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Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the unobserved
population distribution, which can be characterized by parameters.

Estimands are the parameters that we
aim to estimate. Often written with greek
letters (e.g. µ, θ, population mean) :
1
N

∑N
i=1 yi

Estimators are functions of sample data
(i.e. statistics) which we use to learn
about the estimands. Often denoted with
a “hat” (e.g. µ̂, θ̂)

Estimates are particular values of
estimators that are realized in a given
sample (e.g. sample mean): 1

n

∑n
i=1 yi
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Why Study Estimators?

Two Goals:
1 Inference: How much uncertainty do we have in this estimate?
2 Evaluate Estimators: How do we choose which estimator to

use?

We will consider the hypothetical sampling distribution of
estimates we would have obtained if we had drawn repeated
samples of size n from the population.
In real applications, we cannot draw repeated samples, so we
attempt to approximate the sampling distribution (either by
resampling or by mathematical formulas)



Sampling distribution Matrix Notation Prediction Back to Sampling Dist. Bootstrapping

Why Study Estimators?

Two Goals:
1 Inference: How much uncertainty do we have in this estimate?

2 Evaluate Estimators: How do we choose which estimator to
use?

We will consider the hypothetical sampling distribution of
estimates we would have obtained if we had drawn repeated
samples of size n from the population.
In real applications, we cannot draw repeated samples, so we
attempt to approximate the sampling distribution (either by
resampling or by mathematical formulas)



Sampling distribution Matrix Notation Prediction Back to Sampling Dist. Bootstrapping

Why Study Estimators?

Two Goals:
1 Inference: How much uncertainty do we have in this estimate?
2 Evaluate Estimators: How do we choose which estimator to

use?

We will consider the hypothetical sampling distribution of
estimates we would have obtained if we had drawn repeated
samples of size n from the population.
In real applications, we cannot draw repeated samples, so we
attempt to approximate the sampling distribution (either by
resampling or by mathematical formulas)



Sampling distribution Matrix Notation Prediction Back to Sampling Dist. Bootstrapping

Why Study Estimators?

Two Goals:
1 Inference: How much uncertainty do we have in this estimate?
2 Evaluate Estimators: How do we choose which estimator to

use?

We will consider the hypothetical sampling distribution of
estimates we would have obtained if we had drawn repeated
samples of size n from the population.

In real applications, we cannot draw repeated samples, so we
attempt to approximate the sampling distribution (either by
resampling or by mathematical formulas)



Sampling distribution Matrix Notation Prediction Back to Sampling Dist. Bootstrapping

Why Study Estimators?

Two Goals:
1 Inference: How much uncertainty do we have in this estimate?
2 Evaluate Estimators: How do we choose which estimator to

use?

We will consider the hypothetical sampling distribution of
estimates we would have obtained if we had drawn repeated
samples of size n from the population.
In real applications, we cannot draw repeated samples, so we
attempt to approximate the sampling distribution (either by
resampling or by mathematical formulas)



Sampling distribution Matrix Notation Prediction Back to Sampling Dist. Bootstrapping

Why Study Estimators?

Two Goals:
1 Inference: How much uncertainty do we have in this estimate?
2 Evaluate Estimators: How do we choose which estimator to

use?

We will consider the hypothetical sampling distribution of
estimates we would have obtained if we had drawn repeated
samples of size n from the population.
In real applications, we cannot draw repeated samples, so we
attempt to approximate the sampling distribution (either by
resampling or by mathematical formulas)



Sampling distribution Matrix Notation Prediction Back to Sampling Dist. Bootstrapping

Standard Error

We refer to the standard deviation of a sampling distribution as a
standard error.

Two Points of Potential Confusion:
Each sampling distribution has its own standard deviation, and
therefore its own standard error.
Some people refer to an estimated standard error as the
standard error.
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What we’ve learned (I): Population and Sample Mean

Let X1, X2, ... , Xn be a random sample of size n from a
distribution (population) with mean µ and variance σ2

Estimand Estimator Sampling Dist.
Population Mean µ Sample Mean X̄ X̄

approx.∼ N(µ, σ
2

n )

Population Variance σ2 S2 =
∑

(Xi−X̄ )2

n−1 E [S2] = σ2; S2 n→∞−−−→ σ2

SE [X̄ ] ŜE [X̄ ] =
√

S2

n

When σ2 is unknown, X̄ ∼ N(µ, S
2

n ) or X̄ ∼ N(µ, ŜE [X̄ ]2) .
When Xi is independently drawn from a Normal distribution,
(n − 1)S

