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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I Monday:

F matrix form of linear regression
F t-tests, F-tests and general linear hypothesis tests

I Wednesday:
F problems with p-values
F agnostic regression
F the bootstrap

Next Week
I break!
I then . . . diagnostics

Long Run
I probability → inference → regression → causal inference

Questions?
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1 Matrix Form of Regression

2 OLS inference in matrix form

3 Standard Hypothesis Tests

4 Testing Joint Significance

5 Testing Linear Hypotheses: The General Case

6 Fun With(out) Weights

7 Appendix: Derivations and Consistency

8 The Problems with p-values

9 Agnostic Regression

10 Inference via the Bootstrap

11 Fun With Weights

12 Appendix: Tricky p-value Example
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The Linear Model with New Notation

Remember that we wrote the linear model as the following for all
i ∈ [1, . . . , n]:

yi = β0 + xiβ1 + ziβ2 + ui

Imagine we had an n of 4. We could write out each formula:

y1 = β0 + x1β1 + z1β2 + u1 (unit 1)

y2 = β0 + x2β1 + z2β2 + u2 (unit 2)

y3 = β0 + x3β1 + z3β2 + u3 (unit 3)

y4 = β0 + x4β1 + z4β2 + u4 (unit 4)
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
Outcome is a linear combination of the the x, z, and u vectors
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Grouping Things into Matrices

Can we write this in a more compact form?
Yes! Let X and β be the following:

X
(4×3)

=


1 x1 z1

1 x2 z2

1 x3 z3

1 x4 z4

 β
(3×1)

=

 β0

β1

β2


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Back to Regression

X is the n × (k + 1) design matrix of independent variables

β be the (k + 1)× 1 column vector of coefficients.

Xβ will be n × 1:

Xβ = β0 + β1x1 + β2x2 + · · ·+ βkxk

We can compactly write the linear model as the following:

y
(n×1)

= Xβ
(n×1)

+ u
(n×1)

We can also write this at the individual level, where x′i is the ith row
of X:

yi = x′iβ + ui
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Multiple Linear Regression in Matrix Form

Let β̂ be the matrix of estimated regression coefficients and ŷ be the
vector of fitted values:

β̂ =


β̂0

β̂1
...

β̂k

 ŷ = Xβ̂

It might be helpful to see this again more written out:

ŷ =


ŷ1

ŷ2

...
ŷn

 = Xβ̂ =


1β̂0 + x11β̂1 + x12β̂2 + · · ·+ x1K β̂k
1β̂0 + x21β̂1 + x22β̂2 + · · ·+ x2K β̂k

...

1β̂0 + xn1β̂1 + xn2β̂2 + · · ·+ xnK β̂k


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ŷ =


ŷ1
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vector of fitted values:

β̂ =


β̂0

β̂1
...

β̂k


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Residuals

We can easily write the residuals in matrix form:

û = y − Xβ̂

Our goal as usual is to minimize the sum of the squared residuals,
which we saw earlier we can write:

û′û = (y − Xβ̂)′(y − Xβ̂)
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û′û = (y − Xβ̂)′(y − Xβ̂)

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 9 / 140



OLS Estimator in Matrix Form

Goal: minimize the sum of the squared residuals

Take (matrix) derivatives, set equal to 0 (see Appendix)

Resulting first order conditions:

X′(y − Xβ̂) = 0

Rearranging:
X′Xβ̂ = X′y

In order to isolate β̂, we need to move the X′X term to the other side
of the equals sign.

We’ve learned about matrix multiplication, but what about matrix
“division”?
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Back to OLS

Let’s assume, for now, that the inverse of X′X exists

Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

“ex prime ex inverse ex prime y” sear it into your soul.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 11 / 140



Back to OLS

Let’s assume, for now, that the inverse of X′X exists

Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

“ex prime ex inverse ex prime y” sear it into your soul.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 11 / 140



Back to OLS

Let’s assume, for now, that the inverse of X′X exists

Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

“ex prime ex inverse ex prime y” sear it into your soul.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 11 / 140



Back to OLS

Let’s assume, for now, that the inverse of X′X exists

Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

“ex prime ex inverse ex prime y”

sear it into your soul.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 11 / 140



Back to OLS

Let’s assume, for now, that the inverse of X′X exists

Then we can write the OLS estimator as the following:

β̂ = (X′X)−1X′y

“ex prime ex inverse ex prime y” sear it into your soul.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 11 / 140



Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is approximately composed of the covariances
between the columns of X and y

“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!
Disclaimer: the final equation is exactly true for all non-intercept coefficients if you remove the
intercept from X such that β̂−0 = Var(X−0)−1Cov(X−0, y). The numerator and denominator
are the variances and covariances if X and y are demeaned and normalized by the sample size
minus 1.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 12 / 140



Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is approximately composed of the covariances
between the columns of X and y

“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!
Disclaimer: the final equation is exactly true for all non-intercept coefficients if you remove the
intercept from X such that β̂−0 = Var(X−0)−1Cov(X−0, y). The numerator and denominator
are the variances and covariances if X and y are demeaned and normalized by the sample size
minus 1.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 12 / 140



Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is approximately composed of the covariances
between the columns of X and y

“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!
Disclaimer: the final equation is exactly true for all non-intercept coefficients if you remove the
intercept from X such that β̂−0 = Var(X−0)−1Cov(X−0, y). The numerator and denominator
are the variances and covariances if X and y are demeaned and normalized by the sample size
minus 1.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 12 / 140



Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is approximately composed of the covariances
between the columns of X and y

“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!
Disclaimer: the final equation is exactly true for all non-intercept coefficients if you remove the
intercept from X such that β̂−0 = Var(X−0)−1Cov(X−0, y). The numerator and denominator
are the variances and covariances if X and y are demeaned and normalized by the sample size
minus 1.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 12 / 140



Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is approximately composed of the covariances
between the columns of X and y

“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!

Disclaimer: the final equation is exactly true for all non-intercept coefficients if you remove the
intercept from X such that β̂−0 = Var(X−0)−1Cov(X−0, y). The numerator and denominator
are the variances and covariances if X and y are demeaned and normalized by the sample size
minus 1.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 12 / 140



Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?

“Numerator” X′y: is approximately composed of the covariances
between the columns of X and y

“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X

Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!
Disclaimer: the final equation is exactly true for all non-intercept coefficients if you remove the
intercept from X such that β̂−0 = Var(X−0)−1Cov(X−0, y). The numerator and denominator
are the variances and covariances if X and y are demeaned and normalized by the sample size
minus 1.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 12 / 140



1 Matrix Form of Regression

2 OLS inference in matrix form

3 Standard Hypothesis Tests

4 Testing Joint Significance

5 Testing Linear Hypotheses: The General Case

6 Fun With(out) Weights

7 Appendix: Derivations and Consistency

8 The Problems with p-values
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10 Inference via the Bootstrap
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OLS Assumptions in Matrix Form

1 Linearity: y = Xβ + u

2 Random/iid sample: (yi , x
′
i ) are a iid sample from the population.

3 No perfect collinearity: X is an n × (k + 1) matrix with rank k + 1

4 Zero conditional mean: E[u|X] = 0

5 Homoskedasticity: var(u|X) = σ2
uIn

6 Normality: u|X ∼ N(0, σ2
uIn)
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Assumption 3: No Perfect Collinearity

Definition (Rank)

The rank of a matrix is the maximum number of linearly independent
columns.

In matrix form: X is an n × (k + 1) matrix with rank k + 1

If X has rank k + 1, then all of its columns are linearly independent

. . . and none of its columns are linearly dependent implies no perfect
collinearity

X has rank k + 1 and thus (X′X) is invertible

Just like variation in X led us to be able to divide by the variance in
simple OLS
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Assumption 5: Homoskedasticity

The stated homoskedasticity assumption is: var(u|X) = σ2
uIn

To really understand this we need to know what var(u|X) is in full
generality.

The variance of a vector is actually a matrix:

var[u] = Σu =


var(u1) cov(u1, u2) . . . cov(u1, un)

cov(u2, u1) var(u2) . . . cov(u2, un)
...

. . .

cov(un, u1) cov(un, u2) . . . var(un)


This matrix is always symmetric since cov(ui , uj) = cov(uj , ui ) by
definition.
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Assumption 5: The Meaning of Homoskedasticity

What does var(u|X) = σ2
uIn mean?

In is the n × n identity matrix, σ2
u is a scalar.

Visually:

var[u] = σ2
uIn =


σ2
u 0 0 . . . 0

0 σ2
u 0 . . . 0

...
0 0 0 . . . σ2

u


In less matrix notation:

I var(ui ) = σ2
u for all i (constant variance)

I cov(ui , uj) = 0 for all i 6= j (implied by iid)
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0 σ2
u 0 . . . 0

...
0 0 0 . . . σ2

u



In less matrix notation:

I var(ui ) = σ2
u for all i (constant variance)

I cov(ui , uj) = 0 for all i 6= j (implied by iid)
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Unbiasedness of β̂

Is β̂ still unbiased under assumptions 1-4? Does E [β̂] = β?

β̂ =
(
X′X

)−1
X′y (linearity and no collinearity)

β̂ =
(
X′X

)−1
X′(Xβ + u)

β̂ =
(
X′X

)−1
X′Xβ +

(
X′X

)−1
X′u

β̂ = Iβ +
(
X′X

)−1
X′u

β̂ = β +
(
X′X

)−1
X′u

E [β̂|X] = E [β|X] + E [
(
X′X

)−1
X′u|X]

E [β̂|X] = β +
(
X′X

)−1
X′E [u|X]

E [β̂|X] = β (zero conditional mean)

So, yes!
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A Much Shorter Proof of Unbiasedness of β̂

A shorter (but less helpful later) proof of unbiasedness,

E [β̂] = E [
(
X′X

)−1
X′y] (definition of the estimator)

=
(
X′X

)−1
X′Xβ (expectation of y)

= β

Now we know the sampling distribution is centered on β we want to derive
the variance of the sampling distribution conditional on X .
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Rule: Variance of Linear Function of Random Vector

Recall that for a linear transformation of a random variable X we have
V [aX + b] = a2V [X ] with constants a and b.

