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Where We’ve Been and Where We’re Going...

Last Week
I hypothesis testing
I what is regression

This Week
I Monday:

F mechanics of OLS
F properties of OLS

I Wednesday:
F hypothesis tests for regression
F confidence intervals for regression
F goodness of fit

Next Week
I mechanics with two regressors
I omitted variables, multicollinearity

Long Run
I probability → inference → regression → causal inference

Questions?
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Macrostructure

The next few weeks,

Linear Regression with Two Regressors

Multiple Linear Regression

Break Week

What Can Go Wrong and How to Fix It

Regression in the Social Sciences and Introduction to Causality

Thanksgiving

Causality with Measured Confounding

Unmeasured Confounding and Instrumental Variables

Repeated Observations and Panel Data

Review session timing.
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1 Mechanics of OLS

2 Properties of the OLS estimator

3 Example and Review

4 Properties Continued

5 Hypothesis tests for regression

6 Confidence intervals for regression

7 Goodness of fit

8 Wrap Up of Univariate Regression

9 Fun with Non-Linearities

10 Appendix: r2 derivation
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The population linear regression function

The (population) simple linear regression model can be stated as the
following:

r(x) = E [Y |X = x ] = β0 + β1x

This (partially) describes the data generating process in the
population

Y = dependent variable

X = independent variable

β0, β1 = population intercept and population slope (what we want to
estimate)
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The sample linear regression function

The estimated or sample regression function is:

r̂(Xi ) = Ŷi = β̂0 + β̂1Xi

β̂0, β̂1 are the estimated intercept and slope

Ŷi is the fitted/predicted value

We also have the residuals, ûi which are the differences between the
true values of Y and the predicted value:

ûi = Yi − Ŷi

You can think of the residuals as the prediction errors of our
estimates.
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Overall Goals for the Week

Learn how to run and read regression

Mechanics: how to estimate the intercept and slope?

Properties: when are these good estimates?

Uncertainty: how will the OLS estimator behave in repeated samples?

Testing: can we assess the plausibility of no relationship (β1 = 0)?

Interpretation: how do we interpret our estimates?
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What is OLS?

An estimator for the slope and the intercept of the regression line

We talked last week about ways to derive this estimator and we
settled on deriving it by minimizing the squared prediction errors of
the regression, or in other words, minimizing the sum of the squared
residuals:

Ordinary Least Squares (OLS):

(β̂0, β̂1) = arg min
b0,b1

n∑
i=1

(Yi − b0 − b1Xi )
2

In words, the OLS estimates are the intercept and slope that minimize
the sum of the squared residuals.
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Graphical Example
How do we fit the regression line Ŷ = β̂0 + β̂1X to the data?

Answer: We will minimize the squared sum of residuals



0


1
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Graphical Example
How do we fit the regression line Ŷ = β̂0 + β̂1X to the data?
Answer: We will minimize the squared sum of residuals

iii YYu




Residual ui is “part” 
of Yi not predicted




n

i

iu
1

2

,
min

10 

Stewart (Princeton) Week 5: Simple Linear Regression October 8, 10, 2018 9 / 101



Deriving the OLS estimator

Let’s think about n pairs of sample observations:
(Y1,X1), (Y2,X2), . . . , (Yn,Xn)

Let {b0, b1} be possible values for {β0, β1}
Define the least squares objective function:

S(b0, b1) =
n∑

i=1

(Yi − b0 − b1Xi )
2.

How do we derive the LS estimators for β0 and β1? We want to
minimize this function, which is actually a very well-defined calculus
problem.

1 Take partial derivatives of S with respect to b0 and b1.
2 Set each of the partial derivatives to 0
3 Solve for {b0, b1} and replace them with the solutions

To the board we go!
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The OLS estimator

Now we’re done! Here are the OLS estimators:

β̂0 = Y − β̂1X

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
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Intuition of the OLS estimator

The intercept equation tells us that the regression line goes through
the point (Y ,X ):

Y = β̂0 + β̂1X

The slope for the regression line can be written as the following:

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
=

Sample Covariance between X and Y

Sample Variance of X

The higher the covariance between X and Y , the higher the slope will
be.

Negative covariances → negative slopes;
positive covariances → positive slopes

What happens when Xi doesn’t vary?

What happens when Yi doesn’t vary?
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A Visual Intuition for the OLS Estimator
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A Visual Intuition for the OLS Estimator
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A Visual Intuition for the OLS Estimator
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Mechanical properties of OLS

Later we’ll see that under certain assumptions, OLS will have nice
statistical properties.

