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1Ian Lundberg provided many of today’s examples. Thanks Ian!
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Today

1 Practice evaluating causal identification strategies in published
papers

2 Practice interpreting regression outputs ”substantively”
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A slight shift of focus

We’ve been doing lots of Applied Social Statistics.

Let’s do some Applied Social Statistics!
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Causal inference examples

We will walk through examples of social science papers that make
causal claims by assuming (explicitly or implicitly) selection on
observables. For each paper, we will:

Draw the DAG

Define the potential outcomes: Yi (0),Yi (1)

Discuss potential violations of the identifying assumptions.

Conclude: Do we buy it?
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Example 1: An ethnographic experiment

Duneier, Mitchell. 2001. Sidewalk. New York: Farrar, Straus, and
Giroux.

Ethnographic study of book vendors in Greenwich Village in
NYC.

Duneier noticed that black vendors were pushed around by
police officers.

Question: Does a vendors race and legal knowledge affect
how the police treat him?

Approach: A creative small-scale experiment.
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NYC street vendors
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Duneier 2001: The treated situation
Selections from p. 266-272
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Duneier 2001: Stating confounders
Selections from p. 266-272
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Duneier 2001: Control
Selections from p. 266-272
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Potential outcomes

Units of analysis are interactions with police

Sample size is 2, but 2 high-quality observations

Treatment: Vendor is a black male Greenwich Village
bookseller.

Control: Vendor is Mitch Duneier who explicitly defends his
rights
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Example 2: Occupational attainment model

Blau, Peter Michael, and Otis Dudley Duncan. 1967. The
American Occupational Structure. New York: Wiley.

Research question: How does family background affect the
educational and occupational attainment of the next
generation?

Method: Linear structural equation models, which were the
precursor to DAGs
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Example 2: Blau-Duncan (1967) status attainment model
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What to condition on for the effect of..

1 first job on occ. in 1962?

2 respondent’s education on first job?
3 respondent’s education on occ. in 1962?
4 father’s occupation/education on son’s occupation in 1962?
5 If we condition on respondent’s education and first job, will

father’s education be associated with son’s occupation in
1962?

Answers:
1 Respondent’s education, father’s occupation
2 father’s occupation is sufficient
3 father’s occupation is sufficient
4 No conditioning needed! But I doubt the DAG holds.
5 No. But only because the DAG assumes the unobserved

influences are uncorrelated!
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Blau-Duncan assumptions
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Side note - incredible pre-analysis plan (p. 18)
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Example 3: Bringing in aspirations

Sewell, William H., Archibald O. Haller, and Alejandro Portes.
1969. “The Educational and Early Occupational Attainment
Process.” American Sociological Review 34 (1): 82?92.
doi:10.2307/2092789.

Challenged Blau and Duncan

Argued that aspirations of children were an important
pathway linking parental and child attainment

Became known as the Wisconsin model of status attainment
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Example 3: Wisconsin model of status attainment
Sewell, Haller, and Portes (1969), ASR
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Wisconsin model: What to condition on to identify the
effect of...

1 X2 on X1?

2 X5 on X2?

Answers:

1 X5 or X3

2 No conditioning needed!

18 / 1



Wisconsin model: What to condition on to identify the
effect of...

1 X2 on X1?

2 X5 on X2?

Answers:

1 X5 or X3

2 No conditioning needed!

18 / 1



Wisconsin model: What to condition on to identify the
effect of...

1 X2 on X1?

2 X5 on X2?

Answers:

1 X5 or X3

2 No conditioning needed!

18 / 1



Wisconsin model: What to condition on to identify the
effect of...

1 X2 on X1?

2 X5 on X2?

Answers:

1 X5 or X3

2 No conditioning needed!

18 / 1



Example 4: Heterogeneous effects of college

Brand, Jennie E., and Yu Xie. 2010. “Who Benefits Most from
College? Evidence for Negative Selection in Heterogeneous
Economic Returns to Higher Education.” American Sociological
Review.
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Brand and Xie (2010)

Research question:

Does college affect earnings?
Is the effect moderated by social origin?

Identification strategy: Selection on observables

College Earnings

Social origin
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Theoretically: Why heterogeneous effects?

Question: Can we write the potential outcomes here?
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Ignorability

What is the assumption of ignorability here?
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Conditioning set: Measuring “social origin”

Question: How might the identifying assumptions be violated?
Can we write it in terms of DAGs? Potential outcomes?
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Example 5: Neighborhoods

Wodtke, Geoffrey T., David J. Harding, and Felix Elwert. 2011.
“Neighborhood Effects in Temporal Perspective: The Impact of
Long-Term Exposure to Concentrated Disadvantage on High
School Graduation.” American Sociological Review 76(5):713-736.

Research question: How does long-term exposure to
disadvantaged neighborhoods affect one’s probability of high
school graduation?

