Week 3: Learning from Random Samples

Brandon Stewart!

Princeton

September 14-18, 2020

!These slides are heavily influenced by Matt Blackwell, Adam Glynn, Justin Grimmer,
Jens Hainmueller, Erin Hartman and Matt Salganik. Some illustrations by Shay O'Brien.
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@ Last Week

» random variables
» joint distributions
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

@ Next Week

> hypothesis testing
» what is regression?

@ Long Run
» probability — inference — regression — causal inference
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0 Estimation
@ Populations and Samples
@ Estimators
@ Analytical

a Weak Law of Large Numbers and the Central Limit Theorem
@ Chebychev's Inequality
@ Weak Law of Large Numbers
@ The Central Limit Theorem

e Properties of Estimators
@ Four Desirable Properties
@ Example

e Interval Estimation
@ Intervals
@ Large Sample Intervals for a Mean
@ Small Sample Intervals for a Mean
@ Comparing Two Groups
@ Interval Estimation for a Proportion

e Plug-In Principle
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Primary Goal for This Week

Racial Prejudice and Attitudes Toward
Affirmative Action™

James H. Kuklinski, University of Illinois at Urbana-Champaign
Paul M. Sniderman, Stanford University

Kathleen Knight, University of Houston

Thomas Piazza, University of California-Berkeley

Philip E. Tetlock, Ohio State University

Gordon R. Lawrence, Williams College

Barbara Mellers, Ohio State University

https://www. jstor.org/stable/2111770
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https://www.jstor.org/stable/2111770

Primary Goal for This Week

Theory: We examine the relationship between blatant racial prejudice and anger
toward affirmative action.

Hypotheses: (1) Blatantly prejudiced attitudes continue to pervade the white popu-
lation in the United States. (2) Resistance to affirmative action is more than an
extension of this prejudice. (3) White resistance to affirmative action is not unyield-
ing and unalterably fixed.

Methods: Analysis of experiments embedded in a national survey of racial attitudes.
Some of these experiments are designed to measure racial prejudice unobtrusively.
Results: Racial prejudice remains a major problem in the United States, but this
prejudice alone cannot explain all of the anger toward affirmative action among
whites. Although many whites strongly resist affirmative action, they express sup-
port for making extra efforts to help African-Americans.

https://www. jstor.org/stable/2111770
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Primary Goal for This Week

We want to be able to interpret the numbers in this table (and a couple of

numbers that can be derived from these numbers).

Table 1. Mean Level of Anger Toward A Black Family Moving in
Next Door, by Region (Whites Only)

Experimental Condition

Estimated
Region Baseline Black Family Percent Angry
Non-South 228 224 0
(07) (.05)
425° 461
South 1.95 237 42
(.06) (.08)
139 136

“Standard error of the estimate.
*Number of cases.
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An Overview

Population Distribution
Y~ ?(u, 0?)

Estimand /Parameter
M, 02

Estimate Sample

g(Y1=y1,Yz =Yy, e Y= Yn) (Vs Vopecentii)

Estimator/Statistic

8(Y5, Y5, V)
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Populations

o Typically, we want to learn about the distribution of random variables
for a population of interest.
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@ We will sometimes call the population distribution the data
generating process and represent it with a pmf or pdf, fx(x;8).
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Populations

o Typically, we want to learn about the distribution of random variables
for a population of interest.

@ We will sometimes call the population distribution the data
generating process and represent it with a pmf or pdf, fx(x;8).

@ The population can be:

» finite: as in all residents of a country
» or infinite: as in all possible television ads.
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Populations

o Typically, we want to learn about the distribution of random variables
for a population of interest.
@ We will sometimes call the population distribution the data
generating process and represent it with a pmf or pdf, fx(x;8).
@ The population can be:
» finite: as in all residents of a country
» or infinite: as in all possible television ads.
@ With either a finite or infinite population our main goal in inference is
to learn about the population distribution fx via summaries, like E[X]
or V[X], which we call a population parameter (or just parameter).
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Populations

Typically, we want to learn about the distribution of random variables
for a population of interest.

@ We will sometimes call the population distribution the data
generating process and represent it with a pmf or pdf, fx(x;8).

@ The population can be:
» finite: as in all residents of a country
» or infinite: as in all possible television ads.

@ With either a finite or infinite population our main goal in inference is
to learn about the population distribution fx via summaries, like E[X]
or V[X], which we call a population parameter (or just parameter).

@ ldeally we assume as little as possible about the form of fx.
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Nomenclature: Estimands, Estimators, and Estimates
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Nomenclature: Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the unobserved
population distribution, which can be characterized by parameters.
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@ Estimands are the parameters to estimate. r&”

Often written with greek letters (e.g. w).
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Nomenclature: Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the unobserved
population distribution, which can be characterized by parameters.

@ Estimands are the parameters to estimate.
Often written with greek letters (e.g. w).

@ Estimators are functions which map our data
to guesses about the estimand. Often denoted

with a "hat” (e.g. f1)
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Nomenclature: Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the unobserved
population distribution, which can be characterized by parameters.

(J
@ Estimands are the parameters to estimate. M

Often written with greek letters (e.g. w).

