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Where We’ve Been and Where We’re Going...

Last Week

I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference
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1 Definition of Random Variables
What is a Random Variable?
Discrete Distributions

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous Distributions
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Example: Ballot Order

Evidence suggests that candidates gain a small advantage from ballot
order.

As a response, in 2008 New Hampshire chose a letter from the alphabet
and then listed the candidates in alphabetical order starting with that
letter.

We can use probability to assess the “fairness” of this process.

We will do this by introducing a random variable X to be Barack Obama’s
position on the 2008 New Hampshire primary ballot.
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What is a Random Variable?

Intuition: functions that map outcomes to numbers.

Formal: X is a function that maps the sample space to the real numbers.

Imagine two coin flips

Ω =
{
{heads, heads}, {heads, tails}, {tails, heads}, {tails, tails}

}
we could define a random variable X (ω) to be the function that returns
the number of heads for each element (ω) of the sample space (Ω).

X ({heads, heads}) = 2

X ({heads, tails}) = 1

X ({tails, heads}) = 1

X ({tails, tails}) = 0

We will generally suppress the function notation and just refer to X .
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A Visual Example

Ω
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A Visual Example

1 2 3 4 5 6 7 8 9 10 11
X
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A Brief Note on Notation

We almost always use capital roman letters for the “name” of the
random variable such as X .

We refer to a fixed value with a lower case letter x .

So we might write P(X = x) to be the probability that the number of
heads we observe is equal to some fixed value x .

We will sometimes write out the mapping from the sample space to
the random variable. For example,

X =

{
1 if heads

0 if tails

Other times the sample space is already numeric so its more obvious
(e.g. how many minutes until the train arrives).
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Quick FAQ

Why have random variables at all?
it makes the math easier, even across very different sample spaces.

Why are they random variables?
they are realizations of a stochastic process (i.e. randomness in the
outcome, not the mapping).

Is it really easier this way? It seems hard.
random variables are about bridging the abstract math and the
concrete world. that can be hard, but it is super important and better
than the alternative!
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NH Ballot Order Example

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

X =



1
2
3
4
5
6
7
8

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

X is a random variable indicating Obama’s position on the ballot. Highlighted letters are those
leading to a given ballot position. Highlighted individual is first.
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Discrete Distributions

The distribution of a random variable specifies the probability of all
events associated with that random variable.

For discrete distributions, the random variable X takes on a finite, or
a countably infinite number of values.

A common shorthand is to think of discrete random variables taking
on distinct values.

A probability mass function (PMF) and a cumulative distribution
function (CDF) are two common ways to define the probability
distribution for a discrete random variable.

Probability mass functions provide a compact way to represent
information about how likely various outcomes are.
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Where do Distributions Come From?

The probabilities associated with each realization of the random variables
come from the underlying stochastic realization of the sample space.
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Example: New Hampshire

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

pX (x) =



4/26 x = 1

4/26 x = 2
2/26 x = 3
1/26 x = 4
1/26 x = 5
1/26 x = 6

10/26 x = 7
3/26 x = 8

OFFICIAL BALLOT

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

Probability of the random variable equaling a number is just the probability of the underlying
event (subset of the sample space).
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Discrete Probability Mass Functions

Definition (Probability Mass Function)

The probability mass function (PMF) of a discrete random variable X is
the function pX given by,

pX (x) = P(X = x)

Understanding the Notation:

X = x is defining an event.
More formally we might say, {X = x} is shorthand for {ω ∈ Ω : X (ω) = x} which can be

read as the set of realizations ω in the sample space Ω such that the function X (ω)

returns the fixed value x .

Later we will drop the subscript when it is clear from context.

Three key properties:

this will always be non-negative.

the support of X is the set of values where the PMF is non-zero.∑
x pX (x) = 1.
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Cumulative Distribution Function

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is the
function FX given by,

FX (x) = P(X ≤ x)

Key properties:

non-decreasing

right-continuous

converges to 0 and 1 in the limits
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Example Discrete Distributions

A major advantage of random variables is that they often have a
distribution with a known form (that comes with known results!)

I Bernoulli distribution: Let X be a binary variable with P(X = 1) = π
and, thus, P(X = 0) = 1− π, where π ∈ [0, 1]. It has PMF:

pX (x) = πx(1− π)1−x for x ∈ {0, 1}.

I Discrete Uniform distribution: Let X be a random variable that puts
equal probability on each value that X can take:

pX (x) =

{
1/k for x = 1, . . . , k

0 otherwise

We can summarize these distributions with one number

We will return to this in the last video of the week.
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We Covered. . .

The definition of a random variable.

Probability mass functions and cumulative distribution functions.

Next time continuous random variables.
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Where We’ve Been and Where We’re Going...

Last Week
I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference
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1 Definition of Random Variables

2 Continuous Distribution
Defining a Continuous Random Variable
Probability Density Functions and Cumulative Distribution Functions
Subtleties of the Continuous Setting

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous DistributionsStewart (Princeton) Week 2: Random Variables September 7–11, 2020 20 / 155



Continuous Distributions

Continuous random variables take on an uncountably infinite number
of values.

This is often a useful approximation when variables take many values.

A probability density function (PDF) and a cumulative distribution
function (CDF) are two common ways to define the distribution for a
continuous random variable.

They are similar to the discrete case with a few subtle differences.
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Calculus Review: Integration
Suppose we have some function f (x)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

x

f(
x)

What is the area under f (x) between 1
2 and 1?

Area under curve =
∫ 1

1/2 f (x)dx = F (1)− F (1/2)
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Continuous Random Variable

A continuous random variable has a continuous cumulative distribution
function (CDF) which, as in the discrete case, defines the probability that
P(X ≤ x).

Definition (Continuous Distribution)

A random variable has a continuous distribution if its CDF is differentiable.
We also allow there to be endpoints (or finitely many points) where the CDF is
continuous but not differentiable, as long as the CDF is differentiable everywhere
else. (Blizstein and Hwang Definition 5.1.1)
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continuous but not differentiable, as long as the CDF is differentiable everywhere
else. (Blizstein and Hwang Definition 5.1.1)
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Probability Density Function (PDF)

The probability density function is the analog of the probability mass
function for discrete random variables.

Definition (Probability density function)

For a continuous random variable X with CDF FX , the probability density
function of X is the derivative f of the CDF, given by fX (x) = d

dx FX (x)

Key Properties:

non-negative

integrates to 1.
∫∞
−∞ fX (x)dx = 1

for any measurable set of real numbers B,

P(X ∈ B) =

∫
B
fX (x)dx
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Defining the CDF in terms of the PDF

Definition (CDF of a Continuous Random Variable)

For a continuous random variable X define its cumulative distribution
function FX (x) as,

FX (t) = P(X ≤ t) =

∫ t

−∞
fX (x)dx

pdf cdf

Integrate

Differentiate
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A Visual Example

Imagine you choose a number completely at random between 0 and 1 with
all equally sized sets of values being equally likely.

