Week 12: Repeated Observations and Panel Data

Brandon Stewart ${ }^{1}$

Princeton
December 10 and 12, 2018

[^0]
Where We've Been and Where We're Going...

- Last Week
- causal inference with unmeasured confounding
- This Week
- Monday:
\star panel data
\star diff-in-diff
\star fixed effects
- Wednesday:
\star spillover of material
* Q\&A
* wrap-up
- The Following Week
- break!
- Long Run
- probability \rightarrow inference \rightarrow regression \rightarrow causality

Questions?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

(1) Set Up

(2) Differencing Models
(3) Difference-in-Differences

- Fixed Effects
(5) Non-parametric Identification and Fixed Effects
a (AImost) Twenty Questions
- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier
- provide benefits more efficiently

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier
- provide benefits more efficiently
- possess some cultural trait correlated with better health outcomes

Motivation

Is Democracy Good for the Poor?

Michael Ross University of California, Los Angeles

- Relationship between democracy and infant mortality?
- Compare levels of democracy with levels of infant mortality, but...
- Democratic countries are different from non-democracies in ways that we can't measure?
- they are richer or developed earlier
- provide benefits more efficiently
- possess some cultural trait correlated with better health outcomes
- If we have data on countries over time, can we make any progress in spite of these problems?

Ross Data

\#\#	cty_name year	democracy	infmort_unicef
\#\# 1	Afghanistan 1965	0	230
\#\# 2 Afghanistan 1966	0	NA	
\#\# 3 Afghanistan 1967	0	NA	
\#\# 4 Afghanistan 1968	0	NA	
\#\# 5 Afghanistan 1969	0	NA	
\#\# 6 Afghanistan 1970	0	215	

Notation for Panel Data

Notation for Panel Data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$

Notation for Panel Data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Slightly different focus than clustered data we covered earlier
- Panel: we have repeated measurements of the same units
- Clustering: units are clustered within some grouping.

Notation for Panel Data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Slightly different focus than clustered data we covered earlier
- Panel: we have repeated measurements of the same units
- Clustering: units are clustered within some grouping.
- The main difference is what level of analysis we care about (individual, city, county, state, country, etc).

Notation for Panel Data

- Units, $i=1, \ldots, n$
- Time, $t=1, \ldots, T$
- Slightly different focus than clustered data we covered earlier
- Panel: we have repeated measurements of the same units
- Clustering: units are clustered within some grouping.
- The main difference is what level of analysis we care about (individual, city, county, state, country, etc).
- Time is a typical application, but applies to other groupings:
- counties within states
- states within countries
- people within professions

Nomenclature

Names are used in different ways across fields but generally:

Nomenclature

Names are used in different ways across fields but generally:

- Panel data: large n, relatively short T
- Time series, cross-sectional (TSCS) data: smaller n, large T

Nomenclature

Names are used in different ways across fields but generally:

- Panel data: large n, relatively short T
- Time series, cross-sectional (TSCS) data: smaller n, large T
- We are primarily going to focus on similarities today but there are some differences.

A Baseline Linear Model

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

A Baseline Linear Model

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- $\mathbf{x}_{i t}$ is a vector of (possibly time-varying) covariates

A Baseline Linear Model

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- $\mathbf{x}_{i t}$ is a vector of (possibly time-varying) covariates
- a_{i} is an unobserved time-constant unit effect ("fixed effect")

A Baseline Linear Model

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- $\mathbf{x}_{i t}$ is a vector of (possibly time-varying) covariates
- a_{i} is an unobserved time-constant unit effect ("fixed effect")
- $u_{i t}$ are the unobserved time-varying "idiosyncratic" errors

A Baseline Linear Model

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- $\mathbf{x}_{i t}$ is a vector of (possibly time-varying) covariates
- a_{i} is an unobserved time-constant unit effect ("fixed effect")
- $u_{i t}$ are the unobserved time-varying "idiosyncratic" errors
- $v_{i t}=a_{i}+u_{i t}$ is the combined unobserved error:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+v_{i t}
$$

A Baseline Linear Model

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- $\mathbf{x}_{i t}$ is a vector of (possibly time-varying) covariates
- a_{i} is an unobserved time-constant unit effect ("fixed effect")
- $u_{i t}$ are the unobserved time-varying "idiosyncratic" errors
- $v_{i t}=a_{i}+u_{i t}$ is the combined unobserved error:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+v_{i t}
$$

- Covers the case of separable, linear unmeasured confounding.

A Baseline Linear Model

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- $\mathbf{x}_{i t}$ is a vector of (possibly time-varying) covariates
- a_{i} is an unobserved time-constant unit effect ("fixed effect")
- $u_{i t}$ are the unobserved time-varying "idiosyncratic" errors
- $v_{i t}=a_{i}+u_{i t}$ is the combined unobserved error:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+v_{i t}
$$

- Covers the case of separable, linear unmeasured confounding.

We will start by considering performance of estimators assuming this model is true.

Naive Strategy: Pooled OLS

- Pooled OLS: pool all observations into one regression

Naive Strategy: Pooled OLS

- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each it) as an iid unit.

Naive Strategy: Pooled OLS

- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each it) as an iid unit.
- Has two problems:

Naive Strategy: Pooled OLS

- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each it) as an iid unit.
- Has two problems:
(1) Heteroskedasticity (see clustering from diagnostics week)

Naive Strategy: Pooled OLS

- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each it) as an iid unit.
- Has two problems:
(1) Heteroskedasticity (see clustering from diagnostics week)
(2) Possible violation of zero conditional mean errors

Naive Strategy: Pooled OLS

- Pooled OLS: pool all observations into one regression
- Treats all unit-periods (each it) as an iid unit.
- Has two problems:
(1) Heteroskedasticity (see clustering from diagnostics week)
(2) Possible violation of zero conditional mean errors
- Both problems arise out of ignoring the unmeasured heterogeneity inherent in a_{i}

Pooled OLS with Ross data

```
pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur),
    data = ross)
summary(pooled.mod)
##
## Coefficients:
## Estimate Std. Error t value Pr}\operatorname{Pr}(>|t|
## (Intercept) 9.76405 0.34491 28.31 <2e-16 ***
## democracy -0.95525 0.06978 -13.69 <2e-16 ***
## log(GDPcur) -0.22828 0.01548 -14.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7948 on 646 degrees of freedom
## (5773 observations deleted due to missingness)
## Multiple R-squared: 0.5044, Adjusted R-squared: 0.5029
## F-statistic: 328.7 on 2 and 646 DF, p-value: < 2.2e-16
```


Unmeasured Heterogeneity

- Assume that zero conditional mean error holds for the idiosyncratic error:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0
$$

Unmeasured Heterogeneity

- Assume that zero conditional mean error holds for the idiosyncratic error:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0
$$

- But time-constant effect, a_{i}, is correlated with the \mathbf{X} :

$$
\mathbb{E}\left[a_{i} \mid \mathbf{X}\right] \neq 0
$$

Unmeasured Heterogeneity

- Assume that zero conditional mean error holds for the idiosyncratic error:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0
$$

- But time-constant effect, a_{i}, is correlated with the \mathbf{X} :

$$
\mathbb{E}\left[a_{i} \mid \mathbf{X}\right] \neq 0
$$

- Example: democratic institutions correlated with time-invariant unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.

Unmeasured Heterogeneity

- Assume that zero conditional mean error holds for the idiosyncratic error:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0
$$

- But time-constant effect, a_{i}, is correlated with the \mathbf{X} :

$$
\mathbb{E}\left[a_{i} \mid \mathbf{X}\right] \neq 0
$$

- Example: democratic institutions correlated with time-invariant unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.
- Ignore the heterogeneity \rightsquigarrow correlation between the combined error and the independent variables:

$$
\mathbb{E}\left[v_{i t} \mid \mathbf{X}\right]=\mathbb{E}\left[a_{i}+u_{i t} \mid \mathbf{X}\right] \neq 0
$$

Unmeasured Heterogeneity

- Assume that zero conditional mean error holds for the idiosyncratic error:

$$
\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0
$$

- But time-constant effect, a_{i}, is correlated with the \mathbf{X} :

$$
\mathbb{E}\left[a_{i} \mid \mathbf{X}\right] \neq 0
$$

- Example: democratic institutions correlated with time-invariant unmeasured aspects of health outcomes, like quality of health system or a lack of ethnic conflict.
- Ignore the heterogeneity \rightsquigarrow correlation between the combined error and the independent variables:

$$
\mathbb{E}\left[v_{i t} \mid \mathbf{X}\right]=\mathbb{E}\left[a_{i}+u_{i t} \mid \mathbf{X}\right] \neq 0
$$

- Pooled OLS will be biased and inconsistent because zero conditional mean error fails for the combined error.
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up

(2) Differencing Models

(3) Difference-in-Differences
4. Fixed Effects
(3) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

First Differencing

- First approach: compare changes over time as opposed to levels

First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity

First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity
- Two time periods:

$$
\begin{aligned}
& y_{i 1}=\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1} \\
& y_{i 2}=\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}
\end{aligned}
$$

First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity
- Two time periods:

$$
\begin{aligned}
& y_{i 1}=\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1} \\
& y_{i 2}=\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in y over time:

$$
\Delta y_{i}=y_{i 2}-y_{i 1}
$$

First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity
- Two time periods:

$$
\begin{aligned}
& y_{i 1}=\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1} \\
& y_{i 2}=\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in y over time:

$$
\Delta y_{i}=y_{i 2}-y_{i 1}
$$

First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity
- Two time periods:

$$
\begin{aligned}
& y_{i 1}=\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1} \\
& y_{i 2}=\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in y over time:

$$
\begin{aligned}
\Delta y_{i} & =y_{i 2}-y_{i 1} \\
& =\left(\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}\right)-\left(\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1}\right)
\end{aligned}
$$

First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity
- Two time periods:

$$
\begin{aligned}
& y_{i 1}=\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1} \\
& y_{i 2}=\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in y over time:

$$
\begin{aligned}
\Delta y_{i} & =y_{i 2}-y_{i 1} \\
& =\left(\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}\right)-\left(\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1}\right) \\
& =\left(\mathbf{x}_{i 2}^{\prime}-\mathbf{x}_{i 1}^{\prime}\right) \boldsymbol{\beta}+\left(a_{i}-a_{i}\right)+\left(u_{i 2}-u_{i 1}\right)
\end{aligned}
$$

First Differencing

- First approach: compare changes over time as opposed to levels
- Intuitively, the levels include the unobserved heterogeneity, but changes over time should be free of time-invariant heterogeneity
- Two time periods:

$$
\begin{aligned}
& y_{i 1}=\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1} \\
& y_{i 2}=\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}
\end{aligned}
$$

- Look at the change in y over time:

$$
\begin{aligned}
\Delta y_{i} & =y_{i 2}-y_{i 1} \\
& =\left(\mathbf{x}_{i 2}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 2}\right)-\left(\mathbf{x}_{i 1}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i 1}\right) \\
& =\left(\mathbf{x}_{i 2}^{\prime}-\mathbf{x}_{i 1}^{\prime}\right) \boldsymbol{\beta}+\left(a_{i}-a_{i}\right)+\left(u_{i 2}-u_{i 1}\right) \\
& =\Delta \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
\end{aligned}
$$

First Differences Model

$$
\Delta y_{i}=\Delta \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

First Differences Model

$$
\Delta y_{i}=\Delta \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{x}_{i t}$ is the same as the coefficient on the changes $\Delta \mathbf{x}_{i}$!

First Differences Model

$$
\Delta y_{i}=\Delta \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{x}_{i t}$ is the same as the coefficient on the changes $\Delta \mathbf{x}_{i}$!
- fixed effect/unobserved heterogeneity, a_{i} drops out (relies on unobserved component being constant over time!)

First Differences Model

$$
\Delta y_{i}=\Delta \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{x}_{i t}$ is the same as the coefficient on the changes $\Delta \mathbf{x}_{i}$!
- fixed effect/unobserved heterogeneity, a_{i} drops out (relies on unobserved component being constant over time!)
- If $\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0$, then, $\mathbb{E}\left[\Delta u_{i} \mid \Delta X\right]=0$ and zero conditional mean error holds.

First Differences Model

$$
\Delta y_{i}=\Delta \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{x}_{i t}$ is the same as the coefficient on the changes $\Delta \mathbf{x}_{i}$!
- fixed effect/unobserved heterogeneity, a_{i} drops out (relies on unobserved component being constant over time!)
- If $\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0$, then, $\mathbb{E}\left[\Delta u_{i} \mid \Delta X\right]=0$ and zero conditional mean error holds.
- Due to 'no perfect collinearity': $\mathbf{x}_{i t}$ has to change over time for some units. High variance if its slow moving.

First Differences Model

$$
\Delta y_{i}=\Delta \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+\Delta u_{i}
$$

- Coefficient on the levels $\mathbf{x}_{i t}$ is the same as the coefficient on the changes $\Delta \mathbf{x}_{i}$!
- fixed effect/unobserved heterogeneity, a_{i} drops out (relies on unobserved component being constant over time!)
- If $\mathbb{E}\left[u_{i t} \mid \mathbf{X}\right]=0$, then, $\mathbb{E}\left[\Delta u_{i} \mid \Delta X\right]=0$ and zero conditional mean error holds.
- Due to 'no perfect collinearity': $\mathbf{x}_{i t}$ has to change over time for some units. High variance if its slow moving.
- Differencing will reduce the variation in the independent variables and thus increase standard errors.

First Differences in R (via plm package)

```
library(plm)
fd.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,
    index = c("id", "year"), model = "fd")
summary(fd.mod)
## Oneway (individual) effect First-Difference Model
##
## Call:
## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),
## data = ross, model = "fd", index = c("id", "year"))
##
## Unbalanced Panel: n=166, T=1-7, N=649
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.9060 -0.0956 0.0468 0.1410 0.3950
##
## Coefficients :
## Estimate Std. Error t-value Pr}(>|t|
## (intercept) -0.149469 0.011275 -13.2567 < 2e-16 ***
## democracy -0.044887 0.024206 -1.8544 0.06429 .
## log(GDPcur) -0.171796 0.013756 -12.4886 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 23.545
## Residual Sum of Squares: 17.762
## R-Squared : 0.24561
## Adj. R-Squared : 0.24408
## F-statistic: 78.1367 on 2 and 480 DF, p-value: < 2.22e-16
```

(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4. Fixed Effects
(5) Non-parametric Identification and Fixed Effects
? (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

Motivation: Studying the Minimum Wage

Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania

By David Card and Alan B. Krueger*

On April 1, 1992, New Jersey's minimum wage rose from $\$ 4.25$ to $\$ 5.05$ per hour. To evaluate the impact of the law we surveyed 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise. Comparisons of employment growth at stores in New Jersey and Pennsylvania (where the minimum wage was constant) provide simple estimates of the effect of the higher minimum wage. We also compare employment changes at stores in New Jersey that were initially paying high wages (above \$5) to the changes at lower-wage stores. We find no indication that the rise in the minimum wage reduced employment. (JEL J30, J23)

Motivation: Studying the Minimum Wage

Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania

By David Card and Alan B. Krueger*

On April 1, 1992, New Jersey's minimum wage rose from $\$ 4.25$ to $\$ 5.05$ per hour. To evaluate the impact of the law we surveyed 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise. Comparisons of employment growth at stores in New Jersey and Pennsylvania (where the minimum wage was constant) provide simple estimates of the effect of the higher minimum wage. We also compare employment changes at stores in New Jersey that were initially paying high wages (above \$5) to the changes at lower-wage stores. We find no indication that the rise in the minimum wage reduced employment. (JEL J30, J23)

- Economics conventional wisdom: higher minimum wages decrease low-wage jobs.

Motivation: Studying the Minimum Wage

Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania

By David Card and Alan B. Krueger*

On April 1, 1992, New Jersey's minimum wage rose from $\$ 4.25$ to $\$ 5.05$ per hour. To evaluate the impact of the law we surveyed 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise. Comparisons of employment growth at stores in New Jersey and Pennsylvania (where the minimum wage was constant) provide simple estimates of the effect of the higher minimum wage. We also compare employment changes at stores in New Jersey that were initially paying high wages (above \$5) to the changes at lower-wage stores. We find no indication that the rise in the minimum wage reduced employment. (JEL J30, J23)

- Economics conventional wisdom: higher minimum wages decrease low-wage jobs.
- Card and Krueger (1994) study a 1992 New Jersey minimum wage increase (\$4.25 to \$5.05).

Motivation: Studying the Minimum Wage

Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania

By David Card and Alan B. Krueger*

On April 1, 1992, New Jersey's minimum wage rose from $\$ 4.25$ to $\$ 5.05$ per hour. To evaluate the impact of the law we surveyed 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise. Comparisons of employment growth at stores in New Jersey and Pennsylvania (where the minimum wage was constant) provide simple estimates of the effect of the higher minimum wage. We also compare employment changes at stores in New Jersey that were initially paying high wages (above \$5) to the changes at lower-wage stores. We find no indication that the rise in the minimum wage reduced employment. (JEL J30, J23)

- Economics conventional wisdom: higher minimum wages decrease low-wage jobs.
- Card and Krueger (1994) study a 1992 New Jersey minimum wage increase (\$4.25 to \$5.05).
- Idea: compare employment rates in 410 fast-food restauarants in New Jersey and eastern Pennsylvania (where there wasn't a wage increase) both before and after the change.