But some properties are mechanical since they can be derived from
the first order conditions of OLS.

1 The residuals will be 0 on average:

1

n

n∑
i=1

ûi = 0

2 The residuals will be uncorrelated with the predictor
(ĉov is the sample covariance):

ĉov(Xi , ûi ) = 0

3 The residuals will be uncorrelated with the fitted values:

ĉov(Ŷi , ûi ) = 0
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OLS slope as a weighted sum of the outcomes

One useful derivation is to write the OLS estimator for the slope as a
weighted sum of the outcomes.

β̂1 =
n∑

i=1

WiYi

Where here we have the weights, Wi as:

Wi =
(Xi − X )∑n
i=1(Xi − X )2

This is important for two reasons. First, it’ll make derivations later
much easier. And second, it shows that is just the sum of a random
variable. Therefore it is also a random variable.

To the board!
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1 Mechanics of OLS

2 Properties of the OLS estimator

3 Example and Review

4 Properties Continued

5 Hypothesis tests for regression

6 Confidence intervals for regression

7 Goodness of fit

8 Wrap Up of Univariate Regression

9 Fun with Non-Linearities

10 Appendix: r2 derivation
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Sampling distribution of the OLS estimator

Remember: OLS is an estimator—it’s a machine that we plug data
into and we get out estimates.

OLS

Sample 1: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)1

Sample 2: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)2

...
...

Sample k − 1: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)k−1

Sample k: {(Y1,X1), . . . , (Yn,Xn)} (β̂0, β̂1)k

Just like the sample mean, sample difference in means, or the sample
variance

It has a sampling distribution, with a sampling variance/standard
error, etc.

Let’s take a simulation approach to demonstrate:

I Pretend that the AJR data represents the population of interest
I See how the line varies from sample to sample
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Simulation procedure

1 Draw a random sample of size n = 30 with replacement using
sample()

2 Use lm() to calculate the OLS estimates of the slope and intercept
3 Plot the estimated regression line
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Population Regression
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Randomly sample from AJR
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Sampling distribution of OLS

You can see that the estimated slopes and intercepts vary from sample
to sample, but that the “average” of the lines looks about right.

Sampling distribution of intercepts
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Assumptions for unbiasedness of the sample mean

What assumptions did we make to prove that the sample mean was
unbiased?

E[X ] = µ

Just one: random sample

We’ll need more than this for the regression case
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Our goal

What is the sampling distribution of the OLS slope?

β̂1 ∼?(?, ?)

We need fill in those ?s.

We’ll start with the mean of the sampling distribution. Is the
estimator centered at the true value, β1?

Most of our derivations will be in terms of the slope but they apply to
the intercept as well.
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OLS Assumptions Preview

1 Linearity in Parameters: The population model is linear in its
parameters and correctly specified

2 Random Sampling: The observed data represent a random sample
from the population described by the model.

3 Variation in X : There is variation in the explanatory variable.

4 Zero conditional mean: Expected value of the error term is zero
conditional on all values of the explanatory variable

5 Homoskedasticity: The error term has the same variance conditional
on all values of the explanatory variable.

6 Normality: The error term is independent of the explanatory variables
and normally distributed.
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Hierarchy of OLS Assumptions
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OLS Assumption I

Assumption (I. Linearity in Parameters)

The population regression model is linear in its parameters and correctly
specified as:

Y = β0 + β1X1 + u

Note that it can be nonlinear in variables
I OK: Y = β0 + β1X + u or

Y = β0 + β1X
2 + u or

Y = β0 + β1log(X ) + u
I Not OK: Y = β0 + β2

1X + u or
Y = β0 + exp(β1)X + u

β0, β1: Population parameters — fixed and unknown

u: Unobserved random variable with E [u] = 0 — captures all other
factors influencing Y other than X

We assume this to be the structural model, i.e., the model describing
the true process generating Y
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OLS Assumption II

Assumption (II. Random Sampling)

The observed data:
(yi , xi ) for i = 1, ..., n

represent an i.i.d. random sample of size n following the population model.

Data examples consistent with this assumption:

A cross-sectional survey where the units are sampled randomly

Potential Violations:

Time series data (regressor values may exhibit persistence)

Sample selection problems (sample not representative of the
population)
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OLS Assumption III

Assumption (III. Variation in X ; a.k.a. No Perfect Collinearity)

The observed data:
xi for i = 1, ..., n

are not all the same value.

Satisfied as long as there is some variation in the regressor X in the
sample.

Why do we need this?

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

This assumption is needed just to calculate β̂.