This is a standard
uniform distribution which has the CDF,

FX (x) = x

with support over [0, 1].
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What is the probability that the number is between 0.25 and 0.5?
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FX (.5)− FX (.25) = .25
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The Core PMF/PDF Difference

The probability mass function provides the probability of a set of outcomes
by summing over the probability mass function evaluated at each of those
outcomes.

The probability density function for continuous variables provides the
probability of a set of outcomes by integrating over a range of values.

This means (perhaps counterintuitively) that a probability density
function:

can return a value greater than 1

assigns the probability of any exact value is zero.

Let’s explain!
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A Numerical Example

Let’s suppose we have someone throwing darts and we measure how far
they are from the center of the wall in inches. In this case, perhaps the
darts will be distributed with the following PDF.
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A Numerical Example
How would we calculate the probability that a dart lands within 6 inches of
the center of the wall?
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−20 −10 0 10 20

Distance from center of wall (inches)
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P(X ∈ (−6, 6)) =

∫ 6

−6

fX (x)dx

= FX (6)− FX (−6)

= P(X < 6)− P(X < −6)

= 0.683
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One inch?
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P(X ∈ (−1, 1)) = 0.0664135
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1/100th of an inch?
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P(X ∈ (−.01, .01)) = 0.0006649037
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A perfect bullseye?

0.00

0.02

0.04

0.06

−20 −10 0 10 20

Distance from center of wall (inches)

D
en

si
ty

P(X = 0) = 0

The probability that a continuous variable takes on a discrete value is 0!
Why?

Because the width of the range we are calculating is zero, the area is zero.
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The Practical Upshot

The cumulative distribution function (CDF) has the same
interpretation between discrete and continuous.

The probability mass function (PMF) is for discrete variables and
returns a probability.

The probability density function (PDF) is for continuous variables and
provides a probability when integrated over a subset of the support.

Reconciling the continuous/discrete divide is the purview of measure
theory which is a layer deeper than we are going to go in this class.

As with discrete random variables there are common families of
distributions (last video of the week).
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We Covered. . .

the definition of a continuous random variable

probability density functions and their interpretation

cumulative distribution functions

Next time we will describe how to characterize a distribution.
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Where We’ve Been and Where We’re Going...

Last Week
I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference
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1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency
Central Tendency
Example: Assessing Racial Prejudice
Fun With Averages

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous DistributionsStewart (Princeton) Week 2: Random Variables September 7–11, 2020 38 / 155



Characterizing Distributions

Distributions have all kinds of wonky shapes. How do we
characterize what they look like?
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Expectation

The expected value of a random variable X is denoted by E [X ] and is a
measure of central tendency of X . Roughly speaking, an expected value
is like a weighted average of all of the values weighted by probability of
occurrence.

The expected value of a discrete random variable X is defined as

E [X ] =
∑
all x

x · pX (x).

The expected value of a continuous random variable X is defined as

E [X ] =

∫ ∞
−∞

x · fX (x)dx .
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What did we expect for Obama’s NH position?

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

4/26 × 1

4/26 × 2
2/26 × 3
1/26 × 4
1/26 × 5
1/26 × 6

10/26 × 7

+

3/26 × 8

4.88

OFFICIAL BALLOT

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
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Interpreting Discrete Expected Value

The expected value for a discrete random variable is the balance point of
the mass function.
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Interpreting Continuous Expected Value

The expected value for a continuous random variable is the balance point
of the density function.
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Why the Expected Value (Balance Point)?

It is the probabilistic equivalent of the sample average (mean).

It is a reasonable measure for the “center” of the data.

We have some intuition about balance points.

It has some useful and convenient properties.
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Population Mean as an Expected Value

Let x1, . . . , xN be our population. Then the population mean is the
following

x̄ =
1

N

N∑
i=1

xi

This can be re-written in the following form:

x̄ =
N∑
i=1

{
1

N
xi

}
Note how this resembles the definition of discrete expected value. If all
values distinct (i.e. xi 6= xj for all i 6= j).

x̄ =
∑
all xi

xi fX (xi ), where fX (xi ) =
1

N
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Three properties of expectation:

Additivity

Homogenity

LOTUS
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Property 1 of Expected Value: Additivity

Expectations of sums are sums of expectations.

Suppose we have k random variables X1, . . . ,Xk . If E [Xi ] exists for all
i = 1, . . . , k , then

E

[
k∑

i=1

Xi

]
= E [X1] + · · ·+ E [Xk ]
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Property 2 of Expected Value: Homogeneity

The expected value of a constant is the constant.

The expectation of a constant times a random variable is the
constant times the expectation of the random variable.

Suppose a and b are constants and X is a random variable. Then

E [b] = b

E [aX ] = aE [X ]

E [aX + b] = aE [X ] + b

Together properties 1 and 2 are linearity (and this is sometimes presented
as Linearity of Expectations).
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Property 3 of Expected Value: LOTUS

Law of the Unconscious Statistician: If g(X ) is a function of a discrete
random variable, then

E [g(X )] =
∑
x

g(x)fX (x),

essentially the expected value of the transformation of the random variable
is just the weighted average of the transformed outcomes.

This means we can calculate the expected value of g(X ) without explicitly
knowing the distribution of g(X ).
Why the name LOTUS? “because this can be done very easily and
mechanically, perhaps in a state of unconsciousness.” (Blitzstein and
Hwang, Sec 4.5)
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Summary of Expected Value Properties

The three properties:

1) Additivity: expectation of sums are sums of expectations

E [X + Y ] = E [X ] + E [Y ]

2) Homogeneity: expected value of a constant is the constant

E [aX + b] = aE [X ] + b

3) LOTUS: Law of the Unconscious Statistician

E [g(X )] =
∑
x

g(x)fX (x)
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Two common misunderstandings about expected value

E [g(X )] = g(E [X ]) only if g(·) is a linear function

E [XY ] = E [X ]E [Y ] only if X and Y are independent
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Example: Assessing Racial Prejudice

We often want to ask sensitive questions which a survey respondent is
unlikely to honestly answer

A list experiment asks respondents how many items on a list they
agree with

I for example, what proportion of people would be upset by a black
family moving in next door to them (Kuklinski et al 1997).

I randomly split survey into two halves
I first half ask how many of the following items upset you:

1. the federal government increasing the tax on gasoline.
2. professional athletes getting million-dollar salaries.
3. large corporations polluting the environment.

I second half, add a fourth item

4. a black family moving in next door

I use the answers to infer the proportion upset by the fourth item.

