
E-Var-Cov Why IV Assumptions Estimation Birth Example

Precept 11: Unmeasured Confounding
Soc 400: Applied Social Statistics

Ziyao Tian

Princeton University

December 6, 2018

Acknowledgments: Materials are drawn from Shay O’Brien, Simone Zhang, Ryan Parsons, Xinyi Duan,
Ian Lundberg, and Jeremy Cohen. Material also comes from Matt Blackwell, Adam Glynn, Jens
Hainmueller and Brandon Stewart’ lectures.



E-Var-Cov Why IV Assumptions Estimation Birth Example

Today’s Agenda

Expectation, Variance, Covariance
Instrumental Variable

why IV
assumptions
estimation with RStudio



E-Var-Cov Why IV Assumptions Estimation Birth Example

Expectation

The expected value of a random variable X is denoted by E [X ] and
is a measure of central tendency of X . Roughly speaking, an
expected value is like a weighted average of all of the values
weighted by probability of occurrence.

The expected value of a discrete random variable X is defined as

E [X ] =
∑
all x

x · fX (x).

The expected value of a continuous random variable X is defined as

E [X ] =

∫ ∞
−∞

x · fX (x)dx .
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Properties of Expected Value

The three properties:
1) Additivity: expectation of sums are sums of expectations

E [X + Y ] = E [X ] + E [Y ]

2) Homogeneity: expected value of a constant is the constant

E [aX + b] = aE [X ] + b

3) LOTUS: Law of the Unconscious Statistician

E [g(X )] =
∑
x

g(x)fX (x)

However,
E [g(X )] 6= g(E [X ]) unless g(·) is a linear function
E [XY ] 6= E [X ]E [Y ] unless X and Y are independent
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Variance

The variance of a random variable X (a measure of its dispersion)
is the expectation of the squared distances from the mean
V [X ] = E [(X − E [X ])2].
For a discrete random variable X

V [X ] =
∑
all x

(x − E [X ])2fX (x)

For a continuous random variable X

V [X ] =

∫ ∞
−∞

(x − E [X ])2fX (x)dx
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Variance

Another common form

V [X ] = E [(X − E [X ])2]

= E [X 2 − 2E [X ]X + E [X ]2]

= E [X 2]− 2E [X ]2 + E [X ]2

= E [X 2]− E [X ]2
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Properties of Variance

Property 1 of Variance: Behavior with Constants. Suppose a and b
are constants and X is a random variable. Then

V [b] = 0

V [aX ] = a2V [X ]

V [aX + b] = a2V [X ] + 0

Property 2 of Variance: Additivity for Independent Random
Variables. Suppose we have k independent random variables
X1, . . . ,Xk . If V [Xi ] exists for all i = 1, . . . , k , then

V

[
k∑

i=1

Xi

]
= V [X1] + · · ·+ V [Xk ]
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Exercise

Let i.i.d. X1, . . . ,XN be our population. Then the population mean
is the following

X̄ =
1
N

N∑
i=1

Xi

If Var(X1) = σ2, what is Var [X̄ ]?

Var [X̄ ] =
σ2

N
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Wait, when do we divide by sqrt(n)?

Let X1, X2, ... , Xn be a random sample of size n from a
distribution (population) with mean µ and variance σ2

Estimand Estimator Sampling Dist.
Population Mean µ Sample Mean X̄ X̄

approx.∼ N(µ, σ
2

n )

Population Variance σ2 S2 =
∑

(Xi−X̄ )2

n−1 E [S2] = σ2;S2 n→∞−−−→ σ2

SE [X̄ ] ŜE [X̄ ] =
√

S2

n

In this case, we adjust a population variance estimator S2 by
sqrt(n) to estimate the SE of “sample mean”, which is also an
estimator itself, for the population mean
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random
variables .

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it
more likely to also observe a Y value greater than E [Y ], and vice
versa.

Does X⊥⊥Y imply Cov [X ,Y ] = 0?

Does Cov [X ,Y ] = 0 imply X⊥⊥Y ?