Only assumption needed for using OLS as a pure data summary.
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Stuck in a moment

Why does this matter? How would you draw the line of best fit
through this scatterplot, which is a violation of this assumption?
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OLS Assumption IV

Assumption (IV. Zero Conditional Mean)

The expected value of the error term is zero conditional on any value of the
explanatory variable:

E [u|X ] = 0

E [u|X ] = 0 implies a slightly weaker condition Cov(X , u) = 0

Given random sampling, E [u|X ] = 0 also implies E [ui |xi ] = 0 for all i

How does this assumption get violated? Let’s generate data from the following
model:

Yi = 1 + 0.5Xi + ui

But let’s compare two situations:

1 Where the mean of ui depends on Xi (they are correlated)
2 No relationship between them (satisfies the assumption)
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Violating the zero conditional mean assumption
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Unbiasedness (to the blackboard)
With Assumptions 1-4, we can show that the OLS estimator for the slope
is unbiased, that is E [β̂1] = β1.
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Unbiasedness of OLS

Theorem (Unbiasedness of OLS)

Given OLS Assumptions I–IV:

E [β̂0] = β0 and E [β̂1] = β1

The sampling distributions of the estimators β̂1 and β̂0 are centered about
the true population parameter values β1 and β0.
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Where are we?

Now we know that, under Assumptions 1-4, we know that

β̂1 ∼?(β1, ?)

That is we know that the sampling distribution is centered on the
true population slope, but we don’t know the population variance.
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Sampling variance of estimated slope

In order to derive the sampling variance of the OLS estimator,

1 Linearity
2 Random (iid) sample
3 Variation in Xi

4 Zero conditional mean of the errors
5 Homoskedasticity
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Variance of OLS Estimators
How can we derive Var[β̂0] and Var[β̂1]? Let’s make the following additional
assumption:

Assumption (V. Homoskedasticity)

The conditional variance of the error term is constant and does not vary as a
function of the explanatory variable:

Var[u|X ] = σ2
u

This implies Var[u] = σ2
u

→ all errors have an identical error variance (σ2
ui = σ2

u for all i)

Taken together, Assumptions I–V imply:

E [Y |X ] = β0 + β1X

Var[Y |X ] = σ2
u

Violation: Var[u|X = x1] 6= Var[u|X = x2] called heteroskedasticity.

Assumptions I–V are collectively known as the Gauss-Markov assumptions
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Deriving the sampling variance

var[β̂1|X1, . . . ,Xn] =??
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Variance of OLS Estimators

Theorem (Variance of OLS Estimators)

Given OLS Assumptions I–V (Gauss-Markov Assumptions):

Var[β̂1 | X ] =
σ2
u∑n

i=1(xi − x̄)2

Var[β̂0 | X ] = σ2
u

{
1

n
+

x̄2∑n
i=1(xi − x̄)2

}
where Var[u | X ] = σ2

u (the error variance).
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Understanding the sampling variance

var[β̂1|X1, . . . ,Xn] =
σ2
u∑n

i=1(Xi − X )2

What drives the sampling variability of the OLS estimator?

I The higher the variance of Yi |Xi , the higher the sampling variance
I The lower the variance of Xi , the higher the sampling variance
I As we increase n, the denominator gets large, while the numerator is

fixed and so the sampling variance shrinks to 0.

But, this formula depends upon an unobserved term: σ2
u
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Estimating the Variance of OLS Estimators

How can we estimate the unobserved error variance Var [u] = σ2
u?

We can derive an estimator based on the residuals:

ûi = yi − ŷi = yi − β̂0 − β̂1xi

Recall: The errors ui are NOT the same as the residuals ûi .

Intuitively, the scatter of the residuals around the fitted regression line should
reflect the unseen scatter about the true population regression line.

We can measure scatter with the mean squared deviation:

MSD(û) ≡ 1

n

n∑
i=1

(ûi − ¯̂u)2 =
1

n

n∑
i=1

û2
i

Intuitively, which line is likely to be closer to the observed sample values on X
and Y , the true line yi = β0 + β1xi or the fitted regression line ŷi = β̂0 + β̂1xi?
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Estimating the Variance of OLS Estimators

By construction, the regression line is closer since it is drawn to fit the
sample we observe

Specifically, the regression line is drawn so as to minimize the sum of the
squares of the distances between it and the observations

So the spread of the residuals MSD(û) will slightly underestimate the error
variance Var[u] = σ2

u on average

In fact, we can show that with a single regressor X we have:

E [MSD(û)] =
n − 2

n
σ2
u (degrees of freedom adjustment)

Thus, an unbiased estimator for the error variance is:

σ̂2
u =

n

n − 2
MSD(û) =

n

n − 2

1

n

n∑
i=1

ûi =
1

n − 2

n∑
i=1

û2
i

We plug this estimate into the variance estimators for β̂0 and β̂1.
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Where are we?