We can use random variables!
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Identifying the Percent Angry

Let’s make this mathematical with random variables. This is the first step
in defining an estimator and assessing its performance (more next week!).

Assume that Y = X + A, where for a randomly sampled respondent,

Y = the number of angering items on full list.

X = the number of angering items on baseline list.

A = 1 if angered by a black family moving in next door.

A = 0 if not angered by a black family moving in next door.

E [Y ] = E [X + A]

= E [X ] + E [A]

E [Y ]− E [X ] = E [A]

So if we know E [Y ] and E [X ] we can get the expected proportion angered
by our item without knowing the individual status of anyone!
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Racial Prejudice Example (Kuklinski et al, 1997)

X = # of angering items on the baseline list for Southerners:
x 0 1 2 3

fX (x) ? ? ? ?

f̂X (x) 0.02 0.27 0.43 0.28

F̂X (x) 0.02 0.29 0.72 1.00

Y = # of angering items on the treatment list for Southerners:
y 0 1 2 3 4

fY (y) ? ? ? ? ?

f̂Y (y) 0.02 0.20 0.40 0.28 0.10

F̂Y (y) 0.02 0.22 0.62 0.90 1.00

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 54 / 155



Racial Prejudice Example (Kuklinski et al, 1997)

X = # of angering items on the baseline list for Southerners:
x 0 1 2 3

fX (x) ? ? ? ?

f̂X (x) 0.02 0.27 0.43 0.28

F̂X (x) 0.02 0.29 0.72 1.00

Y = # of angering items on the treatment list for Southerners:
y 0 1 2 3 4

fY (y) ? ? ? ? ?

f̂Y (y) 0.02 0.20 0.40 0.28 0.10

F̂Y (y) 0.02 0.22 0.62 0.90 1.00

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 54 / 155



Racial Prejudice Example (Kuklinski et al, 1997)

X = # of angering items on the baseline list for Southerners:
x 0 1 2 3

fX (x) ? ? ? ?

f̂X (x) 0.02 0.27 0.43 0.28

F̂X (x) 0.02 0.29 0.72 1.00

Y = # of angering items on the treatment list for Southerners:
y 0 1 2 3 4

fY (y) ? ? ? ? ?

f̂Y (y) 0.02 0.20 0.40 0.28 0.10

F̂Y (y) 0.02 0.22 0.62 0.90 1.00

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 54 / 155



Racial Prejudice Example
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On List Experiments in Research
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Fun with

Averages
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Central Tendency
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The Story of Averages
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Measurements
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Social Physics

The determination of the average man is not merely a matter of
speculative curiosity; it may be of the most important service to
the science of man and the social system. It ought necessarily to
precede every other inquiry into social physics, since it is, as it
were, the basis. The average man, indeed, is in a nation what the
centre of gravity is in a body; it is by having that central point in
view that we arrive at the apprehension of all the phenomena of
equilibrium and motion
- Quetelet
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The Military Takes to the Idea
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The Problem with Averages
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The Average Man
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The Face of the Average Man
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On averages

https://99percentinvisible.org/episode/on-average/
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We Covered. . .

Expectations (definitions, properties etc.)

A short history of the average

Next time: variance as a measure of a distribution’s dispersion!
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Where We’ve Been and Where We’re Going...

Last Week
I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference
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1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion
Measures of Dispersion
The Mean Squared Error Rationale for Expected Values

5 Joint and Conditional Distributions

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous Distributions
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Variance: A Measure of Dispersion

Expectation told us about the central tendency of a random variable, but
what about dispersion?
The expected value of a function g() of the random variable X is denoted
by E [g(X )] and measures the central tendency of g(X ).

The variance is a special case of this, and the variance of a random
variable X (a measure of its dispersion) is given by

V [X ] = E [(X − E [X ])2]

= E [X 2]− E [X ]2

It is the expectation of the squared distances from the mean.

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 71 / 155



Variance: A Measure of Dispersion

Expectation told us about the central tendency of a random variable, but
what about dispersion?

The expected value of a function g() of the random variable X is denoted
by E [g(X )] and measures the central tendency of g(X ).

The variance is a special case of this, and the variance of a random
variable X (a measure of its dispersion) is given by

V [X ] = E [(X − E [X ])2]

= E [X 2]− E [X ]2

It is the expectation of the squared distances from the mean.

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 71 / 155



Variance: A Measure of Dispersion

Expectation told us about the central tendency of a random variable, but
what about dispersion?
The expected value of a function g() of the random variable X is denoted
by E [g(X )] and measures the central tendency of g(X ).

The variance is a special case of this, and the variance of a random
variable X (a measure of its dispersion) is given by

V [X ] = E [(X − E [X ])2]

= E [X 2]− E [X ]2

It is the expectation of the squared distances from the mean.

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 71 / 155



Variance: A Measure of Dispersion

Expectation told us about the central tendency of a random variable, but
what about dispersion?
The expected value of a function g() of the random variable X is denoted
by E [g(X )] and measures the central tendency of g(X ).

The variance is a special case of this, and the variance of a random
variable X (a measure of its dispersion) is given by

V [X ] = E [(X − E [X ])2]

= E [X 2]− E [X ]2

It is the expectation of the squared distances from the mean.

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 71 / 155



For a discrete random variable X

V [X ] =
∑
all x

(x − E [X ])2pX (x)

For a continuous random variable X

V [X ] =

∫ ∞
−∞

(x − E [X ])2fX (x)dx
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Variance Measures the Spread of a Distribution
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Why the Variance?

It is a reasonable measure for the “spread” of a distribution.

The Normal distribution—more later this week—is completely
determined by its expected value (location) and variance (spread).

The square root of the variance is the standard deviation.

The variance and standard deviation have some useful properties.
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Property 1 of Variance: Behavior with Constants

Suppose a and b are constants and X is a random variable. Then

The variance of a constant is zero.

The variance of a constant times a random variable is the constant
squared times the variance of the random variable.

V [b] = 0

V [aX ] = a2V [X ]

V [aX + b] = a2V [X ] + 0
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Property 2 of Variance: Additivity for Independent
Random Variables

Variances of sums of independent RVs are sums of variances.

Suppose we have k independent random variables X1, . . . ,Xk . If V [Xi ]
exists for all i = 1, . . . , k , then

V

[
k∑

i=1

Xi

]
= V [X1] + · · ·+ V [Xk ]

NB: Technically independence is sufficient but not necessary.
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What was the variance of Obama’s NH position?