@ Estimators are functions which map our data
to guesses about the estimand. Often denoted
with a "hat” (e.g. f1)

o Estimates are particular values of estimators "
that are realized in a given sample (e.g. 12) D)
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Independent and ldentically Distributed Samples

Statistical inference is learning about features of some population through
a sampling mechanism.

@ We will base most of our inferential machinery on the idea of random
sampling.
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Independent and ldentically Distributed Samples

Statistical inference is learning about features of some population through
a sampling mechanism.

@ We will base most of our inferential machinery on the idea of random
sampling.
@ We will leverage the powerful assumption that we are observing

[ID—independent and identically distributed—samples of the random
variable of interest.
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Independent and ldentically Distributed Samples

Statistical inference is learning about features of some population through
a sampling mechanism.
@ We will base most of our inferential machinery on the idea of random
sampling.
@ We will leverage the powerful assumption that we are observing
[ID—independent and identically distributed—samples of the random

variable of interest.

Plain language:
Data are sampled 1ID when each observation is drawn from the same

distribution, and the way an observation is drawn does not depend on
the values of any other draw.
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[ID Formal Definition

Definition (Independent and Identically Distributed)

Let X = (X1, X2, ..., X,) be random variables with CDFs Fy, F», ..., Fp,,
respectively. Let F4 denote the joint CDF of the random variables with
indices in the set A. Then X = (X1, X2, ..., X,) are independently and
identically distributed if they satisfy the following:

@ Mutually independent:

VA C {1, 2, naog n},V(Xl,XQ, R ,Xn) € Rn, FA ((Xi)ieA) = HieA F;(X,')

o Identically distributed: Vi,j € {1,2,...,n} and Vx € R, Fi(x) = Fj(x)

(Aronow and Miller Definition 3.1.1)
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Sample Notation

@ Under IID, we take a draw from a random variable X and then take
another draw such that the outcome doesn't depend on the first.
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Sample Notation

@ Under IID, we take a draw from a random variable X and then take
another draw such that the outcome doesn't depend on the first.

@ For a collection of samples of size n, we collect each of these units
into a vector X = (X1, Xa,...,Xp).
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Sample Notation

@ Under IID, we take a draw from a random variable X and then take
another draw such that the outcome doesn't depend on the first.

@ For a collection of samples of size n, we collect each of these units
into a vector X = (X1, Xa,...,Xp).

@ |ID tells us that each one is produced under the same random
process. This is how we get leverage to do estimation!
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Sample Notation

@ Under IID, we take a draw from a random variable X and then take
another draw such that the outcome doesn't depend on the first.

@ For a collection of samples of size n, we collect each of these units
into a vector X = (X1, Xa,...,Xp).

@ |ID tells us that each one is produced under the same random
process. This is how we get leverage to do estimation!

@ We we will usually use unsubscripted capital letters, X, to refer to

properties that all these draws share.
eg. E[X]=E[Xi] = E[Xo] =--- = E[X;]
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Independent and Identically Distributed

[ID is an assumption that only approximates the truth.
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Independent and Identically Distributed

[ID is an assumption that only approximates the truth.
What happens if it doesn't hold?
1) Observations may be dependent.
> e.g. students in the same class who share a teacher.
» when dependence is weak in the sense that we are still adding more

information as we add more units then results generally carry through
but likely to understate uncertainty.
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Independent and Identically Distributed

[ID is an assumption that only approximates the truth.
What happens if it doesn't hold?

1) Observations may be dependent.

> e.g. students in the same class who share a teacher.

» when dependence is weak in the sense that we are still adding more
information as we add more units then results generally carry through
but likely to understate uncertainty.

2) Observations may not be identically distributed.
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Independent and Identically Distributed

[1D is an assumption that only approximates the truth.
What happens if it doesn't hold?

1) Observations may be dependent.

> e.g. students in the same class who share a teacher.

» when dependence is weak in the sense that we are still adding more
information as we add more units then results generally carry through
but likely to understate uncertainty.

2) Observations may not be identically distributed.
> e.g. observations may be changing over time.
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Independent and Identically Distributed

[1D is an assumption that only approximates the truth.
What happens if it doesn't hold?

1) Observations may be dependent.

> e.g. students in the same class who share a teacher.

» when dependence is weak in the sense that we are still adding more
information as we add more units then results generally carry through
but likely to understate uncertainty.

2) Observations may not be identically distributed.
> e.g. observations may be changing over time.

> here the consequence is primarily for interpretability, limiting us to a
pseudopopulation which aggregates over distinct distributions.
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Independent and Identically Distributed

[1D is an assumption that only approximates the truth.
What happens if it doesn't hold?
1) Observations may be dependent.

> e.g. students in the same class who share a teacher.

» when dependence is weak in the sense that we are still adding more
information as we add more units then results generally carry through
but likely to understate uncertainty.

2) Observations may not be identically distributed.

> e.g. observations may be changing over time.

> here the consequence is primarily for interpretability, limiting us to a
pseudopopulation which aggregates over distinct distributions.

We want to avoid assumptions where we can to maintain credible
inferences, but this is a relatively mild bedrock assumption.
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Independent and Identically Distributed

[1D is an assumption that only approximates the truth.
What happens if it doesn't hold?
1) Observations may be dependent.

> e.g. students in the same class who share a teacher.