Under Assumptions 1-5, we know that

β̂1 ∼?

(
β1,

σ2
u∑n

i=1(Xi − X )2

)
Now we know the mean and sampling variance of the sampling
distribution.

Next Time: how does this compare to other estimators for the
population slope?
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Where We’ve Been and Where We’re Going...

Last Week
I hypothesis testing
I what is regression

This Week
I Monday:

F mechanics of OLS
F properties of OLS

I Wednesday:
F hypothesis tests for regression
F confidence intervals for regression
F goodness of fit

Next Week
I mechanics with two regressors
I omitted variables, multicollinearity

Long Run
I probability → inference → regression → causal inference

Questions?
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1 Mechanics of OLS

2 Properties of the OLS estimator

3 Example and Review

4 Properties Continued

5 Hypothesis tests for regression

6 Confidence intervals for regression

7 Goodness of fit

8 Wrap Up of Univariate Regression

9 Fun with Non-Linearities

10 Appendix: r2 derivation
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Example: Epstein and Mershon SCOTUS data

Data on 27 justices from the Warren, Burger, and Rehnquist courts
(can be interpreted as a census)

Percentage of votes in liberal direction for each justice in a number of
issue areas

Segal-Cover scores for each justice

Party of appointing president
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How to get β0 and β1

β̂0 = ȳ − β̂1x̄ .

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
.
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2 Properties of the OLS estimator

3 Example and Review

4 Properties Continued

5 Hypothesis tests for regression

6 Confidence intervals for regression

7 Goodness of fit

8 Wrap Up of Univariate Regression

9 Fun with Non-Linearities

10 Appendix: r2 derivation
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Where are we?
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Where are we?

Under Assumptions 1-5, we know that

β̂1 ∼?

(
β1,

σ2
u∑n

i=1(Xi − X )2

)
Now we know the mean and sampling variance of the sampling
distribution.

How does this compare to other estimators for the population slope?
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OLS is BLUE :(

Theorem (Gauss-Markov)

Given OLS Assumptions I–V, the OLS estimator is BLUE, i.e. the

1 Best: Lowest variance in class

2 Linear: Among Linear estimators

3 Unbiased: Among Linear Unbiased estimators

4 Estimator.

Assumptions 1-5: the “Gauss Markov Assumptions”

The proof is detailed and doesn’t yield insight, so we skip it. (We will
explore the intuition some more in a few slides)

Fails to hold when the assumptions are violated!
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Gauss-Markov Theorem

Regression Analysis Tutorial 70

Econometrics Laboratory � University of California at Berkeley � 22-26 March 1999

All estimators

unbiased

linear

Gauss-Markov Theorem

OLS is efficient in the class of unbiased, linear estimators.

OLS is BLUE--best linear unbiased estimator.
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Where are we?

Under Assumptions 1-5, we know that

β̂1 ∼?

(
β1,

σ2
u∑n

i=1(Xi − X )2

)

And we know that σ2
u∑n

i=1(Xi−X )2 is the lowest variance of any linear

estimator of β1

What about the last question mark? What’s the form of the
distribution? Uniform? t? Normal? Exponential? Hypergeometric?
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Large-sample distribution of OLS estimators

Remember that the OLS estimator is the sum of independent r.v.’s:

β̂1 =
n∑

i=1

WiYi

Mantra of the Central Limit Theorem:

“the sums and means of r.v.’s tend to be Normally distributed in
large samples.”

True here as well, so we know that in large samples:

β̂1 − β1

SE [β̂1]
∼ N(0, 1)

Can also replace SE with an estimate:

β̂1 − β1

ŜE [β̂1]
∼ N(0, 1)
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Where are we?

Under Assumptions 1-5 and in large samples, we know that

β̂1 ∼ N

(
β1,

σ2
u∑n

i=1(Xi − X )2

)

Stewart (Princeton) Week 5: Simple Linear Regression October 8, 10, 2018 55 / 101



Sampling distribution in small samples

What if we have a small sample? What can we do then?

Can’t get something for nothing, but we can make progress if we
make another assumption:

1 Linearity

2 Random (iid) sample

3 Variation in Xi

4 Zero conditional mean of the errors

5 Homoskedasticity

6 Errors are conditionally Normal
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OLS Assumptions VI

Assumption (VI. Normality)

The population error term is independent of the explanatory variable, u⊥⊥X , and
is normally distributed with mean zero and variance σ2

u:

u ∼ N(0, σ2
u), which implies Y |X ∼ N(β0 + β1X , σ

2
u)

Note: This also implies homoskedasticity and zero conditional mean.

