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Population and Sample Linear Regression Function

The population simple linear regression model can be stated as
the following:

r(x) = E [Y |X = x ] = β0 + β1x

β0, β1 = population intercept and population slope (what we
want to estimate)

The estimated or sample regression function is:

r̂(Xi ) = Ŷi = β̂0 + β̂1Xi

β̂0, β̂1 are the estimated intercept and slope
the Ordinary Least Squares (OLS) estimates are the
intercept and slope that minimize the sum of the squared
residuals:

(β̂0, β̂1) = argmin
b0,b1

n∑
i=1

(Yi − b0 − b1Xi )
2
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Equations for OLS β̂0 and β̂1

β̂0 = Ȳ − β̂1X̄

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

=

∑n
i=1(Xi−X )(Yi−Y )

n∑n
i=1(Xi−X )2

n

=
E [(X − X )(Y − Y )]

E [(X − X )2]

=
Sample Covariance between X and Y

Sample Variance of X
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OLS slope as the sum of a random variable

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

=

∑n
i=1(Xi − X )Yi∑n
i=1(Xi − X )2

−
∑n

i=1(Xi − X )Y∑n
i=1(Xi − X )2

=

∑n
i=1(Xi − X )Yi∑n
i=1(Xi − X )2

=
n∑

i=1

WiYi

Where here we have the weights, Wi as:

Wi =
(Xi − X )∑n
i=1(Xi − X )2
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Sampling Distributions of Random Variables β̂1 & β̂0

β̂1 can be seen as the sum of a RV (which is also a RV), or a
weighted sum of the outcomes.
Seeing β̂1 & β̂0 as RV, we want to know their sampling
distributions. How?

We need assumptions to learn about their sampling
distributions. In other worsd, under what conditions will they
look like ...???
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OLS Assumptions

1 Linearity in Parameters: The population model is linear in
its parameters and correctly specified.

2 Random Sampling: The observed data represent a random
sample from the population described by the model.

3 Variation in X : There is variation in the explanatory variable.

4 Zero conditional mean: Expected value of the error term is
zero conditional on all values of the explanatory variable.

5 Homoskedasticity: The error term has the same variance
conditional on all values of the explanatory variable.

6 Normality: The error term is independent of the explanatory
variables and normally distributed.
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Assumptions and Sampling Distribution

Under Assumptions 1-6, we know that

β̂1 ∼ N

(
β1,

σ2
u∑n

i=1(Xi − X )2

)
or
β̂1 − β1

SE [β̂1]
∼ N (0, 1)

Under Assumptions 1-6 and in any sample, we know that

β̂1 − β1

ŜE [β̂1]
∼ tn−2

Under Assumptions 1-5 and in large samples, we know that

β̂1 − β1

SE [β̂1]
∼ N (0, 1)
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Three ways of making statistical inference out of regression

1 Point Estimation: Consider the sampling distribution of our
point estimator β̂1 to infer β1

2 Hypothesis Testing: Consider the sampling distribution of a
test statistic to test hypothesis about β1 at the α level

3 Interval Estimation: Consider the sampling distribution of an
interval estimator to construct intervals that will contain β1 at
least 100(1− α)% of the time.
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Two-sided hypothesis test

Test Statistics

Critical values

Rejection region

P Value

Test Statistics

Critical values

Rejection region
P Value
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One-sided hypothesis test

Test
StatisticCritical value

Rejection region

P Value

Test Statistic

Critical
Value

Rejection region

P Value
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|Test statistic|

P-value

You can reject the null hypothesis if:

Otherwise, you have to retain the null *.

*But it’s still a hypothesis! You haven’t proved that it’s true!

<

>

Alpha

|Critical value|
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If one of these comparison statements is true/false, 
so is the other and vice versa.
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Translate your estimate
into the null distribution

Translate your certainty level
into the null distribution

If one of these comparison statements is true/false, 
so is the other and vice versa.

|Test statistic|

P-value
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Otherwise, you have to retain the null *.
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Translate your estimate
into the null distribution

Translate your certainty level
into the null distribution

Probabilities/
cumulative area
under the null
distribution

Place on 
x axis of 
null distribution

If one of these comparison statements is true/false, 
so is the other and vice versa.

|Test statistic|

P-value

You can reject the null hypothesis if:

Otherwise, you have to retain the null *.