2

σ2 ∼ χ2
n−1
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What we’ve learned (II): Population and Sample Regression

Consider the population regression model: Y = β0 + β1X + u

Estimand Estimator Sampling Dist.
β1 β̂1 β̂1 ∼ N(β1,

σ2
u∑

(Xi−X̄ )2
)

Error u Residual û = yi − ŷi

Error Variance σ2
u σ̂2

u =
∑

ûi
2

n−2 E [σ̂2
u] = σ2

u

SE [β̂1] ŜE (β̂1) =

√
σ̂2
u∑

(Xi−X̄ )2

...under certain conditions...
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ûi
2

n−2 E [σ̂2
u] = σ2

u

SE [β̂1] ŜE (β̂1) =
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What we’ve learned (III): Simple OLS Assumptions and
Sampling Distribution

When σ2
u is unknown, ŜE (β̂1) =

√
σ̂2
u∑

(Xi−X̄ )2
=

√ ∑
ûi

2

(n−2)
∑

(Xi−X̄ )2

Information Assumptions Sampling Dist.
σ2
u is known 1-6 β̂1 ∼ N(β1,

σ2
u∑

(Xi−X̄ )2
)

σ2
u is unknown 1-6 β̂1 ∼ tn−2(β1, ŜE (β̂1)2)

σ2
u is unknown 1-5 and n is large β̂1 ∼ tn−2(β1, ŜE (β̂1)2)
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Matrix Notation Overview
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Matrix Notation

X is the n × (K + 1) design matrix of independent variables
β be the (K + 1)× 1 column vector of coefficients.
Xβ will be n × 1:

We can compactly write the linear model as the following:

y
(n×1)

= Xβ
(n×1)

+ u
(n×1)

y
(n×1)

=


y1
y2
...
yn

 X
(n×(K+1))

=


1 x11 . . . x1k
1 x21 . . . x2k
...

...
...

...
1 xn1 . . . xnk

 β
((K+1)×1)

=


β0
β1
...
βk
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OLS Estimator

β̂ = (X′X)−1X′y

What’s the intuition here?
“Numerator” X′y: is roughly composed of the covariances
between the columns of X and y
“Denominator” X′X is roughly composed of the sample
variances and covariances of variables within X
Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

This is a rough sketch and isn’t strictly true, but it can provide
intuition.
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Variance-Covariance Matrix

The homoskedasticity assumption is different: var(u|X) = σ2
uIn

In order to investigate this, we need to know what the variance
of a vector is.
The variance of a vector is actually a matrix:

var[u] = Σu =


var(u1) cov(u1, u2) . . . cov(u1, un)

cov(u2, u1) var(u2) . . . cov(u2, un)
...

. . .
cov(un, u1) cov(un, u2) . . . var(un)


This matrix is symmetric since cov(ui , uj) = cov(uj , ui )
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Matrix Version of Homoskedasticity

Once again: var(u|X) = σ2
uIn

In is the n × n identity matrix
Visually:

var[u|X] = σ2
uIn =


σ2
u 0 0 . . . 0
0 σ2

u 0 . . . 0
...

0 0 0 . . . σ2
u


In less matrix notation:

var(ui |X ) = σ2
u for all i (constant variance)

cov(ui , uj) = 0 for all i 6= j (implied by iid)
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Sampling Variance for OLS Estimates

Under assumptions 1-5, the sampling variance of the OLS
estimator can be written in matrix form as the following:

var[β̂] = σ2
u(X′X)−1

This matrix looks like this:

β̂0 β̂1 β̂2 · · · β̂K
β̂0 var[β̂0] cov[β̂0, β̂1] cov[β̂0, β̂2] · · · cov[β̂0, β̂K ]

β̂1 cov[β̂0, β̂1] var[β̂1] cov[β̂1, β̂2] · · · cov[β̂1, β̂K ]

β̂2 cov[β̂0, β̂2] cov[β̂1, β̂2] var[β̂2] · · · cov[β̂2, β̂K ]
...

...
...

...
. . .