» when dependence is weak in the sense that we are still adding more
information as we add more units then results generally carry through
but likely to understate uncertainty.

2) Observations may not be identically distributed.

> e.g. observations may be changing over time.

> here the consequence is primarily for interpretability, limiting us to a
pseudopopulation which aggregates over distinct distributions.

We want to avoid assumptions where we can to maintain credible
inferences, but this is a relatively mild bedrock assumption.

We will return to these issues more in later videos and in future weeks.
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Sampling from Finite Populations

@ When we take a sample from a population it can be done with or
without replacement.
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Sampling from Finite Populations

@ When we take a sample from a population it can be done with or
without replacement.

o If the unit is replaced such that it can be sampled again, each draw is
taken from the same population governed by the fx.
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Sampling from Finite Populations

@ When we take a sample from a population it can be done with or
without replacement.

o If the unit is replaced such that it can be sampled again, each draw is
taken from the same population governed by the fx.

@ If the unit is not replaced, then each subsequent draw depends on the
units previously sampled.
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Sampling from Finite Populations

@ When we take a sample from a population it can be done with or
without replacement.

o If the unit is replaced such that it can be sampled again, each draw is
taken from the same population governed by the fx.

@ If the unit is not replaced, then each subsequent draw depends on the
units previously sampled.

o If the population is very large relative to the sample, this won't turn
out to matter much (because removing each unit doesn't change the
overall distribution fx).
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Sampling from Finite Populations

@ When we take a sample from a population it can be done with or
without replacement.

o If the unit is replaced such that it can be sampled again, each draw is
taken from the same population governed by the fx.

@ If the unit is not replaced, then each subsequent draw depends on the
units previously sampled.

o If the population is very large relative to the sample, this won't turn
out to matter much (because removing each unit doesn't change the
overall distribution fx).

@ If the population is small relative to the sample size, it will be

necessary to think carefully through the implications (see e.g. the
challenge problem in problem set 3).
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Sampling in R

## draw a sample of size 10 from our population
## drawn without replacement
my_sample <- dplyr::sample_n(my_data, size = 10,
replace = FALSE)
## this is a wrapper around sample.int()
my_sample <- my_datal[sample.int(nrow(my_data),
size = 10, replace = FALSE)
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What is An Estimator?
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What is An Estimator?

o An estimator 0 for some parameter 6, is a function of the sample
0=nh(Y1,...,Yn).
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What is An Estimator?

o An estimator 0 for some parameter 6, is a function of the sample
0=nh(Y1,...,Yn)

@ Because it is a function of the sample, the estimator is a random
variable.
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What is An Estimator?

o An estimator 0 for some parameter 6, is a function of the sample
0=nh(Y1,...,Yn)

@ Because it is a function of the sample, the estimator is a random
variable.

@ We will study the properties of the estimator towards two goals:
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What is An Estimator?

o An estimator 0 for some parameter 6, is a function of the sample
0=nh(Y1,...,Yn)
@ Because it is a function of the sample, the estimator is a random
variable.
@ We will study the properties of the estimator towards two goals:
@ Inference: How much uncertainty do we have in this estimate?
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What is An Estimator?

o An estimator 0 for some parameter 6, is a function of the sample
0=nh(Y1,...,Yn)

@ Because it is a function of the sample, the estimator is a random
variable.

@ We will study the properties of the estimator towards two goals:

@ Inference: How much uncertainty do we have in this estimate?
@ Evaluate Estimators: How do we choose which estimator to use?
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What is An Estimator?

° én estimator 6 for some parameter 6, is a function of the sample
0=nh(Y1,...,Yn).
@ Because it is a function of the sample, the estimator is a random
variable.
@ We will study the properties of the estimator towards two goals:
@ Inference: How much uncertainty do we have in this estimate?
@ Evaluate Estimators: How do we choose which estimator to use?
@ We study estimators by considering their behavior across an infinite
number of hypothetical samples of size n that could be drawn. The
resulting distribution of estimates is the sampling distribution.
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What is An Estimator?

o An estimator 6 for some parameter 6, is a function of the sample
0=nh(Y1,...,Yn).

Because it is a function of the sample, the estimator is a random
variable.

@ We will study the properties of the estimator towards two goals:

@ Inference: How much uncertainty do we have in this estimate?
@ Evaluate Estimators: How do we choose which estimator to use?

We study estimators by considering their behavior across an infinite
number of hypothetical samples of size n that could be drawn. The
resulting distribution of estimates is the sampling distribution.

In real applications, we cannot draw repeated samples, so we
approximate the sampling distribution.
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The Sampling Distribution of the Sample Mean
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The Sampling Distribution of the Sample Mean

Say we have the following population:

pop <- c(4, 2, 3, 6, 9, 2, 3, 6, 8, 5, 2, 9, 6, 3,

4, 7, 6, 1, 2,6, 9, 3,1, 1, 1, 5, 7, 9
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The Sampling Distribution of the Sample Mean

Say we have the following population:

pop <- c(4, 2, 3, 6, 9, 2, 3, 6, 8, 5, 2, 9, 6, 3,

4, 7, 6, 1, 2,6, 9, 3,1, 1, 1, 5, 7, 9

We are going to take samples of size 10. How many possible samples are
there?
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The Sampling Distribution of the Sample Mean

