Precept 5: Simple OLS Soc 500: Applied Social Statistics

Shay O'Brien¹

Princeton University

October 11, 2018

¹These slides draw on material from Ziyao Tian, Simone Zhang and Matt Blackwell.

Today's Agenda

- Chit chat
 - Review of common pset3 issues
 - How was pset4?
- Slides
 - OLS mechanics and assumptions
 - Hypothesis tests meet regression
 - Residuals and friends
 - Lemma 1: Why does everyone keep logging stuff??

- RStudio
 - Lemma 2: Lists
 - Regression in R

Population and Sample Linear Regression Function

• The population simple linear regression model can be stated as the following:

$$r(x) = E[Y|X = x] = \beta_0 + \beta_1 x$$

β₀, β₁ = population intercept and population slope (what we want to estimate)

Population and Sample Linear Regression Function

• The population simple linear regression model can be stated as the following:

$$r(x) = E[Y|X = x] = \beta_0 + \beta_1 x$$

- $\beta_0, \beta_1 = \text{population intercept and population slope (what we want to estimate)}$
- The estimated or sample regression function is:

$$\widehat{r}(X_i) = \widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

• $\widehat{eta}_0, \widehat{eta}_1$ are the estimated intercept and slope

Population and Sample Linear Regression Function

• The population simple linear regression model can be stated as the following:

$$r(x) = E[Y|X = x] = \beta_0 + \beta_1 x$$

- $\beta_0, \beta_1 = \text{population intercept and population slope (what we want to estimate)}$
- The estimated or sample regression function is:

$$\widehat{r}(X_i) = \widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $\widehat{eta}_0, \widehat{eta}_1$ are the estimated intercept and slope
- the Ordinary Least Squares (OLS) estimates are the intercept and slope that minimize the sum of the squared residuals:

$$(\widehat{\beta}_0, \widehat{\beta}_1) = \arg\min_{b_0, b_1} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$$

Equations for OLS $\hat{\beta_0}$ and $\hat{\beta_1}$

$$\widehat{\beta}_{0} = \overline{Y} - \widehat{\beta}_{1}\overline{X}$$

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{n}}{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n}}$$

$$= \frac{E[(X - \overline{X})(Y - \overline{Y})]}{E[(X - \overline{X})^{2}]}$$

$$= \frac{\text{Sample Covariance between X and Y}}{\text{Sample Variance of X}}$$

OLS slope as the sum of a random variable

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})Y_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} - \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})\overline{Y}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})Y_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \sum_{i=1}^{n} W_{i}Y_{i}$$

Where here we have the weights, W_i as:

$$W_i = \frac{(X_i - \overline{X})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Sampling Distributions of Random Variables $\hat{\beta}_1$ & $\hat{\beta}_0$

β₁ can be seen as the sum of a RV (which is also a RV), or a weighted sum of the outcomes.

• Seeing $\hat{\beta}_1$ & $\hat{\beta}_0$ as RV, we want to know their sampling distributions. How?

Sampling Distributions of Random Variables $\hat{\beta}_1$ & $\hat{\beta}_0$

- $\hat{\beta}_1$ can be seen as the sum of a RV (which is also a RV), or a weighted sum of the outcomes.
- Seeing $\hat{\beta}_1$ & $\hat{\beta}_0$ as RV, we want to know their sampling distributions. How?
- We need assumptions to learn about their sampling distributions. In other worsd, under what conditions will they look like ...???

OLS Assumptions

Linearity in Parameters: The population model is linear in its parameters and correctly specified.

OLS Assumptions

- Linearity in Parameters: The population model is linear in its parameters and correctly specified.
- ② Random Sampling: The observed data represent a random sample from the population described by the model.

OLS Assumptions

- Linearity in Parameters: The population model is linear in its parameters and correctly specified.
- ② Random Sampling: The observed data represent a random sample from the population described by the model.
- **3** Variation in X: There is variation in the explanatory variable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

OLS Assumptions

- Linearity in Parameters: The population model is linear in its parameters and correctly specified.
- ② Random Sampling: The observed data represent a random sample from the population described by the model.
- **3** Variation in X: There is variation in the explanatory variable.
- ④ Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable.

OLS Assumptions

- Linearity in Parameters: The population model is linear in its parameters and correctly specified.
- ② Random Sampling: The observed data represent a random sample from the population described by the model.
- **3** Variation in X: There is variation in the explanatory variable.
- ④ Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable.
- S Homoskedasticity: The error term has the same variance conditional on all values of the explanatory variable.