Candidates:

Joe Biden

Hillary Clinton

Chris Dodd

John Edwards

Mike Gravel

Dennis Kucinich

Barack Obama

Bill Richardson

4/26 × (1− 4.88)2

4/26 × (2− 4.88)2

2/26 × (3− 4.88)2

1/26 × (4− 4.88)2

1/26 × (5− 4.88)2

1/26 × (6− 4.88)2

10/26 × (7− 4.88)2

+

3/26 × (8− 4.88)2

2.93

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

Does variance matter for fairness?
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One Step Deeper: Moments

Definition

Suppose X is a random variable with pdf fX . Define,

E [X n] =

∫ ∞
−∞

xnfX (x)dx

We will call X n the nth moment of X

V (X ) = Second Moment− First Moment2

We are assuming that the integral converges.

Another way to characterize distributions is with their
moment-generating function.
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Expected Value as Mean Squared Error Minimizer

Now we can return to the question of why expectation? and offer one
technical answer.

Suppose we want to pick a single number (c) that summarizes a random
variable X . What we mean by summarizes determines the best choice of c .

Generally speaking we want a summary that is in the “center” of the data,
i.e. that is as close as possible to all possible datapoints. Again though,
the choice turns on what we mean by close.
Two notions of closeness:

Mean Squared Error: E
[
(X − c)2

]
This leads to choosing the mean of X .

Mean Absolute Error: E [|X − c |]
This leads to choosing the median of X .

Let’s prove the first result (see Blitzstein and Hwang 2014 Theorem 6.1.4
on pg 245 for this proof and the proof on mean absolute error).
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Proof of Mean as Mean Squared Error Minimizer
Let X be a random variable and E [X ] = µ. We want to show that the

value of c that minimizes the mean squared error E
[
(X − c)2

]
is the

mean, µ (Blitzstein and Hwang Theorem 6.1.4).

We will prove the following identity below:

E
[
(X − c)2

]
= V [X ] + (µ− c)2 (1)

We choose c to minimize this term. The choice cannot affect V [X ].
Setting c = µ sets (µ− c)2 = 0 and any other choice makes (µ− c)2 > 0.
Therefore (assuming the identity holds), c = µ minimizes Eq 1.

Now to prove the identity:

V [X ] = V [X − c] (Prop 1 of Variance)

= E
[
(X − c)2

]
− (E [X − c])2 (Defn of Variance)

= E
[
(X − c)2

]
− (µ− c)2 (Linearity of Exp)

V [X ] + (µ− c)2 = E
[
(X − c)2

]
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Therefore (assuming the identity holds), c = µ minimizes Eq 1.

Now to prove the identity:

V [X ] = V [X − c] (Prop 1 of Variance)

= E
[
(X − c)2

]
− (E [X − c])2 (Defn of Variance)

= E
[
(X − c)2

]
− (µ− c)2 (Linearity of Exp)

V [X ] + (µ− c)2 = E
[
(X − c)2

]
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We Covered. . .

Variance (definitions, properties etc.)

A tiny preview of moments

Motivation of the expectation as a minimizer of mean squared error.

Next time: Joint Distributions!
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Where We’ve Been and Where We’re Going...

Last Week
I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference
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1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions
First Visual Example
Discrete Random Variable
Continuous Random Variable

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous DistributionsStewart (Princeton) Week 2: Random Variables September 7–11, 2020 83 / 155



Joint Distributions

We’ve talked about joint probabilities of events—what was the
probability of A and B occurring: P(A ∩ B)

We also talked about the conditional probability of A given that B
occurred.

We also need to think about more than one random variable at the
same time.

The joint distribution of two (or more) variables describes the pairs of
observations that we are more or less likely to see.

The conditional distribution describes one random variable given
knowledge of another.

We will start with a visual preview, then step back to go through the
math more concretely.
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Understanding Joint Distributions Mathematically

Consider two random variables now, X and Y , each on the real line,
R.

The pair form a two-dimensional space, or R× R
One realization of the random variable is a point in that space

X

Y

X

Y

(x , y)
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Example: Racial Prejudice

Recall the list experiment about racial prejudice. Suppose we define
X = 0 (Non-southern), 1 (Southern) and Y = “number of angering
items” for a randomly selected respondent receiving the treatment list.

Furthermore, we define the probability that this respondent will have
the values X = x and Y = y to be pY ,X (y , x) = πyx

X

Y

f

=

=

=( )

,

, , , ,

, π

N

W E

S

N

W E

S

N

W E

S

N

W E

S
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Example Joint Distribution: Binary X, Discrete Y
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Example Joint Distribution: Binary X, Discrete Y
Although we cannot observe the responses for the entire population, we
can imagine what they might look like as a joint distribution.
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Example Joint Distribution: Binary X, Discrete Y
Although we cannot observe the responses for the entire population, we
can imagine what they might look like as a joint distribution.

fX ,Y (x , y) x
y 0 1 fY (y)

0 π00 π01 π00 + π01

1 π10 π11 π00 + π01

2 π20 π21 π00 + π01

3 π30 π31 π00 + π01

4 π40 π41 π00 + π01

fX (x)
∑4

y=0 πy0
∑4

y=0 πy1
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Example Joint Distribution: Binary X, Discrete Y
Although we cannot observe the responses for the entire population, we
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Discrete Conditional Distribution
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Discrete Conditional Distribution
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Discrete Conditional Distribution
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Conditional Distributions and Expectations
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Example: Continuous Conditional Distribution
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Conditional Expectation Function—next time!
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1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions
First Visual Example
Discrete Random Variable
Continuous Random Variable

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous DistributionsStewart (Princeton) Week 2: Random Variables September 7–11, 2020 91 / 155



Joint Probability Mass Function

Definition
For two discrete random variables X and Y the joint Probability Mass Function
(PMF) PX ,Y (x , y) gives the probability that X = x and Y = y for all x and y :

pX ,Y (x , y) = P(X = x and Y = y)

Restrictions:

pX ,Y (x , y) ≥ 0 and
∑

x

∑
y pX ,Y (x , y) = 1.
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Joint Probability Mass Function

Definition
For two discrete random variables X and Y the joint Probability Mass Function
(PMF) pX ,Y (x , y) gives the probability that X = x and Y = y for all x and y :

pX ,Y (x , y) = P(X = x and Y = y)

Should the U.S. allow more immigrants to come and live here?

X: Education
less HS HS College BA

oppose 0.07 0.22 0.18 0.15
Y: Support neutral 0.02 0.06 0.05 0.05

favor 0.01 0.03 0.04 0.11

With discrete random variables this is very similar to thinking about a cross-tab,
with frequencies/ probabilities in the cells instead of raw numbers.
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Joint Probability Mass Function
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From Joint to Marginal PMF

Given the joint PMF pX ,Y (x , y) can we recover the marginal PMF pY (y)
(distribution over a single variable)?