Together Assumptions I–VI are the classical linear model (CLM)
assumptions.

The CLM assumptions imply that OLS is BUE (i.e. minimum variance
among all linear or non-linear unbiased estimators)

Non-normality of the errors is a serious concern in small samples. We can
partially check this assumption by looking at the residuals (more in coming
weeks)

Variable transformations can help to come closer to normality

Reminder: we don’t need normality assumption in large samples
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Sampling Distribution for β̂1

Theorem (Sampling Distribution of β̂1)

Under Assumptions I–VI,

β̂1 ∼ N
(
β1,Var[β̂1 | X ]

)
where Var[β̂1 | X ] =

σ2
u∑n

i=1(xi − x̄)2

which implies β̂1 − β1√
Var[β̂1 | X ]

=
β̂1 − β1

SE (β̂)
∼ N(0, 1)

Proof.

Given Assumptions I–VI, β̂1 is a linear combination of the i.i.d. normal random variables:

β̂1 = β1 +
n∑

i=1

(xi − x̄)

SSTx
ui where ui ∼ N(0, σ2

u).

Any linear combination of independent normals is normal, and we can transform/standarize any
normal random variable into a standard normal by subtracting off its mean and dividing by its
standard deviation.
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Sampling distribution of OLS slope

If we have Yi given Xi is distributed N(β0 + β1Xi , σ
2
u), then we have

the following at any sample size:

β̂1 − β1

SE [β̂1]
∼ N(0, 1)

Furthermore, if we replace the true standard error with the estimated
standard error, then we get the following:

β̂1 − β1

ŜE [β̂1]
∼ tn−2

The standardized coefficient follows a t distribution n − 2 degrees of
freedom. We take off an extra degree of freedom because we had to
estimate one more parameter than just the sample mean.

All of this depends on Normal errors!
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The t-Test for Single Population Parameters

SE [β̂1] = σu√∑n
i=1(xi−x̄)2

involves the unknown population error variance σ2
u

Replace σ2
u with its unbiased estimator σ̂2

u =
∑n

i=1 û
2
i

n−2 , and we obtain:

Theorem (Sampling Distribution of t-value)

Under Assumptions I–VI, the t-value for β1 has a t-distribution with n− 2 degrees
of freedom:

T ≡ β̂1 − β1

ŜE [β̂1]
∼ τn−2

Proof.
The logic is perfectly analogous to the t-value for the population mean — because we
are estimating the denominator, we need a distribution that has fatter tails than N(0, 1)
to take into account the additional uncertainty.

This time, σ̂2
u contains two estimated parameters (β̂0 and β̂1) instead of one, hence the

degrees of freedom = n − 2.
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Where are we?

Under Assumptions 1-5 and in large samples, we know that

β̂1 ∼ N

(
β1,

σ2
u∑n

i=1(Xi − X )2

)
Under Assumptions 1-6 and in any sample, we know that

β̂1 − β1

ŜE [β̂1]
∼ tn−2

Now let’s briefly return to some of the large sample properties.
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Large Sample Properties: Consistency

We just looked formally at the small sample properties of the OLS
estimator, i.e., how (β̂0, β̂1) behaves in repeated samples of a given n.

Now let’s take a more rigorous look at the large sample properties, i.e., how
(β̂0, β̂1) behaves when n→∞.

Theorem (Consistency of OLS Estimator)

Given Assumptions I–IV, the OLS estimator β̂1 is consistent for β1 as n→∞:

plim
n→∞

β̂1 = β1

Technical note: We can slightly relax Assumption IV:

E [u|X ] = 0 (any function of X is uncorrelated with u)

to its implication:

Cov[u,X ] = 0 (X is uncorrelated with u)

for consistency to hold (but not unbiasedness).
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Large Sample Properties: Consistency

Proof.
Similar to the unbiasedness proof:

β̂1 =

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

= β1 +

∑n
i (xi − x̄)ui∑n
i (xi − x̄)2

plim β̂1 = plim β1 + plim

∑n
i (xi − x̄)ui∑n
i (xi − x̄)2

(Wooldridge C.3 Property i)

= β1 +
plim 1

n

∑n
i (xi − x̄)ui

plim 1
n

∑n
i (xi − x̄)2

(Wooldridge C.3 Property iii)

= β1 +
Cov[X , u]

Var[X ]
(by the law of large numbers)

= β1 (Cov[X , u] = 0 and Var[X ] > 0)

OLS is inconsistent (and biased) unless Cov[X , u] = 0

If Cov[u,X ] > 0 then asymptotic bias is upward; if Cov[u,X ] < 0
asymptotic bias is downwards
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Large Sample Properties: Asymptotic Normality

For statistical inference, we need to know the sampling distribution of β̂
when n→∞.