OLS Assumptions

- Linearity in Parameters: The population model is linear in its parameters and correctly specified.
- ② Random Sampling: The observed data represent a random sample from the population described by the model.
- **3** Variation in X: There is variation in the explanatory variable.
- ④ Zero conditional mean: Expected value of the error term is zero conditional on all values of the explanatory variable.
- S Homoskedasticity: The error term has the same variance conditional on all values of the explanatory variable.
- Sormality: The error term is independent of the explanatory variables and normally distributed.

Assumptions and Sampling Distribution

• Under Assumptions 1-6, we know that

$$\widehat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right) \text{ or } \frac{\widehat{\beta}_1 - \beta_1}{SE[\widehat{\beta}_1]} \sim N\left(0, 1\right)$$

4 日 ト 4 団 ト 4 王 ト 4 王 ト 王 - りへで

Assumptions and Sampling Distribution

• Under Assumptions 1-6, we know that

$$\widehat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right) \text{ or } \frac{\widehat{\beta}_1 - \beta_1}{SE[\widehat{\beta}_1]} \sim N\left(0, 1\right)$$

• Under Assumptions 1-6 and in any sample, we know that

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim t_{n-2}$$

<ロト 4 目 ト 4 目 ト 4 目 ・ 9 へ (P)</p>

Assumptions and Sampling Distribution

• Under Assumptions 1-6, we know that

$$\widehat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_u^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right) \text{ or } \frac{\widehat{\beta}_1 - \beta_1}{SE[\widehat{\beta}_1]} \sim N\left(0, 1\right)$$

• Under Assumptions 1-6 and in any sample, we know that

$$\frac{\widehat{\beta}_1 - \beta_1}{\widehat{SE}[\widehat{\beta}_1]} \sim t_{n-2}$$

• Under Assumptions 1-5 and in large samples, we know that

$$\frac{\widehat{\beta}_1 - \beta_1}{SE[\widehat{\beta}_1]} \sim N(0, 1)$$

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 三 > < 三 > < ○ < ○</p>

Three ways of making statistical inference out of regression

9 Point Estimation: Consider the sampling distribution of our point estimator β₁ to infer β₁

イロト 不良 ト イヨト イヨト ヨー ろくぐ

Three ways of making statistical inference out of regression

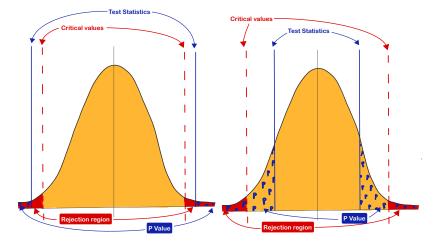
- **9** Point Estimation: Consider the sampling distribution of our point estimator β₁ to infer β₁
- **2** Hypothesis Testing: Consider the sampling distribution of a test statistic to test hypothesis about β₁ at the α level

イロア 人口 ア イロア イロア イロア うくろ

Three ways of making statistical inference out of regression

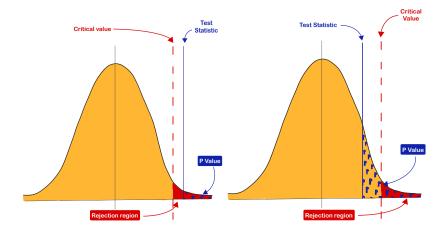
- **9** Point Estimation: Consider the sampling distribution of our point estimator β₁ to infer β₁
- 2 Hypothesis Testing: Consider the sampling distribution of a test statistic to test hypothesis about β₁ at the α level
- 3 Interval Estimation: Consider the sampling distribution of an interval estimator to construct intervals that will contain β₁ at least 100(1 α)% of the time.

Two-sided hypothesis test



◆□ > ◆□ > ◆ □ > ● □ >

One-sided hypothesis test



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - のへぐ

P-value < Alpha

|Test statistic| > |Critical value|

Otherwise, you have to retain the null *.

*But it's still a hypothesis! You haven't proved that it's true!

イロア 人口 ア イロア イロア イロア うくろ

P-value < Alpha

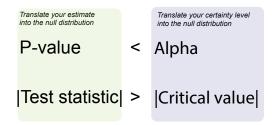
|Test statistic| > |Critical value|

If one of these comparison statements is true/false, so is the other and vice versa.

Otherwise, you have to retain the null *.

*But it's still a hypothesis! You haven't proved that it's true!

イロア 人口 ア イロア イロア イロア うくろ



If one of these comparison statements is true/false, so is the other and vice versa.

Otherwise, you have to retain the null *.

*But it's still a hypothesis! You haven't proved that it's true!