*But it’s still a hypothesis! You haven’t proved that it’s true!

<

>

Alpha

|Critical value|
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Translate your estimate
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Translate your certainty level
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Probabilities/
cumulative area
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Equations for β0 and β1

β̂0 = Ȳ − β̂1X̄ .

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2
=

Sample Covariance between X and Y

Sample Variance of X
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Null and alternative hypotheses in regression

Null: H0 : β0 = 0; H0 : β1 = 0

The null is the straw man we want to knock down.
With regression, almost always null of no relationship

Alternative: Ha : β0 6= 0; Ha : β1 6= 0

Claim we want to test
Almost always “some effect”

Notice that these have no hats! We’re talking about the
population parameters, not our OLS estimates. Only estimates
get hats.
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Test statistic

Under the null of H0 : β1 = c , we can use the following
familiar test statistic:

T =
β̂1 − c

ŜE [β̂1]

where
ŜE [β̂1] =

σ̂u√∑n
i=1(xi − x̄)2

If the errors are conditionally Normal, then under the null
hypothesis we have:

T ∼ tn−2
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Rejection region

Choose a level of the test, α, and find rejection regions that
correspond to that value under the null distribution:

P(−tα/2,n−2 < T < tα/2,n−2) = 1− α

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

x

dn
or

m
(x

)

Retain RejectReject

0.025 0.025
t = 1.96-t = -1.96
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p-value

The interpretation of the p-value is the same: the probability
of seeing a test statistic at least this extreme if the null
hypothesis were true
Mathematically:

P

(∣∣∣∣∣ β̂1 − c

ŜE [β̂1]

∣∣∣∣∣ ≥ |Tobs |

)

If the p-value is less than α we would reject the null at the α
level.
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Fitted values and residuals

The estimated or sample regression function is:

Ŷi = β̂0 + β̂1Xi

β̂0, β̂1 are the estimated intercept and slope
Ŷi is the fitted/predicted value
We also have the residuals, ûi which are the differences
between the true values of Y and the predicted value:

ûi = Yi − Ŷi

You can think of the residuals as the prediction errors of our
estimates.
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Prediction error

Prediction errors without X : best prediction is the mean, so
our squared errors, or the total sum of squares (SStot) would
be:

SStot =
n∑

i=1

(Yi − Y )2

Once we have estimated our model, we have new prediction
errors, which are just the sum of the squared residuals or SSres :

SSres =
n∑

i=1

(Yi − Ŷi )
2
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Sum of Squares
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R-square

Coefficient of determination or R2:

R2 =
SStot − SSres

SStot
= 1− SSres

SStot

This is the fraction of the total prediction error eliminated by
providing information on X .
Alternatively, this is the fraction of the variation in Y is
“explained by” X .
R2 = 0 means no relationship
R2 = 1 implies perfect linear fit
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Fun with Non-Linearities

The linear regression model can accommodate non-linearity in
X (but not in β)
We do this by first transforming X appropriately

A useful transformation when variables are positive and
right-skewed is the (natural) logarithm

The log transformation changes the interpretation of β1:
Regress log(Y ) on X −→ β1 approximates percent increase
in Y associated with one unit increase in X

Regress Y on log(X ) −→ β1 approximates increase in Y
associated with a percent increase in X

Note that these approximations work only for small increments

In particular, they do not work when X is a discrete random
variable
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Why does everyone keep logging stuff??

Logs linearize exponential growth. 

exponential
grows by a fixed percent.grows by a fixed amount.

linear
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How? Let’s look.
First, here’s a graph showing exponential growth.
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What happens when we take the log of  y?

logy = z ez = y
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What happens when we take the log of  y?

log1 = 0 e0 = 1
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What happens when we take the log of  y?

log2 = .69 e.69 = 2
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What happens when we take the log of  y?

log4 = 1.39 e1.39 = 4
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What happens when we take the log of  y?

log8 = 2.08 e2.08 = 8
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What happens when we take the log of  y?

logy = z ez = y
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Questions?
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