Theorem (Asymptotic Normality of OLS Estimator)

Given Assumptions I–V, the OLS estimator β̂1 is asymptotically normally
distributed:

β̂1 − β1

ŜE [β̂1]

approx.∼ N(0, 1)

where

ŜE [β̂1] =
σ̂u√∑n

i=1(xi − x̄)2

with the consistent estimator for the error variance:

σ̂2
u =

1

n

n∑
i=1

û2
i

p→ σ2
u
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Large Sample Inference

Proof.
Proof is similar to the small-sample normality proof:

β̂1 = β1 +
n∑

i=1

(xi − x̄)

SSTx
ui

√
n(β̂1 − β1) =

√
n · 1

n

∑n
i=1(xi − x̄)ui

1
n

∑n
i=1(xi − x̄)2

where the numerator converges in distribution to a normal random variable by CLT.
Then, rearranging the terms, etc. gives you the right formula given in the theorem.

For a more formal and detailed proof, see Wooldridge Appendix 5A.

We need homoskedasticity (Assumption V) for this result, but we do not need
normality (Assumption VI).

Result implies that asymptotically our usual standard errors, t-values, p-values, and
CIs remain valid even without the normality assumption! We just proceed as in the
small sample case where we assume normality.

It turns out that, given Assumptions I–V, the OLS asymptotic variance is also the
lowest in class (asymptotic Gauss-Markov).
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Testing and Confidence Intervals

Three ways of making statistical inference out of regression:

1 Point Estimation: Consider the sampling distribution of our point
estimator β̂1 to infer β1

2 Hypothesis Testing: Consider the sampling distribution of a test
statistic to test hypothesis about β1 at the α level

3 Interval Estimation: Consider the sampling distribution of an interval
estimator to construct intervals that will contain β1 at least
100(1− α)% of the time.

For 2 and 3, we need to know more than just the mean and the variance of
the sampling distribution of β̂1. We need to know the full shape of the
sampling distribution of our estimators β̂0 and β̂1.
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Null and alternative hypotheses review

Null: H0 : β1 = 0

I The null is the straw man we want to knock down.
I With regression, almost always null of no relationship

Alternative: Ha : β1 6= 0

I Claim we want to test
I Almost always “some effect”
I Could do one-sided test, but you shouldn’t

Notice these are statements about the population parameters, not the
OLS estimates.
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Test statistic

Under the null of H0 : β1 = c , we can use the following familiar test
statistic:

T =
β̂1 − c

ŜE [β̂1]

As we saw in the last section, if the errors are conditionally Normal,
then under the null hypothesis we have:

T ∼ tn−2

In large samples, we know that T is approximately (standard)
Normal, but we also know that tn−2 is approximately (standard)
Normal in large samples too, so this statement works there too, even
if Normality of the errors fails.

Thus, under the null, we know the distribution of T and can use that
to formulate a rejection region and calculate p-values.
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Rejection region
Choose a level of the test, α, and find rejection regions that
correspond to that value under the null distribution:

P(−tα/2,n−2 < T < tα/2,n−2) = 1− α
This is exactly the same as with sample means and sample differences
in means, except that the degrees of freedom on the t distribution
have changed.

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

x

dn
or

m
(x

)

Retain RejectReject

0.025 0.025
t = 1.96-t = -1.96
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p-value

The interpretation of the p-value is the same: the probability of seeing
a test statistic at least this extreme if the null hypothesis were true

Mathematically:

P

(∣∣∣∣∣ β̂1 − c

ŜE [β̂1]

∣∣∣∣∣ ≥ |Tobs |

)
If the p-value is less than α we would reject the null at the α level.
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Confidence intervals

Very similar to the approach with sample means. By the sampling
distribution of the OLS estimator, we know that we can find t-values
such that:

P
(
− tα/2,n−2 ≤

β̂1 − β1

ŜE [β̂1]
≤ tα/2,n−2

)
= 1− α

If we rearrange this as before, we can get an expression for confidence
intervals:

P
(
β̂1 − tα/2,n−2ŜE [β̂1] ≤ β1 ≤ β̂1 + tα/2,n−2ŜE [β̂1]