...
β̂K cov[β̂0, β̂K ] cov[β̂K , β̂1] cov[β̂K , β̂2] · · · var[β̂K ]
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Estimating Error Variance

Note that we never observe the true error variance, σ2
u. We can

estimate it with the following:

σ̂2
u =

û′û
n − (k + 1)

where n − (k + 1) = residual degrees of freedom and

û′û = (y − Xβ̂)′(y − Xβ̂)
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Prediction error

Prediction errors without X: best prediction is the mean, so
our squared errors, or the total sum of squares (SStot) would
be:

SStot =
n∑

i=1

(Yi − Y )2 = (y − y)′(y − y)

Once we have estimated our model, we have new prediction
errors, which are the sum of the squared residuals (SSres):

SSres =
n∑

i=1

(Yi − Ŷi )
2 = û′û
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Sum of Squares
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Sum of Squares
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R-square

Coefficient of determination or R2:

R2 =
SStot − SSres

SStot
= 1− SSres

SStot

This is the fraction of the total prediction error eliminated by
providing information in X.
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F Test Procedure

The F statistic can be calculated by the following procedure:

1 Fit the Unrestricted Model (UR) which does not impose H0

2 Fit the Restricted Model (R) which does impose H0

3 From the two results, compute the F Statistic:

F0 =
(SSRr − SSRur )/q

SSRur/(n − k − 1)

where SSR=sum of squared residuals, q=number of restrictions,
k=number of predictors in the unrestricted model, and n= # of
observations.

Intuition:

increase in prediction error
original prediction error
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Matrix Notation Overview
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What we’ve learned (IV): Multiple Regression

Consider the population regression model: y = Xβ + u

Estimand Estimator Sampling Dist.
βj β̂j β̂j ∼ N(βj , σ

2
u(X′X)−1

jj )

Error u Residual vector û
Error Variance σ2

u σ̂2
u = û′û

n−(k+1) σ̂2
u ∼ χ2

n−(k+1)

Standard Error of β̂j ŜE [β̂j ] =
√
v̂ar [β̂]jj =

√
σ̂2
u(X′X)−1

jj
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What we’ve learned (V): Multiple OLS Assumptions and
Sampling Distribution

When σ2
u is unknown,

σ̂2
u = û′û

n−(k+1)

v̂ar [β̂] = σ̂2
u(X′X)−1

ŜE [β̂j ] =
√
v̂ar [β̂]jj

Information Assumptions Sampling Dist.
σ2
u is known 1-6 β̂j ∼ N(βj , σ

2
u(X′X)−1)jj)

σ2
u is unknown 1-6 β̂j ∼ tn−(k+1)(βj , ŜE (β̂j)

2)

σ2
u is unknown 1-5 and n is large β̂j ∼ tn−(k+1)(βj , ŜE (β̂j)

2)
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Key Takeaway: Why Study Estimators

We as social scientists want to communicate our
understanding of the world, but with caution. We use
estimate/estimator to show our theory. Are our answers good
(evaluation)? How certain we are (inference)? To answer that,
we need to learn about properties of estimators that we want
to use and learn the sampling distribution of the estimate.

Properties and sampling distribution of estimators depend on
conditions/assumptions.
Standard error is a way to describe how disperse the sampling
distribution of our estimator is and thus one way to show how
uncertain we are.
We have tools to learn about the SE of estimators.
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Tools to learn about the Standard Error

analytical: derive SE analytically, and estimate it from one
sample ŜE [ ˆsomething ]

"omniscient": repeated sampling from a fake population
(pedagogical simulation)

resampling: draw repeated samples from the original data
sample(s)

permutation test
bootstrap: approxiamte sampling distribution by bootstrapping
from one sample
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Bootstrapping big picture

Lots of samples are kind of like the population
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The Bootstrap

We see a single sample that is a draw from a population:

There’s a true mean loan amount; we only observe one sample

Since we cannot resample from the population, we resample from the
sample!

Idea: Within a loop, generate a bootstrapped sample:

1 Sample from {1, 2, . . . ,N} with replacement

2 Re-calculate the quantity of interest on each bootstrapped sample

3 Resampling from the sample approximates sampling again from the
full population (giving us a sense of the sampling distribution)
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Bootstrap: Intuition
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Simple Example with Sample Means

Let Xi = {3, 7, 9, 11, 150}

Bootstrapped Samples:

X̄boot
Xboot,1 3 3 9 11 3 5.8

Xboot,1 7 150 11 7 11 37.2

Xboot,1 11 9 9 7 3 7.8
...
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Bootstrapped Standard Error

Bootstrapped Standard Error
sd(X̄boot)
Bootstrapped Confidence Interval:
Take the 2.5% and 97.5% quantiles of X̄boot
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Questions?



Sampling distribution Matrix Notation Prediction Back to Sampling Dist. Bootstrapping

Happy Fall Break!
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