X: Education

less HS HS College BA

pY (y)

oppose 0.07 0.21 0.17 0.14

0.62

Y: Support neutral 0.02 0.06 0.05 0.05

0.19

favor 0.01 0.03 0.04 0.10

0.19

To obtain pY (y) we marginalize the joint probability function pX ,Y (x , y)
over X :

pY (y) =
∑
x

pX ,Y (x , y) =
∑
x

P(X = x ,Y = y)
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Joint and Marginal Probability Mass Functions
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Why Does Marginalization Work?

Begin with discrete case. Consider jointly distributed discrete random
variables, X and Y . We’ll suppose they have joint pmf,

P(X = x ,Y = y) = pX ,Y (x , y)

Suppose that the distribution allocates its mass at x1, x2, . . . , xM and
y1, y2, . . . , yN .
Define the conditional mass function P(X = x |Y = y) as,

P(X = x |Y = y) ≡ pX |Y (x |y)

= pX ,Y (x , y)/pY (y)

Then it follows that:

pX ,Y (x , y) = pX |Y (x |y)pY (y)

Marginalizing over y to get pX (x) is then,

pX (xj) =
N∑
i=1

pX |Y (xj |yi )pY (yi )
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A Table

Y = 0 Y = 1

X = 0 p(0,0) p(0, 1) pX (0)
X = 1 p(1,0) p(1,1) pX (1)

pY (0) pY (1)

pX (0) = P(X = 0|Y = 0)P(Y = 0) + P(X = 0|Y = 1)P(Y = 1)

=
0.01

0.26
× 0.26 +

0.05

0.74
× 0.74

= 0.06

pX (1) = P(X = 1|Y = 0)P(Y = 0) + P(X = 1|Y = 1)P(Y = 1)

=
0.25

0.26
× 0.26 +

0.69

0.74
× 0.74

= 0.94
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Conditional PMF

Definition

The conditional PMF of Y given X , pY |X (y |x), is the PMF of Y when X
is known to be at a particular value X = x :

pY |X (y |x) =
P(X = x and Y = y)

P(X = x)
=

pX ,Y (x , y)

pX (x)

Key relationships:

pX ,Y (x , y) = pY |X (y |x)pX (x) (multiplicative rule)

pY |X (y |x) = pX |Y (x |y)pY (y)/pX (x) (Bayes’ rule)

Conditional PMFs are just like ordinary PMFs, but refer to a universe
where the “conditioning event” (X = x) is known to have occurred.

Conditional distributions are key in statistical modeling because they
inform us how the distribution of Y varies across different levels of X .
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From Joint to Conditional: pY |X (y |x) =
pX ,Y (x ,y)
pX (x)

Table: Joint PMF pX ,Y (x , y) and Marginal PMFs pX (x), pY (y)

Education
pX ,Y (x , y) less HS HS College BA pY (y)

oppose 0.07 0.22 0.18 0.15 0.62
Support neutral 0.02 0.06 0.05 0.05 0.19

favor 0.01 0.03 0.04 0.11 0.19
pX (x) 0.11 0.32 0.27 0.31 1.00

Table: Conditional PMF pY |X (y |x)

Education
pY |X (y |x) less HS HS College BA

oppose 0.70 0.70 0.65 0.48 0.62
Support neutral 0.20 0.20 0.19 0.17 0.19

favor 0.10 0.10 0.15 0.34 0.19
1.00 1.00 1.00 1.00 1.00
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Joint and Conditional Probability Mass Functions
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1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions
First Visual Example
Discrete Random Variable
Continuous Random Variable

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous DistributionsStewart (Princeton) Week 2: Random Variables September 7–11, 2020 102 / 155



Joint Probability Density Function

Definition

For two continuous random variables X and Y the joint PDF fX ,Y (x , y)
gives the density height where X = x and Y = y for all x and y .

The multiplicative rule:

fX ,Y (x , y) = fY |X (y |x)fX (x)

where

fY |X (y |x): Conditional PDF of Y given X = x

fX (x): Marginal PDF of X

Restrictions:∫
x

∫
y fX ,Y (x , y) dy dx = 1
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3D Plot of a Joint Probability Density Function
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Contour Plot of a Joint Probability Density Function
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From Joint to Marginal PDF
How can we obtain fY (y) from fX ,Y (x , y)?

We marginalize the joint probability function fX ,Y (x , y) over X :

fY (y) =

∫ ∞
−∞

fX ,Y (x , y)dx
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From Joint to Marginal PDF

X

Y
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We Covered. . .

Joint distributions for discrete and continuous random variables.

Conditional distributions.

Marginalization

Next time: Characterizing Conditional Distributions!
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Where We’ve Been and Where We’re Going...

Last Week
I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference
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1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions

6 Characterizing Conditional Distributions
Conditional Expectation
Conditional Variance

7 Independence and Covariance

8 Famous Distributions
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Remember this?
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Conditioning on X

A common goal in statistical modeling is to characterize the
conditional distribution of the outcome variable fY |X (y |x) across
different levels of X = x .

Typically, we summarize the conditional distributions with a few
parameters such as the conditional mean of E [Y |X = x ] and the
conditional variance V [Y |X = x ]

Moreover, we are often interested in estimating E [Y |X ], i.e. the
conditional expectation function that describes how the conditional
mean of Y varies across all possible values of X .
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Conditional Expectation

Definition (Conditional Expectation (Discrete))

Let Y and X be discrete random variables. The conditional expectation of
Y given X = x is defined as:

E [Y |X = x ] =
∑
y

y P(Y = y |X = x) =
∑
y

y pY |X (y |x)

Definition (Conditional Expectation (Continuous))

Let Y and X be continuous random variables. The conditional expectation
of Y given X = x is given by:

E [Y |X = x ] =

∫ ∞
−∞

y fY |X (y |x)dy
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Joint and Conditional Probability Mass Functions
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Conditional PMF PY |X (y |x)
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Conditional Expectation E [Y |X = 1]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−
1

0
1

jitter(Educational Attainment)

jit
te

r(
In

 F
av

ou
r 

of
 Im

m
ig

ra
tio

n)

●

less HS HS College BA

● E[Y|X=less HS]

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 116 / 155



Conditional Expectation Function E [Y |X ]
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Law of Iterated Expectations

Theorem (Law of Iterated Expectations/Adam’s Law)

For two random variables X and Y ,

E [Y ] = E [E [Y |X ]] =


∑
all x

E [Y |X = x ] · pX (x) (discrete X )∫ ∞
−∞

E [Y |X = x ] · fX (x)dx (continuous X )

Note that the outer expectation is taken with respect to the distribution of X .