X⊥⊥Y =⇒ Cov [X ,Y ] = 0, but not vice versa.
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Important Identities for Variances and Covariances

1 For random variables X and Y and constants a, b and c ,

V [aX + bY + c] = a2V [X ] + b2V [Y ] + 2ab Cov [X ,Y ]

2 Important special cases:

V [X + Y ] = V [X ] + V [Y ] + 2Cov [X ,Y ]

V [X − Y ] = V [X ] + V [Y ]− 2Cov [X ,Y ]

3 Furthermore, if X and Y are independent,

V [X ± Y ] = V [X ] + V [Y ]
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Exercise: Comparing Two Groups

We will often assume the following when comparing two groups,
X11,X12, ...,X1n1 ∼i .i .d .?(µ1, σ

2
1)

X21,X22, ...,X2n2 ∼i .i .d .?(µ2, σ
2
2)

The two samples are independent of each other.

We will usually be interested in comparing µ1 to µ2, although we
will sometimes need to compare σ21 to σ22 in order to make the first
comparison.
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Sampling Distribution for X 1 − X 2

What is the variance of X 1 − X 2?

Var [X 1 − X 2] = Var [X 1] + Var [X 2]

=
1
n21

∑
Var [X1i ] +

1
n22

∑
Var [X2j ]

=
1
n21

∑
σ21 +

1
n22

∑
σ22

=
σ21
n1

+
σ22
n2
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Correlation

Cov [X ,Y ] depends not only on the strength of (linear)
association between X and Y , but also the scale of X and Y .
Can we have a pure measure of association that is
scale-independent?

Definition (Correlation)

The correlation between two random variables X and Y is defined
as

Cor [X ,Y ] =
Cov [X ,Y ]√
V [X ]V [Y ]

=
Cov [X ,Y ]

SD[X ]SD[Y ]
.

Cor [X ,Y ] is a standardized measure of linear association
between X and Y .
Always satisfies: −1 ≤ Cor [X ,Y ] ≤ 1.
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Equations for simple OLS β̂0 and β̂1

β̂0 = Ȳ − β̂1X̄

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

=

∑n
i=1(Xi−X )(Yi−Y )

n∑n
i=1(Xi−X )2

n

=
E [(X − X )(Y − Y )]

E [(X − X )2]

=
Cov [X ,Y ]

Var [X ]
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Intuition for the OLS in Matrix Form

β̂ = (X′X)−1X′y

What’s the intuition here?
“Numerator” X′y: is approximately composed of the
covariances between the columns of X and y
“Denominator” X′X is approximately composed of the sample
variances and covariances of variables within X
Thus, we have something like:

β̂ ≈ (variance of X)−1(covariance of X & y)

i.e. analogous to the simple linear regression case!
Disclaimer: the final equation is exactly true for all non-intercept coefficients if you
remove the intercept from X such that β̂−0 = Var(X−0)−1Cov(X−0, y). The
numerator and denominator are the variances and covariances if X and y are
demeaned and normalized by the sample size minus 1.
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numerator and denominator are the variances and covariances if X and y are
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IV in the big picture of causal inference

Experimental ideal: unconfoundedness / "randomization"

Selection on observables:

Conditioning of observed covariates X, treatment assignment
D is independent of the outcome(

Yi (0)
∣∣Di = 1,Xi

)︸ ︷︷ ︸
unobserved

dist.
=
(
Yi (0)

∣∣Di = 0,Xi

)︸ ︷︷ ︸
observed

Not testable without the counterfactual data, which is
missing by definition!
With backdoor criterion, you must have the correct DAG.

Approaches to unobserved confounding

natural experiments, IV, RD, etc.
goal: find plausibly exogenous variation in treatment
assignment
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Review of Key Assumptions

1 Exogeneity of the instrument
2 Exclusion restriction
3 First-stage relationship / Relevance
4 Monotonicity
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Assumptions in Graphical Model

Z D

U

Y

exclusion restriction and exogeneity

1) instrument/treatment and instrument/outcome don’t share
unmeasured common causes (exogeneity of the instrument)

2) no direct or indirect effect of the instrument on the outcome
not through the treatment (exclusion restriction)

3) Z affects D (first stage relationship / relevance)
4) to allow for heterogenous treatment effect, we assume the

presence of the instrument never dissuades someone from
taking the treatment (monotonicity)

Di (1)− Di (0) ≥ 0
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Remember the four subgroups of an experiment?

