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Where We’ve Been and Where We’re Going...

Last Week
I causal inference with unmeasured confounding

This Week
I Monday:

F panel data
F diff-in-diff
F fixed effects

I Wednesday:
F spillover of material
F Q&A
F wrap-up

The Following Week
I break!

Long Run
I probability → inference → regression → causality

Questions?
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Motivation

Relationship between democracy and infant mortality?

Compare levels of democracy with levels of infant mortality, but. . .

Democratic countries are different from non-democracies in ways that
we can’t measure?

I they are richer or developed earlier
I provide benefits more efficiently
I possess some cultural trait correlated with better health outcomes

If we have data on countries over time, can we make any progress in
spite of these problems?
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Ross Data

## cty_name year democracy infmort_unicef

## 1 Afghanistan 1965 0 230

## 2 Afghanistan 1966 0 NA

## 3 Afghanistan 1967 0 NA

## 4 Afghanistan 1968 0 NA

## 5 Afghanistan 1969 0 NA

## 6 Afghanistan 1970 0 215
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Notation for Panel Data

Units, i = 1, . . . , n

Time, t = 1, . . . ,T

Slightly different focus than clustered data we covered earlier
I Panel: we have repeated measurements of the same units
I Clustering: units are clustered within some grouping.
I The main difference is what level of analysis we care about (individual,

city, county, state, country, etc).

Time is a typical application, but applies to other groupings:

I counties within states
I states within countries
I people within professions
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Nomenclature

Names are used in different ways across fields but generally:

Panel data: large n, relatively short T

Time series, cross-sectional (TSCS) data: smaller n, large T

We are primarily going to focus on similarities today but there are
some differences.
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A Baseline Linear Model

yit = x′itβ + ai + uit

xit is a vector of (possibly time-varying) covariates

ai is an unobserved time-constant unit effect (“fixed effect”)

uit are the unobserved time-varying “idiosyncratic” errors

vit = ai + uit is the combined unobserved error:

yit = x′itβ + vit

Covers the case of separable, linear unmeasured confounding.

We will start by considering performance of estimators assuming this
model is true.
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Naive Strategy: Pooled OLS

Pooled OLS: pool all observations into one regression

Treats all unit-periods (each it) as an iid unit.

Has two problems:

1 Heteroskedasticity (see clustering from diagnostics week)
2 Possible violation of zero conditional mean errors

Both problems arise out of ignoring the unmeasured heterogeneity
inherent in ai
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Pooled OLS with Ross data

pooled.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur),

data = ross)

summary(pooled.mod)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.76405 0.34491 28.31 <2e-16 ***

## democracy -0.95525 0.06978 -13.69 <2e-16 ***

## log(GDPcur) -0.22828 0.01548 -14.75 <2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 0.7948 on 646 degrees of freedom

## (5773 observations deleted due to missingness)

## Multiple R-squared: 0.5044, Adjusted R-squared: 0.5029

## F-statistic: 328.7 on 2 and 646 DF, p-value: < 2.2e-16
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Unmeasured Heterogeneity

Assume that zero conditional mean error holds for the idiosyncratic
error:

E[uit |X] = 0

But time-constant effect, ai , is correlated with the X:

E[ai |X] 6= 0

Example: democratic institutions correlated with time-invariant
unmeasured aspects of health outcomes, like quality of health system
or a lack of ethnic conflict.

Ignore the heterogeneity  correlation between the combined error
and the independent variables:

E[vit |X] = E[ai + uit |X] 6= 0

Pooled OLS will be biased and inconsistent because zero conditional
mean error fails for the combined error.
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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First Differencing

First approach: compare changes over time as opposed to levels

Intuitively, the levels include the unobserved heterogeneity, but
changes over time should be free of time-invariant heterogeneity

Two time periods:
yi1 = x′i1β + ai + ui1

yi2 = x′i2β + ai + ui2

Look at the change in y over time:

∆yi = yi2 − yi1

= (x′i2β + ai + ui2)− (x′i1β + ai + ui1)

= (x′i2 − x′i1)β + (ai − ai ) + (ui2 − ui1)

= ∆x′iβ + ∆ui
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First Differences Model

∆yi = ∆x′iβ + ∆ui

Coefficient on the levels xit is the same as the coefficient on the
changes ∆xi !

fixed effect/unobserved heterogeneity, ai drops out
(relies on unobserved component being constant over time!)

If E[uit |X] = 0, then, E[∆ui |∆X ] = 0 and zero conditional mean
error holds.

Due to ‘no perfect collinearity’: xit has to change over time for some
units. High variance if its slow moving.

Differencing will reduce the variation in the independent variables and
thus increase standard errors.
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First Differences in R (via plm package)
library(plm)

fd.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross,

index = c("id", "year"), model = "fd")

summary(fd.mod)

## Oneway (individual) effect First-Difference Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = "fd", index = c("id", "year"))

##

## Unbalanced Panel: n=166, T=1-7, N=649

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.9060 -0.0956 0.0468 0.1410 0.3950

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## (intercept) -0.149469 0.011275 -13.2567 < 2e-16 ***

## democracy -0.044887 0.024206 -1.8544 0.06429 .

## log(GDPcur) -0.171796 0.013756 -12.4886 < 2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 23.545

## Residual Sum of Squares: 17.762

## R-Squared : 0.24561

## Adj. R-Squared : 0.24408

## F-statistic: 78.1367 on 2 and 480 DF, p-value: < 2.22e-16
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Motivation: Studying the Minimum Wage

Economics conventional wisdom: higher minimum wages decrease
low-wage jobs.
Card and Krueger (1994) study a 1992 New Jersey minimum wage
increase ($4.25 to $5.05).
Idea: compare employment rates in 410 fast-food restauarants in New
Jersey and eastern Pennsylvania (where there wasn’t a wage increase)
both before and after the change.
Based on survey data:

I Wave 1: March 1992, one month before the minimum wage increased
I Wave 2: December 1992, eight months after increase
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Difference-in-Differences

Often called “diff-in-diff” (DiD), it is a special kind of FD model

Let xit be an indicator of a unit being “treated” at time t.