イロト イヨト イヨト ノヨー クタや

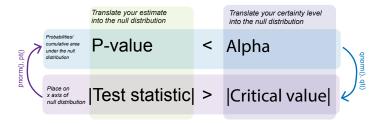
	Translate your estimate into the null distribution		Translate your certainty level into the null distribution
Probabilities/ cumulative area under the null distribution	P-value	<	Alpha
Place on x axis of null distribution	Test statistic	>	Critical value

If one of these comparison statements is true/false, so is the other and vice versa.

Otherwise, you have to retain the null *.

*But it's still a hypothesis! You haven't proved that it's true!

イロア 人口 ア イロア イロア イロア うくろ



If one of these comparison statements is true/false, so is the other and vice versa.

Otherwise, you have to retain the null *.

*But it's still a hypothesis! You haven't proved that it's true!

・ロト ・ 理ト ・ ヨト ・ ヨト

Sac

Equations for β_0 and β_1

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.$$

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\text{Sample Covariance between } X \text{ and } Y}{\text{Sample Variance of } X}$$

Null and alternative hypotheses in regression

- Null: $H_0: \beta_0 = 0; H_0: \beta_1 = 0$
 - The null is the straw man we want to knock down.
 - With regression, almost always null of no relationship
- Alternative: $H_a: \beta_0 \neq 0; H_a: \beta_1 \neq 0$
 - Claim we want to test
 - Almost always "some effect"
- Notice that these have no hats! We're talking about the population parameters, not our OLS estimates. Only estimates get hats.

Test statistic

• Under the null of H_0 : $\beta_1 = c$, we can use the following familiar test statistic:

$$T = \frac{\widehat{\beta}_1 - c}{\widehat{SE}[\widehat{\beta}_1]}$$

where

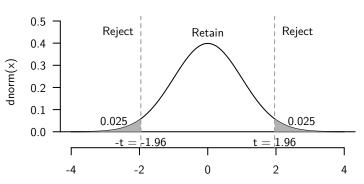
$$\widehat{SE}[\hat{eta}_1] = rac{\hat{\sigma}_u}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

• If the errors are conditionally Normal, then under the null hypothesis we have:

$$T \sim t_{n-2}$$

Rejection region

• Choose a level of the test, α , and find rejection regions that correspond to that value under the null distribution:



$$P(-t_{lpha/2,n-2} < T < t_{lpha/2,n-2}) = 1 - lpha$$

Х

Sac

p-value

- The interpretation of the p-value is the same: the probability of seeing a test statistic at least this extreme if the null hypothesis were true
- Mathematically:

$$P\left(\left|\frac{\widehat{eta}_1-c}{\widehat{SE}[\widehat{eta}_1]}
ight|\geq |T_{obs}|
ight)$$

 $\bullet\,$ If the p-value is less than α we would reject the null at the $\alpha\,$ level.

Fitted values and residuals

• The estimated or sample regression function is:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

- $\widehat{eta}_0, \widehat{eta}_1$ are the estimated intercept and slope
- \widehat{Y}_i is the fitted/predicted value
- We also have the residuals, \hat{u}_i which are the differences between the true values of Y and the predicted value:

$$\widehat{u}_i = Y_i - \widehat{Y}_i$$

• You can think of the residuals as the prediction errors of our estimates.

Prediction error

• Prediction errors without X: best prediction is the mean, so our squared errors, or the **total sum of squares** (SS_{tot}) would be:

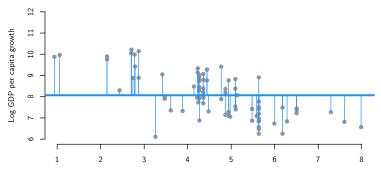
$$SS_{tot} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

• Once we have estimated our model, we have new prediction errors, which are just the sum of the squared residuals or SS_{res}:

$$SS_{res} = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sum of Squares

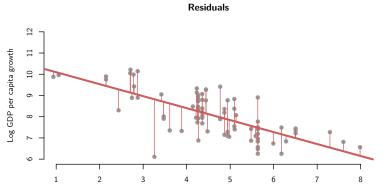


Total Prediction Errors

Log Settler Mortality

▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - のへで

Sum of Squares



Log Settler Mortality

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < O < O </p>

R-square

• **Coefficient of determination** or R^2 :

$$R^2 = \frac{SS_{tot} - SS_{res}}{SS_{tot}} = 1 - \frac{SS_{res}}{SS_{tot}}$$

- This is the fraction of the total prediction error eliminated by providing information on *X*.
- Alternatively, this is the fraction of the variation in Y is "explained by" X.
- $R^2 = 0$ means no relationship
- $R^2 = 1$ implies perfect linear fit