We will need an analogous rule for linear functions of random vectors.

Definition (Variance of Linear Transformation of Random Vector)

Let f (u) = Au + B be a linear transformation of a random vector u with
non-random vectors or matrices A and B. Then the variance of the
transformation is given by:

V [f (u)] = V [Au + B] = AV [u]A′ = AΣuA′
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Conditional Variance of β̂
β̂ = β + (X′X)

−1 X′u and E [β̂|X] = β + E [(X′X)
−1 X′u|X] = β so the OLS

estimator is a linear function of the errors. Thus:

V [β̂|X] = V [β|X] + V [(X′X)
−1

X′u|X]

= V [(X′X)
−1

X′u|X]

= (X′X)
−1

X′V [u|X]((X′X)
−1

X′)′ (X is nonrandom given X)

= (X′X)
−1

X′V [u|X]X (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2I (X′X)
−1

X′X (X′X)
−1

= σ2 (X′X)
−1

This gives the (k + 1)× (k + 1) variance-covariance matrix of β̂.

To estimate V [β̂|X], we replace σ2 with its unbiased estimator σ̂2, which is now
written using matrix notation as:

σ̂2 =

∑
i û

2
i

n − (k + 1)
=

û′û

n − (k + 1)
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û′û

n − (k + 1)

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 21 / 140



Conditional Variance of β̂
β̂ = β + (X′X)

−1 X′u and E [β̂|X] = β + E [(X′X)
−1 X′u|X] = β so the OLS

estimator is a linear function of the errors. Thus:

V [β̂|X] = V [β|X] + V [(X′X)
−1

X′u|X]

= V [(X′X)
−1

X′u|X]

= (X′X)
−1

X′V [u|X]((X′X)
−1

X′)′ (X is nonrandom given X)

= (X′X)
−1

X′V [u|X]X (X′X)
−1

= (X′X)
−1

X′σ2IX (X′X)
−1

(by homoskedasticity)

= σ2I (X′X)
−1

X′X (X′X)
−1

= σ2 (X′X)
−1

This gives the (k + 1)× (k + 1) variance-covariance matrix of β̂.

To estimate V [β̂|X], we replace σ2 with its unbiased estimator σ̂2, which is now
written using matrix notation as:

σ̂2 =

∑
i û
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This gives the (k + 1)× (k + 1) variance-covariance matrix of β̂.

To estimate V [β̂|X], we replace σ2 with its unbiased estimator σ̂2, which is now
written using matrix notation as:

σ̂2 =

∑
i û

2
i

n − (k + 1)
=

û′û

n − (k + 1)
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Sampling Variance for β̂

Under assumptions 1-5, the variance-covariance matrix of the OLS
estimators is given by:

V [β̂|X] = σ2
(
X′X

)−1
=

β̂0 β̂1 β̂2 · · · β̂k
β̂0 V [β̂0] Cov[β̂0, β̂1] Cov[β̂0, β̂2] · · · Cov[β̂0, β̂k ]

β̂1 Cov[β̂0, β̂1] V [β̂1] Cov[β̂1, β̂2] · · · Cov[β̂1, β̂k ]

β̂2 Cov[β̂0, β̂2] Cov[β̂1, β̂2] V [β̂2] · · · Cov[β̂2, β̂k ]
...

...
...

...
. . .

...

β̂k Cov[β̂0, β̂k ] Cov[β̂k , β̂1] Cov[β̂k , β̂2] · · · V [β̂k ]

Recall that standard errors are the square root of the diagonals of this
matrix.
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Overview of Inference in the General Setting

Under assumption 1-5 in large samples:

β̂j − βj
ŜE [β̂j ]

∼ N(0, 1)

In small samples, under assumptions 1-6,

β̂j − βj
ŜE [β̂j ]

∼ tn−(k+1)

Estimated standard errors are:

ŜE [β̂j ] =

√
v̂ar[β̂]jj

v̂ar[β̂] = σ̂2
u(X′X)−1

σ̂2
u =

û′û

n − (k + 1)

Thus, confidence intervals and hypothesis tests proceed in essentially
the same way.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 23 / 140



Overview of Inference in the General Setting

Under assumption 1-5 in large samples:

β̂j − βj
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ŜE [β̂j ] =

√
v̂ar[β̂]jj

v̂ar[β̂] = σ̂2
u(X′X)−1

σ̂2
u =

û′û
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ŜE [β̂j ] =

√
v̂ar[β̂]jj

v̂ar[β̂] = σ̂2
u(X′X)−1

σ̂2
u =

û′û
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Properties of the OLS Estimator: Summary

Theorem

Under Assumptions 1–6, the (k + 1)× 1 vector of OLS estimators β̂, conditional
on X, follows a multivariate normal distribution with mean β and
variance-covariance matrix σ2 (X′X)

−1
:

β̂|X ∼ N
(
β, σ2 (X′X)

−1
)

Each element of β̂ (i.e. β̂0, ..., β̂k+1) is normally distributed, and β̂ is an
unbiased estimator of β as E [β̂] = β

Variances and covariances are given by V [β̂|X] = σ2 (X′X)−1

An unbiased estimator for the error variance σ2 is given by

σ̂2 =
û′û

n − (k + 1)

With a large sample, β̂ approximately follows the same distribution under
Assumptions 1–5 only, i.e., without assuming the normality of u.
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û′û
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Implications of the Variance-Covariance Matrix

Note that the sampling distribution is a joint distribution because it
involves multiple random variables.

This is because the sampling distribution of the terms in β̂ are
correlated.

In a practical sense, this means that our uncertainty about
coefficients is correlated across variables.
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Multivariate Normal: Simulation
Y = β0 + β1X1 + u with u ∼ N(0, σ2

u = 4) and β0 = 5, β1 = −1, and n = 100:
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Marginals of Multivariate Normal RVs are Normal
Y = β0 + β1X1 + u with u ∼ N(0, σ2

u = 4) and β0 = 5, β1 = −1, and n = 100:
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1 Matrix Form of Regression

2 OLS inference in matrix form

3 Standard Hypothesis Tests

4 Testing Joint Significance

5 Testing Linear Hypotheses: The General Case

6 Fun With(out) Weights

7 Appendix: Derivations and Consistency

8 The Problems with p-values

9 Agnostic Regression

10 Inference via the Bootstrap
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Running Example: Chilean Referendum on Pinochet

The 1988 Chilean national plebiscite was a national referendum held
to determine whether or not dictator Augusto Pinochet would extend
his rule for another eight-year term in office.

Data: national survey conducted in April and May of 1988 by
FLACSO in Chile.

Outcome: 1 if respondent intends to vote for Pinochet, 0 otherwise.
We can interpret the β slopes as marginal “effects” on the probability
that respondent votes for Pinochet.

Plebiscite was held on October 5, 1988. The No side won with 56%
of the vote, with 44% voting Yes.

We model the intended Pinochet vote as a linear function of gender,
education, and age of respondents.
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Hypothesis Testing in R

Model the intended Pinochet vote as a linear function of gender,
education, and age of respondents.

R Code
> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4875 on 1699 degrees of freedom

Multiple R-squared: 0.05112, Adjusted R-squared: 0.04945

F-statistic: 30.51 on 3 and 1699 DF, p-value: < 2.2e-16
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The t-Value for Multiple Linear Regression

Consider testing a hypothesis about a single regression coefficient βj :

H0 : βj = c

In the simple linear regression we used the t-value to test this kind of
hypothesis.

We can consider the same t-value about βj for the multiple regression:

T =
β̂j − c

ŜE (β̂j)

How do we compute ŜE (β̂j)?

ŜE (β̂j) =

√
V̂ (β̂j) =

√
V̂ (β̂)(j,j) =

√
σ̂2(X′X)−1

(j,j)

where A(j,j) is the (j , j) element of matrix A.

That is, take the variance-covariance matrix of β̂ and square root the
diagonal element corresponding to j .
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Getting the Standard Errors
R Code

> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

We can pull out the variance-covariance matrix σ̂2(X′X)−1 in R from the lm() object:

R Code
> V <- vcov(fit)

> V

(Intercept) fem educ age

(Intercept) 2.642311e-03 -3.455498e-04 -5.270913e-04 -3.357119e-05

fem -3.455498e-04 5.623170e-04 2.249973e-05 8.285291e-07

educ -5.270913e-04 2.249973e-05 1.922354e-04 3.411049e-06

age -3.357119e-05 8.285291e-07 3.411049e-06 6.914098e-07

> sqrt(diag(V))

(Intercept) fem educ age

0.0514034097 0.0237132251 0.0138648980 0.0008315105

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 32 / 140



Getting the Standard Errors
R Code

> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

We can pull out the variance-covariance matrix σ̂2(X′X)−1 in R from the lm() object:
R Code

> V <- vcov(fit)

> V

(Intercept) fem educ age

(Intercept) 2.642311e-03 -3.455498e-04 -5.270913e-04 -3.357119e-05

fem -3.455498e-04 5.623170e-04 2.249973e-05 8.285291e-07

educ -5.270913e-04 2.249973e-05 1.922354e-04 3.411049e-06

age -3.357119e-05 8.285291e-07 3.411049e-06 6.914098e-07

> sqrt(diag(V))

(Intercept) fem educ age

0.0514034097 0.0237132251 0.0138648980 0.0008315105

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 32 / 140



Using the t-Value as a Test Statistic

The procedure for testing this null hypothesis (βj = c) is identical to the simple
regression case, except that our reference distribution is tn−k−1 instead of tn−2.