Focus on two-periods where:

I xi1 = 0 for all i
I xi2 = 1 for the “treated group”

Assume the model:

yit = β0 + δ0dt + β1xit + ai + uit

dt is a dummy variable for the second time period

I d2 = 1 and d1 = 0

β1 is the quantity of interest: it’s the effect of being treated
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Diff-in-Diff Mechanics

Let’s take differences:

(yi2 − yi1) = δ0(1− 0) + β1(xi2 − xi1) + (ai − ai ) + (ui2 − ui1)

(yi2 − yi1) = δ0 + β1(xi2 − xi1) + (ui2 − ui1)

This represents
I δ0: the difference in the average outcome from period 1 to period 2 in

the untreated group
I (xi2 − xi1) = 1 for the treated group and 0 for the control group
I β1 represents the additional change in y over time (on top of δ0)

associated with being in the treatment group.
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Graphical Representation: Difference-in-Differences

Define D = 1 when xi2 − xi1 = 1 and 0 otherwise
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Identification with Difference-in-Differences

Identification Assumption (parallel trends)

E [Y0(1)− Y0(0)|D = 1] = E [Y0(1)− Y0(0)|D = 0]

Identification Result

Given parallel trends the ATT is identified as:

E [Y1(1)− Y0(1)|D = 1] =
{
E [Y (1)|D = 1]− E [Y (1)|D = 0]

}
−

{
E [Y (0)|D = 1]− E [Y (0)|D = 0]

}
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Identification with Difference-in-Differences

Identification Assumption (parallel trends)

E [Y0(1)− Y0(0)|D = 1] = E [Y0(1)− Y0(0)|D = 0]

Proof.
Note that the identification assumption implies
E [Y0(1)|D = 0] = E [Y0(1)|D = 1]− E [Y0(0)|D = 1] + E [Y0(0)|D = 0]
plugging in we get

{E [Y (1)|D = 1]− E [Y (1)|D = 0]} − {E [Y (0)|D = 1]− E [Y (0)|D = 0]}
= {E [Y1(1)|D = 1]− E [Y0(1)|D = 0]} − {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
= {E [Y1(1)|D = 1]− (E [Y0(1)|D = 1]− E [Y0(0)|D = 1] + E [Y0(0)|D = 0])}
− {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
= E [Y1(1)− Y0(1)|D = 1] + {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
− {E [Y0(0)|D = 1]− E [Y0(0)|D = 0]}
= E [Y1(1)− Y0(1)|D = 1]
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Difference-in-Differences Interpretation

Key idea: comparing the changes over time in the control group to
the changes over time in the treated group.

The differences between these differences is our estimate of the causal
effect:

β1 = ∆y treated −∆y control

Why more credible than simply looking at the treatment/control
differences in period 2?

I Unmeasured reasons why the treated group has higher or lower
outcomes than the control group

I  bias due to violation of zero conditional mean error
I DiD estimates the bias using period 1 and corrects for it.

DiD works for additive and time-invariant confounding (i.e. satisfies
parallel trends)
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Example: Lyall (2009)

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 23 / 119



Example: Lyall (2009)

Does Russian shelling of villages cause insurgent attacks?

attacksit = β0 + β1shellingit + ai + uit

We might think that artillery shelling by Russians is targeted to places
where the insurgency is the strongest

That is, part of the village fixed effect, ai might be correlated with
whether or not shelling occurs, xit

This would cause our pooled estimates to be biased

Instead Lyall takes a diff-in-diff approach: compare attacks over time
for shelled and non-shelled villages:

∆attacksi = β0 + β1∆shellingi + ∆ui

Counterintuitive findings: shelled villages experience a 24% reduction
in insurgent attacks relative to controls.
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Example: Card and Krueger (2000)

Do increases to the minimum wage depress employment at fast-food
restaurants?

employmentit = β0 + β1minimum wageit + ai + uit

Each i here is a different fast food restaurant in either New Jersey or
Pennsylvania

Between t = 1 and t = 2 NJ raised its minimum wage

Employment in fast food might be driven by other state-level policies
correlated with minimum wage

Diff-in-diff approach: regress changes in employment on store being in
NJ

∆employmenti = β0 + β1NJi + ∆ui

NJi indicates which stores received the treatment of a higher
minimum wage at time period t = 2
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Longer Trends in Employment (Card and Krueger 2000)

First two vertical lines indicate the dates of the Card-Krueger survey. October 1996 line is the
federal minimum wage hike which was binding in PA but not NJ
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Threats to Identification

1) Failure of Exogeneity
Treatment needs to be independent of the idiosyncratic shocks:

E[(ui2 − ui1)|xi2] = 0

2) Non-parallel dynamics
variation in the outcome over time is the same for the treated and control
groups (i.e. no omitted time-varying confounders). e.g. Ashenfelter’s dip:
people who enroll in job training programs see their earnings decline prior to
that training (presumably why they are entering)

3) Changes in Composition of Treatment/Control Groups
we don’t want composition of sample to change between periods. what if
workers move from eastern PA to NJ in search of higher paying jobs?

4) Long-term vs. Short-term Effects
parallel trends are less credible over a long time horizon, but many policies
need time to take effect.
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Threats to Identification

5) Functional Form Dependence
difference in levels and difference in logs can be quite different (example via
Justin Grimmer)

I imagine a training program for the young
I employment for the young increases from 20% to 30%
I employment for the old increases from 5% to 10%
I positive DiD effect: (30− 20)− (10− 5) = 5%
I but if you consider log changes:

[log(30)− log(20)]− [log(10)− log(5)] = log(1.5)− log(2) < 0
I how do we tell which (if either) yields parallel trends?

6) Endogenous Control Variables
can add (time-varying) covariates to help with some of above concerns  
“regression diff-in-diff”

yi2 − yi1 = δ0 + z′iτ + β(xi2 − xi1) + (ui2 − ui1)

but need to be careful that they aren’t affected by the treatment.
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Concluding Thoughts on Panel Differencing Models

Useful toolkit for leveraging panel data, often quite straightforward to
explain to people

Be cautious of assumptions required
I parallel trends assumptions are most likely to hold over a shorter

time-window. Impossible to test.
I can conduct placebo tests which can build confidence, but hard to

provide definitive evidence.
I some approaches use placebos to correct bias (DDD), but this is just a

difference assumption.

Two questions to ask:
1 ‘what is the counterfactual?’ or
2 ‘what variation is used to identify this effect?’