The linear regression model *can* accommodate non-linearity in X (but not in β)

- The linear regression model *can* accommodate non-linearity in X (but not in β)
- We do this by first transforming X appropriately

The linear regression model *can* accommodate non-linearity in X (but not in β)

- We do this by first **transforming** *X* appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm

- The linear regression model *can* accommodate non-linearity in X (but not in β)
- We do this by first **transforming** *X* appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_1 :

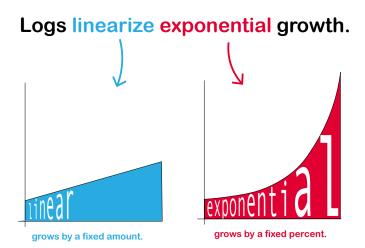
- The linear regression model *can* accommodate non-linearity in X (but not in β)
- We do this by first **transforming** *X* appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_1 :
 - Regress log(Y) on X → β₁ approximates percent increase in Y associated with one unit increase in X

- The linear regression model *can* accommodate non-linearity in X (but not in β)
- We do this by first **transforming** *X* appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_1 :
 - Regress log(Y) on X → β₁ approximates percent increase in Y associated with one unit increase in X
 - Regress Y on log(X) → β₁ approximates increase in Y associated with a percent increase in X

- The linear regression model *can* accommodate non-linearity in X (but not in β)
- We do this by first **transforming** *X* appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_1 :
 - Regress log(Y) on X → β₁ approximates percent increase in Y associated with one unit increase in X
 - Regress Y on log(X) → β₁ approximates increase in Y associated with a percent increase in X
 - Note that these approximations work only for small increments

- The linear regression model *can* accommodate non-linearity in X (but not in β)
- We do this by first **transforming** *X* appropriately
- A useful transformation when variables are positive and right-skewed is the (natural) logarithm
- The log transformation changes the interpretation of β_1 :
 - Regress log(Y) on X → β₁ approximates percent increase in Y associated with one unit increase in X
 - Regress Y on $\log(X) \longrightarrow \beta_1$ approximates increase in Y associated with a **percent increase** in X
 - Note that these approximations work only for small increments
 - In particular, they do not work when X is a discrete random variable

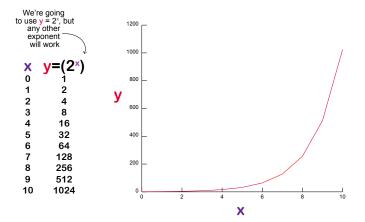
Why does everyone keep logging stuff??

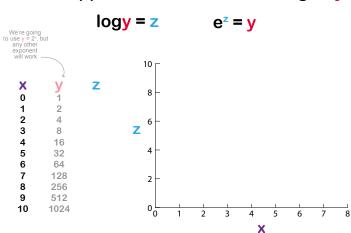


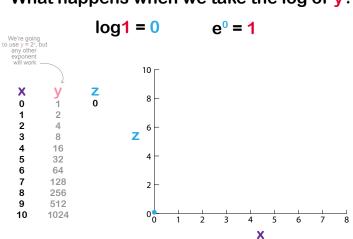
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

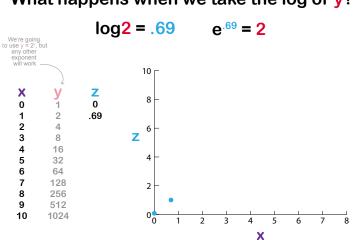
nac

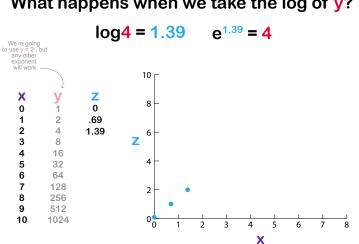
How? Let's look. First, here's a graph showing exponential growth.



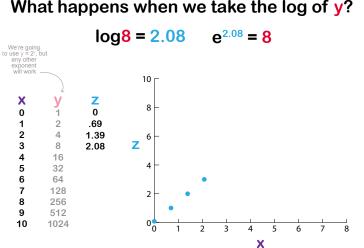




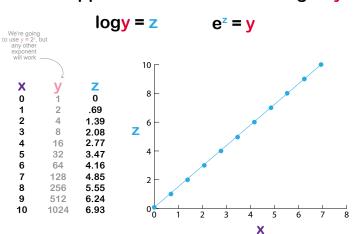




< □ > < 同 > < □ > < □ > < □ > 3 5900



< □ > < 同 > < □ > < □ > < □ > 3 5900



Questions?