Name Di (1) Di (0)

Always Takers ? ?
Never Takers ? ?
Compliers ? ?
Defiers ? ?
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Remember the four subgroups of an experiment?

Name Di (1) Di (0)

Always Takers 1 1
Never Takers 0 0
Compliers 1 0
Defiers 0 1
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A visual example
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Assumption 4: Monotonicity

To allow for heterogenous effects we need to make a new
assumption about the relationship between the instrument and
the treatment.
Monotonicity says that the presence of the instrument never
dissuades someone from taking the treatment:

Di (1)− Di (0) ≥ 0

We sometimes call assumption 4 no defiers because the
monotonicity assumption rules out the existence of defiers.
This is not a testable assumption because no observed group is
solely populated by defiers.
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Monotonicity assumption

Assigned
treatment

Assigned
control

Takes
treatment

Takes
control
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Monotonicity assumption

Assigned
treatment

Assigned
control

Takes
treatment

Takes
control

If we assume there are no defiers, we can better identify the
subgroups.
Anyone with Di = 1 when Zi = 0 must be an always-taker
and anyone with Di = 0 when Zi = 1 must be a never-taker.
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Local Average Treatment Effect (LATE)

Under these four assumptions, we can use the Wald estimator
to estimate the local average treatment effect (LATE) —
sometimes called the complier average treatment effect.
This is the ATE among the compliers: those that take the
treatment when encouraged to do so.
That is, the LATE theorem (proof coming soon), states that:

E [Yi |Zi = 1]− E [Yi |Zi = 0]

E [Di |Zi = 1]− E [Di |Zi = 0]
= E [Yi (1)−Yi (0)|Di (1) > Di (0)]

But doesn’t Di (1) ≥ Di (0) include always-takers and
never-takers?
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τLATE = E [Yi |Zi=1]−E [Yi |Zi=0]
E [Di |Zi=1]−E [Di |Zi=0] as a pooled effect of three

groups.
Let’s focus on the numerator first.

Name D(1)− D(0) Y (D(1))− Y (D(0)) Fract of Pop Avg Effect
Compliers 1− 0 = 1 Y (1)− Y (0) πcompliers δcompliers

Always Takers 1− 1 = 0 Y (1)− Y (1) = 0 πalways 0
Never Takers 0− 0 = 0 Y (0)− Y (0) = 0 πnever 0
Defiers 0− 1 = −1 Y (0)− Y (1) 0 NA

E [Yi |Zi = 1]− E [Yi |Zi = 0]

= E [Y (D(1))− Y (D(0))]

= δcompliers ∗ πcompliers + 0 ∗ πalways + 0 ∗ πnever
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How do we know the fraction of compliers?

Assigned
treatment

Assigned
control

Takes
treatment

Takes
control

Assuming no defiers, πcompliers = 1− πalways − πnever

But, do we need to calculate the proportion of compliers?
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How do we know the fraction of compliers?

Assigned
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Takes
treatment

Takes
control

Assuming no defiers, πcompliers = 1− πalways − πnever
But, do we need to calculate the proportion of compliers?
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Proof of the LATE theorem

Under the exclusion restriction and randomization,

E [Yi |Zi = 1] = E [Yi (0) + (Yi (1)− Yi (0))Di |Zi = 1]

= E [Yi (0) + (Yi (1)− Yi (0))Di (1)] (randomization)

The same applies to when Zi = 0, so we have

E [Yi |Zi = 0] = E [Yi (0) + (Yi (1)− Yi (0))Di (0)]

Thus, E [Yi |Zi = 1]− E [Yi |Zi = 0] =

E [(Yi (1)− Yi (0))(Di (1)− Di (0))]