)
= 1− α

Thus, we can write the confidence intervals as:

β̂1 ± tα/2,n−2ŜE [β̂1]

We can derive these for the intercept as well:

β̂0 ± tα/2,n−2ŜE [β̂0]
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CIs Simulation Example

Returning to our simulation example we can simulate the sampling
distributions of the 95 % confidence interval estimates for β̂1 and β̂0

Statistical Inference for Simple Linear Regression
Diagnostics

Properties of the Least Squares Estimator (Point Estimation)
Hypothesis Tests
Confidence Intervals

Sampling distribution of interval estimates

Returning to the simulation example, we can simulate the sampling distributions of the
95% interval estimates for bβ0 and bβ1.
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Gov2000: Quantitative Methodology for Political Science I
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CIs Simulation Example

Statistical Inference for Simple Linear Regression
Diagnostics

Properties of the Least Squares Estimator (Point Estimation)
Hypothesis Tests
Confidence Intervals

Sampling distribution of interval estimates

When we repeat the process over and over, we expect 95% of the confidence intervals
to contain the true parameters.
Note that, in a given sample, one CI may cover its true value and the other may not.

ββ̂0

0 2 4 6 8 10

ββ̂1

−2.0 −1.5 −1.0 −0.5 0.0

Gov2000: Quantitative Methodology for Political Science I
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Prediction error

How do we judge how well a line fits the data?

One way is to find out how much better we do at predicting Y once
we include X into the regression model.

Prediction errors without X : best prediction is the mean, so our
squared errors, or the total sum of squares (SStot) would be:

SStot =
n∑

i=1

(Yi − Y )2

Once we have estimated our model, we have new prediction errors,
which are just the sum of the squared residuals or SSres :

SSres =
n∑

i=1

(Yi − Ŷi )
2
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Sum of Squares
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Sum of Squares
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R-square

By definition, the residuals have to be smaller than the deviations
from the mean, so we might ask the following: how much lower is the
SSres compared to the SStot?

We quantify this question with the coefficient of determination or R2.
This is the following:

R2 =
SStot − SSres

SStot
= 1− SSres

SStot

This is the fraction of the total prediction error eliminated by
providing information on X .

Alternatively, this is the fraction of the variation in Y is “explained
by” X .

R2 = 0 means no relationship

R2 = 1 implies perfect linear fit
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Is R-squared useful?
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Is R-squared useful?
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Is R-squared useful?
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OLS Assumptions Summary
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What Do the Regression Coefficients Mean Substantively?

So far, we have learned the statistical properties of the OLS estimator

However, these properties do not tell us what types of inference we
can draw from the estimates

Three types of inference:

1 Descriptive inference:
I Summarizing sample data by drawing the “best fitting” line

I No inference about the underlying population intended

I Assumption required: III (variation in X ) only

2 Predictive inference:
I Inference about a new observation coming from the same population

I Example: Wage (Y ) and education (X ):
“What’s my best guess about the wage of a new worker who only has
high school education?”

I Assumptions required: III and II (random sampling)

I Assumptions desired: I (linearity)
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What Do the Regression Coefficients Mean Substantively?

3 Causal inference:
I Inference about counterfactuals, i.e. hypothetical interventions to the

same units

I Example: Wage (Y ) and education (X ):
“What would the wages of a non-college educated worker be if we sent
them to college?”

I We will come back to this in the last few weeks.
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OLS as a Best Linear Predictor (Review of BLUE)
Suppose that we want to predict the values of Y given observed X values

Suppose further that we’ve decided to use a linear predictor β̂0 + β̂1X (but
not necessarily assume a true linear relationship in the population)

How to choose a good predictor? A popular criterion is mean squared error:

MSE = E
[
(Yi − Ŷi )

2
]

= E
[
(Yi − β̂0 − β̂1Xi )

2
]

= E
[
û2
i

]
The smaller a predictor makes MSE , the better.

Now, note that the sample version of MSE = 1
n

∑n
i=1 û

2
i

Recall how we got the OLS estimator; we minimized
∑n

i=1 û
2!

This implies that OLS is the best linear predictor in terms of MSE

Which assumptions did we use to get this result?

I Needed: Assumptions II (random sampling) and III (variation in X )
I Not needed: Assumptions I (linearity) and IV (zero cond. mean)

Note that Assumption I would make OLS the best, not just best linear,
predictor, so it is certainly desired
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State Legislators and African American Population
Interpretations of increasing quality:

> summary(lm(beo ~ bpop, data = D))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.31489 0.32775 -4.012 0.000264 ***

bpop 0.35848 0.02519 14.232 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.317 on 39 degrees of freedom

Multiple R-squared: 0.8385,Adjusted R-squared: 0.8344

F-statistic: 202.6 on 1 and 39 DF, p-value: < 2.2e-16

“In states where an additional .01 proportion of the population is African American, we
observe on average .035 proportion more African American state legislators (between .03
and .04 with 95% confidence).”

