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Today’s Tasks

Review material presented in lecture
sampling
estimators (and their properties)
CLT
confidence intervals

Cover computational examples
rnorm(), pnorm(), qnorm()
drawing random samples
generating CIs

All of this will help you on the problem set!
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The Big Picture

In studying the world, we usually run into the following challenge:
There’s some quantity of interest we want to know about a
population, the estimand, which we consider to have a "true"
value
e.g. What percentage of balls in this ball pit are red?
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The Big Picture

Ideally, we’d like to collect information on every member of the
population. But usually, that’s not possible. Instead we collect
data on a random sample drawn from the population.
e.g. Randomly pull out a bunch of balls and count how many
are red
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The Big Picture

This week is about understanding how to infer the "true"
population-level distribution from the data we do have in a
sample.
e.g. Calculate the percentage of red balls in the sample and
extrapolate from that information to a lot of hypothetical
samples
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An Overview

Population Distribution 
Y ~ ?(μ, σ2)

Estimand /Parameter
μ, σ2

Sample

(Y1, Y2,…,YN)

Estimator/Statistic

ĝ(Y1, Y2,…,YN)

Estimate
ĝ(Y1 = y1,Y2 = y2 , … , YN = yN)
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Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the unobserved
population distribution, which can be characterized by parameters.

Estimands are the parameters that we
aim to estimate. Often written with greek
letters (e.g. µ, θ, population mean) :
1
N

∑N
i=1 yi

Estimators are functions of sample data
(i.e. statistics) which we use to learn
about the estimands. Often denoted with
a “hat” (e.g. µ̂, θ̂)

Estimates are particular values of
estimators that are realized in a given
sample (e.g. sample mean): 1

n

∑n
i=1 yi
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Clarifying Notation and Terms You’ll Encounter

Estimand / Population Parameter (Theoretical)
Population mean: µ = E [X ] = 1

N

∑N
i=1 Xi

Population variance:
σ2 = E [(X − E (X ))2] = 1

N

∑N
i=1(Xi − µ)2

Estimator (Links Data to Estimand)
Estimator for population mean: µ̂
Estimator for population variance: σ̂2

Estimate (Calculated from a Given Sample), e.g.
Sample mean: X n = x1+x2+...+xn

n = 1
n

∑n
i=1 xi

Sample variance: s2
n = 1

n−1

∑n
i=1(xi − X n)

2
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Sampling Distribution

Consider using the sample mean as an estimator for the "true"
mean: µ̂ = X n:

Usually we only ever observe one sample of size n - so we get
one value of X n

But consider the hypothetical case that we got 10,000 random
samples of size n. By random chance, the samples may look
different from each other. Each sample would have its own X n

The sampling distribution of X n gives the probability density
of the possible values of X n
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Sampling Distribution of the Sample Mean

Example:

Mean Number of Baseline Angering Items

D
en

si
ty

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5
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Other estimators (e.g. sample variance, or proportions) also have
sampling distributions.
We can describe sampling distributions in terms of their center (i.e.
mean) and spread (i.e. standard error).
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The Central Limit Theorem

The Central Limit Theorem tells us something cool about sample
means (X n).
From the lecture slides, as n increases, the sampling distribution of
X n becomes more bell-shaped. This is the basic implication of the
Central Limit Theorem:

If X1, . . . ,Xn ∼i .i .d .?(µ, σ
2) and n is large, then

X n ∼approx N(µ,
σ2

n
)

so
X n−µ
σ/
√
n
∼ N(0, 1)
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Summary of Properties of Estimators

Concept Criteria Intuition
Unbiasedness E [µ̂] = µ Right on average

Efficiency V [µ̂1] < V [µ̂2] Low variance

Consistency µ̂n
p→ µ Converge to estimand as n→∞

Asymptotic Normality µ̂n
approx.∼ N(µ, σ

2

n ) Approximately normal in large n
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Confidence Intervals

Recall from CLT that X n−µ
σ/
√
n
∼ N(0, 1)

P

(
− z ≤ µ̂− µ

ŜE [µ̂]
≤ z

)
= (1− α)

We call z "critical value", and denote such z as zα/2.
When X ∼ N(0, 1)
P(X ≤ zα/2) = 1− α/2
P(X ≤ zα) = 1− α
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Confidence Intervals

Recall from CLT that X n−µ
σ/
√
n
∼ N(0, 1)

P

(
− zα/2 ≤

µ̂− µ
ŜE [µ̂]

≤ zα/2

)
= (1− α)

We can rewrite this into

P

(
µ̂− zα/2 ∗ ŜE [µ̂] ≤ µ ≤ µ̂+ zα/2 ∗ ŜE [µ̂]

)
= (1− α)

α: significance level. More on this in future lectures. So far, all we
need to know is: confidence level + α = 1
Confidence level? 100(1− α)%
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Confidence Intervals

What is the formula for two-sided confidence intervals with
confidence level of 100(1-α)%?

[µ̂− zα/2 ∗ ŜE [µ̂], µ̂+ zα/2 ∗ ŜE [µ̂]]

Or
[X n − zα/2

s√
n
,X n + zα/2

s√
n
]

How do we find zα/2? qnorm() : F−1(p)
Returns z value at which CDF of Standard Normal equals p
What is the width of the confidence interval? 2 ∗ zα/2 s√

n
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We can use our analytic samples 
to find a confidence interval

your
estimate t.gg/h.i.
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tiff

:: .we're looking for

a two - sided interval
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1. The distribution 
2. Confidence level 

• Alpha 
3. Sidedness 
4. Critical value(s) 
5. Standard error of our estimate 

To use the confidence interval formula, 
we need to find: 

.

for a proportion , the
\

tnmnagecisg
.

. FEB -

n
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Calculating the confidence interval
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Our results
26.2% red with a 95 percent  

confidence interval of [22.3, 30.1]
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We hope our 
sample is in 

the 95%
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Fulton Data

Election data from Fulton County, Georgia, aggregated to the
precinct level

Table: Fulton Election Data

Variable Description

precint precint id
turnout voter turnout rate
black percent Black
sex percent Female
age mean age
dem turnout in democratic primary
rep turnout in republican primary
urban is the precinct in Atlanta
school school polling location
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Questions?



Agenda Samples Estimator Properties Confidence Intervals Fulton Data

Optional: One-sided Confidence Intervals

What about one-sided confidence intervals?

An 100(1-α)% upper (one-sided) confidence bound

X n + zα
s√
n

An 100(1-α)% lower (one-sided) confidence bound

X n − zα
s√
n
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Optional: One-sided Confidence Intervals

Why? Take lower one-sided CI for example.
An 100(1-α)% lower (one-sided) confidence bound

X n − zα
s√
n

Recall from CLT that X n−µ
σ/
√
n
∼ N(0, 1)

P

(
µ̂− µ
ŜE [µ̂]

≤ zα

)
= (1− α)

We can rewrite this into

P

(
µ ≥ X n − zα

s√
n

)
= (1− α)

Lower confidence bound µ ≥ X n − zα
s√
n

Or in the form of an "interval" (−∞,X n − zα
s√
n
)
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