Example: Y (support) and X ∈ {1, 0} (AfAm). Then, the LIE tells us:

E [Y ] = E [E [Y |X ]]

E [Y ]

︸ ︷︷ ︸
Average Support

= E [Y |X = 1]︸ ︷︷ ︸
Average Support|AfAmc

· pX (1)︸ ︷︷ ︸
P(AfAmc )

+ E [Y |X = 0]︸ ︷︷ ︸
Average Support|AfAm

· pX (0)︸ ︷︷ ︸
P(AfAm)
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Properties of Conditional Expectation

Conditional expectations have some convenient properties
1 E [c(X )|X ] = c(X ) for any function c(X ).

I Basically, any function of X is a constant with regard to the conditional
expectation. If we know X , then we also know X 2, for instance.

2 E [(Y − E [Y |X ])2] ≤ E [(Y − g(X ))2]
(given E [Y 2] <∞ and E [g(X )2] <∞ for some function g)

I This says that the conditional expectation is the function of X that
minimizes the squared prediction error for Y across any possible
function of X .

I This is analogous to the result we saw a few videos ago about the
mean.
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Conditional Variance

Conditional expectation gives us information about the central tendency of
a random variable given another random variable.

We also want to know the conditional variance to understand our
uncertainty about the conditional distribution.

Remember, the conditional distribution of Y |X is basically like any other
probability distribution, so we are going to want to summarize the center
and spread.
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Conditional Variance

Definition
The conditional variance of Y given X = x is defined as:

V [Y |X = x ] =


∑
all y

(y − E [Y |X = x ])2PY |X (y |x) (discrete Y )∫ ∞
−∞

(y − E [Y |X = x ])2fY |X (y |x)dy (continuous Y )

A useful related result is the law of total variance (Eve’s Law):

V [Y ]︸ ︷︷ ︸
Total variance

= E [V [Y |X ]]︸ ︷︷ ︸
Average of Group Variances

+ V [E [Y |X ]]︸ ︷︷ ︸
Variance in Group Averages

Example: Y (support) and X ∈ {1, 0} (group). The LTV says that the total
variance in support can be decomposed into two parts:

1 On average, how much support varies within groups (within variance)

2 How much average support varies between groups (between variance)
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Conditional Variance Function V [Y |X ]
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Subtleties

It is important to distinguish between what is random/stochastic and
what is constant. However, this can be tricky at first.

If X is a random variable, generally a function of X (g(X )) is also a
random variable.

E [X ] is a constant though (we sometimes refer to E [·] as an operator
to make clear it doesn’t behave the same as g(·)).

Why? There is no longer anything stochastic in E [X ]. Take the
discrete case: E [X ] =

∑
x xpX (x). Note that this is entirely in terms

of realized values.

By contrast, E [X |Y ] is random.

E [X |Y ] is a function into which one can plug a value of Y = y and
get the expectation of X conditional on that value. Thus the
randomness ‘comes from’ Y .

Let’s look at this in pictures.
(If you want to know more: Blitzstein and Hwang pg 392-393)
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E [X |Y ] is a function into which one can plug a value of Y = y and
get the expectation of X conditional on that value. Thus the
randomness ‘comes from’ Y .

Let’s look at this in pictures.
(If you want to know more: Blitzstein and Hwang pg 392-393)
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Important Subtleties in Pictures
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Sample space
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Important Subtleties in Pictures

X
1 2 3 4 5 6 7 8 9 10 11

g(X)

g(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8) g(9) g(10) g(11)

Function of a random variable is a random variable
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Important Subtleties in Pictures
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Y 1 2 3

X

3 9or or
1 2 4 5

6
7 8 10 11

E [X |Y ]
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Important Subtleties in Pictures

Y 1 2 3

X

9
1 2 4 5 7 8 10 11

E [X |Y = 3]
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Important Subtleties in Pictures

6

E(X | Y)

Y 1 2 3

X

3 9
1 2 4 5 7 8 10 11

E [E [X |Y ]] = E [X ]

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 124 / 155



We Covered. . .

Conditional Expectations

Conditional Variance

Law of Iterated Expectation

Next time: Independence and Covariance!
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Where We’ve Been and Where We’re Going...

Last Week
I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference
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1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions

6 Characterizing Conditional Distributions

7 Independence and Covariance
Independence
Covariance and Correlation
Conditional Independence

8 Famous DistributionsStewart (Princeton) Week 2: Random Variables September 7–11, 2020 127 / 155



Independence

Definition (Independence of Random Variables)

Two random variables Y and X are independent if

fX ,Y (x , y) = fX (x)fY (y)

for all x and y . We write this as Y⊥⊥X .

Independence implies
fY |X (y |x) = fY (y)

and thus
E [Y |X = x ] = E [Y ]
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Expected Values with Independent Random Variables

If random variables X and Y are independent, then

E [XY ] = E [X ]E [Y ]

Proof: For discrete X and Y ,

E [XY ] =
∑
all x

∑
all y

x y pX ,Y (x , y)

=
∑
all x

∑
all y

x y pX (x)pY (y)

=
∑
all x

x pX (x)
∑
all y

y pY (y)

= E [X ]E [Y ]

We can prove the continuous case by following the same steps, with
∑

replaced by
∫

.
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x y pX ,Y (x , y)

=
∑
all x

∑
all y

x y pX (x)pY (y)

=
∑
all x

x pX (x)
∑
all y

y pY (y)

= E [X ]E [Y ]

We can prove the continuous case by following the same steps, with
∑

replaced by
∫

.
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random variables .

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it more
likely to also observe a Y value greater than E [Y ], and vice versa.

Points in upper right and lower
left quadrants (relative to the
means) add to the covariance.

Points in the upper left and
lower right quadrants subtract
from the covariance.

Descriptive Statistics with Simple Linear Regression
Least Squares
Goodness of Fit

Properties of Sample Covariance

sxy =

Pn
i=1(xi − x̄)(yi − ȳ)

n − 1

Points in the upper right and lower left
quadrants (relative to the means) add to
the covariance.

Points in the upper left and lower right
quadrants subtract from the covariance.
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random variables .

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it more
likely to also observe a Y value greater than E [Y ], and vice versa.
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random variables

.

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it more
likely to also observe a Y value greater than E [Y ], and vice versa.
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Pn
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n − 1
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random variables .

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it more
likely to also observe a Y value greater than E [Y ], and vice versa.
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Properties of Sample Covariance

sxy =

Pn
i=1(xi − x̄)(yi − ȳ)

n − 1
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Covariance

Definition
The covariance of X and Y is defined as:

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

Covariance measures the linear association between two random variables .

If Cov [X ,Y ] > 0, observing an X value greater than E [X ] makes it more
likely to also observe a Y value greater than E [Y ], and vice versa.

Points in upper right and lower
left quadrants (relative to the
means) add to the covariance.

Points in the upper left and
lower right quadrants subtract
from the covariance.