Say we have the following population:

pop <- c(4, 2, 3, 6, 9, 2, 3, 6, 8, 5, 2, 9, 6, 3,

4, 7, 6, 1, 2,6, 9, 3,1, 1, 1, 5, 7, 9

We are going to take samples of size 10. How many possible samples are
there?

choose (length(pop), 10)

## [1] 13123110
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The Sampling Distribution
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The Sampling Distribution
If we could draw each possible sample, we could calculate the sample

mean in each one. This would form the full sampling distribution. We will
simulate this by drawing 10,000 samples.
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The Sampling Distribution

If we could draw each possible sample, we could calculate the sample
mean in each one. This would form the full sampling distribution. We will
simulate this by drawing 10,000 samples.

sim_res <- replicate(10000, {
mean (pop [sample.int (length(pop), 10)1)
1) %>% tibble(sample_mean = .) %>%

rownames_to_column(var = )

sim_res[1:5, ]

## # A tibble: 5 x 2
##  replicate sample_mean

## <chr> <dbl>
## 1 1 5.4
## 2 2 4.9
## 3 3 3.7
## 4 4 3.6
## 5 5 5.3
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The Sampling Distribution

And we can plot this sampling distribution

true_pop_mean = mean(pop)

ggplot(sim_res, aes(x = sample_mean)) +

geom_histogram(fill = blue) +

geom_vline(xintercept = true_pop_mean) +
ggtitle(
xlab(

n
) + theme_bw()

Sampling Distribution
of Sample Mean

3 4 5 6 7
Sample Mean
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An Analytical Approach to the Sampling Distributions
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An Analytical Approach to the Sampling Distributions

@ The sampling distribution tells us how the estimator performs over
many hypothetical samples.
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An Analytical Approach to the Sampling Distributions

@ The sampling distribution tells us how the estimator performs over
many hypothetical samples.

@ Unfortunately in real-world analysis we don’t get to see the whole
distribution, just one draw!
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@ Because the estimator is a random variable (remember it is a function
of the statistic!) we can characterize the sampling distribution using
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An Analytical Approach to the Sampling Distributions

The sampling distribution tells us how the estimator performs over
many hypothetical samples.

@ Unfortunately in real-world analysis we don’t get to see the whole
distribution, just one draw!

@ Because the estimator is a random variable (remember it is a function
of the statistic!) we can characterize the sampling distribution using
the same tools from last week.

@ We will start with a common estimator, the sample mean,
@ Under the identically and independently distributed assumption we

can characterize properties of the distribution like the expectation and
variance.
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Describing the Sampling Distribution for the Sample Mean

We would like a full description of the sampling distribution for the sample

mean estimator, but it will be useful to separate this description into three
parts.
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Describing the Sampling Distribution for the Sample Mean

We would like a full description of the sampling distribution for the sample

mean estimator, but it will be useful to separate this description into three
parts.

If we assume that Xi,...X, ~iiq (i, 02), then we would like to

identify the following things about X,.
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Describing the Sampling Distribution for the Sample Mean

We would like a full description of the sampling distribution for the sample

mean estimator, but it will be useful to separate this description into three
parts.

If we assume that Xi,...X, ~iiq (i, 02), then we would like to

identify the following things about X,.

o E[X,]
o V[X,]

° fYn ~7

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 22/142



Expectation of X,

Let X1, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o?).

E[Xa] =
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Expectation of X,

Let X1, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o?).

EX,) = ELY X
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Expectation of X,

Let X1, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o?).

EX,) = ELY X

- ey
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Expectation of X,

Let X1, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o?).

EX) — ELYx)
- ey

= > e
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Expectation of X,

Let X1, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o?).

EX) — ELYx)
- ey
= > e

1 n
- ;;u
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Expectation of X,

Let X1, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o?).

EX) = ELLY X
- %E[ﬁxf]
- %iE[X,-]
_ 1Zu

1 «
P— —-n "
n
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Expectation of X,

Let X1, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o?).

EX) = ELLY X
- %E[ﬁxf]
- %iE[X,-]
_ 1Zu

1 «
P— —-n "
n

= n
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Variance of X,
Let Xy, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o2).

VK] = VI 3o X
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Variance of X,

Let Xy, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o2).

VK] = VI 3o X

1 n
= VD> Xi]
i=1
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Variance of X,

Let Xy, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o2).

VK] = VI 3o X

1 n
= VD> Xi]
i=1

n
= % Z V[X;](because i.i.d)
i—1
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Variance of X,
Let Xy, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o2).

VK] = VI 3o X

1 n
= VD> Xi]
i=1

n
= % Z V[X;](because i.i.d)
i—1

n
1 2
= —22"
n< <
i=1
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Variance of X,

Let Xy, Xo,... X, be identically and independently distributed from a population
distribution with mean (E[X;] = i) and variance (V[X;] = o2).

VK] = VI 3o X

1 n
= VD> Xi]
i=1

1 n
= 2 Z V[X;](because i.i.d)
i—1
1 & )
= 20
-1
1
- ?n X 02
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Variance of X,

Let Xy, Xo,... X, be identically and independently distributed from a population

distribution with mean (E[X;] = i) and variance (V[X;] = o2).