Motivation: Studying the Minimum Wage

Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania

By David Card and Alan B. Krueger*

On April 1, 1992, New Jersey's minimum wage rose from $\$ 4.25$ to $\$ 5.05$ per hour. To evaluate the impact of the law we surveyed 410 fast-food restaurants in New Jersey and eastern Pennsylvania before and after the rise. Comparisons of employment growth at stores in New Jersey and Pennsylvania (where the minimum wage was constant) provide simple estimates of the effect of the higher minimum wage. We also compare employment changes at stores in New Jersey that were initially paying high wages (above \$5) to the changes at lower-wage stores. We find no indication that the rise in the minimum wage reduced employment. (JEL J30, J23)

- Economics conventional wisdom: higher minimum wages decrease low-wage jobs.
- Card and Krueger (1994) study a 1992 New Jersey minimum wage increase (\$4.25 to \$5.05).
- Idea: compare employment rates in 410 fast-food restauarants in New Jersey and eastern Pennsylvania (where there wasn't a wage increase) both before and after the change.
- Based on survey data:
- Wave 1: March 1992, one month before the minimum wage increased
- Wave 2: December 1992, eight months after increase

Difference-in-Differences

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.
- Focus on two-periods where:

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.
- Focus on two-periods where:
- $x_{i 1}=0$ for all i

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.
- Focus on two-periods where:
- $x_{i 1}=0$ for all i
- $x_{i 2}=1$ for the "treated group"

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.
- Focus on two-periods where:
- $x_{i 1}=0$ for all i
- $x_{i 2}=1$ for the "treated group"
- Assume the model:

$$
y_{i t}=\beta_{0}+\delta_{0} d_{t}+\beta_{1} x_{i t}+a_{i}+u_{i t}
$$

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.
- Focus on two-periods where:
- $x_{i 1}=0$ for all i
- $x_{i 2}=1$ for the "treated group"
- Assume the model:

$$
y_{i t}=\beta_{0}+\delta_{0} d_{t}+\beta_{1} x_{i t}+a_{i}+u_{i t}
$$

- d_{t} is a dummy variable for the second time period

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.
- Focus on two-periods where:
- $x_{i 1}=0$ for all i
- $x_{i 2}=1$ for the "treated group"
- Assume the model:

$$
y_{i t}=\beta_{0}+\delta_{0} d_{t}+\beta_{1} x_{i t}+a_{i}+u_{i t}
$$

- d_{t} is a dummy variable for the second time period
- $d_{2}=1$ and $d_{1}=0$

Difference-in-Differences

- Often called "diff-in-diff" (DiD), it is a special kind of FD model
- Let $x_{i t}$ be an indicator of a unit being "treated" at time t.
- Focus on two-periods where:
- $x_{i 1}=0$ for all i
- $x_{i 2}=1$ for the "treated group"
- Assume the model:

$$
y_{i t}=\beta_{0}+\delta_{0} d_{t}+\beta_{1} x_{i t}+a_{i}+u_{i t}
$$

- d_{t} is a dummy variable for the second time period
- $d_{2}=1$ and $d_{1}=0$
- β_{1} is the quantity of interest: it's the effect of being treated

Diff-in-Diff Mechanics

- Let's take differences:

$$
\left(y_{i 2}-y_{i 1}\right)=\delta_{0}(1-0)+\beta_{1}\left(x_{i 2}-x_{i 1}\right)+\left(a_{i}-a_{i}\right)+\left(u_{i 2}-u_{i 1}\right)
$$

- This represents
- δ_{0} : the difference in the average outcome from period 1 to period 2 in the untreated group
- $\left(x_{i 2}-x_{i 1}\right)=1$ for the treated group and 0 for the control group
- β_{1} represents the additional change in y over time (on top of δ_{0}) associated with being in the treatment group.

Diff-in-Diff Mechanics

- Let's take differences:

$$
\begin{aligned}
& \left(y_{i 2}-y_{i 1}\right)=\delta_{0}(1-0)+\beta_{1}\left(x_{i 2}-x_{i 1}\right)+\left(a_{i}-a_{i}\right)+\left(u_{i 2}-u_{i 1}\right) \\
& \left(y_{i 2}-y_{i 1}\right)=\delta_{0}+\beta_{1}\left(x_{i 2}-x_{i 1}\right)+\left(u_{i 2}-u_{i 1}\right)
\end{aligned}
$$

- This represents
- δ_{0} : the difference in the average outcome from period 1 to period 2 in the untreated group
- $\left(x_{i 2}-x_{i 1}\right)=1$ for the treated group and 0 for the control group
- β_{1} represents the additional change in y over time (on top of δ_{0}) associated with being in the treatment group.

Graphical Representation: Difference-in-Differences

Graphical Representation: Difference-in-Differences

Graphical Representation: Difference-in-Differences

Graphical Representation: Difference-in-Differences

Identification with Difference-in-Differences

Identification Assumption (parallel trends)
$E\left[Y_{0}(1)-Y_{0}(0) \mid D=1\right]=E\left[Y_{0}(1)-Y_{0}(0) \mid D=0\right]$

Identification Result

Given parallel trends the ATT is identified as:

$$
\begin{aligned}
E\left[Y_{1}(1)-Y_{0}(1) \mid D=1\right] & =\{E[Y(1) \mid D=1]-E[Y(1) \mid D=0]\} \\
& -\{E[Y(0) \mid D=1]-E[Y(0) \mid D=0]\}
\end{aligned}
$$

Identification with Difference-in-Differences

Identification Assumption (parallel trends)

$$
E\left[Y_{0}(1)-Y_{0}(0) \mid D=1\right]=E\left[Y_{0}(1)-Y_{0}(0) \mid D=0\right]
$$

Proof.

Note that the identification assumption implies
$E\left[Y_{0}(1) \mid D=0\right]=E\left[Y_{0}(1) \mid D=1\right]-E\left[Y_{0}(0) \mid D=1\right]+E\left[Y_{0}(0) \mid D=0\right]$
plugging in we get

$$
\begin{aligned}
& \{E[Y(1) \mid D=1]-E[Y(1) \mid D=0]\}-\{E[Y(0) \mid D=1]-E[Y(0) \mid D=0]\} \\
= & \left\{E\left[Y_{1}(1) \mid D=1\right]-E\left[Y_{0}(1) \mid D=0\right]\right\}-\left\{E\left[Y_{0}(0) \mid D=1\right]-E\left[Y_{0}(0) \mid D=0\right]\right\} \\
= & \left\{E\left[Y_{1}(1) \mid D=1\right]-\left(E\left[Y_{0}(1) \mid D=1\right]-E\left[Y_{0}(0) \mid D=1\right]+E\left[Y_{0}(0) \mid D=0\right]\right)\right\} \\
- & \left\{E\left[Y_{0}(0) \mid D=1\right]-E\left[Y_{0}(0) \mid D=0\right]\right\} \\
= & E\left[Y_{1}(1)-Y_{0}(1) \mid D=1\right]+\left\{E\left[Y_{0}(0) \mid D=1\right]-E\left[Y_{0}(0) \mid D=0\right]\right\} \\
- & \left\{E\left[Y_{0}(0) \mid D=1\right]-E\left[Y_{0}(0) \mid D=0\right]\right\} \\
= & E\left[Y_{1}(1)-Y_{0}(1) \mid D=1\right]
\end{aligned}
$$

Difference-in-Differences Interpretation

Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.

Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.
- The differences between these differences is our estimate of the causal effect:

$$
\beta_{1}=\overline{\Delta y}_{\text {treated }}-\overline{\Delta y}_{\text {control }}
$$

Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.
- The differences between these differences is our estimate of the causal effect:

$$
\beta_{1}=\overline{\Delta y}_{\text {treated }}-\overline{\Delta y}_{\text {control }}
$$

- Why more credible than simply looking at the treatment/control differences in period 2?

Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.
- The differences between these differences is our estimate of the causal effect:

$$
\beta_{1}=\overline{\Delta y}_{\text {treated }}-\overline{\Delta y}_{\text {control }}
$$

- Why more credible than simply looking at the treatment/control differences in period 2?
- Unmeasured reasons why the treated group has higher or lower outcomes than the control group

Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.
- The differences between these differences is our estimate of the causal effect:

$$
\beta_{1}=\overline{\Delta y}_{\text {treated }}-\overline{\Delta y}_{\text {control }}
$$

- Why more credible than simply looking at the treatment/control differences in period 2?
- Unmeasured reasons why the treated group has higher or lower outcomes than the control group
- \rightsquigarrow bias due to violation of zero conditional mean error

Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.
- The differences between these differences is our estimate of the causal effect:

$$
\beta_{1}=\overline{\Delta y}_{\text {treated }}-\overline{\Delta y}_{\text {control }}
$$

- Why more credible than simply looking at the treatment/control differences in period 2?
- Unmeasured reasons why the treated group has higher or lower outcomes than the control group
- \rightsquigarrow bias due to violation of zero conditional mean error
- DiD estimates the bias using period 1 and corrects for it.

Difference-in-Differences Interpretation

- Key idea: comparing the changes over time in the control group to the changes over time in the treated group.
- The differences between these differences is our estimate of the causal effect:

$$
\beta_{1}=\overline{\Delta y}_{\text {treated }}-\overline{\Delta y}_{\text {control }}
$$

- Why more credible than simply looking at the treatment/control differences in period 2?
- Unmeasured reasons why the treated group has higher or lower outcomes than the control group
- \rightsquigarrow bias due to violation of zero conditional mean error
- DiD estimates the bias using period 1 and corrects for it.
- DiD works for additive and time-invariant confounding (i.e. satisfies parallel trends)

Example: Lyall (2009)

Journal of Conflict Resolution
Volume 53 Number 3
June 2009 331-362

Does Indiscriminate Violence Incite Insurgent Attacks?

Evidence from Chechnya

Jason Lyall
Department of Politics and the Woodrow Wilson School
Princeton University, New Jersey

Example: Lyall (2009)

- Does Russian shelling of villages cause insurgent attacks?

$$
\operatorname{attacks}_{i t}=\beta_{0}+\beta_{1} \text { shelling }_{i t}+a_{i}+u_{i t}
$$

Example: Lyall (2009)

- Does Russian shelling of villages cause insurgent attacks?

$$
\operatorname{attacks}_{i t}=\beta_{0}+\beta_{1} \text { shelling }_{i t}+a_{i}+u_{i t}
$$

- We might think that artillery shelling by Russians is targeted to places where the insurgency is the strongest

Example: Lyall (2009)

- Does Russian shelling of villages cause insurgent attacks?

$$
\operatorname{attacks}_{i t}=\beta_{0}+\beta_{1} \text { shelling }_{i t}+a_{i}+u_{i t}
$$

- We might think that artillery shelling by Russians is targeted to places where the insurgency is the strongest
- That is, part of the village fixed effect, a_{i} might be correlated with whether or not shelling occurs, $x_{i t}$

Example: Lyall (2009)

- Does Russian shelling of villages cause insurgent attacks?

$$
\operatorname{attacks}_{i t}=\beta_{0}+\beta_{1} \text { shelling }_{i t}+a_{i}+u_{i t}
$$

- We might think that artillery shelling by Russians is targeted to places where the insurgency is the strongest
- That is, part of the village fixed effect, a_{i} might be correlated with whether or not shelling occurs, $x_{i t}$
- This would cause our pooled estimates to be biased

Example: Lyall (2009)

- Does Russian shelling of villages cause insurgent attacks?

$$
\operatorname{attacks}_{i t}=\beta_{0}+\beta_{1} \text { shelling }_{i t}+a_{i}+u_{i t}
$$

- We might think that artillery shelling by Russians is targeted to places where the insurgency is the strongest
- That is, part of the village fixed effect, a_{i} might be correlated with whether or not shelling occurs, $x_{i t}$
- This would cause our pooled estimates to be biased
- Instead Lyall takes a diff-in-diff approach: compare attacks over time for shelled and non-shelled villages:

$$
\Delta \text { attacks }_{i}=\beta_{0}+\beta_{1} \Delta \text { shelling }_{i}+\Delta u_{i}
$$

Example: Lyall (2009)

- Does Russian shelling of villages cause insurgent attacks?

$$
\operatorname{attacks}_{i t}=\beta_{0}+\beta_{1} \text { shelling }_{i t}+a_{i}+u_{i t}
$$

- We might think that artillery shelling by Russians is targeted to places where the insurgency is the strongest
- That is, part of the village fixed effect, a_{i} might be correlated with whether or not shelling occurs, $x_{i t}$
- This would cause our pooled estimates to be biased
- Instead Lyall takes a diff-in-diff approach: compare attacks over time for shelled and non-shelled villages:

$$
\Delta \text { attacks }_{i}=\beta_{0}+\beta_{1} \Delta \text { shelling }_{i}+\Delta u_{i}
$$

- Counterintuitive findings: shelled villages experience a 24% reduction in insurgent attacks relative to controls.

Example: Card and Krueger (2000)

- Do increases to the minimum wage depress employment at fast-food restaurants?

$$
\text { employment }_{i t}=\beta_{0}+\beta_{1} \text { minimum wage }_{i t}+a_{i}+u_{i t}
$$

Example: Card and Krueger (2000)

- Do increases to the minimum wage depress employment at fast-food restaurants?

$$
\text { employment }_{i t}=\beta_{0}+\beta_{1} \text { minimum wage }_{i t}+a_{i}+u_{i t}
$$

- Each i here is a different fast food restaurant in either New Jersey or Pennsylvania

Example: Card and Krueger (2000)

- Do increases to the minimum wage depress employment at fast-food restaurants?

$$
\text { employment }_{i t}=\beta_{0}+\beta_{1} \text { minimum wage }_{i t}+a_{i}+u_{i t}
$$

- Each i here is a different fast food restaurant in either New Jersey or Pennsylvania
- Between $t=1$ and $t=2 \mathrm{NJ}$ raised its minimum wage

Example: Card and Krueger (2000)

- Do increases to the minimum wage depress employment at fast-food restaurants?

$$
\text { employment }_{i t}=\beta_{0}+\beta_{1} \text { minimum wage }_{i t}+a_{i}+u_{i t}
$$

- Each i here is a different fast food restaurant in either New Jersey or Pennsylvania
- Between $t=1$ and $t=2 \mathrm{NJ}$ raised its minimum wage
- Employment in fast food might be driven by other state-level policies correlated with minimum wage

Example: Card and Krueger (2000)

- Do increases to the minimum wage depress employment at fast-food restaurants?

$$
\text { employment }_{i t}=\beta_{0}+\beta_{1} \text { minimum wage }_{i t}+a_{i}+u_{i t}
$$

- Each i here is a different fast food restaurant in either New Jersey or Pennsylvania
- Between $t=1$ and $t=2 \mathrm{NJ}$ raised its minimum wage
- Employment in fast food might be driven by other state-level policies correlated with minimum wage
- Diff-in-diff approach: regress changes in employment on store being in NJ

$$
\Delta \mathrm{employment}_{i}=\beta_{0}+\beta_{1} N J_{i}+\Delta u_{i}
$$

Example: Card and Krueger (2000)

- Do increases to the minimum wage depress employment at fast-food restaurants?

$$
\text { employment }_{i t}=\beta_{0}+\beta_{1} \text { minimum wage }_{i t}+a_{i}+u_{i t}
$$

- Each i here is a different fast food restaurant in either New Jersey or Pennsylvania
- Between $t=1$ and $t=2 \mathrm{NJ}$ raised its minimum wage
- Employment in fast food might be driven by other state-level policies correlated with minimum wage
- Diff-in-diff approach: regress changes in employment on store being in NJ

$$
\Delta \mathrm{employment}_{i}=\beta_{0}+\beta_{1} N J_{i}+\Delta u_{i}
$$

- $N J_{i}$ indicates which stores received the treatment of a higher minimum wage at time period $t=2$

Parallel Trends?

Parallel Trends?

Parallel Trends?

Parallel Trends?

Longer Trends in Employment (Card and Krueger 2000)

First two vertical lines indicate the dates of the Card-Krueger survey. October 1996 line is the federal minimum wage hike which was binding in PA but not NJ

Threats to Identification

Threats to Identification

1) Failure of Exogeneity

Treatment needs to be independent of the idiosyncratic shocks:

$$
\mathbb{E}\left[\left(u_{i 2}-u_{i 1}\right) \mid x_{i 2}\right]=0
$$

Threats to Identification

1) Failure of Exogeneity

Treatment needs to be independent of the idiosyncratic shocks:

$$
\mathbb{E}\left[\left(u_{i 2}-u_{i 1}\right) \mid x_{i 2}\right]=0
$$

2) Non-parallel dynamics variation in the outcome over time is the same for the treated and control groups (i.e. no omitted time-varying confounders). e.g. Ashenfelter's dip: people who enroll in job training programs see their earnings decline prior to that training (presumably why they are entering)

Threats to Identification

1) Failure of Exogeneity

Treatment needs to be independent of the idiosyncratic shocks:

$$
\mathbb{E}\left[\left(u_{i 2}-u_{i 1}\right) \mid x_{i 2}\right]=0
$$

2) Non-parallel dynamics variation in the outcome over time is the same for the treated and control groups (i.e. no omitted time-varying confounders). e.g. Ashenfelter's dip: people who enroll in job training programs see their earnings decline prior to that training (presumably why they are entering)
3) Changes in Composition of Treatment/Control Groups we don't want composition of sample to change between periods. what if workers move from eastern PA to NJ in search of higher paying jobs?