1 Compute the t-value as T = (β̂j − c)/ŜE [β̂j ]

2 Compare the value to the critical value tα/2 for the α level test, which under
the null hypothesis satisfies

P
(
−tα/2 ≤ T ≤ tα/2

)
= 1− α

3 Decide whether the realized value of T in our data is unusual given the
known distribution of the test statistic.

4 Finally, either declare that we reject H0 or not, or report the p-value.
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Confidence Intervals
To construct confidence intervals, there is again no difference compared to the case of
k = 1, except that we need to use tn−k−1 instead of tn−2

Since we know the sampling distribution for our t-value:

T =
β̂j − c

ŜE [β̂j ]
∼ tn−k−1

So we also know the probability that the value of our test statistics falls into a given
interval:

P

(
−tα/2 ≤

β̂j − βj
ŜE [β̂j ]

≤ tα/2

)
= 1− α

We rearrange: [
β̂j − tα/2ŜE [β̂j ] , β̂j + tα/2ŜE [β̂j ]

]
and thus can construct the confidence intervals as usual using:

β̂j ± tα/2 · ŜE [β̂j ]
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Confidence Intervals in R
R Code

> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

R Code
> confint(fit)

2.5 % 97.5 %

(Intercept) 0.303407780 0.50504909

fem 0.089493169 0.18251357

educ -0.087954435 -0.03356629

age 0.002147755 0.00540954
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Testing Hypothesis About a Linear Combination of βj

R Code
> fit <- lm(REALGDPCAP ~ Region, data = D)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4452.7 783.4 5.684 2.07e-07 ***

RegionAfrica -2552.8 1204.5 -2.119 0.0372 *

RegionAsia 148.9 1149.8 0.129 0.8973

RegionLatAmerica -271.3 1007.0 -0.269 0.7883

RegionOecd 9671.3 1007.0 9.604 5.74e-15 ***

β̂Asia and β̂LAm are close. So we may want to test the null hypothesis:

H0 : βLAm = βAsia ⇔ βLAm − βAsia = 0

against the alternative of

H1 : βLAm 6= βAsia ⇔ βLAm − βAsia 6= 0

What would be an appropriate test statistic for this hypothesis?
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R Code
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RegionLatAmerica -271.3 1007.0 -0.269 0.7883

RegionOecd 9671.3 1007.0 9.604 5.74e-15 ***

Let’s consider a t-value:

T =
β̂LAm − β̂Asia

ŜE(β̂LAm − β̂Asia)

We will reject H0 if T is sufficiently different from zero.

Note that unlike the test of a single hypothesis, both β̂LAm and β̂Asia are random
variables, hence the denominator.
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Testing Hypothesis About a Linear Combination of βj
Our test statistic:

T =
β̂LAm − β̂Asia

ŜE (β̂LAm − β̂Asia)
∼ tn−k−1

How do you find ŜE (β̂LAm − β̂Asia)?

Is it ŜE (β̂LAm)− ŜE (β̂Asia)? No!

Is it ŜE (β̂LAm) + ŜE (β̂Asia)? No!

Recall the following property of the variance:

V (X ± Y ) = V (X ) + V (Y )± 2Cov(X ,Y )

Therefore, the standard error for a linear combination of coefficients is:

ŜE (β̂1 ± β̂2) =

√
V̂ (β̂1) + V̂ (β̂2)± 2Ĉov[β̂1, β̂2]

which we can calculate from the estimated covariance matrix of β̂.

Since the estimates of the coefficients are correlated, we need the covariance
term.
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which we can calculate from the estimated covariance matrix of β̂.

Since the estimates of the coefficients are correlated, we need the covariance
term.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 38 / 140



Testing Hypothesis About a Linear Combination of βj
Our test statistic:

T =
β̂LAm − β̂Asia
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Recall the following property of the variance:

V (X ± Y ) = V (X ) + V (Y )± 2Cov(X ,Y )

Therefore, the standard error for a linear combination of coefficients is:
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How do you find ŜE (β̂LAm − β̂Asia)?
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How do you find ŜE (β̂LAm − β̂Asia)?
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Example: GDP per capita on Regions

R Code
> fit <- lm(REALGDPCAP ~ Region, data = D)

> V <- vcov(fit)

> V

(Intercept) RegionAfrica RegionAsia RegionLatAmerica

(Intercept) 613769.9 -613769.9 -613769.9 -613769.9

RegionAfrica -613769.9 1450728.8 613769.9 613769.9

RegionAsia -613769.9 613769.9 1321965.9 613769.9

RegionLatAmerica -613769.9 613769.9 613769.9 1014054.6

RegionOecd -613769.9 613769.9 613769.9 613769.9

RegionOecd

(Intercept) -613769.9

RegionAfrica 613769.9

RegionAsia 613769.9

RegionLatAmerica 613769.9

RegionOecd 1014054.6
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RegionOecd -613769.9 613769.9 613769.9 613769.9

RegionOecd

(Intercept) -613769.9

RegionAfrica 613769.9

RegionAsia 613769.9

RegionLatAmerica 613769.9

RegionOecd 1014054.6
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Example: GDP per capita on Regions

We can then compute the test statistic for the hypothesis of interest:

R Code
> se <- sqrt(V[4,4] + V[3,3] - 2*V[3,4])

> se

[1] 1052.844

>

> tstat <- (coef(fit)[4] - coef(fit)[3])/se

> tstat

RegionLatAmerica

-0.3990977

t =
β̂LAm − β̂Asia

ŜE(β̂LAm − β̂Asia)
where

ŜE(β̂LAm − β̂Asia) =

√
V̂ (β̂LAm) + V̂ (β̂Asia)− 2Ĉov[β̂LAm, β̂Asia]

Plugging in we get t ≈ −0.40. So what do we conclude?

We cannot reject the null that the difference in average GDP resulted from chance.
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Plugging in we get t ≈ −0.40. So what do we conclude?

We cannot reject the null that the difference in average GDP resulted from chance.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 40 / 140



Example: GDP per capita on Regions

We can then compute the test statistic for the hypothesis of interest:
R Code

> se <- sqrt(V[4,4] + V[3,3] - 2*V[3,4])

> se

[1] 1052.844

>

> tstat <- (coef(fit)[4] - coef(fit)[3])/se

> tstat

RegionLatAmerica

-0.3990977

t =
β̂LAm − β̂Asia
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Aside: Adjusted R2

R Code
> fit <- lm(vote1 ~ fem + educ + age, data = d)

> summary(fit)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4042284 0.0514034 7.864 6.57e-15 ***

fem 0.1360034 0.0237132 5.735 1.15e-08 ***

educ -0.0607604 0.0138649 -4.382 1.25e-05 ***

age 0.0037786 0.0008315 4.544 5.90e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4875 on 1699 degrees of freedom

Multiple R-squared: 0.05112, Adjusted R-squared: 0.04945

F-statistic: 30.51 on 3 and 1699 DF, p-value: < 2.2e-16
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Aside: Adjusted R2

R2 often used to assess in-sample model fit. Recall

R2 = 1− SSres

SStot

where SSres are the sum of squared residuals and the SStot are the sum of
the squared deviations from the mean.

Perhaps problematically, it can be shown that R2 always stays constant or
increases with more explanatory variables

So, how do we penalize more complex models? Adjusted R2

This makes R2 more ‘comparable’ across models with different numbers of
variables, but the next section will show you an even better way to approach
that problem in a testing framework.

Still since people report it, let’s quickly derive adjusted R2,
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Aside: Adjusted R2

Key idea: rewrite R2 in terms of variances

R2 = 1− SSres/n

SStot/n

= 1− Ṽ(SSres)

Ṽ(SStot)

where Ṽ is a biased estimator of the population variance.

What if we replace the biased estimator with the unbiased estimators

V̂(SSres) = SSres/(n − k − 1)

V̂(SStot) = SStot/(n − 1)

Some algebra gets us to

R2
adj = R2 − (1− R2)

k − 1

n − k︸ ︷︷ ︸
model complexity penalty

Adjusted R2 will always be smaller than R2 and can sometimes be negative!
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Ṽ(SStot)
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Ṽ(SStot)
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F Test for Joint Significance of Coefficients

In research we often want to test a joint hypothesis which involves multiple linear
restrictions (e.g. β1 = β2 = β3 = 0)

Suppose our regression model is:

Voted = β0 + γ1FEMALE + β1EDUCATION+

γ2(FEMALE · EDUCATION) + β2AGE + γ3(FEMALE · AGE) + u

and we want to test
H0 : γ1 = γ2 = γ3 = 0.

Substantively, what question are we asking?

→ Do females and males vote systematically differently from each other?
(Under the null, there is no difference in either the intercept or slopes between
females and males).

This is an example of a joint hypothesis test involving three restrictions: γ1 = 0,
γ2 = 0, and γ3 = 0.

If all the interaction terms and the group lower order term are close to zero, then
we fail to reject the null hypothesis of no gender difference.

F tests allows us to to test joint hypothesis
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The χ2 Distribution

To test more than one hypothesis jointly we need to introduce some new
probability distributions.

Suppose Z1, ...,Zn are n i.i.d. random variables following N (0, 1).