Stewart (Princeton)

VIX,]

Week 3: Learning From Random Samples

V[% ZXI]
%V[i Xi

1 n

po > V[Xi](because i.i.d)
i=1

1 «—

EPIL
i=1

1

?n X 0'2

o2

n
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Variance of X,

Let Xy, Xo,... X, be identically and independently distributed from a population

distribution with mean (E[X;] = i) and variance (V[X;] = o2).

V[Yn] =

V[% ZXI]
%V[i Xi

1 n

po > V[Xi](because i.i.d)
i=1

1 «—

EPIL
i=1

1

?n X 0'2

o2

n

Note the n in the denominator: as we have more observations, the variance of the

sampling distribution will shrink.
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What about the “?”

If X1,..., X ~jid N(,u, 0'2), then
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What about the “?”

If X1,..., Xy ~iid. N(,u, 0'2), then

What if Xi,..., X, are not normally distributed?
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Bernoulli (Coin Flip) Distribution
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Bernoulli (Coin Flip) Distribution

Population Distribution Sampling Distribution of the Mean

1
6

2 2
g © 3
[a] [a]
< o
&~
o o
| B B R B | B B R B
00 02 04 06 08 1.0 00 02 04 06 08 1.0
n=5
Sampling Distribution of the Mean Sampling Distribution of the Mean
©
©
I
z z ¢
2 2
g 5
o o a]
~
-
o o
n=30 n=100

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 26 /142



Poisson (Count) Distribution

Density

Density
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Uniform Distribution

Population Distribution Sampling Distribution of the Mean
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Why would this be true?

Images from Hyperbole and a Half by Allie Brosh.
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We Covered. . .
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We Covered. . .

@ Populations and samples.
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@ Estimators, estimands and estimates.
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We Covered. ..

@ Populations and samples.
@ Estimators, estimands and estimates.

@ Sampling distributions.
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We Covered. ..

@ Populations and samples.
@ Estimators, estimands and estimates.

@ Sampling distributions.

Next time: the answer to 'why happening?’ and the most important
theorem in statistics.
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

o Next Week

> hypothesis testing
» what is regression?

@ Long Run
» probability — inference — regression — causal inference
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0 Estimation
@ Populations and Samples
@ Estimators
@ Analytical

a Weak Law of Large Numbers and the Central Limit Theorem
@ Chebychev's Inequality
@ Weak Law of Large Numbers
@ The Central Limit Theorem

e Properties of Estimators
@ Four Desirable Properties
@ Example

e Interval Estimation
@ Intervals
@ Large Sample Intervals for a Mean
@ Small Sample Intervals for a Mean
@ Comparing Two Groups
@ Interval Estimation for a Proportion

e Plug-In Principle
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e Weak Law of Large Numbers and the Central Limit Theorem
@ Chebychev's Inequality
@ Weak Law of Large Numbers
@ The Central Limit Theorem
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Cliffhanger

We started last time on a statistical cliffhanger: why did the sampling
distribution of the mean look the same as the number of observations
increased regardless of the population distribution?
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Cliffhanger

We started last time on a statistical cliffhanger: why did the sampling
distribution of the mean look the same as the number of observations
increased regardless of the population distribution?

The answer has to do with the asymptotic behavior of the
estimator—what happens as the sample size n increases.
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Cliffhanger

We started last time on a statistical cliffhanger: why did the sampling
distribution of the mean look the same as the number of observations
increased regardless of the population distribution?

The answer has to do with the asymptotic behavior of the
estimator—what happens as the sample size n increases.

In order to characterize this formally though, we are going to have to set
up some more probabilistic infrastructure.
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The answer has to do with the asymptotic behavior of the
estimator—what happens as the sample size n increases.

In order to characterize this formally though, we are going to have to set
up some more probabilistic infrastructure.

The key thing to remember is that the sample mean is itself a random
variable.
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Cliffhanger

We started last time on a statistical cliffhanger: why did the sampling
distribution of the mean look the same as the number of observations
increased regardless of the population distribution?

The answer has to do with the asymptotic behavior of the
estimator—what happens as the sample size n increases.

In order to characterize this formally though, we are going to have to set
up some more probabilistic infrastructure.

The key thing to remember is that the sample mean is itself a random
variable.

Warning: This video is a little bit mathier. At the end I'll wrap up with
things you need to know so don't stress out your first watch through.
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Bounding a Random Variable
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Bounding a Random Variable

Let's start by seeing how much we can learn about an estimator using only
the things we've calculated so far (the expectation and variance).
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Bounding a Random Variable

Let's start by seeing how much we can learn about an estimator using only
the things we've calculated so far (the expectation and variance).
Theorem (Chebychev's Inequality)

Let X be a random variable with finite o[X] > 0. Then Ve > 0,

PIX — EIX]| > eo[X]] < eiz

(Aronow and Miller Theorem 2.1.18)
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Bounding a Random Variable

Let's start by seeing how much we can learn about an estimator using only
the things we've calculated so far (the expectation and variance).

Theorem (Chebychev's Inequality)
Let X be a random variable with finite o[X] > 0. Then Ve > 0,

PIX — EIX]| > eo[X]] < eiz

(Aronow and Miller Theorem 2.1.18)

This allows us to put an upper bound on the probability that a draw from
the distribution will be more than a given number of standard deviations
from the mean.
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Bounding a Random Variable

Let's start by seeing how much we can learn about an estimator using only
the things we've calculated so far (the expectation and variance).