Personal Gripe: ‘Two-way Fixed Effects’ models often called a DiD or
Generalized-DiD design but the parallel trend assumptions are
different in important ways.
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Basic Model Review

yit = x′itβ + ai + uit

Recall our standard linear model with unobserved time-invariant
confounding

We discussed a differencing approach to this model

The Fixed effects model is an alternative way to remove
time-invariant unmeasured confounding

We will start by assuming the model and discussing properties and in
the next section, we will consider non-parametric identification.
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Fixed Effects Models

Core idea is to focus on within-unit comparisons: changes in yit and
xit relative to their within-group means

First note that taking the average of the y ’s over time for a given unit
leaves us with a very similar model:

y i =
1

T

T∑
t=1

[
x′itβ + ai + uit

]
=

(
1

T

T∑
t=1

x′it

)
β +

1

T

T∑
t=1

ai +
1

T

T∑
t=1

uit

= x′iβ + ai + ui

Key fact: because it is time-constant the mean of ai is just ai

This regression is sometimes called the “between regression”
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Within Transformation

The “fixed effects,” “within,” or “time-demeaning” transformation is
when we subtract off the over-time means from the original data:

(yit − y i ) = (x′it − x′i )β + (uit − ui )

If we write ÿit = yit − y i , then we can write this more compactly as:

ÿit = ẍ′itβ + üit

Degrees of freedom: nT − n − k − 1, which accounts for within
transformation (i.e. either use a package like plm or adjust the
degrees of freedom manually).

We are now modeling observations as deviation from their group
mean.

NB: you must demean the X variables not just the Y variables.
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ÿit = ẍ′itβ + üit
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Fixed Effects with Ross data

fe.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur), data = ross, index = c("id", "year"),

model = "within")

summary(fe.mod)

## Oneway (individual) effect Within Model

##

## Call:

## plm(formula = log(kidmort_unicef) ~ democracy + log(GDPcur),

## data = ross, model = "within", index = c("id", "year"))

##

## Unbalanced Panel: n=166, T=1-7, N=649

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -0.70500 -0.11700 0.00628 0.12200 0.75700

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## democracy -0.143233 0.033500 -4.2756 2.299e-05 ***

## log(GDPcur) -0.375203 0.011328 -33.1226 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Total Sum of Squares: 81.711

## Residual Sum of Squares: 23.012

## R-Squared : 0.71838

## Adj. R-Squared : 0.53242

## F-statistic: 613.481 on 2 and 481 DF, p-value: < 2.22e-16
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Strict Exogeneity

FE models are valid if E[u|X] = 0: all errors are uncorrelated with
covariates in every period:

E[üit |Ẍ] = E[uit |Ẍ]− E[ui |Ẍ] = 0− 0 = 0

This is because the composite errors, üit are function of the errors in
every time period through the average, ui

This rules out, for instance, lagged dependent variables, since yi ,t−1

has to be correlated with ui ,t−1. Thus it can’t be a covariate for yit .
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Fixed Effects and Time-Invariant Covariates

What if there is a covariate that doesn’t vary over time?

Then xit = x i and ẍit = 0 for all periods t.

If the time-demeaned covariate is always 0, then it will be perfectly
collinear with the intercept and will violate full rank. R/Stata and the
like will drop it from the regression.

Basic message: any time-constant variable gets “absorbed” by the
fixed effect. It has nothing to contribute because the comparison is
within the units.

Can include interactions between time-constant and time-varying
variables, but lower order term of the time-constant variables get
absorbed by fixed effects too
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Time-constant variables

Pooled model with a time-constant variable, proportion Islamic:

library(lmtest)

p.mod <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,

data = ross, index = c("id", "year"), model = "pooling")

coeftest(p.mod)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.30607817 0.35951939 28.6663 < 2.2e-16 ***

## democracy -0.80233845 0.07766814 -10.3303 < 2.2e-16 ***

## log(GDPcur) -0.25497406 0.01607061 -15.8659 < 2.2e-16 ***

## islam 0.00343325 0.00091045 3.7709 0.0001794 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Time-constant variables

FE model, where the islam variable drops out, along with the
intercept:

fe.mod2 <- plm(log(kidmort_unicef) ~ democracy + log(GDPcur) + islam,

data = ross, index = c("id", "year"), model = "within")

coeftest(fe.mod2)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.129693 0.035865 -3.6162 0.0003332 ***

## log(GDPcur) -0.379997 0.011849 -32.0707 < 2.2e-16 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Alternate Computation: Least Squares Dummy Variable

As an alternative to the within transformation, we can also include a
series of n − 1 dummy variables for each unit:

yit = x′itβ + d
(1)
i α1 + d

(2)
i α2 + · · ·+ d

(n)
i αn + uit

Here, d
(1)
i is a binary variable which is 1 if i = 1 and 0

otherwise—just a unit dummy.

Gives the exact same estimates/standard errors as with
time-demeaning

I Advantage: easy to implement in base R (so is the de-meaning but you
have to recompute standard errors by changing the degrees of freedom
manually).

I Disadvantage: computationally difficult with large data sets, since we
have to run a regression with n + k variables.

Why are these equivalent? (remember partialing out strategy and
Frisch-Waugh-Lovell theorem)
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Example with Ross data

library(lmtest)

lsdv.mod <- lm(log(kidmort_unicef) ~ democracy + log(GDPcur) +

as.factor(id), data = ross)

coeftest(lsdv.mod)[1:6,]

coeftest(fe.mod)[1:2,]

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 13.7644887 0.26597312 51.751427 1.008329e-198

## democracy -0.1432331 0.03349977 -4.275644 2.299393e-05

## log(GDPcur) -0.3752030 0.01132772 -33.122568 3.494887e-126

## as.factor(id)AGO 0.2997206 0.16767730 1.787485 7.448861e-02

## as.factor(id)ALB -1.9309618 0.19013955 -10.155498 4.392512e-22

## as.factor(id)ARE -1.8762909 0.17020738 -11.023558 2.386557e-25

## Estimate Std. Error t value Pr(>|t|)

## democracy -0.1432331 0.03349977 -4.275644 2.299393e-05

## log(GDPcur) -0.3752030 0.01132772 -33.122568 3.494887e-126
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Fixed Effects Versus First Differences

Key assumptions:
I Strict exogeneity: E [uit |X, ai ] = 0
I Time-constant unmeasured heterogeneity, ai

Together =⇒ fixed effects and first differences are unbiased and
consistent

With T = 2 the estimators produce identical estimates, but not more
generally although they have the same target estimand.