Threats to Identification

1) Failure of Exogeneity

Treatment needs to be independent of the idiosyncratic shocks:

$$
\mathbb{E}\left[\left(u_{i 2}-u_{i 1}\right) \mid x_{i 2}\right]=0
$$

2) Non-parallel dynamics variation in the outcome over time is the same for the treated and control groups (i.e. no omitted time-varying confounders). e.g. Ashenfelter's dip: people who enroll in job training programs see their earnings decline prior to that training (presumably why they are entering)
3) Changes in Composition of Treatment/Control Groups we don't want composition of sample to change between periods. what if workers move from eastern PA to NJ in search of higher paying jobs?
4) Long-term vs. Short-term Effects parallel trends are less credible over a long time horizon, but many policies need time to take effect.

Threats to Identification

Threats to Identification

5) Functional Form Dependence difference in levels and difference in logs can be quite different (example via Justin Grimmer)

Threats to Identification

5) Functional Form Dependence difference in levels and difference in logs can be quite different (example via Justin Grimmer)

- imagine a training program for the young

Threats to Identification

5) Functional Form Dependence difference in levels and difference in logs can be quite different (example via Justin Grimmer)

- imagine a training program for the young
- employment for the young increases from 20% to 30%
- employment for the old increases from 5% to 10%

Threats to Identification

5) Functional Form Dependence difference in levels and difference in logs can be quite different (example via Justin Grimmer)

- imagine a training program for the young
- employment for the young increases from 20% to 30%
- employment for the old increases from 5% to 10%
- positive DiD effect: $(30-20)-(10-5)=5 \%$

Threats to Identification

5) Functional Form Dependence difference in levels and difference in logs can be quite different (example via Justin Grimmer)

- imagine a training program for the young
- employment for the young increases from 20% to 30%
- employment for the old increases from 5% to 10%
- positive DiD effect: $(30-20)-(10-5)=5 \%$
- but if you consider log changes:

$$
[\log (30)-\log (20)]-[\log (10)-\log (5)]=\log (1.5)-\log (2)<0
$$

Threats to Identification

5) Functional Form Dependence difference in levels and difference in logs can be quite different (example via Justin Grimmer)

- imagine a training program for the young
- employment for the young increases from 20% to 30%
- employment for the old increases from 5% to 10%
- positive DiD effect: $(30-20)-(10-5)=5 \%$
- but if you consider log changes:
$[\log (30)-\log (20)]-[\log (10)-\log (5)]=\log (1.5)-\log (2)<0$
- how do we tell which (if either) yields parallel trends?

Threats to Identification

5) Functional Form Dependence difference in levels and difference in logs can be quite different (example via Justin Grimmer)

- imagine a training program for the young
- employment for the young increases from 20% to 30%
- employment for the old increases from 5% to 10%
- positive DiD effect: $(30-20)-(10-5)=5 \%$
- but if you consider log changes:

$$
[\log (30)-\log (20)]-[\log (10)-\log (5)]=\log (1.5)-\log (2)<0
$$

- how do we tell which (if either) yields parallel trends?

6) Endogenous Control Variables can add (time-varying) covariates to help with some of above concerns \rightsquigarrow "regression diff-in-diff"

$$
y_{i 2}-y_{i 1}=\delta_{0}+z_{i}^{\prime} \tau+\beta\left(x_{i 2}-x_{i 1}\right)+\left(u_{i 2}-u_{i 1}\right)
$$

but need to be careful that they aren't affected by the treatment.

Concluding Thoughts on Panel Differencing Models

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required
- parallel trends assumptions are most likely to hold over a shorter time-window. Impossible to test.

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required
- parallel trends assumptions are most likely to hold over a shorter time-window. Impossible to test.
- can conduct placebo tests which can build confidence, but hard to provide definitive evidence.

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required
- parallel trends assumptions are most likely to hold over a shorter time-window. Impossible to test.
- can conduct placebo tests which can build confidence, but hard to provide definitive evidence.
- some approaches use placebos to correct bias (DDD), but this is just a difference assumption.

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required
- parallel trends assumptions are most likely to hold over a shorter time-window. Impossible to test.
- can conduct placebo tests which can build confidence, but hard to provide definitive evidence.
- some approaches use placebos to correct bias (DDD), but this is just a difference assumption.
- Two questions to ask:

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required
- parallel trends assumptions are most likely to hold over a shorter time-window. Impossible to test.
- can conduct placebo tests which can build confidence, but hard to provide definitive evidence.
- some approaches use placebos to correct bias (DDD), but this is just a difference assumption.
- Two questions to ask:
(1) 'what is the counterfactual?' or
(2) 'what variation is used to identify this effect?'

Concluding Thoughts on Panel Differencing Models

- Useful toolkit for leveraging panel data, often quite straightforward to explain to people
- Be cautious of assumptions required
- parallel trends assumptions are most likely to hold over a shorter time-window. Impossible to test.
- can conduct placebo tests which can build confidence, but hard to provide definitive evidence.
- some approaches use placebos to correct bias (DDD), but this is just a difference assumption.
- Two questions to ask:
(1) 'what is the counterfactual?' or
(2) 'what variation is used to identify this effect?'
- Personal Gripe: ‘Two-way Fixed Effects’ models often called a DiD or Generalized-DiD design but the parallel trend assumptions are different in important ways.
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

(4) Fixed Effects

(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

Basic Model Review

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- Recall our standard linear model with unobserved time-invariant confounding

Basic Model Review

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- Recall our standard linear model with unobserved time-invariant confounding
- We discussed a differencing approach to this model

Basic Model Review

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- Recall our standard linear model with unobserved time-invariant confounding
- We discussed a differencing approach to this model
- The Fixed effects model is an alternative way to remove time-invariant unmeasured confounding

Basic Model Review

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- Recall our standard linear model with unobserved time-invariant confounding
- We discussed a differencing approach to this model
- The Fixed effects model is an alternative way to remove time-invariant unmeasured confounding
- We will start by assuming the model and discussing properties and in the next section, we will consider non-parametric identification.

Fixed Effects Models

- Core idea is to focus on within-unit comparisons: changes in $y_{i t}$ and $x_{i t}$ relative to their within-group means

Fixed Effects Models

- Core idea is to focus on within-unit comparisons: changes in $y_{i t}$ and $x_{i t}$ relative to their within-group means
- First note that taking the average of the y 's over time for a given unit leaves us with a very similar model:

$$
\bar{y}_{i}=\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}\right]
$$

Fixed Effects Models

- Core idea is to focus on within-unit comparisons: changes in $y_{i t}$ and $x_{i t}$ relative to their within-group means
- First note that taking the average of the y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} a_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t}
\end{aligned}
$$

Fixed Effects Models

- Core idea is to focus on within-unit comparisons: changes in $y_{i t}$ and $x_{i t}$ relative to their within-group means
- First note that taking the average of the y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} a_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t} \\
& =\overline{\mathbf{x}}_{i}^{\prime} \boldsymbol{\beta}+a_{i}+\bar{u}_{i}
\end{aligned}
$$

Fixed Effects Models

- Core idea is to focus on within-unit comparisons: changes in $y_{i t}$ and $x_{i t}$ relative to their within-group means
- First note that taking the average of the y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} a_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t} \\
& =\overline{\mathbf{x}}_{i}^{\prime} \boldsymbol{\beta}+a_{i}+\bar{u}_{i}
\end{aligned}
$$

- Key fact: because it is time-constant the mean of a_{i} is just a_{i}

Fixed Effects Models

- Core idea is to focus on within-unit comparisons: changes in $y_{i t}$ and $x_{i t}$ relative to their within-group means
- First note that taking the average of the y 's over time for a given unit leaves us with a very similar model:

$$
\begin{aligned}
\bar{y}_{i} & =\frac{1}{T} \sum_{t=1}^{T}\left[\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}\right] \\
& =\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{i t}^{\prime}\right) \boldsymbol{\beta}+\frac{1}{T} \sum_{t=1}^{T} a_{i}+\frac{1}{T} \sum_{t=1}^{T} u_{i t} \\
& =\overline{\mathbf{x}}_{i}^{\prime} \boldsymbol{\beta}+a_{i}+\bar{u}_{i}
\end{aligned}
$$

- Key fact: because it is time-constant the mean of a_{i} is just a_{i}
- This regression is sometimes called the "between regression"

Within Transformation

Within Transformation

- The "fixed effects," "within," or "time-demeaning" transformation is when we subtract off the over-time means from the original data:

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(\mathbf{x}_{i t}^{\prime}-\overline{\mathbf{x}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

Within Transformation

- The "fixed effects," "within," or "time-demeaning" transformation is when we subtract off the over-time means from the original data:

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(\mathbf{x}_{i t}^{\prime}-\overline{\mathbf{x}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

- If we write $\ddot{y}_{i t}=y_{i t}-\bar{y}_{i}$, then we can write this more compactly as:

$$
\ddot{y}_{i t}=\ddot{\mathbf{x}}_{i t}^{\prime} \boldsymbol{\beta}+\ddot{u}_{i t}
$$

Within Transformation

- The "fixed effects," "within," or "time-demeaning" transformation is when we subtract off the over-time means from the original data:

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(\mathbf{x}_{i t}^{\prime}-\overline{\mathbf{x}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

- If we write $\ddot{y}_{i t}=y_{i t}-\bar{y}_{i}$, then we can write this more compactly as:

$$
\ddot{y}_{i t}=\ddot{\mathbf{x}}_{i t}^{\prime} \boldsymbol{\beta}+\ddot{u}_{i t}
$$

- Degrees of freedom: $n T-n-k-1$, which accounts for within transformation (i.e. either use a package like plm or adjust the degrees of freedom manually).

Within Transformation

- The "fixed effects," "within," or "time-demeaning" transformation is when we subtract off the over-time means from the original data:

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(\mathbf{x}_{i t}^{\prime}-\overline{\mathbf{x}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

- If we write $\ddot{y}_{i t}=y_{i t}-\bar{y}_{i}$, then we can write this more compactly as:

$$
\ddot{y}_{i t}=\ddot{\mathbf{x}}_{i t}^{\prime} \boldsymbol{\beta}+\ddot{u}_{i t}
$$

- Degrees of freedom: $n T-n-k-1$, which accounts for within transformation (i.e. either use a package like plm or adjust the degrees of freedom manually).
- We are now modeling observations as deviation from their group mean.

Within Transformation

- The "fixed effects," "within," or "time-demeaning" transformation is when we subtract off the over-time means from the original data:

$$
\left(y_{i t}-\bar{y}_{i}\right)=\left(\mathbf{x}_{i t}^{\prime}-\overline{\mathbf{x}}_{i}^{\prime}\right) \boldsymbol{\beta}+\left(u_{i t}-\bar{u}_{i}\right)
$$

- If we write $\ddot{y}_{i t}=y_{i t}-\bar{y}_{i}$, then we can write this more compactly as:

$$
\ddot{y}_{i t}=\ddot{\mathbf{x}}_{i t}^{\prime} \boldsymbol{\beta}+\ddot{u}_{i t}
$$

- Degrees of freedom: $n T-n-k-1$, which accounts for within transformation (i.e. either use a package like plm or adjust the degrees of freedom manually).
- We are now modeling observations as deviation from their group mean.
- NB: you must demean the X variables not just the Y variables.

Fixed Effects with Ross data

```
fe.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross, index = c("id", "year"),
model = "within")
summary(fe.mod)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),
## data = ross, model = "within", index = c("id", "year"))
##
## Unbalanced Panel: n=166, T=1-7, N=649
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu. Max.
## -0.70500 -0.11700 0.00628 0.12200 0.75700
##
## Coefficients :
## Estimate Std. Error t-value Pr}\operatorname{Pr}(>|t|
## democracy -0.143233 0.033500 -4.2756 2.299e-05 ***
## log(GDPcur) -0.375203 0.011328-33.1226 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 81.711
## Residual Sum of Squares: 23.012
## R-Squared : 0.71838
## Adj. R-Squared : 0.53242
## F-statistic: 613.481 on 2 and 481 DF, p-value: < 2.22e-16
```


Strict Exogeneity

- FE models are valid if $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=0$: all errors are uncorrelated with covariates in every period:

$$
\mathbb{E}\left[\ddot{u}_{i t} \mid \ddot{\mathbf{X}}\right]=\mathbb{E}\left[u_{i t} \mid \ddot{\mathbf{X}}\right]-\mathbb{E}\left[\bar{u}_{i} \mid \ddot{\mathbf{X}}\right]=0-0=0
$$

Strict Exogeneity

- FE models are valid if $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=0$: all errors are uncorrelated with covariates in every period:

$$
\mathbb{E}\left[\ddot{u}_{i t} \mid \ddot{\mathbf{X}}\right]=\mathbb{E}\left[u_{i t} \mid \ddot{\mathbf{X}}\right]-\mathbb{E}\left[\bar{u}_{i} \mid \ddot{\mathbf{X}}\right]=0-0=0
$$

- This is because the composite errors, $\ddot{u}_{i t}$ are function of the errors in every time period through the average, \bar{u}_{i}

Strict Exogeneity

- FE models are valid if $\mathbb{E}[\mathbf{u} \mid \mathbf{X}]=0$: all errors are uncorrelated with covariates in every period:

$$
\mathbb{E}\left[\ddot{u}_{i t} \mid \ddot{\mathbf{X}}\right]=\mathbb{E}\left[u_{i t} \mid \ddot{\mathbf{X}}\right]-\mathbb{E}\left[\bar{u}_{i} \mid \ddot{\mathbf{X}}\right]=0-0=0
$$

- This is because the composite errors, $\ddot{u}_{i t}$ are function of the errors in every time period through the average, \bar{u}_{i}
- This rules out, for instance, lagged dependent variables, since $y_{i, t-1}$ has to be correlated with $u_{i, t-1}$. Thus it can't be a covariate for $y_{i t}$.

Fixed Effects and Time-Invariant Covariates

- What if there is a covariate that doesn't vary over time?

Fixed Effects and Time-Invariant Covariates

- What if there is a covariate that doesn't vary over time?
- Then $x_{i t}=\bar{x}_{i}$ and $\ddot{x}_{i t}=0$ for all periods t.

Fixed Effects and Time-Invariant Covariates

- What if there is a covariate that doesn't vary over time?
- Then $x_{i t}=\bar{x}_{i}$ and $\ddot{x}_{i t}=0$ for all periods t.
- If the time-demeaned covariate is always 0 , then it will be perfectly collinear with the intercept and will violate full rank. R/Stata and the like will drop it from the regression.

Fixed Effects and Time-Invariant Covariates

- What if there is a covariate that doesn't vary over time?
- Then $x_{i t}=\bar{x}_{i}$ and $\ddot{x}_{i t}=0$ for all periods t.
- If the time-demeaned covariate is always 0 , then it will be perfectly collinear with the intercept and will violate full rank. R/Stata and the like will drop it from the regression.
- Basic message: any time-constant variable gets "absorbed" by the fixed effect. It has nothing to contribute because the comparison is within the units.

Fixed Effects and Time-Invariant Covariates

- What if there is a covariate that doesn't vary over time?
- Then $x_{i t}=\bar{x}_{i}$ and $\ddot{x}_{i t}=0$ for all periods t.
- If the time-demeaned covariate is always 0 , then it will be perfectly collinear with the intercept and will violate full rank. R/Stata and the like will drop it from the regression.
- Basic message: any time-constant variable gets "absorbed" by the fixed effect. It has nothing to contribute because the comparison is within the units.
- Can include interactions between time-constant and time-varying variables, but lower order term of the time-constant variables get absorbed by fixed effects too

Time-constant variables

- Pooled model with a time-constant variable, proportion Islamic:

```
library(lmtest)
p.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,
    data = ross, index = c("id", "year"), model = "pooling")
coeftest(p.mod)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 10.30607817 0.35951939 28.6663 < 2.2e-16 ***
## democracy -0.80233845 0.07766814 -10.3303 < 2.2e-16 ***
## log(GDPcur) -0.25497406 0.01607061 -15.8659 < 2.2e-16 ***
## islam 0.00343325 0.00091045 3.7709 0.0001794
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Time-constant variables

- FE model, where the islam variable drops out, along with the intercept:

```
fe.mod2 <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,
    data = ross, index = c("id", "year"), model = "within")
coeftest(fe.mod2)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr}(>|t|
## democracy -0.129693 0.035865 -3.6162 0.0003332 ***
## log(GDPcur) -0.379997 0.011849 -32.0707<2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
```


Alternate Computation: Least Squares Dummy Variable

- As an alternative to the within transformation, we can also include a series of $n-1$ dummy variables for each unit:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+d_{i}^{(1)} \alpha_{1}+d_{i}^{(2)} \alpha_{2}+\cdots+d_{i}^{(n)} \alpha_{n}+u_{i t}
$$

Alternate Computation: Least Squares Dummy Variable

- As an alternative to the within transformation, we can also include a series of $n-1$ dummy variables for each unit:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+d_{i}^{(1)} \alpha_{1}+d_{i}^{(2)} \alpha_{2}+\cdots+d_{i}^{(n)} \alpha_{n}+u_{i t}
$$

- Here, $d_{i}^{(1)}$ is a binary variable which is 1 if $i=1$ and 0 otherwise-just a unit dummy.

Alternate Computation: Least Squares Dummy Variable

- As an alternative to the within transformation, we can also include a series of $n-1$ dummy variables for each unit:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+d_{i}^{(1)} \alpha_{1}+d_{i}^{(2)} \alpha_{2}+\cdots+d_{i}^{(n)} \alpha_{n}+u_{i t}
$$

- Here, $d_{i}^{(1)}$ is a binary variable which is 1 if $i=1$ and 0 otherwise-just a unit dummy.
- Gives the exact same estimates/standard errors as with time-demeaning

Alternate Computation: Least Squares Dummy Variable

- As an alternative to the within transformation, we can also include a series of $n-1$ dummy variables for each unit:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+d_{i}^{(1)} \alpha_{1}+d_{i}^{(2)} \alpha_{2}+\cdots+d_{i}^{(n)} \alpha_{n}+u_{i t}
$$

- Here, $d_{i}^{(1)}$ is a binary variable which is 1 if $i=1$ and 0 otherwise-just a unit dummy.
- Gives the exact same estimates/standard errors as with time-demeaning
- Advantage: easy to implement in base R (so is the de-meaning but you have to recompute standard errors by changing the degrees of freedom manually).

Alternate Computation: Least Squares Dummy Variable

- As an alternative to the within transformation, we can also include a series of $n-1$ dummy variables for each unit:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+d_{i}^{(1)} \alpha_{1}+d_{i}^{(2)} \alpha_{2}+\cdots+d_{i}^{(n)} \alpha_{n}+u_{i t}
$$

- Here, $d_{i}^{(1)}$ is a binary variable which is 1 if $i=1$ and 0 otherwise-just a unit dummy.
- Gives the exact same estimates/standard errors as with time-demeaning
- Advantage: easy to implement in base R (so is the de-meaning but you have to recompute standard errors by changing the degrees of freedom manually).
- Disadvantage: computationally difficult with large data sets, since we have to run a regression with $n+k$ variables.

Alternate Computation: Least Squares Dummy Variable

- As an alternative to the within transformation, we can also include a series of $n-1$ dummy variables for each unit:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+d_{i}^{(1)} \alpha_{1}+d_{i}^{(2)} \alpha_{2}+\cdots+d_{i}^{(n)} \alpha_{n}+u_{i t}
$$

- Here, $d_{i}^{(1)}$ is a binary variable which is 1 if $i=1$ and 0 otherwise-just a unit dummy.
- Gives the exact same estimates/standard errors as with time-demeaning
- Advantage: easy to implement in base R (so is the de-meaning but you have to recompute standard errors by changing the degrees of freedom manually).
- Disadvantage: computationally difficult with large data sets, since we have to run a regression with $n+k$ variables.
- Why are these equivalent? (remember partialing out strategy and Frisch-Waugh-Lovell theorem)

Example with Ross data

```
library(lmtest)
lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) +
    as.factor(id), data = ross)
coeftest(lsdv.mod)[1:6,]
coeftest(fe.mod)[1:2,]
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & Pr \((>|\mathrm{t}|)\) \\
\#\# (Intercept) & 13.7644887 & 0.26597312 & 51.751427 & \(1.008329 \mathrm{e}-198\) \\
\#\# democracy & -0.1432331 & 0.03349977 & -4.275644 & \(2.299393 \mathrm{e}-05\) \\
\#\# log(GDPcur) & -0.3752030 & 0.01132772 & -33.122568 & \(3.494887 \mathrm{e}-126\) \\
\#\# as.factor(id)AGO & 0.2997206 & 0.16767730 & 1.787485 & \(7.448861 \mathrm{e}-02\) \\
\#\# as.factor(id)ALB & -1.9309618 & 0.19013955 & -10.155498 & \(4.392512 \mathrm{e}-22\) \\
\#\# as.factor(id)ARE & -1.8762909 & 0.17020738 & -11.023558 & \(2.386557 \mathrm{e}-25\)
\end{tabular}
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# democracy & -0.1432331 & 0.03349977 & -4.275644 & \(2.299393 \mathrm{e}-05\) \\
\#\# log(GDPcur) & -0.3752030 & 0.01132772 & -33.122568 & \(3.494887 \mathrm{e}-126\)
\end{tabular}
```


Fixed Effects Versus First Differences

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}
- Together \Longrightarrow fixed effects and first differences are unbiased and consistent

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}
- Together \Longrightarrow fixed effects and first differences are unbiased and consistent
- With $T=2$ the estimators produce identical estimates, but not more generally although they have the same target estimand.

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}
- Together \Longrightarrow fixed effects and first differences are unbiased and consistent
- With $T=2$ the estimators produce identical estimates, but not more generally although they have the same target estimand.
- So which one is better when $T>2$? Which one is more efficient?

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}
- Together \Longrightarrow fixed effects and first differences are unbiased and consistent
- With $T=2$ the estimators produce identical estimates, but not more generally although they have the same target estimand.
- So which one is better when $T>2$? Which one is more efficient?
- if $u_{i t}$ uncorrelated $\rightsquigarrow F E$ is more efficient
- if $u_{i t}=u_{i, t-1}+e_{i t}$ with $e_{i t}$ iid (random walk) \rightsquigarrow FD is more efficient.

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}
- Together \Longrightarrow fixed effects and first differences are unbiased and consistent
- With $T=2$ the estimators produce identical estimates, but not more generally although they have the same target estimand.
- So which one is better when $T>2$? Which one is more efficient?
- if $u_{i t}$ uncorrelated $\rightsquigarrow \mathrm{FE}$ is more efficient
- if $u_{i t}=u_{i, t-1}+e_{i t}$ with $e_{i t}$ iid (random walk) \rightsquigarrow FD is more efficient.
- In between, not clear which is better (although if using FD, the errors are serially correlated and need correction).

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}
- Together \Longrightarrow fixed effects and first differences are unbiased and consistent
- With $T=2$ the estimators produce identical estimates, but not more generally although they have the same target estimand.
- So which one is better when $T>2$? Which one is more efficient?
- if $u_{i t}$ uncorrelated $\rightsquigarrow F E$ is more efficient
- if $u_{i t}=u_{i, t-1}+e_{i t}$ with $e_{i t}$ iid (random walk) \rightsquigarrow FD is more efficient.
- In between, not clear which is better (although if using FD, the errors are serially correlated and need correction).
- Large differences between FE and FD should make us worry about assumptions.

Fixed Effects Versus First Differences

- Key assumptions:
- Strict exogeneity: $E\left[u_{i t} \mid \mathbf{X}, a_{i}\right]=0$
- Time-constant unmeasured heterogeneity, a_{i}
- Together \Longrightarrow fixed effects and first differences are unbiased and consistent
- With $T=2$ the estimators produce identical estimates, but not more generally although they have the same target estimand.
- So which one is better when $T>2$? Which one is more efficient?
- if $u_{i t}$ uncorrelated $\rightsquigarrow \mathrm{FE}$ is more efficient
- if $u_{i t}=u_{i, t-1}+e_{i t}$ with $e_{i t}$ iid (random walk) \rightsquigarrow FD is more efficient.
- In between, not clear which is better (although if using FD, the errors are serially correlated and need correction).
- Large differences between FE and FD should make us worry about assumptions.
- Note that when the second dimension isn't time, fixed effects will be relevant more often.
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(2) Differencing Models
(3) Difference-in-Differences
(a) Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions
- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

Moving Beyond Linear Separable Confounding

Moving Beyond Linear Separable Confounding

- One reason we like DAGs is that the identification results don't have to start with a statement like, assume the following linear model:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

Moving Beyond Linear Separable Confounding

- One reason we like DAGs is that the identification results don't have to start with a statement like, assume the following linear model:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- What assumptions have we made so far?

Moving Beyond Linear Separable Confounding

- One reason we like DAGs is that the identification results don't have to start with a statement like, assume the following linear model:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- What assumptions have we made so far?
- constant effects
- linearity
- strict exogeneity

Moving Beyond Linear Separable Confounding

- One reason we like DAGs is that the identification results don't have to start with a statement like, assume the following linear model:

$$
y_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+a_{i}+u_{i t}
$$

- What assumptions have we made so far?
- constant effects
- linearity
- strict exogeneity
- We've seen the trouble with constant effects before, it goes back to Lecture 10 and results on regression with heterogenous treatment effects more generally.

Contemporaneous, Cumulative and Dynamic Effects

- Another assumption we have been making is that our interest is in a single contemporaneous effect: $\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}$

Contemporaneous, Cumulative and Dynamic Effects

- Another assumption we have been making is that our interest is in a single contemporaneous effect: $\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}$
- What if we want to consider the history of a treatment or the effect of a treatment regime (i.e. a treatment that varies over time)?

Contemporaneous, Cumulative and Dynamic Effects

- Another assumption we have been making is that our interest is in a single contemporaneous effect: $\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}$
- What if we want to consider the history of a treatment or the effect of a treatment regime (i.e. a treatment that varies over time)?
- Opens up new estimands, but have to think about how time-varying confounders affect treatment assignment.

Contemporaneous, Cumulative and Dynamic Effects

- Another assumption we have been making is that our interest is in a single contemporaneous effect: $\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}$
- What if we want to consider the history of a treatment or the effect of a treatment regime (i.e. a treatment that varies over time)?
- Opens up new estimands, but have to think about how time-varying confounders affect treatment assignment.

Examples of static and dynamic causal inference problems:

Contemporaneous, Cumulative and Dynamic Effects

- Another assumption we have been making is that our interest is in a single contemporaneous effect: $\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}$
- What if we want to consider the history of a treatment or the effect of a treatment regime (i.e. a treatment that varies over time)?
- Opens up new estimands, but have to think about how time-varying confounders affect treatment assignment.

Examples of static and dynamic causal inference problems:

Core Conundrum

There is a (possibly irresolvable) tension: modeling causal dynamics between treatment and outcomes OR addressing unobserved time-invariant confounders.

Core Conundrum

There is a (possibly irresolvable) tension: modeling causal dynamics between treatment and outcomes OR addressing unobserved time-invariant confounders. Three great recent papers:

A Framework for Dynamic Causal Inference in Political Science

Matthew Blackwell University of fiochestor

Core Conundrum

There is a (possibly irresolvable) tension: modeling causal dynamics between treatment and outcomes OR addressing unobserved time-invariant confounders. Three great recent papers:

A Framework for Dynamic Causal Inference in Political Science

Matthew Blackwell University of Fochester

Nat ondidate vonud plan all of their nillics, wrike all of their specther and flim all of thrit advertisements at the bepinning of a cam-	are moere likdy to po negative plan those that are Altempting to correct for this dymamic seletion by trolling for polls leads to postreatment bas since
prign, then sit busk and watch tem unfold until Eletion	lier campuige tone infueses poling Tbe
	ate applicutise of singe:
	kenes shchars between a rock and a hesd p
y. Whale politiol sciesce has sen enoermous rem	in bias with cither 3pproxh. This dilemma is
instuentian	
utancss heve	litha
namic nature of poutis iscrammed into 3 singk poin	tim
time As politiol simoce find teelf with a gowing n	This ari
ber of motion plicurs	fran
tal data-a vension has emerg	devrloped in biosaistics and eqidemblogr
matbod. Inded.	
	effi
ngad	
neis attise fous	

How to Make Causal Inferences with Time-Series Cross-Sectional

 Data under Selection on ObservablesMATTHEW BLACKWELL Harvard Univesity
ADAM N. GLYNN Emory Universiry

Core Conundrum

There is a (possibly irresolvable) tension: modeling causal dynamics between treatment and outcomes OR addressing unobserved time-invariant confounders. Three great recent papers:

A Framework for Dynamic Causal Inference in Political Science

Matthew Blackwell University of Rochester


```
    *)
```



```
    M)
    M,
M M
```



```
$e urmal wyyg of making cusasl metrences alloms us wo
#udy Whil poitiou) sicace tas sen enommous growth
dvances hue hevvirfocused on snupshots where the p%
Marni nature of polibcsiscrammed intos singkppoint in
ber of motion plcures-panel duta, time-series coss-
Ectonal data-a vensom has energed between sumbtance
*)
```