Theorem (Chebychev's Inequality)
Let X be a random variable with finite o[X] > 0. Then Ve > 0,

PIX — EIX]| > eo[X]] < eiz

(Aronow and Miller Theorem 2.1.18)

This allows us to put an upper bound on the probability that a draw from
the distribution will be more than a given number of standard deviations
from the mean.

This let's us bound the behavior of a random variable knowing only the
expectation and variance (regardless of distributional shape!).
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Chebychev's Inequality for the Sample Mean

To apply this to the sample mean, we plug in the expectation and variance

to the Chebychev’s inequality and re-arranging terms, we get the following
handy result.
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Chebychev's Inequality for the Sample Mean

To apply this to the sample mean, we plug in the expectation and variance
to the Chebychev's inequality and re-arranging terms, we get the following
handy result.

Theorem (Chebychev's Inequality for the Sample Mean)
Let X1, X5,...,X, be i.i.d. random variables with finite variance

V[X] > 0. Then, Ve >0,

V[X]

P[|Xn—E[X]| > ¢ < =,

(Aronow and Miller Theorem 3.2.5)

This allows us to put an upper bound on the probability that the sample
mean for a given sample size and known variance will be some arbitrary
distance from the true mean.
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Planning a Survey

@ Problem: planning a survey to estimate Biden support in the 2020
election.
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Planning a Survey

@ Problem: planning a survey to estimate Biden support in the 2020
election.
» How many people should we survey so that our estimator has no less
than a .95 probability of being within .02 of the true population
proportion?
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Planning a Survey

@ Problem: planning a survey to estimate Biden support in the 2020
election.

» How many people should we survey so that our estimator has no less
than a .95 probability of being within .02 of the true population
proportion?

> i.e. how do we get a margin of 4+ 2 percentage points?
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Planning a Survey

@ Problem: planning a survey to estimate Biden support in the 2020
election.

» How many people should we survey so that our estimator has no less
than a .95 probability of being within .02 of the true population
proportion?

> i.e. how do we get a margin of £+ 2 percentage points?

o Notation

» 7 is proportion of voters expressing support for Biden (the estimand).

> Xi,Xa,...X, ~ Bernoulli(7) be the iid random variables for each
respondent.

» & = X, is our sample mean estimator.
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Planning a Survey

@ Problem: planning a survey to estimate Biden support in the 2020
election.

» How many people should we survey so that our estimator has no less
than a .95 probability of being within .02 of the true population
proportion?

> i.e. how do we get a margin of £+ 2 percentage points?

@ Notation

» 7 is proportion of voters expressing support for Biden (the estimand).

> Xi,Xa,...X, ~ Bernoulli(7) be the iid random variables for each
respondent.

» & = X, is our sample mean estimator.

@ What do we know?
> E[X,] = E[X] and V[X,] = YXI
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Planning a Survey

@ Problem: planning a survey to estimate Biden support in the 2020
election.

» How many people should we survey so that our estimator has no less
than a .95 probability of being within .02 of the true population
proportion?

> i.e. how do we get a margin of £+ 2 percentage points?

o Notation

» 7 is proportion of voters expressing support for Biden (the estimand).

> Xi,Xa,...X, ~ Bernoulli(7) be the iid random variables for each
respondent.

» & = X, is our sample mean estimator.

@ What do we know?
» E[X,] = E[X] and V[X,] = ¥

n
» We know Bernoulli has variance of 7(1 — m) which is maximized at

T =.5.
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?

vIx]

P[Xn—E[X]|>¢ < p
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?

P[Xo—EIX]| 2 € < \g),f]
P [Xn— EX]| > 0.02] < ((;/(E)zgn
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?

VIX]

€n

B VIX

PIXn— E[X]| > 0.02] < (o.(£22]n
(1)

= 0.0004n

PIIX,— EIXI| > ] <
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?

- V[X
P[Xn—E[X]|>¢ < 6£n]
— V[X
P[|Xn— E[X]] >0.02] < (0.(522],1
< (1l —m)
=~ 0.0004n
. 025
— 0.0004n
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?

% VIX]
P[Xn—E[X]|>¢ < 2,
— V[X
P[|Xn— E[X]] >0.02] < (0.(522],1
< (1l —m)
— 0.0004n
< 0.25
— 0.0004n
1
<
— 0.0016n
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?

¥ VIX]
PIXo—EX]I>¢ < -~
- V(X
P[|Xn— E[X]] >0.02] < (0.(52;”
< (1l —m)
~ 0.0004n
. 025
=~ 0.0004n
1
<
=~ 0.0016n

We want to bound the probability by 0.05 which requiresm < 0.05
which means. ..
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Planning a Survey

What does n have to be to maintain P(|X, — E[X]| > 0.02) < .05?

- V[X]
P[Xn—E[X]|>¢ < 2,
— V[X
P[|Xn— E[X]] >0.02] < (0.(!)22]”
< (1l —m)
— 0.0004n
< 0.25
— 0.0004n
1
<
— 0.0016n

We want to bound the probability by 0.05 which requiresm < 0.05
which means. .. we need n > 12,500 respondents!
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Planning a Survey
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Planning a Survey
That's an expensive survey! Do we really need that many people?
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Planning a Survey

That's an expensive survey! Do we really need that many people?