=E [(Yi (1)− Yi (0))(1)|Di (1) > Di (0)] Pr[Di (1) > Di (0)]

+E [(Yi (1)− Yi (0))(−1)|Di (1) < Di (0)] Pr[Di (1) < Di (0)]

=E [Yi (1)− Yi (0)|Di (1) > Di (0)] Pr[Di (1) > Di (0)]

The third equality comes from monotonicity: with this
assumption, Di (1) < Di (0) never occurs.
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Proof (continued)

E [Yi |Zi = 1]−E [Yi |Zi = 0] = E [Yi (1)−Yi (0)|Di (1) > Di (0)] Pr[Di (1) > Di (0)]

We can use the same argument for the denominator:

E [Di |Zi = 1]− E [Di |Zi = 0] = E [Di (1)− Di (0)]

= E [Di (1)− Di (0)] Pr[Di (1) > Di (0)]

= 1 ∗ Pr[Di (1) > Di (0)]

= Pr[Di (1) > Di (0)]

Dividing these two expressions through gives the LATE.

The denominator tells us the fraction of compliers, but we
don’t need to calculate it to get LATE.
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Monotonicity assumption

Assigned
treatment

Assigned
control

Takes
treatment

Takes
control

All of this allows us to interpret the LATE we identify using the
instrumental variable as the average treatment effect among
compliers.
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IV assumptions

1) Exogeneity: Yi (d , z)⊥⊥Zi for all d , z .
2) Exclusion: Yi (d , z) = Yi (d , z

′) = Yi (d) for all z , z ′, d and i

3) Relevance: Z 6⊥⊥ D

all possibly conditional on X

4) Monotonicity:
Di (1)− Di (0) ≥ 0
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Assumed Models

Second Stage:
Y = α0 + α1D + u2

First Stage:
D = π0 + π1Z + u1

IV assumptions:
Cov [u1,Z ] = 0, π1 6= 0, and
Cov [u2,Z ] = 0

Z D

U

Y
π1 α1
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IV Estimation

With our assumed model being
true,

regressing D on Z identifies
π1

regressing Y on Z identifies
π1 · α1
π̂1·α1
π̂1

identifies π1·α1
π1

= α1

Z D

U

Y
π1 α1
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IV Estimation

OLS vs. IV estimators
OLS to estimate α

IV estimators
Wald estimator
TSLS estimator (or 2SLS)

Z D

U

Y
π1 α1
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Use OLS to estimate α1

True model: Y = α0 + α1D + u2

D is the treatment variable (e.g. training)
D may be endogenous so that Cov [D, u2] 6= 0

Recall that the OLS estimator for α1 is given by:

α̂1,OLS =
Ĉov [Y ,D]

V̂ar [D]
=

Ĉov [α0 + α1D + u2,D]

V̂ar [D]

α̂1,OLS =
α1V̂ar [D] + Ĉov [D, u2]

V̂ar [D]

α̂1,OLS = α1 +
Ĉov [D, u2]

V̂ar [D]

E [α̂1,OLS ] = α1 + E [
Ĉov [D, u2]

V̂ar [D]
]

so bias depends on correlation between u2 and D
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Instrumental Variable Effect: Wald Estimator

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

IV Effect: D on Y using exogenous variation in D that is induced by Z . Recall

Y = (α0 + α1π0) + (α1π1)Z + (α1u1 + u2)

Y = γ0 + γ1Z + u3

where γ0 = α0 + α1π0, γ1 = α1π1, and u3 = α1u1 + u2. Given this, we can identify
α1:

α1 =
γ1

π1
=

Effect of Z on Y
Effect of Z on D

=
Cov [Y ,Z ]/Cov [Z ,Z ]

Cov [D,Z ]/Cov [Z ,Z ]
=

Cov [Y ,Z ]

Cov [D,Z ]

=
Cov [α0 + α1D + u2,Z ]

Cov [D,Z ]
=
α1Cov [D,Z ] + Cov [u2,Z ]

Cov [D,Z ]
= α1 +

Cov [u2,Z ]

Cov [D,Z ]

E [α̂1] = α1 + E

[
Ĉov [u2,Z ]

Ĉov [D,Z ]

]

α̂1 is consistent if Cov [u2,Z ] = 0 but has a bias which decreases with instrument
strength.
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Ĉov [D,Z ]

]

α̂1 is consistent if Cov [u2,Z ] = 0 but has a bias which decreases with instrument
strength.