Problem: Family income and neighborhood disadvantage
affect each other through childhood

24 / 1
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Wodtke, Harding, and Elwert 2011

We might want to have a bidirectional arrow linking neighborhood
disadvantage and family income.

Neighborhood disadvantage

Family income

High school graduation

Can we write sequentially to avoid the bi-directional edge?
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Neighborhood Effects in Temporal Perspective
Wodtke, Harding, and Elwert 2011 ASR

L = Family income

A = Neighborhood disadvantage

Y = High school graduation

Subscripts = time
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What do you condition on to identify:

1 The effect of A2 on Y ?

2 The effect of A1 on Y ?

Answers:

1 {L2,A1}
2 {L1}
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Neighborhood Effects in Temporal Perspective
Wodtke, Harding, and Elwert 2011 ASR

Key point: We cannot just condition on family income (L) since
part of it is caused by neighborhood disadvantage (A). Nor can we
not condition on it. What to do?
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A challenging identification problem!

29 / 1



Result from Wodtke, Harding, and Elwert 2011
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Example 6. Wealth and college attainment

Conley, Dalton. 2001. “Capital for College: Parental Assets and
Postsecondary Schooling.” Sociology of Education.

Research question: Does family wealth affect educational
attainment?
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Conditioning set
Conley 2001, Sociology of Education

Can we draw the DAG? What assumptions are made?
32 / 1



Tying causal inference to big theories
Conley 2001, Sociology of Education
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Example 7: Divorce and child development

Annual Review of Sociology piece summarizes many causal
research designs (it’s a good overview). We will focus on one.
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Example 7: Divorce and child development

Cherlin, Andrew J., Frank F. Furstenberg, Jr., P. Lindsay
Chase-Linsdale, Kathleen E. Kiernan, Philip K. Robins, Donna
Ruane Morrison and Julien O. Teitler. “Longitudinal Studies of
Effects of Divorce on Children in Great Britain and the United
States.” Science 252:1386-1389.
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Cherlin et al. 1991

Research question: Is divorce bad for kids?

Controls: Social class, race, mother employed outside the
home in 1976, outcome measured in 1976

Treatment: Parental divorce in 1976-1981

Outcome: Behavior problems in 1981

Can we draw the DAG? Write the potential outcomes? Critique
the paper?
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A 1991-era way of showing results

How could this figure be improved?
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A 1991-era way of showing results
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Example 8: Heterogeneous treatment effects

Hill, Jennifer. 2011. “Bayesian Nonparametric Modeling for Causal
Inference.” Journal of Computational and Graphical Statistics
20(1):217-240.

This is a paper that looks very hard

There are lots of equations

BUT it’s really just a fancy version of the imputation
estimator we explored on Wednesday!

You already know what you need to understand the key
concepts!

39 / 1
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Substantive question
Hill (2011)

Do home visits and child care promote child cognitive
development?

Sample: Low birth weight, premature infants in 1985

Treatment: Randomly chosen treated infants received home
visits and child care

Outcome: Cognitive test scores

Pretreatment covariates:

Infant characteristics: birth weight, head circumference, weeks
born preterm, birth order, first born, neonatal health index,
sex, twin status
Mother variables in pregnancy: smoked cigarettes, drank
alcohol, took drugs
Mother variables at birth: age, marital status, educational
attainment, whether she worked during pregnancy, whether she
received prenatal care
A few residential location variables
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Heterogeneous effects in terms of potential outcomes

Recall potential outcomes:

Potential outcome under control: Yi (0) = f (Xi )

Potential outcome under control: Yi (1) = g(Xi )

The treatment effect is τi = g(Xi )− f (Xi ) = h(Xi )

All are functions of pre-treatment covariates.
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Imputation approach from lecture

-2 -1 0 1 2 3
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Visualizing heterogeneous effects
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Defining causal effects with covariate-based heterogeneity

45 / 1



Example 9: Contagion in social networks

Christakis, Nicholas A., and James H. Fowler. 2007. “The Spread
of Obesity in a Large Social Network over 32 Years.” New England
Journal of Medicine 357(4):370-379.
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Christakis and Fowler 2007

Research question: Does having obese friends cause you to
become obese?

Sample: Framingham Heart Study, 1971-2003, following
12,067 people

Measured confounders: Ego’s age, sex, education

Lagged dependent variable: obesity at t − 1 (control for U)

Lagged predictor: Alter’s weight at t − 1 (control for
homophily)

Treatment: Alter’s obesity at t + 1

Outcome: Ego’s obesity at t + 1
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Christakis and Fowler 2007: Conclusion

“A person’s chances of becoming obese increased by 57% (95%
confidence interval [CI], 6 to 123) if he or she had a friend who
became obese in a given interval.” (quoted from abstract)
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