```
    M,
```



```
Metions foun 2050 umil 2000. Cadidates in beer rocs
```


How to Make Causal Inferences with Time-Series Cross-Sectional

 Data under Selection on ObservablesMATTHEW BLACKWELL H Anward Univesity
ADAM N. GLYNN Emory Univerify
最

When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data?*

Kosuke Imai ${ }^{\dagger}$
 In Song Kim ${ }^{\ddagger}$

Forthcoming in American Journal of Political Soience

Abstract

Mary researchers use unit fixed effects regressom modds as thecr defanlt methods for cousal hiference with longitudizal data. We show that the ablility of these modeld to adijus for unvoserved time-invariant confounders comses at the expense of dynarmic cassal teliationethipe, which are permitted under an alternative secection-on-obeervobles approost. Using the

 meetric matcting framework that docidates bow various unit fixed effixts models implicithy contpare treated and control obserrations to draw caussl iniereocc. By establishing the alike s diverse set of identification strategies to adjust for unobeernbibes in the sbence o aynamic cousal relationshiye bxtween treatmant and oatomene varibles. We illsatrate the ropooed ancthodalagy through its application to the stimation of GATT membership effects

Key Words: before-muldafter design, drected neyslic graph, natching, panel date, time
seriis cross sectional data, weighted hesist squares
 anilywe tr

Core Conundrum

There is a (possibly irresolvable) tension: modeling causal dynamics between treatment and outcomes OR addressing unobserved time-invariant confounders. Three great recent papers:

A Framework for Dynamic Causal Inference in Political Science

Matthew Blackwell University of fochester

We are going to focus on addressing unobserved time-invariant confounders using the last paper.
Next several slides are based on slides graciously provided by In Song Kim and Kosuke Imai.

Directed Acyclic Graph (DAG)

Non-parametric identification assumptions for fixed effects:

$$
Y_{i t}=g\left(X_{i t}, \mathbf{U}_{i}, \epsilon_{i t}\right) \quad \text { and } \quad \epsilon_{i t} \Perp\left\{\mathbf{X}_{i}, \mathbf{U}_{i}\right\}
$$

Directed Acyclic Graph (DAG)

Non-parametric identification assumptions for fixed effects:

$$
Y_{i t}=g\left(X_{i t}, \mathbf{U}_{i}, \epsilon_{i t}\right) \quad \text { and } \quad \epsilon_{i t} \Perp\left\{\mathbf{X}_{i}, \mathbf{U}_{i}\right\}
$$

Directed Acyclic Graph (DAG)

Non-parametric identification assumptions for fixed effects:

$$
Y_{i t}=g\left(X_{i t}, \mathbf{U}_{i}, \epsilon_{i t}\right) \quad \text { and } \quad \epsilon_{i t} \Perp\left\{\mathbf{X}_{i}, \mathbf{U}_{i}\right\}
$$

Assumptions:
(1) No unobserved time-varying confounders

Directed Acyclic Graph (DAG)

Non-parametric identification assumptions for fixed effects:

$$
Y_{i t}=g\left(X_{i t}, \mathbf{U}_{i}, \epsilon_{i t}\right) \quad \text { and } \quad \epsilon_{i t} \Perp\left\{\mathbf{X}_{i}, \mathbf{U}_{i}\right\}
$$

Assumptions:
(1) No unobserved time-varying confounders
(2) Past outcomes do not directly affect current outcome

Directed Acyclic Graph (DAG)

Non-parametric identification assumptions for fixed effects:

$$
Y_{i t}=g\left(X_{i t}, \mathbf{U}_{i}, \epsilon_{i t}\right) \quad \text { and } \quad \epsilon_{i t} \Perp\left\{\mathbf{X}_{i}, \mathbf{U}_{i}\right\}
$$

Assumptions:
(1) No unobserved time-varying confounders
(2) Past outcomes do not directly affect current outcome
(3) Past outcomes do not directly affect current treatment

Directed Acyclic Graph (DAG)

Non-parametric identification assumptions for fixed effects:

$$
Y_{i t}=g\left(X_{i t}, \mathbf{U}_{i}, \epsilon_{i t}\right) \quad \text { and } \quad \epsilon_{i t} \Perp\left\{\mathbf{X}_{i}, \mathbf{U}_{i}\right\}
$$

Assumptions:
(1) No unobserved time-varying confounders
(2) Past outcomes do not directly affect current outcome
(3) Past outcomes do not directly affect current treatment
(9) Past treatments do not directly affect current outcome
the result implies that the counterfactual outcome for a treated observation in a given time period is estimated using the observed outcomes of different time periods of the same unit. Since such a comparison is valid only when no causal dynamics exist, this finding underscores the important limitation of linear regression models with unit fixed effects.

- Imai and Kim (Forthcoming)

What Ideal Experiment Corresponds to the Fixed Effects Model?

- Experiment that satisfies the model assumptions:

What Ideal Experiment Corresponds to the Fixed Effects Model?

- Experiment that satisfies the model assumptions:
(1) randomize $X_{i 1}$ given \mathbf{U}_{i}

What Ideal Experiment Corresponds to the Fixed Effects Model?

- Experiment that satisfies the model assumptions:
(1) randomize $X_{i 1}$ given \mathbf{U}_{i}
(2) randomize $X_{i 2}$ given $X_{i 1}$ and \mathbf{U}_{i}

What Ideal Experiment Corresponds to the Fixed Effects

 Model?- Experiment that satisfies the model assumptions:
(1) randomize $X_{i 1}$ given \mathbf{U}_{i}
(2) randomize $X_{i 2}$ given $X_{i 1}$ and \mathbf{U}_{i}
(3) randomize $X_{i 3}$ given $X_{i 2}, X_{i 1}$, and \mathbf{U}_{i}
(9) and so on

What Ideal Experiment Corresponds to the Fixed Effects Model?

- Experiment that satisfies the model assumptions:
(1) randomize $X_{i 1}$ given \mathbf{U}_{i}
(2) randomize $X_{i 2}$ given $X_{i 1}$ and \mathbf{U}_{i}
(3) randomize $X_{i 3}$ given $X_{i 2}, X_{i 1}$, and \mathbf{U}_{i}
(9) and so on
- Experiment that does not satisfy the model assumptions:

What Ideal Experiment Corresponds to the Fixed Effects Model?

- Experiment that satisfies the model assumptions:
(1) randomize $X_{i 1}$ given \mathbf{U}_{i}
(2) randomize $X_{i 2}$ given $X_{i 1}$ and \mathbf{U}_{i}
(3) randomize $X_{i 3}$ given $X_{i 2}, X_{i 1}$, and \mathbf{U}_{i}
(4) and so on
- Experiment that does not satisfy the model assumptions:
(1) randomize $X_{i 1}$
(2) randomize $X_{i 2}$ given $X_{i 1}$ and $Y_{i 1}$
(3) randomize $X_{i 3}$ given $X_{i 2}, X_{i 1}, Y_{i 1}$, and $Y_{i 2}$
(9) and so on

What Ideal Experiment Corresponds to the Fixed Effects Model?

- Experiment that satisfies the model assumptions:
(1) randomize $X_{i 1}$ given \mathbf{U}_{i}
(2) randomize $X_{i 2}$ given $X_{i 1}$ and \mathbf{U}_{i}
(3) randomize $X_{i 3}$ given $X_{i 2}, X_{i 1}$, and \mathbf{U}_{i}
(9) and so on
- Experiment that does not satisfy the model assumptions:
(1) randomize $X_{i 1}$
(2) randomize $X_{i 2}$ given $X_{i 1}$ and $Y_{i 1}$
(3) randomize $X_{i 3}$ given $X_{i 2}, X_{i 1}, Y_{i 1}$, and $Y_{i 2}$
(3) and so on
- Now let's consider each assumption in turn.

Past Outcomes Don't Directly Affect Current Outcome

- Strict exogeneity still holds.

Past Outcomes Don't Directly Affect Current Outcome

- Strict exogeneity still holds.
- Past outcomes do not confound $X_{i t} \longrightarrow Y_{i t}$ given \mathbf{U}_{i}.

Past Outcomes Don't Directly Affect Current Outcome

- Strict exogeneity still holds.
- Past outcomes do not confound $X_{i t} \longrightarrow Y_{i t}$ given \mathbf{U}_{i}.
- No need to adjust for past outcomes.

Past Outcomes Don't Directly Affect Current Outcome

- Strict exogeneity still holds.
- Past outcomes do not confound $X_{i t} \longrightarrow Y_{i t}$ given \mathbf{U}_{i}.
- No need to adjust for past outcomes.
- Should use cluster robust standard errors for inference.

Past Outcomes Don't Directly Affect Current Outcome

- Strict exogeneity still holds.
- Past outcomes do not confound $X_{i t} \longrightarrow Y_{i t}$ given \mathbf{U}_{i}.
- No need to adjust for past outcomes.
- Should use cluster robust standard errors for inference.
- Conclusion: The assumption can be relaxed

Past Treatments Don't Directly Affect Current Outcome

- Need to adjust for past treatments

Past Treatments Don't Directly Affect Current Outcome

- Need to adjust for past treatments
- Strict exogeneity holds given past treatments and \mathbf{U}_{i}

Past Treatments Don't Directly Affect Current Outcome

- Need to adjust for past treatments
- Strict exogeneity holds given past treatments and \mathbf{U}_{i}
- Impossible to adjust for an entire treatment history and \mathbf{U}_{i} at the same time

Past Treatments Don't Directly Affect Current Outcome

- Need to adjust for past treatments
- Strict exogeneity holds given past treatments and \mathbf{U}_{i}
- Impossible to adjust for an entire treatment history and \mathbf{U}_{i} at the same time
- Adjust for a small number of past treatments \rightsquigarrow often arbitrary

Past Treatments Don't Directly Affect Current Outcome

- Need to adjust for past treatments
- Strict exogeneity holds given past treatments and \mathbf{U}_{i}
- Impossible to adjust for an entire treatment history and \mathbf{U}_{i} at the same time
- Adjust for a small number of past treatments \rightsquigarrow often arbitrary
- Conclusion: The assumption can be partially relaxed

Past Outcomes Don't Directly Affect Current Treatment

Past Outcomes Don't Directly Affect Current Treatment

- Correlation between error
 term and future treatments

Past Outcomes Don't Directly Affect Current Treatment

- Correlation between error term and future treatments
- Violation of strict exogeneity

Past Outcomes Don't Directly Affect Current Treatment

- Correlation between error term and future treatments
- Violation of strict exogeneity
- No adjustment is sufficient

Past Outcomes Don't Directly Affect Current Treatment

- Correlation between error term and future treatments
- Violation of strict exogeneity
- No adjustment is sufficient
- Implication: No dynamic causal relationships between treatment and outcome variables

Past Outcomes Don't Directly Affect Current Treatment

- Correlation between error term and future treatments
- Violation of strict exogeneity
- No adjustment is sufficient
- Implication: No dynamic causal relationships between treatment and outcome variables
- Conclusion: The assumption cannot be relaxed

Can't We Just Adjust for Time-Varying Confounders?

Can't We Just Adjust for Time-Varying Confounders?

Can't We Just Adjust for Time-Varying Confounders?

Can't We Just Adjust for Time-Varying Confounders?

- $Y_{i t}=\alpha_{i}+\beta X_{i t}+\gamma^{\top} \mathbf{Z}_{i t}+\epsilon_{i t}$
- past outcomes cannot directly affect current treatment
- past outcomes cannot indirectly affect current treatment through $\mathbf{Z}_{i t}$

But What If I Have Causal Dynamics?

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000)

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

- Absence of unobserved time-invariant confounders \mathbf{U}_{i}

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) - see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

- Absence of unobserved time-invariant confounders \mathbf{U}_{i}
- past treatments can directly affect current outcome

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) - see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

- Absence of unobserved time-invariant confounders \mathbf{U}_{i}
- past treatments can directly affect current outcome
- past outcomes can directly affect current treatment

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) - see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

- Absence of unobserved time-invariant confounders \mathbf{U}_{i}
- past treatments can directly affect current outcome
- past outcomes can directly affect current treatment
- Comparison across units within the same time rather than across different time periods within the same unit

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) - see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

- Absence of unobserved time-invariant confounders \mathbf{U}_{i}
- past treatments can directly affect current outcome
- past outcomes can directly affect current treatment
- Comparison across units within the same time rather than across different time periods within the same unit
- Can identify the average effect of an entire treatment sequence

But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback, 2000) - see Blackwell 2013 and Blackwell and Glynn 2018 for accessible introductions.

- Absence of unobserved time-invariant confounders \mathbf{U}_{i}
- past treatments can directly affect current outcome
- past outcomes can directly affect current treatment
- Comparison across units within the same time rather than across different time periods within the same unit
- Can identify the average effect of an entire treatment sequence
- Trade-off \rightsquigarrow no free lunch

Conclusions and Nonparametric Estimation

Conclusions and Nonparametric Estimation

- Imai and Kim (Forthcoming) offer a matching framework for fixed effects models which exploits an equivalence to weighted unit fixed effects estimators (see wfe package in R as well).

Conclusions and Nonparametric Estimation

- Imai and Kim (Forthcoming) offer a matching framework for fixed effects models which exploits an equivalence to weighted unit fixed effects estimators (see wfe package in R as well).
- The paper clarifies assumptions for fixed effects and first difference estimators.

Conclusions and Nonparametric Estimation

- Imai and Kim (Forthcoming) offer a matching framework for fixed effects models which exploits an equivalence to weighted unit fixed effects estimators (see wfe package in R as well).
- The paper clarifies assumptions for fixed effects and first difference estimators.
- Follow-up working paper by Imai, Kim and Wang extends to two-way fixed effects estimator.

Conclusions and Nonparametric Estimation

- Imai and Kim (Forthcoming) offer a matching framework for fixed effects models which exploits an equivalence to weighted unit fixed effects estimators (see wfe package in R as well).
- The paper clarifies assumptions for fixed effects and first difference estimators.
- Follow-up working paper by Imai, Kim and Wang extends to two-way fixed effects estimator.
- Tradeoff:

1) unobserved time-invariant confounders \rightsquigarrow fixed effects

Conclusions and Nonparametric Estimation

- Imai and Kim (Forthcoming) offer a matching framework for fixed effects models which exploits an equivalence to weighted unit fixed effects estimators (see wfe package in R as well).
- The paper clarifies assumptions for fixed effects and first difference estimators.
- Follow-up working paper by Imai, Kim and Wang extends to two-way fixed effects estimator.
- Tradeoff:

1) unobserved time-invariant confounders \rightsquigarrow fixed effects
2) causal dynamics between treatment and outcome \rightsquigarrow selection-on-observables
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

(5) Non-parametric Identification and Fixed Effects

(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences
(4) Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions
- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

Q: What conditions do we need to infer causality?

Q: What conditions do we need to infer causality?
A: A clear estimand, an identification strategy and an estimation strategy.

Identification Strategies in This Class

Identification Strategies in This Class

- Experiments (ignorability via randomization)

Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)

Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)
- Natural Experiments (ignorability via quasi-randomization)

Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)
- Natural Experiments (ignorability via quasi-randomization)
- Instrumental Variables (instrument + exclusion restriction)

Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)
- Natural Experiments (ignorability via quasi-randomization)
- Instrumental Variables (instrument + exclusion restriction)
- Regression Discontinuity (continuity assumption)

Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)
- Natural Experiments (ignorability via quasi-randomization)
- Instrumental Variables (instrument + exclusion restriction)
- Regression Discontinuity (continuity assumption)
- Difference-in-Differences (parallel trends)

Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)
- Natural Experiments (ignorability via quasi-randomization)
- Instrumental Variables (instrument + exclusion restriction)
- Regression Discontinuity (continuity assumption)
- Difference-in-Differences (parallel trends)
- Fixed Effects (time-invariant unobserved heterogeneity, strict ignorability)

Identification Strategies in This Class

- Experiments (ignorability via randomization)
- Selection on Observables (conditional ignorability)
- Natural Experiments (ignorability via quasi-randomization)
- Instrumental Variables (instrument + exclusion restriction)
- Regression Discontinuity (continuity assumption)
- Difference-in-Differences (parallel trends)
- Fixed Effects (time-invariant unobserved heterogeneity, strict ignorability)

Essentially everything assumes: consistency/SUTVA (no interference between units, variation in the treatment is irrelevant) and positivity (there is some chance of all getting treatment)

Some Estimation Strategies

Some Estimation Strategies

- Stratification

Some Estimation Strategies

- Stratification
- Regression (and relatives)

Some Estimation Strategies

- Stratification
- Regression (and relatives)
- Matching (not covered)
- Weighting (not covered)

Q: Can you review how to read DAGs?

${ }^{2}$ Courtesy of Erin Hartman's slides for this.

Q: Can you review how to read DAGs?

A: Sure ${ }^{2}$

${ }^{2}$ Courtesy of Erin Hartman's slides for this.

Notation

Node - A random Variable. Sometimes drawn as a solid circle ${ }^{\boldsymbol{\bullet}}$.

Notation

Dashed line means its unobserved. Sometimes drawn as a hollow circle $\stackrel{U}{\circ}$.

Notation

Notation

Arrow means " X causes Y ".

Notation

A parent is a direct cause of a child, a child is directly caused by a parent.

Notation

An ancestor is a direct or indirect cause, a descendant is caused, directly or indirectly, by an ancestor.

Notation

Acyclic implies there are no paths from a variable back to itself.

Notation

A lack of arrows implies no causal relationship.

Notation

Notation

A lack of variables indicates a lack of common causes in the DGP.

Notation

Notation

DAGs encode non-parametric structural models.

$$
\begin{gathered}
X=f_{X}(U) \\
Y=f_{Y}(X, U)
\end{gathered}
$$

Notation

A collider is when a node receives edges from two, or more, other nodes.

Notation

A causal effect can be defined using the do operator.

$$
P(Y=y \mid d o(X=x))=\sum_{z} P(Y=y \mid X=x, P A=z) P(P A=z)
$$

where PA are parents of X, and z ranges of all the combinations of values that the variables in PA can take.

Notation

Then, if T is binary,

$$
A C E=P(Y=1 \mid d o(T=1))-P(Y=1 \mid d o(T=0))
$$

and if T is randomized, then:

$$
A C E=P(Y=1 \mid T=1)-P(Y=1 \mid T=0)
$$

because there are no parents of T.

d-separation

d-separation

A path p is blocked by a set of nodes Z if and only if:
(1) p contains a chain of nodes $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ such that the middle node B is in Z or
(2) p contains a collider $A \rightarrow B \leftarrow C$ such that the collision node B is not in Z and no descendant of B is in Z

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional on Z, and thus are conditionally independent given Z.

d-separation

A path p is blocked by a set of nodes Z if and only if:
(1) p contains a chain of nodes $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ such that the middle node B is in Z or
(2) p contains a collider $A \rightarrow B \leftarrow C$ such that the collision node B is not in Z and no descendant of B is in Z
T and Y are d-separated conditional on $\}$, because they are blocked by the collider W, meets (2)

d-separation

A path p is blocked by a set of nodes Z if and only if:
(1) p contains a chain of nodes $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ such that the middle node B is in Z or
(2) p contains a collider $A \rightarrow B \leftarrow C$ such that the collision node B is not in Z and no descendant of B is in Z
T and Y are d-connected conditional on $\{W\}$, violates (2).

d-separation

A path p is blocked by a set of nodes Z if and only if:
(1) p contains a chain of nodes $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ such that the middle node B is in Z or
(2) p contains a collider $A \rightarrow B \leftarrow C$ such that the collision node B is not in Z and no descendant of B is in Z
T and Y are d-separated conditional on $\{W, X\}$, because X blocks the path by criterion (1).

d-separation

A path p is blocked by a set of nodes Z if and only if:
(1) p contains a chain of nodes $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ such that the middle node B is in Z or
(2) p contains a collider $A \rightarrow B \leftarrow C$ such that the collision node B is not in Z and no descendant of B is in Z

We can use d-separation to do calculate causal effects via the "back-door" criterion, so long as Z does not contain descendants of our treatment of interest.

Q: Can you review how instrumental variables deal with issues of confounding?

Q: Can you review how instrumental variables deal with issues of confounding?

A: We use only the units whose treatment status was effectively randomized by the instrument (because they are compliers).

Q: What are degrees of freedom and how do they play into standard errors?

Q: What are degrees of freedom and how do they play into standard errors?

A: Let's consider the anatomy of a standard error.

Anatomy of the Standard Error

Imagine we have a regression of Y on a variable of interest X and a vector of other variables \mathbf{Z}.

$$
\widehat{\operatorname{Var}}\left(\widehat{\beta}_{X}\right)=\frac{\frac{1}{(n-k-1)} \sum_{i=1}^{n} \hat{u}_{i}^{2}}{\left(1-R_{X \sim Z}^{2}\right) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Anatomy of the Standard Error

Imagine we have a regression of Y on a variable of interest X and a vector of other variables \mathbf{Z}.

$$
\widehat{\operatorname{Var}}\left(\widehat{\beta}_{X}\right)=\frac{\frac{1}{(n-k-1)} \sum_{i=1}^{n} \hat{u}_{i}^{2}}{\left(1-R_{X \sim Z}^{2}\right) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- the numerator is our estimator for σ_{u}^{2} the unknown error variance. It is formed by the degrees of freedom correction times the sum of the squared residuals.

Anatomy of the Standard Error

Imagine we have a regression of Y on a variable of interest X and a vector of other variables \mathbf{Z}.

$$
\widehat{\operatorname{Var}}\left(\widehat{\beta}_{X}\right)=\frac{\frac{1}{(n-k-1)} \sum_{i=1}^{n} \hat{u}_{i}^{2}}{\left(1-R_{X \sim Z}^{2}\right) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- the numerator is our estimator for σ_{u}^{2} the unknown error variance. It is formed by the degrees of freedom correction times the sum of the squared residuals.
- the denominator includes one minus the R^{2} from the regression of X_{i} on \mathbf{Z}_{i}

Anatomy of the Standard Error

Imagine we have a regression of Y on a variable of interest X and a vector of other variables \mathbf{Z}.

$$
\widehat{\operatorname{Var}}\left(\widehat{\beta}_{X}\right)=\frac{\frac{1}{(n-k-1)} \sum_{i=1}^{n} \hat{u}_{i}^{2}}{\left(1-R_{X \sim Z}^{2}\right) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- the numerator is our estimator for σ_{u}^{2} the unknown error variance. It is formed by the degrees of freedom correction times the sum of the squared residuals.
- the denominator includes one minus the R^{2} from the regression of X_{i} on \mathbf{Z}_{i}
- we complete the denominator by multiplying a measure of the variation in X_{i}, the sum of squared deviations from the mean.

Anatomy of the Standard Error

Imagine we have a regression of Y on a variable of interest X and a vector of other variables \mathbf{Z}.

$$
\widehat{\operatorname{Var}}\left(\widehat{\beta}_{X}\right)=\frac{\frac{1}{(n-k-1)} \sum_{i=1}^{n} \hat{u}_{i}^{2}}{\left(1-R_{X \sim Z}^{2}\right) \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- the numerator is our estimator for σ_{u}^{2} the unknown error variance. It is formed by the degrees of freedom correction times the sum of the squared residuals.
- the denominator includes one minus the R^{2} from the regression of X_{i} on \mathbf{Z}_{i}
- we complete the denominator by multiplying a measure of the variation in X_{i}, the sum of squared deviations from the mean.

$$
\widehat{\mathrm{SE}}\left(\widehat{\beta_{X}}\right)=\sqrt{\widehat{\operatorname{Var}}\left(\widehat{\beta}_{X}\right)}
$$

Q: When conducting an experiment, should we avoid OLS and always go for difference in means?

Q: When conducting an experiment, should we avoid OLS and always go for difference in means?

A: Regression adjustment of experiments can be helpful for improving precision. We don't need it for confounding, but it can improve our standard errors to adjust for pre-treatment covariates that are highly predictive of the output. If done correctly and in moderate-to-large samples, this can dramatically improve your standard errors. Even better though is blocking which is adjustment by design.

Q: When conducting an experiment, should we avoid OLS and always go for difference in means?

A: Regression adjustment of experiments can be helpful for improving precision. We don't need it for confounding, but it can improve our standard errors to adjust for pre-treatment covariates that are highly predictive of the output. If done correctly and in moderate-to-large samples, this can dramatically improve your standard errors. Even better though is blocking which is adjustment by design.

Further Reading:

- Lin, W., 2013. 'Agnostic notes on regression adjustments to experimental data: Reexamining Freedmans critique.' The Annals of Applied Statistics
- Athey, S. and Imbens, G.W., 2017. 'The Econometrics of Randomized Experiments.' In Handbook of Economic Field Experiments (Vol. 1, pp. 73-140).
- Egap Methods Guide: 10 things you need to know about covariate adjustment. https://egap.org/methods-guides/10-things-know-about-covariate-adjustment
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences
(4) Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions
- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

Q: Can you discuss the difference between having an instrument and having a mediator?

Q: Can you discuss the difference between having an instrument and having a mediator?

A: If we think of the treatment as the mediator of the instrument, it is by the exclusion restriction a total mediator (the direct effect is 0).

Q: How do propensity scores and matching fit into all of this?

Q: How do propensity scores and matching fit into all of this?

A: They are different ways of conditioning on variables in a selection on observables strategy. Importantly: they are tools for estimation not tools for identification.

Propensity Score as a Low-Dimensional Summary

Propensity Score as a Low-Dimensional Summary

- Summary: The propensity score is the probability of treatment given some covariates X.

Propensity Score as a Low-Dimensional Summary

- Summary: The propensity score is the probability of treatment given some covariates X.
- Stratification is hard when X has has many dimensions

Propensity Score as a Low-Dimensional Summary

- Summary: The propensity score is the probability of treatment given some covariates X.
- Stratification is hard when X has has many dimensions
- Curse of dimensionality: there will be very few, if any, units in a given stratum of X_{i}.

Propensity Score as a Low-Dimensional Summary

- Summary: The propensity score is the probability of treatment given some covariates X.
- Stratification is hard when X has has many dimensions
- Curse of dimensionality: there will be very few, if any, units in a given stratum of X_{i}.
- We can instead stratify on a low-dimensional summary, the propensity score:

$$
e(x)=\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]
$$

Propensity Score as a Low-Dimensional Summary

- Summary: The propensity score is the probability of treatment given some covariates X.
- Stratification is hard when X has has many dimensions
- Curse of dimensionality: there will be very few, if any, units in a given stratum of X_{i}.
- We can instead stratify on a low-dimensional summary, the propensity score:

$$
e(x)=\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]
$$

- Rosenbaum and Rubin (1983) showed that:

$$
D_{i} \Perp\left(Y_{i}(0), Y_{i}(1)\right)\left|X_{i} \Longrightarrow D_{i} \Perp\left(Y_{i}(0), Y_{i}(1)\right)\right| e\left(X_{i}\right)
$$

Propensity Score as a Low-Dimensional Summary

- Summary: The propensity score is the probability of treatment given some covariates X.
- Stratification is hard when X has has many dimensions
- Curse of dimensionality: there will be very few, if any, units in a given stratum of X_{i}.
- We can instead stratify on a low-dimensional summary, the propensity score:

$$
e(x)=\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]
$$

- Rosenbaum and Rubin (1983) showed that:

$$
D_{i} \Perp\left(Y_{i}(0), Y_{i}(1)\right)\left|X_{i} \Longrightarrow D_{i} \Perp\left(Y_{i}(0), Y_{i}(1)\right)\right| e\left(X_{i}\right)
$$

- \rightsquigarrow stratifying on e_{i} is the same in expectation as stratifying on the full X_{i}.

Propensity Score as a Low-Dimensional Summary

- Summary: The propensity score is the probability of treatment given some covariates X.
- Stratification is hard when X has has many dimensions
- Curse of dimensionality: there will be very few, if any, units in a given stratum of X_{i}.
- We can instead stratify on a low-dimensional summary, the propensity score:

$$
e(x)=\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]
$$

- Rosenbaum and Rubin (1983) showed that:

$$
D_{i} \Perp\left(Y_{i}(0), Y_{i}(1)\right)\left|X_{i} \Longrightarrow D_{i} \Perp\left(Y_{i}(0), Y_{i}(1)\right)\right| e\left(X_{i}\right)
$$

- \rightsquigarrow stratifying on e_{i} is the same in expectation as stratifying on the full X_{i}.
- The true propensity score is actually a balancing score, which means that $D_{i} \Perp X_{i} \mid e\left(X_{i}\right)$

Propensity score specifics

Propensity score specifics

- What variables do we include in the propensity score model?

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.
- Check balance within strata of \hat{e}_{i}. Covariates should be balanced:

$$
f\left(X_{i} \mid D_{i}=1, \hat{e}_{i}\right)=f\left(X_{i} \mid D_{i}=0, \hat{e}_{i}\right)
$$

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.
- Check balance within strata of \hat{e}_{i}. Covariates should be balanced:

$$
f\left(X_{i} \mid D_{i}=1, \hat{e}_{i}\right)=f\left(X_{i} \mid D_{i}=0, \hat{e}_{i}\right)
$$

- Can also use automated/nonparametric tools for estimating \hat{e}_{i}.

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.
- Check balance within strata of \hat{e}_{i}. Covariates should be balanced:

$$
f\left(X_{i} \mid D_{i}=1, \hat{e}_{i}\right)=f\left(X_{i} \mid D_{i}=0, \hat{e}_{i}\right)
$$

- Can also use automated/nonparametric tools for estimating \hat{e}_{i}.
- How do we use propensity scores?

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.
- Check balance within strata of \hat{e}_{i}. Covariates should be balanced:

$$
f\left(X_{i} \mid D_{i}=1, \hat{e}_{i}\right)=f\left(X_{i} \mid D_{i}=0, \hat{e}_{i}\right)
$$

- Can also use automated/nonparametric tools for estimating \hat{e}_{i}.
- How do we use propensity scores?
- Propensity score can be used in many contexts: weighting, matching, regression or even just stratification

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.
- Check balance within strata of \hat{e}_{i}. Covariates should be balanced:

$$
f\left(X_{i} \mid D_{i}=1, \hat{e}_{i}\right)=f\left(X_{i} \mid D_{i}=0, \hat{e}_{i}\right)
$$

- Can also use automated/nonparametric tools for estimating \hat{e}_{i}.
- How do we use propensity scores?
- Propensity score can be used in many contexts: weighting, matching, regression or even just stratification
- It also shows up in a number of more advanced methods for heterogeneous treatment effects, causal inference in longitudinal data etc.

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.
- Check balance within strata of \hat{e}_{i}. Covariates should be balanced:

$$
f\left(X_{i} \mid D_{i}=1, \hat{e}_{i}\right)=f\left(X_{i} \mid D_{i}=0, \hat{e}_{i}\right)
$$

- Can also use automated/nonparametric tools for estimating \hat{e}_{i}.
- How do we use propensity scores?
- Propensity score can be used in many contexts: weighting, matching, regression or even just stratification
- It also shows up in a number of more advanced methods for heterogeneous treatment effects, causal inference in longitudinal data etc.
- Typically it is a tool to achieve balance.

Propensity score specifics

- What variables do we include in the propensity score model?
- Any set of variables that blocks all the backdoor paths from D_{i} to Y_{i}.
- Check balance within strata of \hat{e}_{i}. Covariates should be balanced:

$$
f\left(X_{i} \mid D_{i}=1, \hat{e}_{i}\right)=f\left(X_{i} \mid D_{i}=0, \hat{e}_{i}\right)
$$

- Can also use automated/nonparametric tools for estimating \hat{e}_{i}.
- How do we use propensity scores?
- Propensity score can be used in many contexts: weighting, matching, regression or even just stratification
- It also shows up in a number of more advanced methods for heterogeneous treatment effects, causal inference in longitudinal data etc.
- Typically it is a tool to achieve balance.
- NB: propensity scores only achieve balance in expectation

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching as Non-Parametric Preprocessing

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Three Approaches to Matching

Three Approaches to Matching

- There are many approaches to matching. We will cover just three for the sake of time.

Three Approaches to Matching

- There are many approaches to matching. We will cover just three for the sake of time.
- This isn't a statement that these are the best three, just a set which are straightforward to learn.

Three Approaches to Matching

- There are many approaches to matching. We will cover just three for the sake of time.
- This isn't a statement that these are the best three, just a set which are straightforward to learn.
- Which is the best method? The one that produces the best balance!

Next few slides based on slides by Gary King and Rich Nielsen

Method 1: Mahalanobis Distance Matching

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Mahalanobis Distance Matching

Education (years)

Mahalanobis Distance Matching

Mahalanobis Distance Matching

Education (years)

Mahalanobis Distance Matching

Education (years)

Method 2: Coarsened Exact Matching

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)
(2) Checking Determine matched sample size, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
(2) Checking Determine matched sample size, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching
 (Approximates Fully Blocked Experiment)

(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
\star e.g., Education (grade school, high school, college, graduate)
(2) Checking Determine matched sample size, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching
 (Approximates Fully Blocked Experiment)

(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
« e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
(2) Checking Determine matched sample size, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching
 (Approximates Fully Blocked Experiment)

(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
\star e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
\star Sort observations into strata, each with unique values of $C(X)$
(2) Checking Determine matched sample size, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
\star e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
\star Sort observations into strata, each with unique values of $C(X)$
* Prune any stratum with 0 treated or 0 control units
(2) Checking Determine matched sample size, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
\star e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
\star Sort observations into strata, each with unique values of $C(X)$
\star Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
(2) Checking Determine matched sample size, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
\star e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
\star Sort observations into strata, each with unique values of $C(X)$
\star Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
(2) Checking Determine matched sample size, tweak, repeat, ...
- Easier, but still iterative
(3) Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)
(1) Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
\star e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
\star Sort observations into strata, each with unique values of $C(X)$
\star Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
(2) Checking Determine matched sample size, tweak, repeat, ...
- Easier, but still iterative
(3) Estimation Difference in means or a model
- Need to weight controls in each stratum to equal treateds

Coarsened Exact Matching

Coarsened Exact Matching

Education

Method 3: Propensity Score Matching

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)
(1) Preprocess (Matching)
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)
(1) Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)
(1) Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)
(1) Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)
(1) Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)
(1) Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)
(1) Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
(2) Checking Measure imbalance, tweak, repeat, ...
(3) Estimation Difference in means or a model

Propensity Score Matching

Education (years)

Propensity Score Matching

Education (years)

Propensity Score Matching

Propensity Score Matching

Education (years)
Propensity Score

Propensity Score Matching

Education (years)
Propensity Score

Propensity Score Matching

Education (years)
Propensity Score

Propensity Score Matching

Propensity Score Matching

Education (years)

Q: Could you discuss hierarchical models?

Q: Could you discuss hierarchical models?

A: Sure. Generally speaking, they are a way of borrowing information.

Eight Schools Data

School	Est. Effect	SE
A	28	15
B	8	10
C	-3	16
D	7	11
E	-1	9
F	1	11
G	18	10
H	12	18

Eight Schools Data

School	Est. Effect	SE
A	28	15
B	8	10
C	-3	16
D	7	11
E	-1	9
F	1	11
G	18	10
H	12	18

Policy Question: What is the effect size in School A?

Eight Schools Background

- ETS analyzes special coaching program on test scores
- 8 separate parallel experiments in different high schools
- Outcome was the score on a special administration of SAT-V with scores varying between 200 and $800(\mu=500, \sigma=100)$
- SAT is designed to be resistant to short-term efforts intended to boost performance, but each school thought it was a success.
- No prior reason to believe that one program would be more effective than the others
- Treatment effects estimated controlling for PSAT-M and PSAT-V scores
- A bit over the 30 students in each school
- For the sake of scale: an 8-point increase in the score indicates about 1 more test item was answered correctly.
- (Analysis is from Rubin 1981, treatment via Gelman et al 2015)

What do we know?

- Unbiased estimate: 28 points

What do we know?

- Unbiased estimate: 28 points
- Hypothesis test fails to reject hypothesis that true effect is the same for all of them

What do we know?

- Unbiased estimate: 28 points
- Hypothesis test fails to reject hypothesis that true effect is the same for all of them
- Should we analyze them all together? All separately?

What do we know?

- Unbiased estimate: 28 points
- Hypothesis test fails to reject hypothesis that true effect is the same for all of them
- Should we analyze them all together? All separately?
- It is the "same course" in every school, but they are different schools.

Options for Analysis

There are two clear options:
(1) an unpooled analysis in which we use separate estimates for every school- in this case directly from the table

Options for Analysis

There are two clear options:
(1) an unpooled analysis in which we use separate estimates for every school- in this case directly from the table

- 2 moderate effects, 4 small effects and 2 small negative effects

Options for Analysis

There are two clear options:
(1) an unpooled analysis in which we use separate estimates for every school- in this case directly from the table

- 2 moderate effects, 4 small effects and 2 small negative effects
- standard errors are large, 95% intervals overlap substantially

Options for Analysis

There are two clear options:
(1) an unpooled analysis in which we use separate estimates for every school- in this case directly from the table

- 2 moderate effects, 4 small effects and 2 small negative effects
- standard errors are large, 95% intervals overlap substantially
(2) a pooled analysis that generates a single estimate for all schools