Descriptive Statistics with Simple Linear Regression
Least Squares
Goodness of Fit

Properties of Sample Covariance

sxy =

Pn
i=1(xi − x̄)(yi − ȳ)

n − 1
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quadrants (relative to the means) add to
the covariance.

Points in the upper left and lower right
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Covariance and Independence
Does X⊥⊥Y imply Cov [X ,Y ] = 0?

Yes!

Proof:
Cov [X ,Y ] = E [XY ]− E [X ]E [Y ]

= E [X ]E [Y ]− E [X ]E [Y ] (independence)

= 0.

Does Cov [X ,Y ] = 0 imply X⊥⊥Y ? No!

Counterexample: Suppose X ∈ {−1, 0, 1} with pX (x) = 1/3 and Y = X 2.

Is X⊥⊥Y ? No, because pY |X (y | x) 6= pY (y)
(Learning about X gives meaningful information about Y .)

What is Cov [X ,Y ]?

Cov [X ,Y ] = E [XX 2]− E [X ]E [X 2] = E [X 3]− E [X ]E [X 2]

= E [X ]− E [X ]E [X 2] = 0− 0 · E [X 2] = 0.

Therefore, X⊥⊥Y =⇒ Cov [X ,Y ] = 0, but not vice versa.
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Important Identities for Variances and Covariances

1 For random variables X and Y and constants a, b and c ,

V [aX + bY + c] = a2V [X ] + b2V [Y ] + 2ab Cov [X ,Y ]

2 Important special cases:

V [X + Y ] = V [X ] + V [Y ] + 2Cov [X ,Y ]

V [X − Y ] = V [X ] + V [Y ]− 2Cov [X ,Y ]

3 Furthermore, if X and Y are independent,

V [X ± Y ] = V [X ] + V [Y ]

Proof: Plug in to the definition of variance and expand (try it yourself!)
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Correlation

Cov [X ,Y ] depends not only on the strength of (linear) association
between X and Y , but also the scale of X and Y .

Can we have a pure measure of association that is scale-independent?

Definition (Correlation)

The correlation between two random variables X and Y is defined as

Cor [X ,Y ] =
Cov [X ,Y ]√
V [X ]V [Y ]

=
Cov [X ,Y ]

SD[X ]SD[Y ]
.

Cor [X ,Y ] is a standardized measure of linear association between X
and Y .

Always satisfies: −1 ≤ Cor [X ,Y ] ≤ 1.
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Correlation is Linear

Cor [X ,Y ] = ±1 iff Y = aX + b where a 6= 0.

Like covariance, correlation measures the linear association between
X and Y .
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Conditional Independence

Definition (Conditional Independence of Random Variables)

Random variables Y and X are conditionally independent given Z iff

fX ,Y |Z (x , y |z) = fY |Z (y |z) · fX |Z (x |z)

for all x , y , and z . This is often written as Y⊥⊥X | Z .

Can also be written as

fY |X ,Z (y | x , z) = fY |Z (y | z)

Interpretation: Once we know Z , X contains no meaningful
information about likely values of Y .
(Z has all the information about Y contained in X , if any.)

Y⊥⊥X | Z implies

E [Y |X = x ,Z = z ] = E [Y |Z = z ].

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 136 / 155



Conditional Independence

Definition (Conditional Independence of Random Variables)

Random variables Y and X are conditionally independent given Z iff

fX ,Y |Z (x , y |z) = fY |Z (y |z) · fX |Z (x |z)

for all x , y , and z . This is often written as Y⊥⊥X | Z .

Can also be written as

fY |X ,Z (y | x , z) = fY |Z (y | z)

Interpretation: Once we know Z , X contains no meaningful
information about likely values of Y .
(Z has all the information about Y contained in X , if any.)

Y⊥⊥X | Z implies

E [Y |X = x ,Z = z ] = E [Y |Z = z ].

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 136 / 155



Conditional Independence

Definition (Conditional Independence of Random Variables)

Random variables Y and X are conditionally independent given Z iff

fX ,Y |Z (x , y |z) = fY |Z (y |z) · fX |Z (x |z)

for all x , y , and z . This is often written as Y⊥⊥X | Z .

Can also be written as

fY |X ,Z (y | x , z) = fY |Z (y | z)

Interpretation: Once we know Z , X contains no meaningful
information about likely values of Y .
(Z has all the information about Y contained in X , if any.)

Y⊥⊥X | Z implies

E [Y |X = x ,Z = z ] = E [Y |Z = z ].

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 136 / 155



Conditional Independence

Definition (Conditional Independence of Random Variables)

Random variables Y and X are conditionally independent given Z iff

fX ,Y |Z (x , y |z) = fY |Z (y |z) · fX |Z (x |z)

for all x , y , and z . This is often written as Y⊥⊥X | Z .

Can also be written as

fY |X ,Z (y | x , z) = fY |Z (y | z)

Interpretation: Once we know Z , X contains no meaningful
information about likely values of Y .
(Z has all the information about Y contained in X , if any.)

Y⊥⊥X | Z implies

E [Y |X = x ,Z = z ] = E [Y |Z = z ].

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 136 / 155



Conditional Independence

Definition (Conditional Independence of Random Variables)

Random variables Y and X are conditionally independent given Z iff

fX ,Y |Z (x , y |z) = fY |Z (y |z) · fX |Z (x |z)

for all x , y , and z . This is often written as Y⊥⊥X | Z .

Can also be written as

fY |X ,Z (y | x , z) = fY |Z (y | z)

Interpretation: Once we know Z , X contains no meaningful
information about likely values of Y .
(Z has all the information about Y contained in X , if any.)

Y⊥⊥X | Z implies

E [Y |X = x ,Z = z ] =

E [Y |Z = z ].

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 136 / 155



Conditional Independence

Definition (Conditional Independence of Random Variables)

Random variables Y and X are conditionally independent given Z iff

fX ,Y |Z (x , y |z) = fY |Z (y |z) · fX |Z (x |z)

for all x , y , and z . This is often written as Y⊥⊥X | Z .

Can also be written as

fY |X ,Z (y | x , z) = fY |Z (y | z)

Interpretation: Once we know Z , X contains no meaningful
information about likely values of Y .
(Z has all the information about Y contained in X , if any.)

Y⊥⊥X | Z implies

E [Y |X = x ,Z = z ] = E [Y |Z = z ].

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 136 / 155



Is Y⊥⊥X?
Example: X = wealth, Y = support for immigration, Z = education.
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Is Y⊥⊥X |Z?
Example: X = wealth, Y = support for immigration, Z = education.
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We Covered. . .

Independence

Covariance and Correlation

Conditional Independence

Next time: Famous Distributions!
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Where We’ve Been and Where We’re Going...

Last Week
I welcome and outline of course
I described uncertain outcomes with probability.