Then, the sum of their squares, X =
∑n

i=1 Z
2
i , is distributed according to the χ2

distribution with n degrees of freedom, X ∼ χ2
n.
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chisquare 1
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chisquare 15

Properties: X > 0, E [X ] = n and V [X ] = 2n. In R: dchisq(), pchisq(), rchisq()
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probability distributions.

Suppose Z1, ...,Zn are n i.i.d. random variables following N (0, 1).

Then, the sum of their squares, X =
∑n

i=1 Z
2
i , is distributed according to the χ2

distribution with n degrees of freedom, X ∼ χ2
n.
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The F distribution

The F distribution arises as a ratio of two independent chi-squared distributed random
variables:

F =
X1/df1
X2/df2

∼ Fdf1,df2

where X1 ∼ χ2
df1

, X2 ∼ χ2
df2

, and X1⊥⊥X2.

df1 and df2 are called the numerator degrees of freedom and the denominator degrees of
freedom.
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F Test against H0 : γ1 = γ2 = γ3 = 0.

The F statistic can be calculated by the following procedure:

1 Fit the Unrestricted Model (UR) which does not impose H0:

Vote = β0 +γ1FEM +β1EDUC +γ2(FEM ∗EDUC) +β2AGE +γ3(FEM ∗AGE) +u

2 Fit the Restricted Model (R) which does impose H0:

Vote = β0 + β1EDUC + β2AGE + u

3 From the two results, compute the F Statistic:

F0 =
(SSRr − SSRur )/q

SSRur/(n − k − 1)

where SSR=sum of squared residuals, q=number of restrictions, k=number of
predictors in the unrestricted model, and n= # of observations.

Intuition:

increase in prediction error

original prediction error

The F statistics have the following sampling distributions:

Under Assumptions 1–6, F0 ∼ Fq,n−k−1 regardless of the sample size.

Under Assumptions 1–5, qF0
a.∼ χ2

q as n→∞ (see next section).
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Unrestricted Model (UR)

R Code
> fit.UR <- lm(vote1 ~ fem + educ + age + fem:age + fem:educ, data = Chile)

> summary(fit.UR)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.293130 0.069242 4.233 2.42e-05 ***

fem 0.368975 0.098883 3.731 0.000197 ***

educ -0.038571 0.019578 -1.970 0.048988 *

age 0.005482 0.001114 4.921 9.44e-07 ***

fem:age -0.003779 0.001673 -2.259 0.024010 *

fem:educ -0.044484 0.027697 -1.606 0.108431

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.487 on 1697 degrees of freedom

Multiple R-squared: 0.05451, Adjusted R-squared: 0.05172

F-statistic: 19.57 on 5 and 1697 DF, p-value: < 2.2e-16
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Restricted Model (R)

R Code
> fit.R <- lm(vote1 ~ educ + age, data = Chile)

> summary(fit.R)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4878039 0.0497550 9.804 < 2e-16 ***

educ -0.0662022 0.0139615 -4.742 2.30e-06 ***

age 0.0035783 0.0008385 4.267 2.09e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4921 on 1700 degrees of freedom

Multiple R-squared: 0.03275, Adjusted R-squared: 0.03161

F-statistic: 28.78 on 2 and 1700 DF, p-value: 5.097e-13
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F Test in R

R Code
> SSR.UR <- sum(resid(fit.UR)^2) # = 402

> SSR.R <- sum(resid(fit.R)^2) # = 411

> DFdenom <- df.residual(fit.UR) # = 1703

> DFnum <- 3

> F <- ((SSR.R - SSR.UR)/DFnum) / (SSR.UR/DFdenom)

> F

[1] 13.01581

> qf(0.99, DFnum, DFdenom)

[1] 3.793171

Given above, what do we conclude?

F0 = 13 is greater than the critical value for a .01 level test. So we reject
the null hypothesis.
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Null Distribution, Critical Value, and Test Statistic
Note that the F statistic is always positive, so we only look at the right tail of the
reference F (or χ2 in a large sample) distribution.
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F Test Examples I

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βkXk + u

We may want to test:
H0 : β1 = β2 = ... = βk = 0

What question are we asking?

→ Does any of the X variables help to predict Y ?

This is called the omnibus test and is routinely reported by statistical
software.
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Omnibus Test in R

R Code
> summary(fit.UR)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.293130 0.069242 4.233 2.42e-05 ***

fem 0.368975 0.098883 3.731 0.000197 ***

educ -0.038571 0.019578 -1.970 0.048988 *

age 0.005482 0.001114 4.921 9.44e-07 ***

fem:age -0.003779 0.001673 -2.259 0.024010 *

fem:educ -0.044484 0.027697 -1.606 0.108431

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.487 on 1697 degrees of freedom

Multiple R-squared: 0.05451, Adjusted R-squared: 0.05172

F-statistic: 19.57 on 5 and 1697 DF, p-value: < 2.2e-16
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Omnibus Test in R with Random Noise
R Code

> set.seed(08540)

> p <- 10; x <- matrix(rnorm(p*1000), nrow=1000)

> y <- rnorm(1000); summary(lm(y~x))

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0115475 0.0320874 -0.360 0.7190

x1 -0.0019803 0.0333524 -0.059 0.9527

x2 0.0666275 0.0314087 2.121 0.0341 *

x3 -0.0008594 0.0321270 -0.027 0.9787

x4 0.0051185 0.0333678 0.153 0.8781

x5 0.0136656 0.0322592 0.424 0.6719

x6 0.0102115 0.0332045 0.308 0.7585

x7 -0.0103903 0.0307639 -0.338 0.7356

x8 -0.0401722 0.0318317 -1.262 0.2072

x9 0.0553019 0.0315548 1.753 0.0800 .

x10 0.0410906 0.0319742 1.285 0.1991

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.011 on 989 degrees of freedom

Multiple R-squared: 0.01129, Adjusted R-squared: 0.001294

F-statistic: 1.129 on 10 and 989 DF, p-value: 0.3364
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F Test Examples II

The F test can be used to test various joint hypotheses which involve multiple
linear restrictions. Consider the regression model:

Y = β0 + β1X1 + β2X2 + β3X3 + ...+ βkXk + u

Next, let’s consider:
H0 : β1 = β2 = β3

What question are we asking?

→ Are the coefficients X1, X2 and X3 different from each other?

How many restrictions?

→ Two (β1 − β2 = 0 and β2 − β3 = 0)

How do we fit the restricted model?

→ The null hypothesis implies that the model can be written as:

Y = β0 + β1(X1 + X2 + X3) + ...+ βkXk + u

So we create a new variable X ∗ = X1 + X2 + X3 and fit:

Y = β0 + β1X
∗ + ...+ βkXk + u
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→ Are the coefficients X1, X2 and X3 different from each other?

How many restrictions?

→ Two (β1 − β2 = 0 and β2 − β3 = 0)

How do we fit the restricted model?

→ The null hypothesis implies that the model can be written as:

Y = β0 + β1(X1 + X2 + X3) + ...+ βkXk + u

So we create a new variable X ∗ = X1 + X2 + X3 and fit:

Y = β0 + β1X
∗ + ...+ βkXk + u
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Testing Equality of Coefficients in R

R Code
> fit.UR2 <- lm(REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd, data = D)