Options for Analysis

There are two clear options:
(1) an unpooled analysis in which we use separate estimates for every school- in this case directly from the table

- 2 moderate effects, 4 small effects and 2 small negative effects
- standard errors are large, 95% intervals overlap substantially
(2) a pooled analysis that generates a single estimate for all schools
- assume that all effects are exactly the same

Options for Analysis

There are two clear options:
(1) an unpooled analysis in which we use separate estimates for every school- in this case directly from the table

- 2 moderate effects, 4 small effects and 2 small negative effects
- standard errors are large, 95% intervals overlap substantially
(2) a pooled analysis that generates a single estimate for all schools
- assume that all effects are exactly the same
- we get the single effect size and standard error with inverse variance weighting of the unpooled estimates.

$$
\begin{aligned}
\bar{y} & =\frac{\sum_{j=1}^{8} \frac{1}{\sigma_{j}^{2}} \bar{y}_{j}}{\sum_{j=1}^{8} \frac{1}{\sigma_{j}^{2}}} \\
\sigma_{\cdot}^{2} & =\left(\sum_{j=1}^{8} \frac{1}{\sigma_{j}^{2}}\right)^{-1}
\end{aligned}
$$

Options for Analysis

There are two clear options:
(1) an unpooled analysis in which we use separate estimates for every school- in this case directly from the table

- 2 moderate effects, 4 small effects and 2 small negative effects
- standard errors are large, 95% intervals overlap substantially
(2) a pooled analysis that generates a single estimate for all schools
- assume that all effects are exactly the same
- we get the single effect size and standard error with inverse variance weighting of the unpooled estimates.

$$
\begin{aligned}
\bar{y} & =\frac{\sum_{j=1}^{8} \frac{1}{\sigma_{j}^{2}} \bar{y}_{j}}{\sum_{j=1}^{8} \frac{1}{\sigma_{j}^{2}}} \\
\sigma_{\cdot}^{2} & =\left(\sum_{j=1}^{8} \frac{1}{\sigma_{j}^{2}}\right)^{-1}
\end{aligned}
$$

- the pooled estimate is 7.7 with standard error of 4.1. Thus the confidence interval is [$-.5,15.9$]

Problems with Separate and Pooled Analysis

- The two approaches radically different results for school A: 28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

Problems with Separate and Pooled Analysis

- The two approaches radically different results for school A: 28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)
- Under a Bayesian framework, the separate analysis implies the probability statement "the probability is $\frac{1}{2}$ that the true effect in A is more than 28.4"

Problems with Separate and Pooled Analysis

- The two approaches radically different results for school A: 28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)
- Under a Bayesian framework, the separate analysis implies the probability statement "the probability is $\frac{1}{2}$ that the true effect in A is more than 28.4"
- This seems ... dubious given the other results (remember we had no reason to believe one school would perform stronger than the others)

Problems with Separate and Pooled Analysis

- The two approaches radically different results for school A: 28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)
- Under a Bayesian framework, the separate analysis implies the probability statement "the probability is $\frac{1}{2}$ that the true effect in A is more than 28.4"
- This seems ... dubious given the other results (remember we had no reason to believe one school would perform stronger than the others)
- The pooled analysis implies the statement "the probability is $\frac{1}{2}$ that the true effect in A is less than 7.7", it also implies that "the probability is $\frac{1}{2}$ that the true effect in A is less than the true effect in C"

Problems with Separate and Pooled Analysis

- The two approaches radically different results for school A: 28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)
- Under a Bayesian framework, the separate analysis implies the probability statement "the probability is $\frac{1}{2}$ that the true effect in A is more than 28.4"
- This seems ... dubious given the other results (remember we had no reason to believe one school would perform stronger than the others)
- The pooled analysis implies the statement "the probability is $\frac{1}{2}$ that the true effect in A is less than 7.7", it also implies that "the probability is $\frac{1}{2}$ that the true effect in A is less than the true effect in C"
- Again these seem unlikely given the data

Borrowing Information

- We want an estimate that combines information from the 8 experiments without assuming that all the effects are equal

Borrowing Information

- We want an estimate that combines information from the 8 experiments without assuming that all the effects are equal
- Rubin suggests a middle path: a hierarchical model in which we

Borrowing Information

- We want an estimate that combines information from the 8 experiments without assuming that all the effects are equal
- Rubin suggests a middle path: a hierarchical model in which we
(1) assume that each school's true effect is drawn a Normal distribution with some unknown mean and standard deviation

Borrowing Information

- We want an estimate that combines information from the 8 experiments without assuming that all the effects are equal
- Rubin suggests a middle path: a hierarchical model in which we
(1) assume that each school's true effect is drawn a Normal distribution with some unknown mean and standard deviation
(2) assume that the observed effect in each school is sampled from a normal distribution with a mean equal to its true effect and standard deviation given in the table

Borrowing Information

- We want an estimate that combines information from the 8 experiments without assuming that all the effects are equal
- Rubin suggests a middle path: a hierarchical model in which we
(1) assume that each school's true effect is drawn a Normal distribution with some unknown mean and standard deviation
(2) assume that the observed effect in each school is sampled from a normal distribution with a mean equal to its true effect and standard deviation given in the table
- This model contains both the separate and pooled estimates as limiting special cases. If we force the standard deviation of the true effects to be zero, then all school get the same estimate, if we let it go to infinity we get the separate estimates

The Model

$$
\begin{aligned}
\bar{y}_{j} \mid \theta_{j} & \sim \operatorname{Normal}\left(\theta_{j}, \sigma_{j}^{2}\right) \\
\theta_{j} \mid \mu, \tau & \sim \operatorname{Normal}\left(\mu, \tau^{2}\right) \\
p(\mu, \tau) & =p(\mu \mid \tau) p(\tau) \propto p(\tau)
\end{aligned}
$$

Known: $\bar{y}_{j}, \sigma_{j}^{2}$
Unknown: τ, μ, θ

Some Mechanics

How do the calculations work conditional on some values of the hyperparameters?

The θ s are latent variables which have a distribution. In Bayesian statistics we call this the posterior distribution.

Some Mechanics

How do the calculations work conditional on some values of the hyperparameters?

The $\theta \mathrm{s}$ are latent variables which have a distribution. In Bayesian statistics we call this the posterior distribution.

$$
\begin{aligned}
\theta_{j} \mid \mu, \tau, y & \sim \mathrm{~N}\left(\hat{\theta}_{j}, V_{j}\right) \\
\hat{\theta}_{j} & =\frac{\frac{1}{\sigma_{j}^{2}} \bar{y}_{j}+\frac{1}{\tau^{2}} \mu}{\frac{1}{\sigma_{j}^{2}}+\frac{1}{\tau^{2}}} \\
V_{j} & =\frac{1}{\frac{1}{\sigma_{j}^{2}}+\frac{1}{\tau^{2}}}
\end{aligned}
$$

What is Happening?

- We are borrowing information between the schools

What is Happening?

- We are borrowing information between the schools
- Alternatively- we are regularizing estimates of the individual effects towards their grand mean

What is Happening?

- We are borrowing information between the schools
- Alternatively- we are regularizing estimates of the individual effects towards their grand mean
- This captures our intuition that while School A might have a larger effect, it is perhaps an overestimate

What is Happening?

- We are borrowing information between the schools
- Alternatively- we are regularizing estimates of the individual effects towards their grand mean
- This captures our intuition that while School A might have a larger effect, it is perhaps an overestimate
- The form show us that the amount of shrinkage is relative to our certainty about the estimate and how much we believe the individual effects matter

What is Happening?

- We are borrowing information between the schools
- Alternatively- we are regularizing estimates of the individual effects towards their grand mean
- This captures our intuition that while School A might have a larger effect, it is perhaps an overestimate
- The form show us that the amount of shrinkage is relative to our certainty about the estimate and how much we believe the individual effects matter
- Our final guess is that the median effect for school A is about 10 points with 50% probability between 7 and 16

Results

Results

Results

Results

The Great Thing About Eight Schools

- This is a microcosm of hierarchical modeling

The Great Thing About Eight Schools

- This is a microcosm of hierarchical modeling
- Works well when we have a decent number of groups and the individual group sample sizes are lowish

The Great Thing About Eight Schools

- This is a microcosm of hierarchical modeling
- Works well when we have a decent number of groups and the individual group sample sizes are lowish
- Allows us to capture variability in our treatment effects, variances etc.

The Great Thing About Eight Schools

- This is a microcosm of hierarchical modeling
- Works well when we have a decent number of groups and the individual group sample sizes are lowish
- Allows us to capture variability in our treatment effects, variances etc.
- Allows us to model dependence in our error terms

Q: How do we determine power?

Q: How do we determine power?

A: A combination of the effect size, the variance and the sample size. Unfortunately, only one of which we know. See the DeclareDesign suite of packages for this and so much more!
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences
(4) Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions
- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

Q: Could we discuss more examples of missteps/misuses of certain statistical techniques/methods in papers published in prominent journals? I think seeing how other researchers have made mistakes and why mistakes arise could be helpful for diagnosing similar mistakes in our own work?

Q: Could we discuss more examples of missteps/misuses of certain statistical techniques/methods in papers published in prominent journals? I think seeing how other researchers have made mistakes and why mistakes arise could be helpful for diagnosing similar mistakes in our own work?

A: I think the biggest and most frequent mistakes I see are:

Q: Could we discuss more examples of missteps/misuses of certain statistical techniques/methods in papers published in prominent journals? I think seeing how other researchers have made mistakes and why mistakes arise could be helpful for diagnosing similar mistakes in our own work?

A: I think the biggest and most frequent mistakes I see are:

- not being clear about the estimand

Q: Could we discuss more examples of missteps/misuses of certain statistical techniques/methods in papers published in prominent journals? I think seeing how other researchers have made mistakes and why mistakes arise could be helpful for diagnosing similar mistakes in our own work?

A: I think the biggest and most frequent mistakes I see are:

- not being clear about the estimand
- mistaking not significant results for a finding of zero effect (need equivalence tests)

Q: Could we discuss more examples of missteps/misuses of certain statistical techniques/methods in papers published in prominent journals? I think seeing how other researchers have made mistakes and why mistakes arise could be helpful for diagnosing similar mistakes in our own work?

A: I think the biggest and most frequent mistakes I see are:

- not being clear about the estimand
- mistaking not significant results for a finding of zero effect (need equivalence tests)
- lack of clarity about the counterfactual and common support

Q: When should you pick your statistical strategy? How do you balance pre-planning research / literature reviews with potential problems with data/causal assumptions?

How much data exploration should you do up front compared to exploration throughout the question? If you have a causal question or idea but arent sure of data, how should you go about searching for potential data and making sure assumptions are reasonable?

Q: When should you pick your statistical strategy? How do you balance pre-planning research / literature reviews with potential problems with data/causal assumptions?

How much data exploration should you do up front compared to exploration throughout the question? If you have a causal question or idea but arent sure of data, how should you go about searching for potential data and making sure assumptions are reasonable?

A: Let's chat.

Q: What do you believe will be the biggest applications for social statistics in the future?

A: Let's chat.

Q: What are your favorite resources for learning tricky concepts?

Q: What are your favorite resources for learning tricky concepts?

I've used the following procedure many times:

Q: What are your favorite resources for learning tricky concepts?

I've used the following procedure many times:
(Identify approx. the best textbook (often can do this via syllabi hunting)

Q: What are your favorite resources for learning tricky concepts?

I've used the following procedure many times:

- Identify approx. the best textbook (often can do this via syllabi hunting)
- Read the relevant textbook material

Q: What are your favorite resources for learning tricky concepts?

I've used the following procedure many times:

- Identify approx. the best textbook (often can do this via syllabi hunting)
- Read the relevant textbook material
- Derive the equations/math

Q: What are your favorite resources for learning tricky concepts?

I've used the following procedure many times:

- Identify approx. the best textbook (often can do this via syllabi hunting)
- Read the relevant textbook material
- Derive the equations/math
- Try to explain it to someone else
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences
a Fixed Effects
(5) Non-parametric Identification and Fixed Effects

P (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?

Where are you?

Where are you?

You've been given a powerful set of tools

Your New Weapons

Your New Weapons

- Basic probability theory
- Probability axioms, random variables, marginal and conditional probability, building a probability model
- Expected value, variances, independence
- CDF and PDF (discrete and continuous)

Your New Weapons

- Basic probability theory
- Probability axioms, random variables, marginal and conditional probability, building a probability model
- Expected value, variances, independence
- CDF and PDF (discrete and continuous)
- Properties of Estimators
- Bias, Efficiency, Consistency
- Central limit theorem

Your New Weapons

- Basic probability theory
- Probability axioms, random variables, marginal and conditional probability, building a probability model
- Expected value, variances, independence
- CDF and PDF (discrete and continuous)
- Properties of Estimators
- Bias, Efficiency, Consistency
- Central limit theorem
- Univariate Inference
- Interval estimation (normal and non-normal Population)
- Confidence intervals, hypothesis tests, p-values
- Practical versus statistical significance

Your New Weapons

Your New Weapons

- Simple Regression
- regression to approximate the conditional expectation function
- idea of conditioning
- kernel and loess regressions
- OLS estimator for bivariate regression
- Variance decomposition, goodness of fit, interpretation of estimates, transformations

Your New Weapons

- Simple Regression
- regression to approximate the conditional expectation function
- idea of conditioning
- kernel and loess regressions
- OLS estimator for bivariate regression
- Variance decomposition, goodness of fit, interpretation of estimates, transformations
- Multiple Regression
- OLS estimator for multiple regression
- Regression assumptions
- Properties: Bias, Efficiency, Consistency
- Standard errors, testing, p-values, and confidence intervals
- Polynomials, Interactions, Dummy Variables
- F-tests
- Matrix notation

Your New Weapons

Your New Weapons

- Diagnosing and Fixing Regression Problems
- Non-normality
- Outliers, leverage, and influence points, Robust Regression
- Non-linearities and GAMs
- Heteroscedasticity and Clustering

Your New Weapons

- Diagnosing and Fixing Regression Problems
- Non-normality
- Outliers, leverage, and influence points, Robust Regression
- Non-linearities and GAMs
- Heteroscedasticity and Clustering
- Causal Inference
- Frameworks: potential outcomes and DAGs
- Measured Confounding
- Unmeasured Confounding
- Methods for repeated data

Your New Weapons

- Diagnosing and Fixing Regression Problems
- Non-normality
- Outliers, leverage, and influence points, Robust Regression
- Non-linearities and GAMs
- Heteroscedasticity and Clustering
- Causal Inference
- Frameworks: potential outcomes and DAGs
- Measured Confounding
- Unmeasured Confounding
- Methods for repeated data
- And you learned how to use R: you're not afraid of trying something new!

Using these Tools

Using these Tools

So, Admiral Ackbar, now that you've learned how to run these regressions we can just use them blindly, right?

Beyond Linear Regressions

You need more training

Beyond Linear Regressions

Beyond Linear Regressions

There is so much more to learn! Take classes, read books!

Thanks!

Thanks so much for an amazing semester.

Fill out your evaluations!
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences

4 Fixed Effects
(5) Non-parametric Identification and Fixed Effects
(6) (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?
(1) Set Up
(2) Differencing Models
(3) Difference-in-Differences
a Fixed Effects
(5) Non-parametric Identification and Fixed Effects

P (Almost) Twenty Questions

- Review
- Topics Beyond the Course
- Research Practice
- Opinions and Musings
(7) Concluding Thoughts for the Course
(8) Appendix: Why Does Weighting Work?

Weighting with the Propensity Score

Intuition

- Treated and control samples are unrepresentative of the overall population.

Weighting with the Propensity Score

Intuition

- Treated and control samples are unrepresentative of the overall population.
- Leads to imbalance in the covariates.

Weighting with the Propensity Score

Intuition

- Treated and control samples are unrepresentative of the overall population.
- Leads to imbalance in the covariates.
- Reweight them to be more representative.

Survey samples

- Useful to review survey samples to understand the logic

Survey samples

- Useful to review survey samples to understand the logic
- Finite population: $\{1, \ldots, N\}$

Survey samples

- Useful to review survey samples to understand the logic
- Finite population: $\{1, \ldots, N\}$
- Suppose that we wanted estimate the population mean of Y_{i} :

$$
\bar{Y}_{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

Survey samples

- Useful to review survey samples to understand the logic
- Finite population: $\{1, \ldots, N\}$
- Suppose that we wanted estimate the population mean of Y_{i} :

$$
\bar{Y}_{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

- We have a sample of size n, where $Z_{i}=1$ indicates that i is included in the sample.

Survey samples

- Useful to review survey samples to understand the logic
- Finite population: $\{1, \ldots, N\}$
- Suppose that we wanted estimate the population mean of Y_{i} :

$$
\bar{Y}_{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

- We have a sample of size n, where $Z_{i}=1$ indicates that i is included in the sample.
- Unequal sampling probability: $\mathbb{P}\left(Z_{i}=1\right)=\pi_{i}$

Survey samples

- Useful to review survey samples to understand the logic
- Finite population: $\{1, \ldots, N\}$
- Suppose that we wanted estimate the population mean of Y_{i} :

$$
\bar{Y}_{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

- We have a sample of size n, where $Z_{i}=1$ indicates that i is included in the sample.
- Unequal sampling probability: $\mathbb{P}\left(Z_{i}=1\right)=\pi_{i}$