E-Var-Cov Why IV Assumptions Estimation Birth Example

Instrumental Variable Effect: Wald Estimator

Second Stage:Y = α0 + α1D + u2

First Stage: D = π0 + π1Z + u1

IV Effect: D on Y using exogenous variation in D that is induced by Z . Recall

Y = (α0 + α1π0) + (α1π1)Z + (α1u1 + u2)

Y = γ0 + γ1Z + u3

where γ0 = α0 + α1π0, γ1 = α1π1, and u3 = α1u1 + u2. Given this, we can identify
α1:

α1 =
γ1

π1
=

Effect of Z on Y
Effect of Z on D

=
Cov [Y ,Z ]/Cov [Z ,Z ]

Cov [D,Z ]/Cov [Z ,Z ]
=

Cov [Y ,Z ]

Cov [D,Z ]

=
Cov [α0 + α1D + u2,Z ]

Cov [D,Z ]
=
α1Cov [D,Z ] + Cov [u2,Z ]

Cov [D,Z ]
=

α1 +
Cov [u2,Z ]

Cov [D,Z ]

E [α̂1] = α1 + E

[
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Instrumental Variable Effect: Two Stage Least Squares

The instrumental variable estimator:

α1 =
γ1
π1

=
Cov [Y ,Z ]

Cov [D,Z ]

is numerically equivalent to the following two step procedure:

1 Fit first stage and obtain fitted values D̂ = π̂0 + π̂1Z

2 Plug into second stage:

Y = α0 + α1D̂ + u2

Y = α0 + α1(π̂0 + π̂1Z ) + u2

Y = (α0 + α1π̂0) + α1(π̂1Z ) + u2

Intuition: Retain only variation in D that is induced by Z, "purged" of
endogeneity
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Quarter of Birth Example

Angrist, Joshua and Alan Krueger. 1991. "Does Compulsory
School Attendance Affect Schooling and Earnings?" The Quarterly
Journal of Economics 106 (4).
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Research Question

Question: What is the causal effect of education on earnings?
What are possible confounders? In what direction might those
confounders bias our results?

T Y

U
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"The Natural Experiment"

"The experiment stems from the fact that children born in different
months of the year start school at different ages, while compulsory
schooling laws generally require students to remain in schools until
their sixteenth or seventeenth birthday. Individuals born in the
beginning of the year start school at an older age, and can
therefore drop out after completing less schooling than individuals
born near the end of the year. In effect, the interaction of
school-entry requirements and compulsory schooling laws compel
students born in certain months to attend school longer than
students born in other months."

Data: Men from the 1980 Census Public Use Sample
Note: We apply the term “natural experiment” to indicate that
the “treatment” (which is instrument here) is randomized but
the randomization was not controlled by the researcher
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What are the key variables?

What’s the instrument (Z)?

Quarter of birth
What’s the treatment (T)?
Receiving additional education
What’s the outcome (Y)?
Earnings
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Let’s evaluate the assumptions

1 Exogeneity of the Instrument

Is birth quarter random?
2 Exclusion Restriction

Can birth quarter affect earnings through causal channels
other than education?

3 First-stage relationship
Does birth quarter induce variation in time spent in school?

4 Monotonicity
Are there defiers?
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IV Assumption Check - First Stage Relationship

We can check by regressing treatment on the instrument. We can
also gain more confidence by examining plots of the relationship:

Men born earlier in the year have less schooling
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Reduced Form

Differences in schooling due to quarter of birth appear to translate
into different earnings.
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2SLS Results: White Men, 1930s Cohorts
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2SLS Results: Black Men, 1930s Cohorts

Note the returns for black men appear to be smaller
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Study Results
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Questions?
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