So which one is better when T > 2? Which one is more efficient?
I if uit uncorrelated  FE is more efficient
I if uit = ui,t−1 + eit with eit iid (random walk)  FD is more efficient.

In between, not clear which is better (although if using FD, the errors
are serially correlated and need correction).

Large differences between FE and FD should make us worry about
assumptions.

Note that when the second dimension isn’t time, fixed effects will be
relevant more often.
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So which one is better when T > 2? Which one is more efficient?
I if uit uncorrelated  FE is more efficient
I if uit = ui,t−1 + eit with eit iid (random walk)  FD is more efficient.

In between, not clear which is better (although if using FD, the errors
are serially correlated and need correction).

Large differences between FE and FD should make us worry about
assumptions.

Note that when the second dimension isn’t time, fixed effects will be
relevant more often.
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Moving Beyond Linear Separable Confounding

One reason we like DAGs is that the identification results don’t have
to start with a statement like, assume the following linear model:

yit = x′itβ + ai + uit

What assumptions have we made so far?
I constant effects
I linearity
I strict exogeneity

We’ve seen the trouble with constant effects before, it goes back to
Lecture 10 and results on regression with heterogenous treatment
effects more generally.
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Contemporaneous, Cumulative and Dynamic Effects

Another assumption we have been making is that our interest is in a
single contemporaneous effect: x′itβ

What if we want to consider the history of a treatment or the effect
of a treatment regime (i.e. a treatment that varies over time)?

Opens up new estimands, but have to think about how time-varying
confounders affect treatment assignment.

Examples of static and dynamic causal inference problems:

negativity

action

incumbency

confounder

vote share
outcome

poll1

negativity1

poll2

negativity2 vote share
treatment history outcome

time-varying confounder
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Core Conundrum

There is a (possibly irresolvable) tension: modeling causal dynamics
between treatment and outcomes OR addressing unobserved
time-invariant confounders.

Three great recent papers:

We are going to focus on addressing unobserved time-invariant
confounders using the last paper.
Next several slides are based on slides graciously provided by In Song Kim and Kosuke Imai.
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Directed Acyclic Graph (DAG)
Non-parametric identification assumptions for fixed effects:

Yit = g(Xit ,Ui , εit) and εit ⊥⊥ {Xi ,Ui}

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Assumptions:

1 No unobserved
time-varying confounders

2 Past outcomes do not
directly affect current
outcome

3 Past outcomes do not
directly affect current
treatment

4 Past treatments do not
directly affect current
outcome
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the result implies that the counterfactual outcome
for a treated observation in a given time period is
estimated using the observed outcomes of different
time periods of the same unit. Since such a
comparison is valid only when no causal dynamics
exist, this finding underscores the important
limitation of linear regression models with unit
fixed effects.

- Imai and Kim (Forthcoming)
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What Ideal Experiment Corresponds to the Fixed Effects
Model?

Experiment that satisfies the model assumptions:

1 randomize Xi1 given Ui

2 randomize Xi2 given Xi1 and Ui

3 randomize Xi3 given Xi2, Xi1, and Ui

4 and so on

Experiment that does not satisfy the model assumptions:
1 randomize Xi1

2 randomize Xi2 given Xi1 and Yi1

3 randomize Xi3 given Xi2, Xi1, Yi1, and Yi2

4 and so on

Now let’s consider each assumption in turn.
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Past Outcomes Don’t Directly Affect Current Outcome

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Strict exogeneity still
holds.

Past outcomes do not
confound Xit −→ Yit

given Ui .

No need to adjust for
past outcomes.

Should use cluster robust
standard errors for
inference.

Conclusion: The
assumption can be
relaxed
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Past Treatments Don’t Directly Affect Current Outcome

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Need to adjust for past
treatments

Strict exogeneity holds given
past treatments and Ui

Impossible to adjust for an
entire treatment history and
Ui at the same time

Adjust for a small number
of past treatments  often
arbitrary

Conclusion: The assumption
can be partially relaxed
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Past Outcomes Don’t Directly Affect Current Treatment

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Correlation between error
term and future
treatments

Violation of strict
exogeneity

No adjustment is
sufficient

Implication: No dynamic
causal relationships
between treatment and
outcome variables

Conclusion: The
assumption cannot be
relaxed
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Can’t We Just Adjust for Time-Varying Confounders?

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Zi1 Zi2 Zi3

Ui

Yit = αi+βXit+γ>Zit+εit

past outcomes cannot
directly affect current
treatment

past outcomes cannot
indirectly affect current
treatment through Zit
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But What If I Have Causal Dynamics?

Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000)

— see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



But What If I Have Causal Dynamics?
Alternative: Marginal Structural Models (Robins, Hernán and Brumback,
2000) — see Blackwell 2013 and Blackwell and Glynn 2018 for accessible
introductions.

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Absence of unobserved
time-invariant confounders Ui

past treatments can directly
affect current outcome

past outcomes can directly
affect current treatment

Comparison across units within the same time rather than across
different time periods within the same unit

Can identify the average effect of an entire treatment sequence

Trade-off  no free lunch

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 54 / 119



Conclusions and Nonparametric Estimation

Imai and Kim (Forthcoming) offer a matching framework for fixed
effects models which exploits an equivalence to weighted unit fixed
effects estimators (see wfe package in R as well).

The paper clarifies assumptions for fixed effects and first difference
estimators.

Follow-up working paper by Imai, Kim and Wang extends to two-way
fixed effects estimator.

Tradeoff:

1) unobserved time-invariant confounders  fixed effects
2) causal dynamics between treatment and outcome  

selection-on-observables
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Q: What conditions do we need to infer causality?

A: A clear estimand, an identification strategy and an
estimation strategy.
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Identification Strategies in This Class

Experiments (ignorability via randomization)

Selection on Observables (conditional ignorability)

Natural Experiments (ignorability via quasi-randomization)

Instrumental Variables (instrument + exclusion restriction)

Regression Discontinuity (continuity assumption)

Difference-in-Differences (parallel trends)

Fixed Effects (time-invariant unobserved heterogeneity, strict
ignorability)

Essentially everything assumes: consistency/SUTVA (no interference
between units, variation in the treatment is irrelevant) and positivity (there
is some chance of all getting treatment)
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Some Estimation Strategies

Stratification

Regression (and relatives)

Matching (not covered)

Weighting (not covered)
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Q: Can you review how to read DAGs?