> summary(fit.UR2)

~~~~~

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1899.9 914.9 2.077 0.0410 *

Asia 2701.7 1243.0 2.173 0.0327 *

LatAmerica 2281.5 1112.3 2.051 0.0435 *

Transit 2552.8 1204.5 2.119 0.0372 *

Oecd 12224.2 1112.3 10.990 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3034 on 80 degrees of freedom

Multiple R-squared: 0.7096, Adjusted R-squared: 0.6951

F-statistic: 48.88 on 4 and 80 DF, p-value: < 2.2e-16

Are the coefficients on Asia, LatAmerica and Transit statistically
significantly different?

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 57 / 140



Testing Equality of Coefficients in R
R Code

> D$Xstar <- D$Asia + D$LatAmerica + D$Transit

> fit.R2 <- lm(REALGDPCAP ~ Xstar + Oecd, data = D)

> SSR.UR2 <- sum(resid(fit.UR2)^2)

> SSR.R2 <- sum(resid(fit.R2)^2)

> DFdenom <- df.residual(fit.UR2)

> F <- ((SSR.R2 - SSR.UR2)/2) / (SSR.UR2/DFdenom)

> F

[1] 0.08786129

> pf(F, 2, DFdenom, lower.tail = F)

[1] 0.9159762

So, what do we conclude?

The three coefficients are statistically indistinguishable from each other,
with the p-value of 0.916.
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t Test vs. F Test
Consider the hypothesis test of

H0 : β1 = β2 vs. H1 : β1 6= β2

What ways have we learned to conduct this test?

Option 1: Compute T = (β̂1 − β̂2)/ŜE (β̂1 − β̂2) and do the t test.

Option 2: Create X ∗ = X1 + X2, fit the restricted model, compute
F = (SSRR − SSRUR)

/
(SSRR/(n − k − 1)) and do the F test.

It turns out these two tests give identical results. This is because

X ∼ tn−k−1 ⇐⇒ X 2 ∼ F1,n−k−1

So, for testing a single hypothesis it does not matter whether one does a t
test or an F test.

Usually, the t test is used for single hypotheses and the F test is used for
joint hypotheses.
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Some More Notes on F Tests

The F-value can also be calculated from R2:

F =
(R2

UR − R2
R)/q

(1− R2
UR)/(n − k − 1)

F tests only work for testing nested models, i.e. the restricted model must
be a special case of the unrestricted model.

For example F tests cannot be used to test

Y = β0 + β1X1

+ β2X2

+ β3X3 + u

against
Y = β0 + β1X1 + β2X2 +

β3X3

+ u
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Some More Notes on F Tests

Joint significance does not necessarily imply the significance of individual
coefficients, or vice versa:Finite-Sample Properties of OLS 45

Figure 1.5: t- versus F -Tests

An Example of a Test Statistic Whose Distribution Depends on XXX
To place the discussion of this section in a proper perspective, it may be useful
to note that there are some statistics whose conditional distribution depends on X.
Consider the celebrated Durbin-Watson statistic:

∑n
i=2(ei − ei−1)2∑n

i=1 e2i
.

The conditional distribution, and hence the critical values, of this statistic depend
on X, but J. Durbin and G. S. Watson have shown that the critical values fall
between two bounds (which depends on the sample size, the number of regres-
sors, and whether the regressor includes a constant). Therefore, the critical values
for the unconditional distribution, too, fall between these bounds.

The statistic is designed for testing whether there is no serial correlation in
the error term. Thus, the null hypothesis is Assumption 1.4, while the maintained
hypothesis is the other assumptions of the classical regression model (including the
strict exogeneity assumption) and the normality assumption. But, as emphasized
in Section 1.1, the strict exogeneity assumption is not satisfied in time-series mod-
els typically encountered in econometrics, and serial correlation is an issue that
arises only in time-series models. Thus, the Durbin-Watson statistic is not useful
in econometrics. More useful tests for serial correlation, which are all based on
large-sample theory, will be covered in the next chapter.

Image Credit: Hayashi (2011) Econometrics
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Limitation of the F Formula

Consider the following null hypothesis:

H0 : β1 = β2 = β3 = 3

or
H0 : β1 = 2β2 = 0.5β3 + 1

Can we test them using the F test?
To compute the F value, we need to fit the restricted model. How?

Some restrictions are difficult to impose when fitting the model.

Even when we can, the procedure will be ad hoc and require some
creativity.

Is there a general solution?
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General Procedure for Testing Linear Hypotheses

Notice that any set of q linear hypotheses can be written as

Rβ = r

where

I R is a q × (k + 1) matrix of prespecified coefficients on β (hypothesis
matrix)

I β = [β0 β1 · · · βk ]′

I r is a q × 1 vector of prespecified constants

Examples:

β1 = β2 = β3 = 3 ⇔

 β1

β2

β3

 =

 3
3
3

 ⇔
 0 1 0 0

0 0 1 0
0 0 0 1

 ·

β0

β1

β2

β3

 =

 3
3
3



β1 = 2β2 = 0.5β3+1 ⇔
[

β1 − 2β2

β1 − 0.5β3

]
=

[
0
1

]
⇔
[

0 1 −2 0
0 1 0 −0.5

]
·


β0

β1

β2

β3

 =

[
0
1

]
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Wald Statistic

Let’s consider testing H0 : Rβ = r, a set of q linear restrictions.

If H0 is true, Rβ̂ − r should be zero except for sampling variability.

To formally evaluate the statistical significance of the deviation from zero,
we must transform Rβ̂− r to a statistic that can be compared to a reference
distribution.

It turns out that the following Wald statistic can be used:

W =
(

Rβ̂ − r
)′
·
[
σ̂2R(X′X)−1R′

]−1 ·
(

Rβ̂ − r
)

Looks complicated? Let’s figure out why this makes sense:

I The first and last components give the sum of squares of the
components of Rβ̂ − r. This summarizes its deviation from zero.

I The middle component is the variance of Rβ̂− r. This standardizes the
sum of squares to have variance one.

We know β̂ is approximately normal ⇒ Rβ̂ − r should also be normal
=⇒ W should therefore be ... χ2 distributed!
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Sampling Distribution of the Wald Statistic

Theorem (Large-Sample Distribution of the Wald Statistic)

Under Assumptions 1–5, as n→∞ the distribution of the Wald statistic approaches the
chi square distribution with q degrees of freedom:

W
d→ χ2

q as n→∞

Theorem (Small-Sample Distribution of the Wald Statistic)

Under Assumptions 1–6, for any sample size n the Wald statistic divided by q has the F
distribution with (q, n − k − 1) degrees of freedom:

W /q ∼ Fq,n−k−1

qFq,n−k−1
d→ χ2

q as n→∞, so the difference disappears when n large.
> pf(3.1, 2, 500,lower.tail=F) [1] 0.04591619

> pchisq(2*3.1, 2,lower.tail=F) [1] 0.0450492

> pf(3.1, 2, 50000,lower.tail=F) [1] 0.04505786
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Testing General Linear Hypotheses in R

In R, the linearHypothesis() function in the car package does the Wald test
for general linear hypotheses.

R Code
> fit.UR2 <- lm(REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd, data = D)

> R <- matrix(c(0,1,-1,0,0, 0,1,0,-1,0), nrow = 2, byrow = T)

> r <- c(0,0)

> linearHypothesis(fit.UR2, R, r)

Linear hypothesis test

Hypothesis:

Asia - LatAmerica = 0

Asia - Transit = 0

Model 1: restricted model

Model 2: REALGDPCAP ~ Asia + LatAmerica + Transit + Oecd

Res.Df RSS Df Sum of Sq F Pr(>F)

1 82 738141635

2 80 736523836 2 1617798 0.0879 0.916
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Conclusion

Multiple regression is much like the regression formulations we have
already seen.

We showed how to estimate the coefficients and get the variance
covariance matrix.

Much of the hypothesis test infrastructure ports over nicely, plus
there are new joint tests we can use.

Appendix contains material on:
I Derivation for the estimator (+ some of the math for this)
I Proof of consistency
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Fun Without Weights
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Improper Linear Models

Proper linear model is one where predictor variables are given
optimized weights in some way (for example through regression)

Meehl (1954) Clinical Versus Statistical Prediction: A Theoretical
Analysis and Review of the Evidence argued that proper linear models
outperform clinical intuition in many areas.

Dawes argues that even improper linear models (those where weights
are set by hand or set to be equal), outperform clinical intuition.

Equal weight models are argued to be quite robust for these
predictions
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Example: Graduate Admissions

Faculty rated all students in the psych department at University of
Oregon

Ratings predicted from a proper linear model of student GRE scores,
undergrad GPA and selectivity of student’s undergraduate institution.
Cross-validated correlation was .38

Correlation of faculty ratings with average rating of admissions
committee was .19

Standardized and equally weighted improper linear model, correlated
at .48
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Other Examples

Self-assessed measures of marital happiness: modeled with improper
linear model of (rate of lovemaking - rate of arguments):
correlation of .40

Einhorn (1972) study of doctors coding biopsies of patients with
Hodgkin’s disease and then rated severity. Their rating of severity was
essentially uncorrelated with survival times, but the variables they
coded predicted outcomes using a regression model.
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Other Examples

Column descriptions:

C1) average of human judges

C2) model based on human judges

C3) randomly chosen weights preserving signs

C4) equal weighting

C5) cross-validated weights

C6) unattainable optimal linear model
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The Argument

“People – especially the experts in a field – are much better at
selecting and coding information than they are at integrating it.”
(573)

The choice of variables is extremely important for prediction!

This parallels a piece of folk wisdom in the machine learning literature
that a better predictor will beat a better model every time.

People are good at picking out relevant information, but terrible at
integrating it.

The difficulty arises in part because people in general lack a strong
reference to the distribution of the predictors.

Linear models are robust to deviations from the optimal weights (see
also Waller 2008 on “Fungible Weights in Multiple Regression”)
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My Thoughts on the Argument

Particularly in prediction, looking for the true or right model can be
quixotic

The broader research project suggests that a big part of what
quantitative models are doing predictively, is focusing human talent in
the right place.

This all applies because predictors well chosen and the sample size is
small (so the weight optimization isn’t great)