This Week
I define random variables
I summarize random variables using expectation and variance
I properties of joint and conditional distributions
I famous distributions

Next Week
I estimating these features from data
I estimating uncertainty

Long Run
I probability → inference → regression → causal inference

Stewart (Princeton) Week 2: Random Variables September 7–11, 2020 140 / 155



1 Definition of Random Variables

2 Continuous Distribution

3 Expectation as a Measure of Central Tendency

4 Variance as a Measure of Dispersion

5 Joint and Conditional Distributions

6 Characterizing Conditional Distributions

7 Independence and Covariance

8 Famous Distributions
Discrete Distributions
Continuous Distributions
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Distributions

We like random variables because they take complex real world
phenomena and represent them with a common mathematical
infrastructure.

We can work with arbitrary pmf/pdfs but we will often work with
particular families of distributions.

I members of the same family have similar forms determined by
parameters

I the parameters determine the shape of the distribution

When we can work with an existing set of distributions, it makes
calculations simpler

Examples: Bernoulli, Binomial, Gamma, Normal, Poisson,
t-distribution
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Bernoulli Random Variable

Definition

Suppose X is a random variable, with X ∈ {0, 1} and P(X = 1) = π.
Then we will say that X is Bernoulli random variable,

P(X = x) = πx(1− π)1−x

for x ∈ {0, 1} and P(X = x) = 0 otherwise.
We will (equivalently) say that

X ∼ Bernoulli(π)

∼ means equality in distribution (not values!). Often X ∼ Bernoulli(π)
would be read ‘X is distributed Bernoulli with parameter π’
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Bernoulli Random Variable Mean and Variance

Suppose X ∼ Bernoulli(π)

E [X ] = 1× P(X = 1) + 0× P(X = 0)

= π + 0(1− π) = π

var(X ) = E [X 2]− E [X ]2

E [X 2] = 12P(X = 1) + 02P(X = 0)

= π

var(X ) = π − π2

= π(1− π)

E [X ] = π
var(X ) = π(1− π)

Importantly, we can also just look this up!
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Normal/Gaussian Random Variables

Definition

Suppose X is a random variable with X ∈ R and density

fX (x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
Then X is a normally distributed random variable with parameters µ and
σ2.
Equivalently, we’ll write

X ∼ Normal(µ, σ2)
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Expected Value/Variance of Normal Distribution

Z is a standard normal distribution if

Z ∼ Normal(0, 1)

We’ll call the cumulative distribution function of Z ,

FZ (x) =
1√
2π

∫ x

−∞
exp(−z2/2)dz

Proposition

Scale/Location. If Z ∼ N(0, 1), then X = aZ + b is,

X ∼ Normal(b, a2)
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Intuition
Suppose Z ∼ Normal(0, 1).

Y = 2Z + 6
Y ∼ Normal(6, 4)
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Expectation and Variance

Assume we know:

E [Z ] = 0

Var(Z ) = 1

This implies that, for Y ∼ Normal(µ, σ2)

E [Y ] = E [σZ + µ]

= σE [Z ] + µ

= µ

Var(Y ) = Var(σZ + µ)

= σ2Var(Z ) + Var(µ)

= σ2 + 0

= σ2
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Multivariate Normal

Definition

Suppose X = (X1,X2, . . . ,XN) is a vector of random variables. If X has
pdf

fX1,X2(x) = (2π)−N/2det (Σ)−1/2 exp

(
−1

2
(x − µ)

′
Σ(x − µ)

)
Then we will say X has a Multivariate Normal Distribution,

X ∼ Multivariate Normal(µ,Σ)
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Multivariate Normal Distribution

Consider the (bivariate) special case where µ = (0, 0) and

Σ =

(
1 0
0 1

)

Then

f (x1, x2) = (2π)−2/21−1/2 exp

(
−1

2

(
(x − 0)

′
(

1 0
0 1

)
(x − 0)

))
=

1

2π
exp

(
−1

2
(x2

1 + x2
2 )

)
=

1√
2π

exp

(
−x2

1

2

)
1√
2π

exp

(
−x2

2

2

)
 product of univariate standard normally distributed random variables
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Properties of the Multivariate Normal Distribution

Suppose X = (X1,X2, . . . ,XN)

E [X ] = µ

cov(X ) = Σ

So that,

Σ =


var(X1) cov(X1,X2) . . . cov(X1,XN)

cov(X2,X1) var(X2) . . . cov(X2,XN)
...

...
. . .

...
cov(XN ,X1) cov(XN ,X2) . . . var(XN)
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One Step Deeper: Exponential Family

Nearly every distribution we will discuss is in the exponential family. An
exponential family distribution has the density of the following form:

fY (y ; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y , φ)

}

Example: Poisson(µ):

P(Yi = y | µ) = exp {y logµ− exp(logµ)− log y !}

=⇒ θ = logµ, φ = 1, a(φ) = φ, b(θ) = exp(θ), and c = − log y !

Many other examples, including: Normal, Bernoulli/binomial, Gamma,
multinomial, exponential, negative binomial, beta, uniform, chi-squared,
etc.

This slide and the following based on material from Teppei Yamamoto
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exponential family distribution has the density of the following form:

fY (y ; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y , φ)

}
Example: Poisson(µ):

P(Yi = y | µ) = exp {y logµ− exp(logµ)− log y !}

=⇒ θ = logµ, φ = 1, a(φ) = φ, b(θ) = exp(θ), and c = − log y !

Many other examples, including: Normal, Bernoulli/binomial, Gamma,
multinomial, exponential, negative binomial, beta, uniform, chi-squared,
etc.
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One Step Deeper: Properties of the Exponential Family

Mean is a function of θ and given by

E(Y ) ≡ µ = b′(θ)

Variance is a function of θ and φ and given by

V(Y ) ≡ V = b′′(θ)a(φ)

Common forms of a(φ): 1 (Poisson, Bernoulli), φ (normal, Gamma),
and φ/ωi (binomial)

b′′(θ) is called the variance function

In the Poisson model, θi = logµi , a(φ) = 1 and b(θi ) = exp(θi )

⇒ E(Yi ) = db(θi )
dθi

= exp(θi ) = µi and V(Yi ) = d2b(θi )
dθ2

i
= exp(θi ) = µi
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Summary

Random variables and probability distributions provide useful models
of the world

We can characterize distributions in terms of their expectation
(location) and variance (spread).

Joint and conditional distributions capture the relationship between
random variables.

There is a common set of famous distributions such as the Normal
distribution.
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This Week in Review

Random Variables!

Expectation and Variance!

Distributions!

Going Deeper:

Blitzstein, Joseph K., and Hwang, Jessica. (2019). Introduction to
Probability. CRC Press. http://stat110.net/

Next week: inference!
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