- \rightsquigarrow sample is not representative.

Survey samples

- Useful to review survey samples to understand the logic
- Finite population: $\{1, \ldots, N\}$
- Suppose that we wanted estimate the population mean of Y_{i} :

$$
\bar{Y}_{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

- We have a sample of size n, where $Z_{i}=1$ indicates that i is included in the sample.
- Unequal sampling probability: $\mathbb{P}\left(Z_{i}=1\right)=\pi_{i}$
- \rightsquigarrow sample is not representative.
- $\sum_{i=1}^{N} \pi_{i}=n$

Survey weights

- Sample mean is biased:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} Y_{i}\right]=\frac{1}{n} \sum_{i=1} \pi_{i} Y_{i}
$$

Survey weights

- Sample mean is biased:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} Y_{i}\right]=\frac{1}{n} \sum_{i=1} \pi_{i} Y_{i}
$$

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: Y_{i} / π_{i}.

Survey weights

- Sample mean is biased:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} Y_{i}\right]=\frac{1}{n} \sum_{i=1} \pi_{i} Y_{i}
$$

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: Y_{i} / π_{i}.
- Horvitz-Thompson estimator is unbiased:

Survey weights

- Sample mean is biased:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} Y_{i}\right]=\frac{1}{n} \sum_{i=1} \pi_{i} Y_{i}
$$

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: Y_{i} / π_{i}.
- Horvitz-Thompson estimator is unbiased:

$$
\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \frac{Z_{i} Y_{i}}{\pi_{i}}\right]
$$

Survey weights

- Sample mean is biased:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} Y_{i}\right]=\frac{1}{n} \sum_{i=1} \pi_{i} Y_{i}
$$

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: Y_{i} / π_{i}.
- Horvitz-Thompson estimator is unbiased:

$$
\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \frac{Z_{i} Y_{i}}{\pi_{i}}\right]=\frac{1}{N} \sum_{i=1}^{N} \frac{\mathbb{E}\left[Z_{i}\right] Y_{i}}{\pi_{i}}
$$

Survey weights

- Sample mean is biased:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} Y_{i}\right]=\frac{1}{n} \sum_{i=1} \pi_{i} Y_{i}
$$

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: Y_{i} / π_{i}.
- Horvitz-Thompson estimator is unbiased:

$$
\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \frac{Z_{i} Y_{i}}{\pi_{i}}\right]=\frac{1}{N} \sum_{i=1}^{N} \frac{\mathbb{E}\left[Z_{i}\right] Y_{i}}{\pi_{i}}=\frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{i} Y_{i}}{\pi_{i}}
$$

Survey weights

- Sample mean is biased:

$$
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{N} Z_{i} Y_{i}\right]=\frac{1}{n} \sum_{i=1} \pi_{i} Y_{i}
$$

- Inverse probability weighting: To correct, weight each unit by the reciprocal of the probability of being included in the sample: Y_{i} / π_{i}.
- Horvitz-Thompson estimator is unbiased:

$$
\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \frac{Z_{i} Y_{i}}{\pi_{i}}\right]=\frac{1}{N} \sum_{i=1}^{N} \frac{\mathbb{E}\left[Z_{i}\right] Y_{i}}{\pi_{i}}=\frac{1}{N} \sum_{i=1}^{N} \frac{\pi_{i} Y_{i}}{\pi_{i}}=\bar{Y}_{N}
$$

- Reweights the sample to be representative of the population.

Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\mathbb{E}\left[Y_{i}(1)\right]-\mathbb{E}\left[Y_{i}(0)\right]
$$

Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\mathbb{E}\left[Y_{i}(1)\right]-\mathbb{E}\left[Y_{i}(0)\right]
$$

- With no unmeasured confounders, we need to adjust for X_{i}.

Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\mathbb{E}\left[Y_{i}(1)\right]-\mathbb{E}\left[Y_{i}(0)\right]
$$

- With no unmeasured confounders, we need to adjust for X_{i}.

$$
\mathbb{E}\left[Y_{i}(d)\right]=\mathbb{E}\left[\mathbb{E}\left[Y_{i}(d) \mid X_{i}\right]\right]
$$

Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\mathbb{E}\left[Y_{i}(1)\right]-\mathbb{E}\left[Y_{i}(0)\right]
$$

- With no unmeasured confounders, we need to adjust for X_{i}.

$$
\begin{aligned}
\mathbb{E}\left[Y_{i}(d)\right] & =\mathbb{E}\left[\mathbb{E}\left[Y_{i}(d) \mid X_{i}\right]\right] \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i}(d) \mid X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
\end{aligned}
$$

Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\mathbb{E}\left[Y_{i}(1)\right]-\mathbb{E}\left[Y_{i}(0)\right]
$$

- With no unmeasured confounders, we need to adjust for X_{i}.

$$
\begin{aligned}
\mathbb{E}\left[Y_{i}(d)\right] & =\mathbb{E}\left[\mathbb{E}\left[Y_{i}(d) \mid X_{i}\right]\right] \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i}(d) \mid X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i}(d) \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
\end{aligned}
$$

Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\mathbb{E}\left[Y_{i}(1)\right]-\mathbb{E}\left[Y_{i}(0)\right]
$$

- With no unmeasured confounders, we need to adjust for X_{i}.

$$
\begin{aligned}
\mathbb{E}\left[Y_{i}(d)\right] & =\mathbb{E}\left[\mathbb{E}\left[Y_{i}(d) \mid X_{i}\right]\right] \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i}(d) \mid X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i}(d) \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
\end{aligned}
$$

Back to causal effects

- With a completely randomized experiment, we can just use the simple differences in means:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\mathbb{E}\left[Y_{i}(1)\right]-\mathbb{E}\left[Y_{i}(0)\right]
$$

- With no unmeasured confounders, we need to adjust for X_{i}.

$$
\begin{aligned}
\mathbb{E}\left[Y_{i}(d)\right] & =\mathbb{E}\left[\mathbb{E}\left[Y_{i}(d) \mid X_{i}\right]\right] \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i}(d) \mid X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i}(d) \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
\end{aligned}
$$

- With subclassification, we binned X_{i}, calclulated within-bin differences and then averaged across the bins, just like this.

Searching for the weights

$$
\mathbb{E}\left[Y_{i}(d)\right]=\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
$$

- Compare this to the the within treatment group average:

$$
\mathbb{E}\left[Y_{i} \mid D_{i}=d\right]=\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x \mid D_{i}=d\right)
$$

Searching for the weights

$$
\mathbb{E}\left[Y_{i}(d)\right]=\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
$$

- Compare this to the the within treatment group average:

$$
\begin{aligned}
\mathbb{E}\left[Y_{i} \mid D_{i}=d\right] & =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x \mid D_{i}=d\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \frac{\mathbb{P}\left(D_{i}=d \mid X_{i}=x\right) \mathbb{P}\left(X_{i}=x\right)}{\mathbb{P}\left(D_{i}=d\right)}
\end{aligned}
$$

Searching for the weights

$$
\mathbb{E}\left[Y_{i}(d)\right]=\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
$$

- Compare this to the the within treatment group average:

$$
\begin{aligned}
\mathbb{E}\left[Y_{i} \mid D_{i}=d\right] & =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x \mid D_{i}=d\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \frac{\mathbb{P}\left(D_{i}=d \mid X_{i}=x\right) \mathbb{P}\left(X_{i}=x\right)}{\mathbb{P}\left(D_{i}=d\right)}
\end{aligned}
$$

- How should we reweight the data from an observational study?

Searching for the weights

$$
\mathbb{E}\left[Y_{i}(d)\right]=\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x\right)
$$

- Compare this to the the within treatment group average:

$$
\begin{aligned}
\mathbb{E}\left[Y_{i} \mid D_{i}=d\right] & =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \mathbb{P}\left(X_{i}=x \mid D_{i}=d\right) \\
& =\sum_{x \in \mathcal{X}} \mathbb{E}\left[Y_{i} \mid D_{i}=d, X_{i}=x\right] \frac{\mathbb{P}\left(D_{i}=d \mid X_{i}=x\right) \mathbb{P}\left(X_{i}=x\right)}{\mathbb{P}\left(D_{i}=d\right)}
\end{aligned}
$$

- How should we reweight the data from an observational study?
- If we were to reweight the data by $W_{i}=1 / \mathbb{P}\left(D_{i}=d \mid X_{i}\right)$, then we would break the relationship between D_{i} and X_{i}.

Weights

- Single binary covariate. Define the weight function:

$$
w(d, x)=\frac{1}{e(x)^{d}(1-e(x))^{1-d}}
$$

Weights

- Single binary covariate. Define the weight function:

$$
w(d, x)=\frac{1}{e(x)^{d}(1-e(x))^{1-d}}
$$

- To get the weight for i, plug in observed treatment, covariate: $W_{i}=w\left(D_{i}, X_{i}\right)$

Weights

- Single binary covariate. Define the weight function:

$$
w(d, x)=\frac{1}{e(x)^{d}(1-e(x))^{1-d}}
$$

- To get the weight for i, plug in observed treatment, covariate: $W_{i}=w\left(D_{i}, X_{i}\right)$
- If $\left(D_{i}, X_{i}\right)=(1,1)$,

$$
W_{i}=\frac{1}{e(1)}=\frac{1}{\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)}
$$

Weights

- Single binary covariate. Define the weight function:

$$
w(d, x)=\frac{1}{e(x)^{d}(1-e(x))^{1-d}}
$$

- To get the weight for i, plug in observed treatment, covariate: $W_{i}=w\left(D_{i}, X_{i}\right)$
- If $\left(D_{i}, X_{i}\right)=(1,1)$,

$$
W_{i}=\frac{1}{e(1)}=\frac{1}{\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)}
$$

- If $\left(D_{i}, X_{i}\right)=(0,0)$:

$$
W_{i}=\frac{1}{1-e(0)}=\frac{1}{\mathbb{P}\left(D_{i}=0 \mid X_{i}=0\right)}
$$

Example

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 4 & 3 \\
D_{i}=1 & 4 & 9
\end{array}
$$

- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=0\right)=0.5$

Example

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 4 & 3 \\
D_{i}=1 & 4 & 9
\end{array}
$$

- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=0\right)=0.5$
- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)=0.75$

Example

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 4 & 3 \\
D_{i}=1 & 4 & 9
\end{array}
$$

- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=0\right)=0.5$
- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)=0.75$
- Weights:

Example

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 4 & 3 \\
D_{i}=1 & 4 & 9
\end{array}
$$

- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=0\right)=0.5$
- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)=0.75$
- Weights:

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 1 / 0.5 & 1 / 0.25 \\
D_{i}=1 & 1 / 0.5 & 1 / 0.75
\end{array}
$$

Example

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 4 & 3 \\
D_{i}=1 & 4 & 9
\end{array}
$$

- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=0\right)=0.5$
- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)=0.75$
- Weights:

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 2 & 4 \\
D_{i}=1 & 2 & 4 / 3
\end{array}
$$

Example

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 4 & 3 \\
D_{i}=1 & 4 & 9
\end{array}
$$

- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=0\right)=0.5$
- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)=0.75$
- Weights:

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 2 & 4 \\
D_{i}=1 & 2 & 4 / 3
\end{array}
$$

- Weighted data (the pseudo-population):

	$X_{i}=0$	$X_{i}=1$
$D_{i}=0$	8	12
$D_{i}=1$	8	12

Example

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 4 & 3 \\
D_{i}=1 & 4 & 9
\end{array}
$$

- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=0\right)=0.5$
- $\mathbb{P}\left(D_{i}=1 \mid X_{i}=1\right)=0.75$
- Weights:

$$
\begin{array}{c|cc}
& X_{i}=0 & X_{i}=1 \\
\hline D_{i}=0 & 2 & 4 \\
D_{i}=1 & 2 & 4 / 3
\end{array}
$$

- Weighted data (the pseudo-population):

	$X_{i}=0$	$X_{i}=1$
$D_{i}=0$	8	12
$D_{i}=1$	8	12

- $\mathbb{P}_{W}\left(D_{i}=1 \mid X_{i}=x\right)=0.5$ for all x

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

$$
\mathbb{P}_{W}\left[D_{i}=1 \mid X_{i}=x\right]
$$

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

$$
\begin{aligned}
& \mathbb{P}_{W}\left[D_{i}=1 \mid X_{i}=x\right] \\
& =\frac{w(1, x) \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}}
\end{aligned}
$$

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

$$
\begin{aligned}
& \mathbb{P}_{W}\left[D_{i}=1 \mid X_{i}=x\right] \\
& =\frac{w(1, x) \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{\frac{1}{\bar{P}\left[D_{i}=1 \mid X_{i}=x\right]} \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}}
\end{aligned}
$$

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

$$
\begin{aligned}
& \mathbb{P}_{W}\left[D_{i}=1 \mid X_{i}=x\right] \\
& =\frac{w(1, x) \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{\frac{1}{\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]} \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{1}{\omega^{*}} .
\end{aligned}
$$

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

$$
\begin{aligned}
& \mathbb{P}_{W}\left[D_{i}=1 \mid X_{i}=x\right] \\
& =\frac{w(1, x) \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{\frac{1}{\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]} \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{1}{\omega^{*}} .
\end{aligned}
$$

- ω^{*} is a normalization factor to make sure probabilities sum to 1 .

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

$$
\begin{aligned}
& \mathbb{P}_{W}\left[D_{i}=1 \mid X_{i}=x\right] \\
& =\frac{w(1, x) \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{\frac{1}{\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]} \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{1}{\omega^{*}} .
\end{aligned}
$$

- ω^{*} is a normalization factor to make sure probabilities sum to 1 .
- Important point: $\mathbb{P}_{W}\left(D_{i}=1 \mid X_{i}=1\right)=\mathbb{P}_{W}\left(D_{i}=1 \mid X_{i}=0\right)=\frac{1}{\omega^{*}}$

Properties of reweighted data

- Let's calculate the weighted probability that $D_{i}=1$.

$$
\begin{aligned}
& \mathbb{P}_{W}\left[D_{i}=1 \mid X_{i}=x\right] \\
& =\frac{w(1, x) \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{\frac{1}{\mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]} \cdot \mathbb{P}\left[D_{i}=1 \mid X_{i}=x\right]}{\omega^{*}} \\
& =\frac{1}{\omega^{*}} .
\end{aligned}
$$

- ω^{*} is a normalization factor to make sure probabilities sum to 1 .
- Important point: $\mathbb{P}_{W}\left(D_{i}=1 \mid X_{i}=1\right)=\mathbb{P}_{W}\left(D_{i}=1 \mid X_{i}=0\right)=\frac{1}{\omega^{*}}$
- $\rightsquigarrow D_{i}$ independent of X_{i} in the reweighted data.

Overall mean

- What is the weighted mean for the treated group?

Overall mean

- What is the weighted mean for the treated group?
- Use a similar approach to survey weights, where D_{i} is the "sampling indicator":

$$
\bar{Y}_{i}^{w}=\frac{1}{N} \sum_{i=1}^{N} D_{i} W_{i} Y_{i}
$$

Overall mean

- What is the weighted mean for the treated group?
- Use a similar approach to survey weights, where D_{i} is the "sampling indicator":

$$
\bar{Y}_{i}^{w}=\frac{1}{N} \sum_{i=1}^{N} D_{i} W_{i} Y_{i}
$$

- $W_{i} Y_{i}$ is the weighted outcome, D_{i} is there to select out the treated observations.

Overall mean

- What is the weighted mean for the treated group?
- Use a similar approach to survey weights, where D_{i} is the "sampling indicator":

$$
\bar{Y}_{i}^{w}=\frac{1}{N} \sum_{i=1}^{N} D_{i} W_{i} Y_{i}
$$

- $W_{i} Y_{i}$ is the weighted outcome, D_{i} is there to select out the treated observations.
- We want to see what the conditional weighted mean identifies:

$$
\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} W_{i} D_{i} Y_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[W_{i} D_{i} Y_{i}\right]=\mathbb{E}\left[W_{i} D_{i} Y_{i}\right]
$$

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

$$
\mathbb{E}\left[W_{i} D_{i} Y_{i}\right]=\mathbb{E}\left[\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}\right]
$$

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

$$
\begin{aligned}
\mathbb{E}\left[W_{i} D_{i} Y_{i}\right] & =\mathbb{E}\left[\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)}\right]
\end{aligned}
$$

(Weight Def.)
(Consistency)

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

$$
\begin{aligned}
\mathbb{E}\left[W_{i} D_{i} Y_{i}\right] & =\mathbb{E}\left[\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)}\right] \\
& =E\left[E\left[\left.\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)} \right\rvert\, X_{i}\right]\right]
\end{aligned}
$$

(Weight Def.)
(Consistency)
(Iterated Expectations)

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

$$
\begin{align*}
\mathbb{E}\left[W_{i} D_{i} Y_{i}\right] & =\mathbb{E}\left[\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)}\right] \\
& =E\left[E\left[\left.\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)} \right\rvert\, X_{i}\right]\right] \\
& =E\left[\frac{E\left[D_{i} \mid X_{i}\right] E\left[Y_{i}(1) \mid X_{i}\right]}{e\left(X_{i}\right)}\right] \tag{n.u.c.}
\end{align*}
$$

(Weight Def.)
(Consistency)
(Iterated Expectations)

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

$$
\begin{aligned}
\mathbb{E}\left[W_{i} D_{i} Y_{i}\right] & =\mathbb{E}\left[\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)}\right] \\
& =E\left[E\left[\left.\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)} \right\rvert\, X_{i}\right]\right] \\
& =E\left[\frac{E\left[D_{i} \mid X_{i}\right] E\left[Y_{i}(1) \mid X_{i}\right]}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{e\left(X_{i}\right) E\left[Y_{i}(1) \mid X_{i}\right]}{e\left(X_{i}\right)}\right]
\end{aligned}
$$

(Weight Def.)
(Consistency)
(Iterated Expectations)
(Propensity Score Definition)

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

$$
\begin{aligned}
\mathbb{E}\left[W_{i} D_{i} Y_{i}\right] & =\mathbb{E}\left[\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)}\right] \\
& =E\left[E\left[\left.\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)} \right\rvert\, X_{i}\right]\right] \\
& =E\left[\frac{E\left[D_{i} \mid X_{i}\right] E\left[Y_{i}(1) \mid X_{i}\right]}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{e\left(X_{i}\right) E\left[Y_{i}(1) \mid X_{i}\right]}{e\left(X_{i}\right)}\right] \\
& =E\left[Y_{i}(1)\right]
\end{aligned}
$$

(Weight Def.)
(Consistency)
(Iterated Expectations)
(Propensity Score Definition)
(Iterated Expectations)

Proving unbiasedness

- Weighted mean of treated units is mean of potential outcome:

$$
\begin{aligned}
\mathbb{E}\left[W_{i} D_{i} Y_{i}\right] & =\mathbb{E}\left[\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)}\right] \\
& =E\left[E\left[\left.\frac{D_{i} Y_{i}(1)}{e\left(X_{i}\right)} \right\rvert\, X_{i}\right]\right] \\
& =E\left[\frac{E\left[D_{i} \mid X_{i}\right] E\left[Y_{i}(1) \mid X_{i}\right]}{e\left(X_{i}\right)}\right] \\
& =E\left[\frac{e\left(X_{i}\right) E\left[Y_{i}(1) \mid X_{i}\right]}{e\left(X_{i}\right)}\right] \\
& =E\left[Y_{i}(1)\right]
\end{aligned}
$$

(Weight Def.)
(Consistency)
(Iterated Expectations)
(Propensity Score Definition)
(Iterated Expectations)

Putting it all together

- The same logic would give us the mean potential outcomes under control:

$$
E\left[\frac{\left(1-D_{i}\right) Y_{i}}{1-e\left(X_{i}\right)}\right]=E\left[Y_{i}(0)\right]
$$

Putting it all together

- The same logic would give us the mean potential outcomes under control:

$$
E\left[\frac{\left(1-D_{i}\right) Y_{i}}{1-e\left(X_{i}\right)}\right]=E\left[Y_{i}(0)\right]
$$

- These two facts provide an estimator for the average treatment effect:

$$
\hat{\tau}=\frac{1}{N} \sum_{i=1}^{N}\left(\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}-\frac{\left(1-D_{i}\right) Y_{i}}{1-e\left(X_{i}\right)}\right)
$$

Putting it all together

- The same logic would give us the mean potential outcomes under control:

$$
E\left[\frac{\left(1-D_{i}\right) Y_{i}}{1-e\left(X_{i}\right)}\right]=E\left[Y_{i}(0)\right]
$$

- These two facts provide an estimator for the average treatment effect:

$$
\hat{\tau}=\frac{1}{N} \sum_{i=1}^{N}\left(\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}-\frac{\left(1-D_{i}\right) Y_{i}}{1-e\left(X_{i}\right)}\right)
$$

- The above two results give us that this esimator is unbiased.

Putting it all together

- The same logic would give us the mean potential outcomes under control:

$$
E\left[\frac{\left(1-D_{i}\right) Y_{i}}{1-e\left(X_{i}\right)}\right]=E\left[Y_{i}(0)\right]
$$

- These two facts provide an estimator for the average treatment effect:

$$
\hat{\tau}=\frac{1}{N} \sum_{i=1}^{N}\left(\frac{D_{i} Y_{i}}{e\left(X_{i}\right)}-\frac{\left(1-D_{i}\right) Y_{i}}{1-e\left(X_{i}\right)}\right)
$$

- The above two results give us that this esimator is unbiased.
- This is sometimes called the Horvitz-Thompson estimator due to the close connection to the survey sampling estimator.

[^0]: ${ }^{1}$ These slides are heavily influenced by Matt Blackwell, Adam Glynn, Jens Hainmueller and Erin Hartman.