No! Chebyshev provides a bound that is guaranteed to hold (and in the
worst case variance), but actual probabilities are much smaller.
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Planning a Survey
That's an expensive survey! Do we really need that many people?

No! Chebyshev provides a bound that is guaranteed to hold (and in the
worst case variance), but actual probabilities are much smaller.

We can use simulation to assess. Let's simulate a survey with m = .55 and
12,500 respondents and see how many are far away?
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Planning a Survey
That's an expensive survey! Do we really need that many people?

No! Chebyshev provides a bound that is guaranteed to hold (and in the
worst case variance), but actual probabilities are much smaller.

We can use simulation to assess. Let’s simulate a survey with 7 = .55 and
12,500 respondents and see how many are far away?

nsims <- 10000
holder <- vector(mode="numeric", length=nsims)
for (i in 1:nsims) {
my.sample <- rbinom(n=12500, size=1, prob=.55)
holder[i] <- mean(my.sample)

}
mean(abs(holder - .55) > 0.02)
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Planning a Survey
That's an expensive survey! Do we really need that many people?

No! Chebyshev provides a bound that is guaranteed to hold (and in the
worst case variance), but actual probabilities are much smaller.

We can use simulation to assess. Let’s simulate a survey with 7 = .55 and
12,500 respondents and see how many are far away?

nsims <- 10000
holder <- vector(mode="numeric", length=nsims)
for (i in 1:nsims) {
my.sample <- rbinom(n=12500, size=1, prob=.55)
holder[i] <- mean(my.sample)

}
mean(abs(holder - .55) > 0.02)

None were outside the range!
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Taking Stock

@ We have IID random variables Xi, ..., X, with unknown distribution.
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Taking Stock

@ We have IID random variables Xi, ..., X, with unknown distribution.
@ Current knowledge about distribution of Xn

» Expectation is E[X,] = E[X]

» Variance is V[X,] = V[X]

» Tail probabilities using the above and Chebyshev
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Taking Stock

@ We have IID random variables Xi, ..., X, with unknown distribution.
@ Current knowledge about distribution of Xn

» Expectation is E[X,] = E[X]

» Variance is V[X,] = V[X]

» Tail probabilities using the above and Chebyshev

@ We still want to know more about the distribution of X,,.
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Taking Stock

@ We have IID random variables Xi, ..., X, with unknown distribution.
e Current knowledge about distribution of X,

» Expectation is E[X,] = E[X]

» Variance is V[X,] = V[X]

» Tail probabilities using the above and Chebyshev

o We still want to know more about the distribution of X,.

@ We can think about behavior of X, as n gets large by thinking of the
estimators with increasing sample sizes as a sequence of random
variables

X1+Xo Xp+-- X,
B -

Y]_,YQ, "'7Yn = X17
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Taking Stock

@ We have IID random variables Xi, ..., X, with unknown distribution.
e Current knowledge about distribution of X,

» Expectation is E[X,] = E[X]

» Variance is V[X,] = V[X]

» Tail probabilities using the above and Chebyshev

o We still want to know more about the distribution of X,.

@ We can think about behavior of X, as n gets large by thinking of the
estimators with increasing sample sizes as a sequence of random
variables

- - - X1+ X X1+ X
Xl)X27"'7Xn = X17 Lt 27"‘7 Lt .
2 n
@ What does this sequence converge to?
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What do we mean by 'converge'?
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What do we mean by 'converge'?

Definition (Convergence in Probability)
Let (T(1), T(2), T(3),- - - ) be a sequence of random variables and let ¢ € R.
Then T, converges in probability to c if for all accuracy levels satisfying

e >0,
lim P[|T(n)—C| 26] =0

n—oo
We will write this as

T(n) ﬂ) C or plim T(n) = C.
n—00

(Aronow and Miller Theorem 3.2.6)
v

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 40 /142



What do we mean by 'converge'?

Definition (Convergence in Probability)

Let (T(1), T(2), T(3),- - - ) be a sequence of random variables and let ¢ € R.
Then T, converges in probability to c if for all accuracy levels satisfying
e >0,

lim P[|T(n) - C| > 6] =0

n—o0

We will write this as

T(n) ﬁ) Cc or plim T(n) = C.
n—00

(Aronow and Miller Theorem 3.2.6)
.

Intuition: the probability that the random variable T(,) lies outside a super
tiny interval around ¢ approaches zero as n approaches infinity.
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What do we mean by 'converge'?

Definition (Convergence in Probability)

Let (T(1), T(2), T(3),- - - ) be a sequence of random variables and let ¢ € R.
Then T, converges in probability to c if for all accuracy levels satisfying
e >0,

lim P“T(n) - C| > 6] =0

n—o0

We will write this as

T(n) ﬁ) Cc or plim T(n) = C.
n—00

(Aronow and Miller Theorem 3.2.6)
.

