xi ])

Var(Di − E [Di |Xi ])

Di − E[Di |Xi ] is the residual from a regression of Di on the full set of
dummies.

With a little work we can show:

τR =
E
[
τ(Xi )(Di − E[Di |Xi ])

2
]

E[(Di − E [Di |Xi ])2]
=

E[τ(Xi )σ
2
d(Xi )]

E[σ2
d(Xi )]

σ2
d(x) = Var[Di |Xi = x ] is the conditional variance of treatment

assignment.
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ATE versus OLS

τR = E[τ(Xi )Wi ] =
∑
x

τ(x)
σ2
d(x)

E[σ2
d(Xi )]

P[Xi = x ]

Compare to the ATE:

τ = E[τ(Xi )] =
∑
x

τ(x)P[Xi = x ]

Both weight strata relative to their size (P[Xi = x ])

OLS weights strata higher if the treatment variance in those strata
(σ2

d(x)) is higher in those strata relative to the average variance
across strata (E[σ2

d(Xi )]).

The ATE weights only by their size.
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Regression weighting

Wi =
σ2
d(Xi )

E[σ2
d(Xi )]

Why does OLS weight like this?

OLS is a minimum-variance estimator  more weight to more precise
within-strata estimates.

Within-strata estimates are most precise when the treatment is evenly
spread and thus has the highest variance.

If Di is binary, then we know the conditional variance will be:

σ2
d(x) = P[Di = 1|Xi = x ] (1− P[Di = 1|Xi = x ])

Maximum variance with P[Di = 1|Xi = x ] = 1/2.
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OLS weighting example
Binary covariate:

Group 1 Group 2

P[Xi = 1] = 0.75 P[Xi = 0] = 0.25

P[Di = 1|Xi = 1] = 0.9 P[Di = 1|Xi = 0] = 0.5

σ2
d(1) = 0.09 σ2

d(0) = 0.25

τ(1) = 1 τ(0) = −1

Implies the ATE is τ = 0.5
Average conditional variance: E[σ2

d(Xi )] = 0.13
 weights for Xi = 1 are: 0.09/0.13 = 0.692, for Xi = 0: 0.25/0.13
= 1.92.

τR = E[τ(Xi )Wi ]

= τ(1)W (1)P[Xi = 1] + τ(0)W (0)P[Xi = 0]

= 1× 0.692× 0.75 +−1× 1.92× 0.25

= 0.039
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When will OLS estimate the ATE?

When does τ = τR?

Constant treatment effects: τ(x) = τ = τR
Constant probability of treatment: e(x) = P[Di = 1|Xi = x ] = e.

I Implies that the OLS weights are 1.

Incorrect linearity assumption in Xi will lead to more bias.
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Other ways to use regression

What’s the path forward?

I Accept the bias (might be relatively small with saturated models)
I Use a different regression approach

Let µd(x) = E[Yi (d)|Xi = x ] be the CEF for the potential outcome
under Di = d .

By consistency and n.u.c., we have µd(x) = E[Yi |Di = d ,Xi = x ].

Estimate a regression of Yi on Xi among the Di = d group.

Then, µ̂d(x) is just a predicted value from the regression for Xi = x .

How can we use this?
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Imputation estimators

Impute the treated potential outcomes with Ŷi (1) = µ̂1(Xi )!

Impute the control potential outcomes with Ŷi (0) = µ̂0(Xi )!

Procedure:

I Regress Yi on Xi in the treated group and get predicted values for all
units (treated or control).

I Regress Yi on Xi in the control group and get predicted values for all
units (treated or control).

I Take the average difference between these predicted values.

More mathematically, look like this:

τimp =
1

N

∑
i

µ̂1(Xi )− µ̂0(Xi )

Sometimes called an imputation estimator.
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Impute the control potential outcomes with Ŷi (0) = µ̂0(Xi )!
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Simple imputation estimator

Use predict() from the within-group models on the data from the
entire sample.

Useful trick: use a model on the entire data and model.frame() to
get the right design matrix:

## heterogeneous effects

y.het <- ifelse(d == 1, y + rnorm(n, 0, 5), y)

mod <- lm(y.het ~ d + X)

mod1 <- lm(y.het ~ X, subset = d == 1)

mod0 <- lm(y.het ~ X, subset = d == 0)

y1.imps <- predict(mod1, model.frame(mod))

y0.imps <- predict(mod0, model.frame(mod))

mean(y1.imps - y0.imps)

## [1] 0.61
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Notes on imputation estimators

If µ̂d(x) are consistent estimators, then τimp is consistent for the ATE.

Why don’t people use this?

I Most people don’t know the results we’ve been talking about.
I Harder to implement than vanilla OLS.

Can use linear regression to estimate µ̂d(x) = x ′βd
Recent trend is to estimate µ̂d(x) via non-parametric methods such
as:

I Kernel regression, local linear regression, regression trees, etc
I Easiest is generalized additive models (GAMs)
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Imputation estimator visualization
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Nonlinear relationships

Same idea but with nonlinear relationship between Yi and Xi :
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Using semiparametric regression
Here, CEFs are nonlinear, but we don’t know their form.

We can use GAMs from the mgcv package to for flexible estimate:

library(mgcv)

mod0 <- gam(y ~ s(x), subset = d == 0)

summary(mod0)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## y ~ s(x)

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.0225 0.0154 -1.46 0.16

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(x) 6.03 7.08 41.3 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## R-sq.(adj) = 0.909 Deviance explained = 92.8%

## GCV = 0.0093204 Scale est. = 0.0071351 n = 30
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Using GAMs
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Using GAMs
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‘Wait...so what are we actually doing most of the time?’

A Discussion
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Conclusions

Regression is mechanically very simple, but philosophically somewhat
complicated

It is a useful descriptive tool for approximating a conditional
expectation function

Once again though, the estimand of interest isn’t necessarily the
regression coefficient.

There are many other approaches to estimation, but identification is
key.
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Next Week

Causality with Unmeasured Confounding

Reading:
I Angrist and Pishke Chapter 4 Instrumental Variables and Chapter 6 on

Regression Discontinuity Designs
I Morgan and Winship Chapter 9 Instrumental Variable Estimators of

Causal Effects
I Optional: Hernan and Robins Chapter 16 Instrumental Variable

Estimation

Stewart (Princeton) Week 10: Measured Confounding November 26 and 28, 2018 85 / 89



1 The Experimental Ideal

2 Assumption of No Unmeasured Confounding

3 Estimation Under No Unmeasured Confounding

4 Regression Estimators

5 Regression and Causality

6 Regression Under Heterogeneous Effects

7 Fun with Visualization, Replication and the NYT
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Visualization in the New York Times
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Alternate Graphs
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Thoughts

Two stories here:

1 Visualization and data coding choices are important

2 The internet is amazing (especially with replication data being
available!)
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