A: Sure2

2Courtesy of Erin Hartman’s slides for this.
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Notation

X

X

Node – A random Variable. Sometimes drawn as a solid circle
X•.
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Notation

XU

X

Dashed line means its unobserved. Sometimes drawn as a hollow circle
U◦.
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Notation

XU Y

X
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Notation

XU Y

X

Arrow means “X causes Y”.
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Notation

XU Y

X

A parent is a direct cause of a child, a child is directly caused by a parent.
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Notation

XU Y

X

An ancestor is a direct or indirect cause, a descendant is caused, directly
or indirectly, by an ancestor.
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Notation

XU Y

XX

Acyclic implies there are no paths from a variable back to itself.
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Notation

XU Y

X

A lack of arrows implies no causal relationship.
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Notation

XU Y

X
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Notation

XU Y

X

A lack of variables indicates a lack of common causes in the DGP.
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Notation

XU Y

XuUu Yu

X
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Notation

XU Y

X

DAGs encode non-parametric structural models.

X = fX (U)

Y = fY (X ,U)
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Notation

XU Y

T

X

A collider is when a node receives edges from two, or more, other nodes.
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Notation

XU Y

T

X

A causal effect can be defined using the do operator.

P(Y = y | do(X = x)) =
∑
z

P(Y = y | X = x ,PA = z)P(PA = z)

where PA are parents of X , and z ranges of all the combinations of values
that the variables in PA can take.
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Notation

XU Y

T

X

Then, if T is binary,

ACE = P(Y = 1 | do(T = 1))− P(Y = 1 | do(T = 0))

and if T is randomized, then:

ACE = P(Y = 1 | T = 1)− P(Y = 1 | T = 0)

because there are no parents of T .
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d-separation

T W X Y

U
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d-separation

T W X Y

U

A path p is blocked by a set of nodes Z if and only if:

(1) p contains a chain of nodes A→ B → C or a fork A← B → C such
that the middle node B is in Z or

(2) p contains a collider A→ B ← C such that the collision node B is
not in Z and no descendant of B is in Z

If Z blocks every path between two nodes X and Y , then X and Y are
d-separated, conditional on Z , and thus are conditionally independent
given Z .
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A path p is blocked by a set of nodes Z if and only if:

(1) p contains a chain of nodes A→ B → C or a fork A← B → C such
that the middle node B is in Z or

(2) p contains a collider A→ B ← C such that the collision node B is
not in Z and no descendant of B is in Z

T and Y are d-separated conditional on {}, because they are blocked by
the collider W , meets (2)
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d-separation

T W X Y

U

A path p is blocked by a set of nodes Z if and only if:

(1) p contains a chain of nodes A→ B → C or a fork A← B → C such
that the middle node B is in Z or

(2) p contains a collider A→ B ← C such that the collision node B is
not in Z and no descendant of B is in Z

T and Y are d-connected conditional on {W }, violates (2).
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that the middle node B is in Z or

(2) p contains a collider A→ B ← C such that the collision node B is
not in Z and no descendant of B is in Z

T and Y are d-separated conditional on {W ,X}, because X blocks the
path by criterion (1).
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d-separation

T W X Y

U

A path p is blocked by a set of nodes Z if and only if:

(1) p contains a chain of nodes A→ B → C or a fork A← B → C such
that the middle node B is in Z or

(2) p contains a collider A→ B ← C such that the collision node B is
not in Z and no descendant of B is in Z

We can use d-separation to do calculate causal effects via the “back-door”
criterion, so long as Z does not contain descendants of our treatment of
interest.
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Q: Can you review how instrumental variables deal with
issues of confounding?

A: We use only the units whose treatment status was
effectively randomized by the instrument (because they

are compliers).
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Q: What are degrees of freedom and how do they play
into standard errors?

A: Let’s consider the anatomy of a standard error.
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Anatomy of the Standard Error
Imagine we have a regression of Y on a variable of interest X and a vector
of other variables Z.

V̂ar(β̂X ) =

1
(n−k−1)

∑n
i=1 û

2
i

(1− R2
X∼Z)

∑n
i=1(Xi − X )2

the numerator is our estimator for σ2
u the unknown error variance. It

is formed by the degrees of freedom correction times the sum of the
squared residuals.

the denominator includes one minus the R2 from the regression of Xi

on Zi

we complete the denominator by multiplying a measure of the
variation in Xi , the sum of squared deviations from the mean.

ŜE(β̂X ) =

√
V̂ar(β̂X )
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Q: When conducting an experiment, should we avoid OLS
and always go for difference in means?

A: Regression adjustment of experiments can be helpful for improving
precision. We don’t need it for confounding, but it can improve our
standard errors to adjust for pre-treatment covariates that are highly
predictive of the output. If done correctly and in moderate-to-large
samples, this can dramatically improve your standard errors. Even better
though is blocking which is adjustment by design.

Further Reading:

Lin, W., 2013. ‘Agnostic notes on regression adjustments to experimental data:
Reexamining Freedmans critique.’ The Annals of Applied Statistics

Athey, S. and Imbens, G.W., 2017. ‘The Econometrics of Randomized Experiments.’ In
Handbook of Economic Field Experiments (Vol. 1, pp. 73-140).

Egap Methods Guide: 10 things you need to know about covariate adjustment.
https://egap.org/methods-guides/10-things-know-about-covariate-adjustment
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Q: Can you discuss the difference between having an
instrument and having a mediator?

A: If we think of the treatment as the mediator of the
instrument, it is by the exclusion restriction a total
mediator (the direct effect is 0).
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Q: How do propensity scores and matching fit into all of
this?

A: They are different ways of conditioning on variables in
a selection on observables strategy. Importantly: they are
tools for estimation not tools for identification.
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Propensity Score as a Low-Dimensional Summary

Summary: The propensity score is the probability of treatment given
some covariates X .
Stratification is hard when X has has many dimensions
Curse of dimensionality: there will be very few, if any, units in a given
stratum of Xi .
We can instead stratify on a low-dimensional summary, the propensity
score:

e(x) = P[Di = 1|Xi = x ]

Rosenbaum and Rubin (1983) showed that:

Di⊥⊥
(
Yi (0),Yi (1)

)
| Xi =⇒ Di⊥⊥

(
Yi (0),Yi (1)

)
| e(Xi )

 stratifying on ei is the same in expectation as stratifying on the
full Xi .
The true propensity score is actually a balancing score, which means
that Di⊥⊥Xi | e(Xi )
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Propensity score specifics

What variables do we include in the propensity score model?