It is a fascinating paper!
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Gradient

Let v = v(u) be a scalar-valued function Rn → R1 where u is a (n × 1) column

vector. For example: v(u) = c′u where c =

 0
1
3

 and u =

 u1

u2

u3


Definition (Gradient)

We can define the column vector of partial derivatives

∂v(u)

∂u
=


∂v/∂u1

∂v/∂u2

...
∂v/∂un


This vector of partial derivatives is called the gradient.
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Vector Derivative Rule I (linear functions)

Theorem (differentiation of linear functions)

Given a linear function v(u) = c′u of an (n × 1) vector u, the derivative of v(u)
w.r.t. u is given by

∂v

∂u
= c

This also works when c is a matrix and therefore v is a vector-valued function.

For example, let v(u) = c′u where c =

 0
1
3

 and u =

 u1

u2

u3

 , then

v = c′u = 0 · u1 + 1 · u2 + 3 · u3

and
∂v

∂u
=

 ∂v/∂u1

∂v/∂u2

∂v/∂u3

 =

 0
1
3

 = c

Hence, ∂v

∂u
= c
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Vector Derivative Rule II (quadratic form)

Theorem (quadratic form)

Given a (n × n) symmetric matrix A and a scalar-valued function v(u) = u′Au of
(n × 1) vector u, we have

∂v

∂u
= A′u + Au = 2Au

For example, let A =

[
3 1
1 5

]
and u =

[
u1

u2

]
.Then v(u) = u′Au is equal to

v = [3 · u1 + u2, u1 + 5 · u2]

[
u1

u2

]
= 3u2

1 + 2u1u2 + 5u2
2

and

∂v

∂u
=

[
∂v/∂u1

∂v/∂u2

]
=

[
6u1 + 2u2

2u1 + 10u2

]
= 2 ·

[
3u1 + 1u2

1u1 + 5u2

]
= 2Au
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Hessian

Suppose v is a scalar-valued function v = f (u) of a (k + 1)× 1 column
vector u =

[
u1 u2 · · · uk+1

]′
Definition (Hessian)

The (k + 1)× (k + 1) matrix of second-order partial derivatives of
v = f (u) is called the Hessian matrix and denoted

∂v2

∂u∂u′
=


∂v2

∂u1∂u1
· · · ∂v2

∂u1∂uk+1
...

. . .
...

∂v2

∂uk+1∂u1
· · · ∂v2

∂uk+1∂uk+1


Note: The Hessian is symmetric.

The above rules are used to derive the optimal estimators in the appendix
slides.
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Derivatives with respect to β̃

S(β̃,X, y) = (y − Xβ̃)′(y − Xβ̃)

= y′y − 2y′Xβ̃ + β̃
′
X′Xβ̃

∂S(β̃,X, y)

∂β̃
=

− 2X′y + 2X′Xβ̃

The first term does not contain β̃

The second term is an example of rule I from the derivative section

The third term is an example of rule II from the derivative section

And while we are at it the Hessian is:

∂2S(β̃,X, y)

∂β̃∂β̃
′ = 2X′X
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And while we are at it the Hessian is:

∂2S(β̃,X, y)

∂β̃∂β̃
′ = 2X′X
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Solving for β̂

∂S(β̃,X, y)

∂β̃
= −2X′y + 2X′Xβ̃

Setting the vector of partial derivatives equal to zero and substituting β̂
for β̃ , we can solve for the OLS estimator.

0 = −2X′y + 2X′Xβ̂

− 2X′Xβ̂ = −2X′y

X′Xβ̂ = X′y(
X′X

)−1
X′Xβ̂ =

(
X′X

)−1
X′y

Iβ̂ =
(
X′X

)−1
X′y

β̂ =
(
X′X

)−1
X′y

Note that we implicitly assumed that X′X is invertible.
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Consistency of β̂
To show consistency, we rewrite the OLS estimator in terms of sample means so
that we can apply LLN.

First, note that a matrix cross product can be written as a sum of vector products:

X′X =
n∑

i=1

x′ixi and X′y =
n∑

i=1

x′iyi

where xi is the 1× (k + 1) row vector of predictor values for unit i .

Now we can rewrite the OLS estimator as,

β̂ =
(∑n

i=1
x′ixi

)−1 (∑n

i=1
x′iyi
)

=
(∑n

i=1
x′ixi

)−1 (∑n

i=1
x′i (xiβ + ui )

)
= β +

(∑n

i=1
x′ixi

)−1 (∑n

i=1
x′iui

)
= β +

(
1

n

∑n

i=1
x′ixi

)−1(
1

n

∑n

i=1
x′iui

)
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Consistency of β̂

Now let’s apply the LLN to the sample means:(
1

n

n∑
i=1

x′ixi

)
p−→ E [x′ixi ], a (k + 1)× (k + 1) nonsingular matrix.(

1

n

n∑
i=1

x′iui

)
p−→ E [x′iui ] = 0, by the zero cond. mean assumption.

Therefore, we have

plim(β̂) = β + (E [x′ixi ])
−1 · 0

= β.

We can also show the asymptotic normality of β̂ using a similar argument but
with the CLT.
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Where We’ve Been and Where We’re Going...

Last Week
I regression with two variables
I omitted variables, multicollinearity, interactions

This Week
I Monday:

F matrix form of linear regression
F t-tests, F-tests and general linear hypothesis tests

I Wednesday:
F problems with p-values
F agnostic regression
F the bootstrap

Next Week
I break!
I then . . . diagnostics

Long Run
I probability → inference → regression → causal inference

Questions?
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1 Matrix Form of Regression

2 OLS inference in matrix form

3 Standard Hypothesis Tests

4 Testing Joint Significance

5 Testing Linear Hypotheses: The General Case

6 Fun With(out) Weights

7 Appendix: Derivations and Consistency

8 The Problems with p-values

9 Agnostic Regression

10 Inference via the Bootstrap

11 Fun With Weights

12 Appendix: Tricky p-value Example
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p-values (courtesy of XKCD)
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The value of the p-value

Every experiment may be said to exist only in order to give the
facts a chance of disproving the null hypothesis.

Ronald Fisher (1935)

In social science (and I think in psychology as well), the null
hypothesis is almost certainly false, false, false, and you don’t
need a p-value to tell you this. The p-value tells you the extent
to which a certain aspect of your data are consistent with the
null hypothesis. A lack of rejection doesn’t tell you that the
null hypothesis is likely true; rather, it tells you that you don’t
have enough data to reject the null hypothesis.

Andrew Gelman (2010)
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Problems with p-values

p-values are extremely common in the social sciences and are often
the standard by which the value of the finding is judged.

p-values are not:
I an indication of a large substantive effect
I the probability that the null hypothesis is true
I the probability that the alternative hypothesis is false

a large p-value could mean either that we are in the null world OR
that we had insufficient power
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So what is the basic idea?

The idea was to run an experiment, then see if the results were
consistent with what random chance might produce. Researchers
would first set up a ’null hypothesis’ that they wanted to
disprove, such as there being no correlation or no difference
between groups. Next, they would play the devil’s advocate and,
assuming that this null hypothesis was in fact true, calculate the
chances of getting results at least as extreme as what was
actually observed. This probability was the P value. The smaller
it was, suggested Fisher, the greater the likelihood that the
straw-man null hypothesis was false.
(Nunzo 2014, emphasis mine)
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I’ve got 99 problems. . .

p-values are hard to interpret, but even in the best scenarios they have
some key problems:

they remove focus from data, measurement, theory and the
substantive quantity of interest

they are often applied outside the dichotomous/decision-making
framework where they make some sense

significance isn’t even a good filter for predictive covariates (Ward et
al 2010, Lo et al 2015)

they lead to publication filtering on arbitrary cutoffs.
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Arbitrary Cutoffs

Gerber and Malhotra (2006) Top Political Science Journals
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Arbitrary Cutoffs

Gerber and Malhotra (2008) Top Sociology Journals
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Arbitrary Cutoffs

Masicampo and Lalande (2012) Top Psychology Journals
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Still Not Convinced?
The Real Harm of Misinterpreted p-values
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Example from Hauer: Right-Turn-On-Red
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The Point in Hauer

Two other interesting examples in Hauer (2004)

Core issue is that lack of significance is not an indication of a zero
effect, it could also be a lack of power (i.e. a small sample size
relative to the difficulty of detecting the effect)

On the opposite end, large tech companies rarely use significance
testing because they have huge samples which essentially always find
some non-zero effect. But that doesn’t make the finding significant in
a colloquial sense of important.
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p-values and Confidence Intervals

p-values one of most used tests in the social sciences–and you’re telling
me not to rely on them?

Basically, yes.

What’s the matter with you?

- Two reasons not to worship p-values [of many]

1) Statistical: they represent a very specific quantity under a null
distribution. If you don’t really care about rejecting just that null, then
you should focus on providing more information

2) Substantive: p-values are divorced from your quantity of interest–which
almost always should relate to how much an intervention changes a
quantity of social scientific interest (newspaper rule)
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2) Substantive: p-values are divorced from your quantity of interest–which
almost always should relate to how much an intervention changes a
quantity of social scientific interest (newspaper rule)
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p-values and Confidence Intervals

But I want to assess the probability that my hypothesis is true–why can’t I
use a p-value?

1) Me too, good luck.

2) That’s not what p-values measure

3) No one study is going to eliminate an entire hypothesis; even if that
study generates a really small p-value, you’d probably want an entirely
different infrastructure

Instead, show quantities you care about with confidence intervals.

Don’t misinterpret, or rely too heavily, on your p-values.
They are evidence against your null, not evidence in favor

of your alternative.
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But Let’s Not Obsess Too Much About p-values

From Leek and Peng (2015) “P values are just the tip of the iceberg” Nature.
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1 Matrix Form of Regression

2 OLS inference in matrix form

3 Standard Hypothesis Tests

4 Testing Joint Significance

5 Testing Linear Hypotheses: The General Case
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7 Appendix: Derivations and Consistency
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Regression as parametric modeling
Let’s summarize the parametric view we have taken thus far.

Gauss-Markov assumptions:
I (A1) linearity, (A2) i.i.d. sample, (A3) full rank Xi , (A4) zero