(still not perfect, the best will be subject matter specific. is fairly clear it is non-causal,
gives uncertainty.)
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Graphical
Graphical presentations are often the most informative. We will talk more
about them later in the semester.
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Ground Rules: Interpretation of the Slope

I almost didn’t include the last example in the slides. It is hard to give
ground rules that cover all cases. Regressions are a part of marshaling
evidence in an argument which makes them naturally specific to context.

1 Give a short, but precise interpretation of the association using
interpretable language and units

2 If the association has a causal interpretation explain why, otherwise
do not imply a causal interpretation.

3 Provide a meaningful sense of uncertainty

4 Indicate the practical significance of the finding for your argument.
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Next Week

OLS with two regressors

Omitted Variables and Multicolinearity

Dummy variables, interactions, polynomials

Reading:
I Optional Fox Chapters 5-7
I For more on logs, Gelman and Hill (2007) pg 59-61 is nice
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Fun with Non-Linearities

The linear regression model can accommodate non-linearity in X (but
not in β)

We do this by first transforming X appropriately

A useful transformation when variables are positive and right-skewed
is the (natural) logarithm

The log transformation changes the interpretation of β1:

I Regress log(Y ) on X −→ β1 approximates percent increase in Y
associated with one unit increase in X

I Regress Y on log(X ) −→ β1 approximates increase in Y associated
with a percent increase in X

I Note that these approximations work only for small increments

I In particular, they do not work when X is a discrete random variable
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Example from the American War Library
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JapanItaly TriesteNicaraguaTexas Border Cortina WarHaitiOperation Enduring Freedom, Afghanistan TheaterMexican WarOperation Enduring Freedom, AfghanistanFranco−Amer Naval WarNorth Atlantic Naval WarTerrorism Riyadh, Saudi ArabiaChina Civil WarDominican RepublicRussia Siberia ExpeditionBarbary WarsNicaraguaMexicoChina Yangtze ServiceGrenadaSouth KoreaTexas War Of IndependenceLebanonIsrael Attack/USS LibertyDominican RepublicPanamaChina Boxer RebellionMoro CampaignsRussia North ExpeditionPersian Gulf, Op Desert Shield/StormTerrorism Oklahoma CityPersian GulfTerrorism Khobar Towers, Saudi ArabiaYemen, USS ColeTerrorism, World Trade CenterSpanish American WarIndian WarsPhilippines WarD−DayAleutian CampaignWar of 1812Revolutionary War
Iwo JimaOperation Iraqi Freedom, Iraq

Okinawa

Korean War

Civil War, South
Vietnam War

World War I

Civil War, North

World War II

β̂1 = 1.23 −→ One additional soldier killed predicts 1.23 additional soldiers
wounded on average
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Wounded (Scale in Levels)
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Wounded (Logarithmic Scale)
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Regression: Log-Level
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β̂1 = 0.0000237 −→ One additional soldier killed predicts 0.0023 percent increase
in the number of soldiers wounded on average
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Regression: Log-Log
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β̂1 = 0.797 −→ A percent increase in deaths predicts 0.797 percent increase in
the wounded on average
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Why r 2?

To calculate r2, we need to think about the following two quantities:

1 TSS: Total sum of squares

2 SSE: Sum of squared errors

TSS =
n∑

i=1

(yi − ȳ)2.

SSE =
n∑

i=1

u2
i .

r2 = 1− SSE

TSS
.
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1−SSE/TSS = 0.45
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Derivation

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

{ûi + (ŷi − ȳ)}2

=
n∑

i=1

{û2
i + 2ûi (ŷi − ȳ) + (ŷi − ȳ)2}

=
n∑

i=1

û2
i + 2

n∑
i=1

ûi (ŷi − ȳ) +
n∑

i=1

(ŷi − ȳ)2

=
n∑

i=1

û2
i +

n∑
i=1

(ŷi − ȳ)2

TSS = SSE + RegSS
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Coefficient of Determination

We can divide each side by the TSS:

SSE

TSS
+

RegSS

TSS
=

TSS

TSS

SSE

TSS
+

RegSS

TSS
= 1

RegSS

TSS
= 1− SSE

TSS
= r2

r2 is a measure of how much of the variation in Y is accounted for by X .
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