I Any set of variables that blocks all the backdoor paths from Di to Yi .

Check balance within strata of êi . Covariates should be balanced:

f (Xi |Di = 1, êi ) = f (Xi |Di = 0, êi )

Can also use automated/nonparametric tools for estimating êi .

How do we use propensity scores?
I Propensity score can be used in many contexts: weighting, matching,

regression or even just stratification
I It also shows up in a number of more advanced methods for

heterogeneous treatment effects, causal inference in longitudinal data
etc.

I Typically it is a tool to achieve balance.
I NB: propensity scores only achieve balance in expectation
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How do we use propensity scores?
I Propensity score can be used in many contexts: weighting, matching,

regression or even just stratification
I It also shows up in a number of more advanced methods for

heterogeneous treatment effects, causal inference in longitudinal data
etc.

I Typically it is a tool to achieve balance.
I NB: propensity scores only achieve balance in expectation

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 71 / 119



Propensity score specifics

What variables do we include in the propensity score model?

I Any set of variables that blocks all the backdoor paths from Di to Yi .
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f (Xi |Di = 1, êi ) = f (Xi |Di = 0, êi )

Can also use automated/nonparametric tools for estimating êi .
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Can also use automated/nonparametric tools for estimating êi .
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Can also use automated/nonparametric tools for estimating êi .
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Matching as Non-Parametric Preprocessing
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Three Approaches to Matching

There are many approaches to matching. We will cover just three for
the sake of time.

This isn’t a statement that these are the best three, just a set which
are straightforward to learn.

Which is the best method? The one that produces the best balance!

Next few slides based on slides by Gary King and Rich Nielsen
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Method 1: Mahalanobis Distance Matching

1 Preprocess (Matching)

I Distance(Xi ,Xj) =
√

(Xi − Xj)′S−1(Xi − Xj)
I Match each treated unit to the nearest control unit
I Control units: not reused; pruned if unused
I Prune matches if Distance>caliper

2 Checking Measure imbalance, tweak, repeat, . . .
3 Estimation Difference in means or a model
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Method 2: Coarsened Exact Matching

1 Preprocess (Matching)

I Temporarily coarsen X as much as you’re willing

F e.g., Education (grade school, high school, college, graduate)

I Apply exact matching to the coarsened X , C (X )

F Sort observations into strata, each with unique values of C(X )
F Prune any stratum with 0 treated or 0 control units

I Pass on original (uncoarsened) units except those pruned

2 Checking Determine matched sample size, tweak, repeat, . . .

I Easier, but still iterative

3 Estimation Difference in means or a model

I Need to weight controls in each stratum to equal treateds
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Method 3: Propensity Score Matching

1 Preprocess (Matching)

I Reduce k elements of X to scalar πi ≡ Pr(Ti = 1|X ) = 1
1+e−Xiβ

I Distance(Xi ,Xj) = |πi − πj |
I Match each treated unit to the nearest control unit
I Control units: not reused; pruned if unused
I Prune matches if Distance>caliper

2 Checking Measure imbalance, tweak, repeat, . . .
3 Estimation Difference in means or a model
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Q: Could you discuss hierarchical models?

A: Sure. Generally speaking, they are a way of borrowing
information.
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Eight Schools Data

School Est. Effect SE

A 28 15
B 8 10
C -3 16
D 7 11
E -1 9
F 1 11
G 18 10
H 12 18

Policy Question: What is the effect size in School A?
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Eight Schools Background

ETS analyzes special coaching program on test scores

8 separate parallel experiments in different high schools

Outcome was the score on a special administration of SAT-V with
scores varying between 200 and 800 (µ = 500, σ = 100)

SAT is designed to be resistant to short-term efforts intended to
boost performance, but each school thought it was a success.

No prior reason to believe that one program would be more effective
than the others

Treatment effects estimated controlling for PSAT-M and PSAT-V
scores

A bit over the 30 students in each school

For the sake of scale: an 8-point increase in the score indicates about
1 more test item was answered correctly.

(Analysis is from Rubin 1981, treatment via Gelman et al 2015)
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What do we know?

Unbiased estimate: 28 points

Hypothesis test fails to reject hypothesis that true effect is the same
for all of them

Should we analyze them all together? All separately?

It is the “same course” in every school, but they are different schools.
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Options for Analysis
There are two clear options:

1 an unpooled analysis in which we use separate estimates for every
school- in this case directly from the table

I 2 moderate effects, 4 small effects and 2 small negative effects
I standard errors are large, 95% intervals overlap substantially

2 a pooled analysis that generates a single estimate for all schools

I assume that all effects are exactly the same
I we get the single effect size and standard error with inverse variance

weighting of the unpooled estimates.

ȳ. =

∑8
j=1

1
σ2
j
ȳj∑8

j=1
1
σ2
j

σ2
. =

 8∑
j=1

1

σ2
j

−1

I the pooled estimate is 7.7 with standard error of 4.1. Thus the
confidence interval is [−.5, 15.9]
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ȳ. =

∑8
j=1

1
σ2
j
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Problems with Separate and Pooled Analysis

The two approaches radically different results for school A:
28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

Under a Bayesian framework, the separate analysis implies the
probability statement “the probability is 1

2 that the true effect in A is
more than 28.4”

This seems . . . dubious given the other results (remember we had no
reason to believe one school would perform stronger than the others)

The pooled analysis implies the statement “the probability is 1
2 that

the true effect in A is less than 7.7”, it also implies that “the
probability is 1

2 that the true effect in A is less than the true effect in
C”

Again these seem unlikely given the data

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 85 / 119



Problems with Separate and Pooled Analysis

The two approaches radically different results for school A:
28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

Under a Bayesian framework, the separate analysis implies the
probability statement “the probability is 1

2 that the true effect in A is
more than 28.4”

This seems . . . dubious given the other results (remember we had no
reason to believe one school would perform stronger than the others)

The pooled analysis implies the statement “the probability is 1
2 that

the true effect in A is less than 7.7”, it also implies that “the
probability is 1

2 that the true effect in A is less than the true effect in
C”

Again these seem unlikely given the data

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 85 / 119



Problems with Separate and Pooled Analysis

The two approaches radically different results for school A:
28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