conditional mean error, (A5) homoskedasticity.
I basically, assume the model is right

 OLS is BLUE, plus (A6) normality of the errors and we get small
sample SEs and BUE.
What is the basic approach here?

I A1 defines a linear model for the conditional expectation:

E [Yi |Xi ] = µi = X′iβ

I A4-6, define a probabilistic model for the conditional distribution of Yi

given Xi :

Yi |Xi ∼ N (µi , σ
2)

I A3 covers the edge-case that the βs are indistinguishable.
I A2 ensures that we observe independent samples for estimation.
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Agnostic views on regression

[Yi |Xi ] ∼ N(X ′i β, σ
2)

These assumptions assume we know a lot about how Yi is ‘generated’.

Justifications for using OLS (like BLUE/BUE) often invoke these
assumptions which are unlikely to hold exactly.

Alternative: take an agnostic view on regression.
I use OLS without believing these assumptions.
I lean on two things: A2 i.i.d. sample, asymptotics (large-sample

properties)

Lose the distributional assumptions, focus on the conditional
expectation function (CEF):

µ(x) = E[Yi |Xi = x ] =
∑
y

y · P[Yi = y |Xi = x ]

NB: this makes no statement about whether or not the CEF you are
looking at is the ‘right’ one.
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Justifying linear regression

Define linear regression:

β = arg min
b

E[(Yi − X ′i b)2]

The solution to this is the following:

β = E[XiX
′
i ]
−1E[XiYi ]

Note that the is the population coefficient vector, not the estimator
yet.

In other words, even a non-linear CEF has a “true” linear
approximation, even though that approximation may not be great.
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Regression anatomy

Consider simple linear regression:

(α, β) = arg min
a,b

E
[
(Yi − a− bXi )

2
]

In this case, we can write the population/true slope β as:

β = E[XiX
′
i ]
−1E[XiYi ] =

Cov(Yi ,Xi )

Var[Xi ]

With more covariates, β is more complicated, but we can still write it
like this.

Let X̃ki be the residual from a regression of Xki on all the other
independent variables. Then, βk , the coefficient for Xki is:

βk =
Cov(Yi , X̃ki )

Var(X̃ki )
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Justification 1: Linear CEFs

Justification 1: if the CEF is linear, the population regression function
is it. That is, if E [Yi |Xi ] = X ′i b, then b = β.

When would we expect the CEF to be linear? Two cases.

1 Outcome and covariates are multivariate normal.
2 Linear regression model is saturated.

A model is saturated if there are as many parameters as there are
possible combination of the Xi variables.
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Saturated model example

Two binary variables, X1i for marriage status and X2i for having
children.

Four possible values of Xi , four possible values of µ(Xi ):

E [Yi |X1i = 0,X2i = 0]

E [Yi |X1i = 1,X2i = 0]

E [Yi |X1i = 0,X2i = 1]

E [Yi |X1i = 1,X2i = 1]

We can write the CEF as follows:

E [Yi |X1i ,X2i ] = α + βX1i + γX2i + δ(X1iX2i )
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Saturated model example

E [Yi |X1i ,X2i ] = α + βX1i + γX2i + δ(X1iX2i )

Basically, each value of µ(Xi ) is being estimated separately.

I  within-strata estimation.
I No borrowing of information from across values of Xi .

Requires a set of dummies for each categorical variable plus all
interactions.

Or, a series of dummies for each unique combination of Xi .

This makes linearity hold mechanically and so linearity is not an
assumption.
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Saturated model example

Washington (AER) data on the effects of daughters.

We’ll look at the relationship between voting and number of kids
(causal?).

girls <- foreign::read.dta("girls.dta")

head(girls[, c("name", "totchi", "aauw")])

## name totchi aauw

## 1 ABERCROMBIE, NEIL 0 100

## 2 ACKERMAN, GARY L. 3 88

## 3 ADERHOLT, ROBERT B. 0 0

## 4 ALLEN, THOMAS H. 2 100

## 5 ANDREWS, ROBERT E. 2 100

## 6 ARCHER, W.R. 7 0
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Linear model

summary(lm(aauw ~ totchi, data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 61.31 1.81 33.81 <2e-16 ***

## totchi -5.33 0.62 -8.59 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 42 on 1733 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.0408, Adjusted R-squared: 0.0403

## F-statistic: 73.8 on 1 and 1733 DF, p-value: <2e-16
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Saturated model
summary(lm(aauw ~ as.factor(totchi), data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 56.41 2.76 20.42 < 2e-16 ***

## as.factor(totchi)1 5.45 4.11 1.33 0.1851

## as.factor(totchi)2 -3.80 3.27 -1.16 0.2454

## as.factor(totchi)3 -13.65 3.45 -3.95 8.1e-05 ***

## as.factor(totchi)4 -19.31 4.01 -4.82 1.6e-06 ***

## as.factor(totchi)5 -15.46 4.85 -3.19 0.0015 **

## as.factor(totchi)6 -33.59 10.42 -3.22 0.0013 **

## as.factor(totchi)7 -17.13 11.41 -1.50 0.1336

## as.factor(totchi)8 -55.33 12.28 -4.51 7.0e-06 ***

## as.factor(totchi)9 -50.41 24.08 -2.09 0.0364 *

## as.factor(totchi)10 -53.41 20.90 -2.56 0.0107 *

## as.factor(totchi)12 -56.41 41.53 -1.36 0.1745

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 41 on 1723 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.0506, Adjusted R-squared: 0.0446

## F-statistic: 8.36 on 11 and 1723 DF, p-value: 1.84e-14
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Saturated model minus the constant
summary(lm(aauw ~ as.factor(totchi) - 1, data = girls))

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## as.factor(totchi)0 56.41 2.76 20.42 <2e-16 ***

## as.factor(totchi)1 61.86 3.05 20.31 <2e-16 ***

## as.factor(totchi)2 52.62 1.75 30.13 <2e-16 ***

## as.factor(totchi)3 42.76 2.07 20.62 <2e-16 ***

## as.factor(totchi)4 37.11 2.90 12.79 <2e-16 ***

## as.factor(totchi)5 40.95 3.99 10.27 <2e-16 ***

## as.factor(totchi)6 22.82 10.05 2.27 0.0233 *

## as.factor(totchi)7 39.29 11.07 3.55 0.0004 ***

## as.factor(totchi)8 1.08 11.96 0.09 0.9278

## as.factor(totchi)9 6.00 23.92 0.25 0.8020

## as.factor(totchi)10 3.00 20.72 0.14 0.8849

## as.factor(totchi)12 0.00 41.43 0.00 1.0000

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 41 on 1723 degrees of freedom

## (5 observations deleted due to missingness)

## Multiple R-squared: 0.587, Adjusted R-squared: 0.584

## F-statistic: 204 on 12 and 1723 DF, p-value: <2e-16
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Compare to within-strata means

The saturated model makes no assumptions about the between-strata
relationships.

Just calculates within-strata means:

c1 <- coef(lm(aauw ~ as.factor(totchi) - 1, data = girls))

c2 <- with(girls, tapply(aauw, totchi, mean, na.rm = TRUE))

rbind(c1, c2)

## 0 1 2 3 4 5 6 7 8 9 10 12

## c1 56 62 53 43 37 41 23 39 1.1 6 3 0

## c2 56 62 53 43 37 41 23 39 1.1 6 3 0
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Other justifications for OLS

Justification 2: X ′i β is the best linear predictor (in a mean-squared
error sense) of Yi .

I Why?

β = arg minb E[(Yi − X ′i b)2]

Justification 3: X ′i β provides the minimum mean squared error linear
approximation to E [Yi |Xi ].

Even if the CEF is not linear, a linear regression provides the best
linear approximation to that CEF.

Don’t need to believe the assumptions (linearity) in order to use
regression as a good approximation to the CEF.

Warning if the CEF is very nonlinear then this approximation could be
terrible!!
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The error terms

Let’s define the error term: ei ≡ Yi − X ′i β so that:

Yi = X ′i β + [Yi − X ′i β] = X ′i β + ei

Note the residual ei is uncorrelated with Xi :

E[Xiei ] = E[Xi (Yi − X ′i β)]

= E[XiYi ]− E[XiX
′
i β]

= E[XiYi ]− E
[
XiX

′
i E[XiX

′
i ]
−1E[XiYi ]

]
= E[XiYi ]− E[XiX

′
i ]E[XiX

′
i ]
−1E[XiYi ]

= E[XiYi ]− E[XiYi ] = 0

No assumptions on the linearity of E[Yi |Xi ].
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OLS estimator

We know the population value of β is:

β = E[XiX
′
i ]
−1E[XiYi ]

How do we get an estimator of this?

Plug-in principle  replace population expectation with sample
versions:

β̂ =

[
1

N

∑
i

XiX
′
i

]−1
1

N

∑
i

XiYi

If you work through the matrix algebra, this turns out to be:

β̂ =
(
X′X

)−1
X′y
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Asymptotic OLS inference

With this representation in hand, we can write the OLS estimator as
follows:

β̂ = β +

[∑
i

XiX
′
i

]−1∑
i

Xiei

Core idea:
∑

i Xiei is the sum of r.v.s so the CLT applies.

That, plus some simple asymptotic theory allows us to say:

√
N(β̂ − β) N(0,Ω)

Converges in distribution to a Normal distribution with mean vector 0
and covariance matrix, Ω:

Ω = E[XiX
′
i ]
−1E[XiX

′
i e

2
i ]E[XiX

′
i ]
−1.

No linearity assumption needed!
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Estimating the variance

In large samples then:

√
N(β̂ − β) ∼ N(0,Ω)

How to estimate Ω? Plug-in principle again!

Ω̂ =

[∑
i

XiX
′
i

]−1 [∑
i

XiX
′
i ê

2
i

][∑
i

XiX
′
i

]−1

.

Replace ei with its emprical counterpart (residuals) êi = Yi − X ′i β̂.

Replace the population moments of Xi with their sample counterparts.

The square root of the diagonals of this covariance matrix are the
“robust” or Huber-White standard errors (we will return to this in a
few classes).

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 117 / 140



Estimating the variance

In large samples then:

√
N(β̂ − β) ∼ N(0,Ω)

How to estimate Ω? Plug-in principle again!

Ω̂ =

[∑
i

XiX
′
i

]−1 [∑
i

XiX
′
i ê
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The Agnostic Statistics Perspective

The key insight here is that we can derive estimators for properties of
the conditional expectation function under somewhat weaker
assumptions

They still rely heavily on large samples (asymptotic results) and
independent samples.

See the Aronow and Miller textbook for a great explanation and
defense of this worldview (also Lin’s 2013 ‘Agnostic notes on
regression adjustments to experimental data’).

We will come back to re-thinking the implications for finite samples
during the diagnostics classes.
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The Bootstrap

How do we do inference if we don’t know how to construct the sampling
distribution for our estimator?

Idea of the Bootstrap: Use the empirical CDF (eCDF) as a plug-in for the
CDF, and resample from that.

We are pretending our sample eCDF looks sufficiently close to our true
CDF, and so we’re sampling from the eCDF as an approximation to
repeated sampling from the true CDF. This is called a resampling method.

1 Take a with replacement sample of size n from our sample.

