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Today’s Agenda

A stratification walkthrough
Repeated measurements

Diff-in-diff
Fixed effects

Some coding advice
General review
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Stratification

Two weighting strategies:

ATE = sum of CATEs weighted by probability of being in each
stratum
ATT = sum of CATEs weighted by probability of being in each
stratum conditional on receiving treatment
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ATE

∑
x

E [Y (1)− Y (0)|X = x ]P(X = x)
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ATT

∑
x

E [Y (1)− Y (0)|X = x ]P(X = x |D = 1)
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Stratification in dplyr

To RStudio!
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Repeated observations: Big ideas

Difference in difference
Fixed effects
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Difference in difference

The difference in difference (DID) estimator is:

Yi ,t=1 − Yi ,t=0 = β0 + β1(Di ,t=1 − Di ,t=0) + ui
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Things to know about the DID estimator:

It has only two time points
Some people get treatment between the two time points
It estimates

1 Difference 1: The change in the outcome between t = 0 and
t = 1 among the control group

2 Difference 2: The change in the outcome between t = 0 and
t = 1 among the treated group

3 The difference in the differences: The causal estimate is (2) -
(1)
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More things to know about DID

It assumes that the change in Y that would have happened in
the treated group in the absence of treatment is the same as
the observed change in Y in the control group

This assumption is untestable.
This assumption is often dubious.
If the pre-treatment outcomes are different, it is hard to believe
that the slopes would be the same in the absence of treatment.

It is robust to unobserved time-invariant confounders
It is sensitive to time-varying confounders
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DID is good if
(subscripts index time)

(Time)

D

Y1 Y2

λ
(time-invariant unobserved variables)
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Fixed effects

Fixed effects is an extension of the DID idea to many time
points.

The person fixed effects estimator with individuals indexed by i and
survey years indexed by t estimates a unique intercept for each
respondent in the data.

Yit = αi + βDit + εit
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Things to know about the fixed effects estimator

It is often called a within-person estimator.
It estimates how changes in T are associated with changes in
Y , for individual i .
It accounts for all confounders that are constant within person
(do not change over time)

This includes all unobserved time-invariant confounders

But it is sensitive to time-varying confounders
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Fixed effects is good if
(subscripts index time)

(Time)

D1 D2 D3

Y1 Y2 Y3

λ
(time-invariant

unobserved variables)
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Fixed effects is good if
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Fixed effects is bad if
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Repeated observations example: Marriage and men’s wages

Suppose you want to estimate the causal effect of marriage on
men’s wages.
You have repeated wage observations on individuals before and
after marriage.

In the following scenarios, what estimation strategy would you
use?
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Scenarios

1 Having married parents causes men to marry and causes higher
wages.

2 People “mature” at different ages. Something changes, and
you get your act together to become an adult. When you hit
this “latent maturation,” it causes you to marry and to earn
more in the next year.
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Scenario
1

Marriage
(person i in year t)

Wages
(person i in year t)

Married parents
(person i , time-invariant,

unmeasured)

Scenario
2

Marriage
(person i in year t)

Wages
(person i in year t)

Latent maturation
(person i , time t − 1,

unmeasured)
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Repeated observations example: Answer

Scenario 1: Fixed effects adjusts for time-invariant
confounders, so would be preferred here.
Scenario 2: This is a case of time-varying unobserved
confounding, so neither approach will yield a consistent causal
estimate!
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Coding advice

This isn’t a software engineering course—we don’t grade your
code

That said, learning to write good code will save you pain and
heartache for years to come
Here are some common issues I’ve seen and how to fix them
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Coding advice

1 Magic numbers
2 Abstraction: DRY code and WET code
3 Style
4 Commenting
5 Portability
6 Organization
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Any more questions?
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Come to the review session!

January 14th in the afternoon
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