Under a Bayesian framework, the separate analysis implies the
probability statement “the probability is 1

2 that the true effect in A is
more than 28.4”

This seems . . . dubious given the other results (remember we had no
reason to believe one school would perform stronger than the others)

The pooled analysis implies the statement “the probability is 1
2 that

the true effect in A is less than 7.7”, it also implies that “the
probability is 1

2 that the true effect in A is less than the true effect in
C”

Again these seem unlikely given the data

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 85 / 119



Problems with Separate and Pooled Analysis

The two approaches radically different results for school A:
28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

Under a Bayesian framework, the separate analysis implies the
probability statement “the probability is 1

2 that the true effect in A is
more than 28.4”

This seems . . . dubious given the other results (remember we had no
reason to believe one school would perform stronger than the others)

The pooled analysis implies the statement “the probability is 1
2 that

the true effect in A is less than 7.7”, it also implies that “the
probability is 1

2 that the true effect in A is less than the true effect in
C”

Again these seem unlikely given the data

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 85 / 119



Problems with Separate and Pooled Analysis

The two approaches radically different results for school A:
28.4 (s.e. 14.9) vs. 7.7 (s.e. 4.1)

Under a Bayesian framework, the separate analysis implies the
probability statement “the probability is 1

2 that the true effect in A is
more than 28.4”

This seems . . . dubious given the other results (remember we had no
reason to believe one school would perform stronger than the others)

The pooled analysis implies the statement “the probability is 1
2 that

the true effect in A is less than 7.7”, it also implies that “the
probability is 1

2 that the true effect in A is less than the true effect in
C”

Again these seem unlikely given the data

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 85 / 119



Borrowing Information

We want an estimate that combines information from the 8
experiments without assuming that all the effects are equal

Rubin suggests a middle path: a hierarchical model in which we

1 assume that each school’s true effect is drawn a Normal distribution
with some unknown mean and standard deviation

2 assume that the observed effect in each school is sampled from a
normal distribution with a mean equal to its true effect and standard
deviation given in the table

This model contains both the separate and pooled estimates as
limiting special cases. If we force the standard deviation of the true
effects to be zero, then all school get the same estimate, if we let it
go to infinity we get the separate estimates
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The Model

ȳj |θj ∼ Normal(θj , σ
2
j )

θj |µ, τ ∼ Normal(µ, τ2)

p(µ, τ) = p(µ|τ)p(τ) ∝ p(τ)

Known: ȳj , σ
2
j

Unknown: τ, µ, θ
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Some Mechanics

How do the calculations work conditional on some values of the
hyperparameters?

The θs are latent variables which have a distribution. In Bayesian statistics
we call this the posterior distribution.

θj |µ, τ, y ∼ N(θ̂j ,Vj)

θ̂j =

1
σ2
j
ȳj + 1

τ2µ

1
σ2
j

+ 1
τ2

Vj =
1

1
σ2
j

+ 1
τ2
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What is Happening?

We are borrowing information between the schools

Alternatively- we are regularizing estimates of the individual effects
towards their grand mean

This captures our intuition that while School A might have a larger
effect, it is perhaps an overestimate

The form show us that the amount of shrinkage is relative to our
certainty about the estimate and how much we believe the individual
effects matter

Our final guess is that the median effect for school A is about 10
points with 50% probability between 7 and 16
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Results
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The Great Thing About Eight Schools

This is a microcosm of hierarchical modeling

Works well when we have a decent number of groups and the
individual group sample sizes are lowish

Allows us to capture variability in our treatment effects, variances etc.

Allows us to model dependence in our error terms
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Q: How do we determine power?

A: A combination of the effect size, the variance and the
sample size. Unfortunately, only one of which we know.
See the DeclareDesign suite of packages for this and so
much more!
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Q: Could we discuss more examples of missteps/misuses
of certain statistical techniques/methods in papers

published in prominent journals? I think seeing how other
researchers have made mistakes and why mistakes arise

could be helpful for diagnosing similar mistakes in our own
work?

A: I think the biggest and most frequent mistakes I see
are:

not being clear about the estimand

mistaking not significant results for a finding of zero
effect (need equivalence tests)

lack of clarity about the counterfactual and common
support
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Q: When should you pick your statistical strategy? How
do you balance pre-planning research / literature reviews
with potential problems with data/causal assumptions?

How much data exploration should you do up front
compared to exploration throughout the question? If you

have a causal question or idea but arent sure of data, how
should you go about searching for potential data and

making sure assumptions are reasonable?

A: Let’s chat.
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Q: What do you believe will be the biggest applications
for social statistics in the future?

A: Let’s chat.
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Q: What are your favorite resources for learning tricky
concepts?

I’ve used the following procedure many times:

1 Identify approx. the best textbook (often can do this
via syllabi hunting)

2 Read the relevant textbook material

3 Derive the equations/math

4 Try to explain it to someone else
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Where are you?

You’ve been given a powerful set of tools

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 99 / 119



Where are you?

You’ve been given a powerful set of tools

Stewart (Princeton) Week 12: Repeated Observations December 10 and 12, 2018 99 / 119



Your New Weapons

Basic probability theory

I Probability axioms, random variables, marginal and conditional
probability, building a probability model

I Expected value, variances, independence
I CDF and PDF (discrete and continuous)

Properties of Estimators

I Bias, Efficiency, Consistency
I Central limit theorem

Univariate Inference

I Interval estimation (normal and non-normal Population)
I Confidence intervals, hypothesis tests, p-values
I Practical versus statistical significance
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Your New Weapons

Simple Regression

I regression to approximate the conditional expectation function
I idea of conditioning
I kernel and loess regressions
I OLS estimator for bivariate regression
I Variance decomposition, goodness of fit, interpretation of estimates,

transformations

Multiple Regression

I OLS estimator for multiple regression
I Regression assumptions
I Properties: Bias, Efficiency, Consistency
I Standard errors, testing, p-values, and confidence intervals
I Polynomials, Interactions, Dummy Variables
I F-tests
I Matrix notation
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Your New Weapons

Diagnosing and Fixing Regression Problems

I Non-normality
I Outliers, leverage, and influence points, Robust Regression
I Non-linearities and GAMs
I Heteroscedasticity and Clustering

Causal Inference

I Frameworks: potential outcomes and DAGs
I Measured Confounding
I Unmeasured Confounding
I Methods for repeated data

And you learned how to use R: you’re not afraid of trying something new!
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Using these Tools

So, Admiral Ackbar, now that you’ve learned how to run these regressions
we can just use them blindly, right?
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Beyond Linear Regressions

You need more training
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Beyond Linear Regressions

There is so much more to learn! Take classes, read books!
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Thanks!