2 Calculate our would-be estimate using this bootstrap sample.

3 Repeat steps 1 and 2 many (B) times.

4 Using the resulting collection of bootstrap estimates to calculate
estimates of the standard error or confidence intervals (more later).
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Why The Bootstrap

If we have a very complicated estimator, such as

X
4
1/(X 2 − X 3)2 where samples 2 and 3 are not drawn independently

(β̂0 + β̂1)3/(2 + β̂2
2)

Then the bootstrap is very useful because we don’t have to derive the
analytical expectation and variance, we can calculate them in the
bootstrap.

Bootstrap is really useful when:

you want to avoid making a normal approximation

you want to avoid making certain assumptions (i.e. homoskedasticity)

you are considering an estimator for which an analytical variance
estimator is hard or impossible to calculate.

This is the closest thing to magic I will show you all semester.
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Two ways to calculate intervals and p-values

Using normal approximation intervals and p-values, use the estimates
from step 4.[

X − Φ−1(1− α/2) ∗ σ̂boot ,X + Φ−1(1− α/2) ∗ σ̂boot
]

I Intuition check: the standard error is just the standard deviation of the
bootstrap replicates. There is not square root of n. Why?

Percentile method for the CI: Sort B bootstrap estimates from
smallest to largest. Grab the values at α/2 ∗ B and 1− α/2 ∗ B
position.

I Percentile method does not rely on normal approximation but requires
very large B and thus more computational time.
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Example: Linear Regression

We skimmed over the sampling distribution of the variance parameter in a
linear regression earlier.

It turns out that σ̂2 ∼ χ2
n−(K+1).

But instead we’ll use Bootstrap:

1) Sample from data set, with replacement n times, X̃
2) Calculate f (X̃ ) (in this case a regression)

3) Repeat B times, form distribution of statistics

4) Calculate confidence interval by identifying α/2 and 1− α/2 value of
statistic. (percentile method)
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The Bootstrap More Formally

What we are discussing is the nonparametric bootstrap

y1, . . . , yn are the outcomes of independent and identically distributed
random variables Y1, . . . ,Yn whose PDF and CDF are denoted by f
and F .

The sample is used to make inferences about an estimand, denoted by
θ using a statistic T whose value in the sample is t.

If we observed F , statistical inference would be very easy, but instead
we observe F̂ , which is the empirical distribution that put equal
probabilities n−1 at each sample value yi .

I Estimates are constructed by the plug-in principle, which says that the
parameter θ = t(F ) is estimated by θ̂ = t(F̂ ). (i.e. we plug in the
ECDF for the CDF)

I Why does this work? Sampling distribution entirely determined by the
CDF and n, WLLN says the ECDF will look more and more like the
CDF as n gets large.
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When Does the Bootstrap Fail?
Bootstrap works in a wide variety of circumstances, but it does require
some regularity conditions and it can fail with certain types of data and
estimators:

Bootstrap fails when the sampling distribution of the estimator is
non-smooth. (e.g. max and min).
Dependent data: nonparametric bootstrap assumes data so
independent so will not work with time series data or other dependent
structures.

I For clustered data, standard bootstrap will not work, but the block
bootstrap will work. In the block bootstrap, clusters are resampled (not
necessarily units) with replacement.

I More on this later.

Many other variants that may be right for certain situations:
studentized intervals, jackknife, parametric bootstrap, bag of little
bootstraps, bootstrapping for complex survey designs, etc.

Fox Chapter 21 has a nice section on the bootstrap, Aronow and Miller
(2016) covers the theory well.
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Today in Summary

The difficulty of interpreting p-values

Agnostic Regression: how will regression behave in large samples if we
don’t really buy the assumptions

Bootstrap: a close to assumption free way of constructing confidence
intervals

Appendix contains a fun example of the difficulty of thinking through
p-values.
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Next “Week” of Classes (Three Classes)

What can go wrong and how to fix it → Diagnostics

Day 1 (M): Unusual and Influential Data → Robust Estimation

Day 2 (W): Nonlinearity → Generalized Additive Models

Day 3 (M): Unusual Errors → Sandwich Standard Errors

Reading:
I Angrist and Pishke Chapter 8 (‘Nonstandard Standard Error Issues’)
I Optional: Fox Chapters 11-13
I Optional: King and Roberts “How Robust Standard Errors Expose

Methodological Problems They Do Not Fix, and What to Do About
It.” Political Analysis, 2, 23: 159179.

I Optional: Aronow and Miller Chapters 4.2-4.4 (Inference, Clustering,
Nonlinearity)
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1 Matrix Form of Regression

2 OLS inference in matrix form

3 Standard Hypothesis Tests

4 Testing Joint Significance

5 Testing Linear Hypotheses: The General Case

6 Fun With(out) Weights

7 Appendix: Derivations and Consistency

8 The Problems with p-values

9 Agnostic Regression

10 Inference via the Bootstrap

11 Fun With Weights

12 Appendix: Tricky p-value Example
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Fun With Weights

Aronow, Peter M., and Cyrus Samii. ”Does Regression Produce
Representative Estimates of Causal Effects?.” American Journal of
Political Science (2015).2

Imagine we care about the possibly heterogeneous causal effect of a
treatment D and we control for some covariates X?

We can express the regression as a weighting over individual
observation treatment effects where the weight depends only on X .

Useful technology for understanding what our models are identifying
off of by showing us our effective sample.

2I’m grateful to Peter Aronow for sharing his slides, several of which are used here.
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How this works

We start by asking what the estimate of the average causal effect of
interest converges to in a large sample:

β̂
p→ E [wiτi ]

E [wi ]
where wi = (Di − E [Di |X ])2 ,

so that β̂ converges to a reweighted causal effect. As
E [wi |Xi ] = Var[Di |Xi ], we obtain an average causal effect reweighted by
conditional variance of the treatment.
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Estimation

A simple, consistent plug-in estimator of wi is available: ŵi = D̃2
i where

D̃i is the residualized treatment. (the proof is connected to the partialing
out strategy we showed last week)

Easily implemented in R:

wts <- (d - predict(lm(d~x)))^2
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Implications

Unpacking the black box of regression gives us substantive insight

When some observations have no weight, this means that the
covariates completely explain their treatment condition.

This is a feature, not a bug, of regression: we can’t learn anything
from those cases anyway (i.e. it is automatically handling issues of
common support).

The downside is that we have to be aware of what happened!
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Application

Jensen (2003), “Democratic Governance and Multinational Corporations:
Political Regimes and Inflows of Foreign Direct Investment.”

Jensen presents a large-N TSCS-analysis of the causal effects of
governance (as measured by the Polity III score) on Foreign Direct
Investment (FDI).

The nominal sample: 114 countries from 1970 to 1997.

Jensen estimates that a 1 unit increase in polity score corresponds to a
0.020 increase in net FDI inflows as a percentage of GDP (p < 0.001).
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Nominal and Effective Samples

Over 50% of the weight goes to just 12 (out of 114) countries.

Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 134 / 140



Broader Implications

When causal effects are heterogeneous, we can draw a distinction between
“internally valid” and “externally valid” estimates of an Average
Treatment Effect (ATE).

“Internally valid”: reliable estimates of ATEs, but perhaps not for the
population you care about

I randomized (lab, field, survey) experiments, instrumental variables,
regression discontinuity designs, other natural experiments

“Externally valid”: perhaps unreliable estimates of ATEs, but for the
population of interest

I large-N analyses, representative surveys
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Broader Implications

Aronow and Samii argue that analyses which use regression, even with a
representative sample, have no greater claim to external validity than do
[natural] experiments.

When a treatment is “as-if” randomly assigned conditional on
covariates, regression distorts the sample by implicitly applying
weights.

The effective sample (upon which causal effects are estimated) may
have radically different properties than the nominal sample.

When there is an underlying natural experiment in the data, a
properly specified regression model may reproduce the internally valid
estimate associated with the natural experiment.
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Still Not Convinced? A Tricky Example: p-values

Morris 19873

Mr. Allen the candidate for political Party A will run against Mr.
Baker of Party B for office. Past races between these parties for
this office were always closer, and it seems this one will be no
exception- Party A candidates always have gotten between 40%
and 60% of the vote and have won about half of the elections.
Allen needs to know for θ =the proportion of voters favoring him
today, whether H0: θ < .5 or H1 : θ > .5 is true. A random
sample of n voters is taken, with Y voters favoring Allen. The
population is large and it is justifiable to assume that
Y ∼Bin(n, θ), the binomial distribution. The estimate θ̂ = Y /n
will be used.

3From a Comment on Berger and Sellke “Testing a Point Null Hypothesis: The
Irreconcilability of P Values and Evidence
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Example: p-values

Question: Which of three outcomes, all having the same p value,
would be most encouraging to candidate Allen?

(a) Y = 15, n = 20, θ̂ = .75, (.560, .940)
(b) Y = 115, n = 200, θ̂ = .575, (.506, .644)
(c) Y = 1046, n = 2000, θ̂ = .523(.501, .545)

Note: The p values are all about .021.
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Example: p-values

the p-values corresponds to Pr(H0|t) only when good power obtains
at typical H1 parameter values.

alternatively, simulate the thing you care about
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