Thanks so much for an amazing semester.

Fill out your evaluations!
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1 Set Up

2 Differencing Models

3 Difference-in-Differences

4 Fixed Effects

5 Non-parametric Identification and Fixed Effects

6 (Almost) Twenty Questions
Review
Topics Beyond the Course
Research Practice
Opinions and Musings

7 Concluding Thoughts for the Course

8 Appendix: Why Does Weighting Work?
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Weighting with the Propensity Score

Intuition

Treated and control samples are unrepresentative of the overall
population.

Leads to imbalance in the covariates.

Reweight them to be more representative.
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Survey samples

Useful to review survey samples to understand the logic

Finite population: {1, . . . ,N}
Suppose that we wanted estimate the population mean of Yi :

ȲN =
1

N

N∑
i=1

Yi

We have a sample of size n, where Zi = 1 indicates that i is included
in the sample.

Unequal sampling probability: P(Zi = 1) = πi

I  sample is not representative.
I
∑N

i=1 πi = n
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Survey weights

Sample mean is biased:

E

[
1

n

N∑
i=1

ZiYi

]
=

1

n

∑
i=1

πiYi

Inverse probability weighting: To correct, weight each unit by the
reciprocal of the probability of being included in the sample: Yi/πi .

Horvitz-Thompson estimator is unbiased:

E

[
1

N

N∑
i=1

ZiYi

πi

]
=

1

N

N∑
i=1

E[Zi ]Yi

πi
=

1

N

N∑
i=1

πiYi

πi
= ȲN

Reweights the sample to be representative of the population.
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Back to causal effects

With a completely randomized experiment, we can just use the simple
differences in means:

E[Yi |Di = 1]− E[Yi |Di = 0] = E[Yi (1)]− E[Yi (0)]

With no unmeasured confounders, we need to adjust for Xi .

E[Yi (d)] = E [E[Yi (d)|Xi ]]

=
∑
x∈X

E[Yi (d)|Xi = x ]P(Xi = x)

=
∑
x∈X

E[Yi (d)|Di = d ,Xi = x ]P(Xi = x)

=
∑
x∈X

E[Yi |Di = d ,Xi = x ]P(Xi = x)

With subclassification, we binned Xi , calclulated within-bin
differences and then averaged across the bins, just like this.
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Searching for the weights

E[Yi (d)] =
∑
x∈X

E[Yi |Di = d ,Xi = x ]P(Xi = x)

Compare this to the the within treatment group average:

E[Yi |Di = d ] =
∑
x∈X

E[Yi |Di = d ,Xi = x ]P(Xi = x |Di = d)

=
∑
x∈X

E[Yi |Di = d ,Xi = x ]
P(Di = d |Xi = x)P(Xi = x)

P(Di = d)

How should we reweight the data from an observational study?

If we were to reweight the data by Wi = 1/P(Di = d |Xi ), then we
would break the relationship between Di and Xi .
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Weights

Single binary covariate. Define the weight function:

w(d , x) =
1

e(x)d(1− e(x))1−d

To get the weight for i , plug in observed treatment, covariate:
Wi = w(Di ,Xi )

If (Di ,Xi ) = (1, 1),

Wi =
1

e(1)
=

1

P(Di = 1|Xi = 1)

If (Di ,Xi ) = (0, 0):

Wi =
1

1− e(0)
=

1

P(Di = 0|Xi = 0)
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Example

Xi = 0 Xi = 1

Di = 0 4 3
Di = 1 4 9

P(Di = 1|Xi = 0) = 0.5

P(Di = 1|Xi = 1) = 0.75

Weights:

Xi = 0 Xi = 1

Di = 0 1/0.5 1/0.25
Di = 1 1/0.5 1/0.75

Weighted data (the pseudo-population):

Xi = 0 Xi = 1

Di = 0 8 12
Di = 1 8 12

PW (Di = 1|Xi = x) = 0.5 for all x
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Properties of reweighted data

Let’s calculate the weighted probability that Di = 1.

PW [Di = 1|Xi = x ]

=
w(1, x) · P[Di = 1|Xi = x ]

ω∗

=

1
P[Di=1|Xi=x] · P[Di = 1|Xi = x ]

ω∗

=
1

ω∗
.

ω∗ is a normalization factor to make sure probabilities sum to 1.

Important point: PW (Di = 1|Xi = 1) = PW (Di = 1|Xi = 0) = 1
ω∗

 Di independent of Xi in the reweighted data.
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Overall mean

What is the weighted mean for the treated group?

Use a similar approach to survey weights, where Di is the “sampling
indicator”:

Ȳ w
i =

1

N

N∑
i=1

DiWiYi

WiYi is the weighted outcome, Di is there to select out the treated
observations.

We want to see what the conditional weighted mean identifies:

E

[
1

N

N∑
i=1

WiDiYi

]
=

1

N

N∑
i=1

E[WiDiYi ] = E[WiDiYi ]
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Proving unbiasedness

Weighted mean of treated units is mean of potential outcome:

E[WiDiYi ] = E
[
DiYi

e(Xi )

]
(Weight Def.)

= E

[
DiYi (1)

e(Xi )

]
(Consistency)

= E

[
E

[
DiYi (1)

e(Xi )

∣∣∣Xi

]]
(Iterated Expectations)

= E

[
E [Di |Xi ]E [Yi (1)|Xi ]

e(Xi )

]
(n.u.c.)

= E

[
e(Xi )E [Yi (1)|Xi ]

e(Xi )

]
(Propensity Score Definition)

= E [Yi (1)] (Iterated Expectations)
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Putting it all together

The same logic would give us the mean potential outcomes under
control:

E

[
(1− Di )Yi

1− e(Xi )

]
= E [Yi (0)]

These two facts provide an estimator for the average treatment effect:

τ̂ =
1

N

N∑
i=1

(
DiYi

e(Xi )
− (1− Di )Yi

1− e(Xi )

)
The above two results give us that this esimator is unbiased.

This is sometimes called the Horvitz-Thompson estimator due to the
close connection to the survey sampling estimator.
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