Intuition: the probability that the random variable T(,) lies outside a super
tiny interval around ¢ approaches zero as n approaches infinity.
NB: Any continuous function of the sequence itself convergence to the value of

the function at the probability limit by the Continuous Mapping Theorem
(Aronow and Miller Theorem 3.2.7 )
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(Weak) Law of Large Numbers (WLLN)
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(Weak) Law of Large Numbers (WLLN)

Definition (Weak Law of Large Numbers)

Let X1, Xo,..., X, be i.i.d. random variables with finite variance
V[X] >0, and let X, = 15" | X;. Then
X, & E[X]

(Aronow and Miller Theorem 3.2.8) Proof is based on Chebychev's inequality for the mean plus
a result called the Squeeze Theorem for Sequences.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 41/142



(Weak) Law of Large Numbers (WLLN)

Definition (Weak Law of Large Numbers)
Let X1, Xo,..., X, bei.i.d. random variables with finite variance
V[X] >0, and let X, = 137 | X;. Then

X, & E[X]

(Aronow and Miller Theorem 3.2.8) Proof is based on Chebychev's inequality for the mean plus
a result called the Squeeze Theorem for Sequences.

v

@ Intuition: The probability of the sample mean being far away from the
expectation of X goes to zero as the sample size gets big.
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(Weak) Law of Large Numbers (WLLN)

Definition (Weak Law of Large Numbers)
Let X1, Xo,..., X, bei.i.d. random variables with finite variance
V[X] >0, and let X, = 137 | X;. Then

X, & E[X]

(Aronow and Miller Theorem 3.2.8) Proof is based on Chebychev's inequality for the mean plus
a result called the Squeeze Theorem for Sequences.
v

@ Intuition: The probability of the sample mean being far away from the
expectation of X goes to zero as the sample size gets big.

e The distribution of X, collapses on E[X].

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 41/142



(Weak) Law of Large Numbers (WLLN)

Definition (Weak Law of Large Numbers)
Let X1, Xo,..., X, bei.i.d. random variables with finite variance
V[X] >0, and let X, = 137 | X;. Then

X, & E[X]

(Aronow and Miller Theorem 3.2.8) Proof is based on Chebychev's inequality for the mean plus
a result called the Squeeze Theorem for Sequences.

v

@ Intuition: The probability of the sample mean being far away from the
expectation of X goes to zero as the sample size gets big.

e The distribution of X, collapses on E[X].

@ No assumptions necessary about the distribution of X beyond i.i.d.
sampling and a finite variance!
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Weak Law of Large Numbers
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Weak Law of Large Numbers

@ This is an incredibly useful result!

Stewart (Princeton) Week 3: Learning From Random Samples



Weak Law of Large Numbers

@ This is an incredibly useful result!

@ As the sample mean gets large it approximates the expectation to any
arbitrary degree of precision.
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Weak Law of Large Numbers

@ This is an incredibly useful result!

@ As the sample mean gets large it approximates the expectation to any
arbitrary degree of precision.

@ An implication of the Weak Law of Large Numbers is that the CDF of
X can be estimated to arbitrary precision with random iid samples
from X. We will return to this result in two videos.
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Weak Law of Large Numbers

@ This is an incredibly useful result!

@ As the sample mean gets large it approximates the expectation to any
arbitrary degree of precision.

@ An implication of the Weak Law of Large Numbers is that the CDF of
X can be estimated to arbitrary precision with random iid samples
from X. We will return to this result in two videos.

Okay that's pretty cool, but we are almost ready to state the coolest result
in statistics.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 43 /142



Convergence in Distribution
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Convergence in Distribution

We want to know what form the sampling distribution will have

asymptotically. For this we need a notion of what it means for a
distribution to converge.
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Convergence in Distribution
We want to know what form the sampling distribution will have

asymptotically. For this we need a notion of what it means for a
distribution to converge.

Definition (Convergence in Distribution)

Let (T(1), T2), T(3), - - - ) be a sequence of random variables with CDFs
(F); F2), F3)»---) and let T be a random variable with CDF Fr. Then T,
converges in distribution to T if for all t € Rat which Ft is continuous

lim F(,,)(t) = FT(t).

n—o0

We write this as J
T(n) — T.
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Convergence in Distribution
We want to know what form the sampling distribution will have

asymptotically. For this we need a notion of what it means for a
distribution to converge.

Definition (Convergence in Distribution)

Let (T(1), T2), T(3), - - - ) be a sequence of random variables with CDFs
(F); F2), F3)»---) and let T be a random variable with CDF Fr. Then T,
converges in distribution to T if for all t € Rat which Ft is continuous

lim F(,,)(t) = FT(t).

n—o0

We write this as J
T(n) — T.

@ Intuition: when n is big, the distribution of T(n) is very similar to Ft, the
distribution of T.
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Convergence in Distribution

We want to know what form the sampling distribution will have
asymptotically. For this we need a notion of what it means for a
distribution to converge.

Definition (Convergence in Distribution)

Let (T(1), T2), T(3), - - - ) be a sequence of random variables with CDFs
(F); F2), F3)»---) and let T be a random variable with CDF Fr. Then T,
converges in distribution to T if for all t € Rat which Ft is continuous

lim F(,,)(t) = FT(t).

n—o0

We write this as J
T(n) — T.

@ Intuition: when n is big, the distribution of T(n) is very similar to Ft, the
distribution of T.

@ We will call this the asymptotic distribution or the limit distribution.
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Convergence in Distribution

We want to know what form the sampling distribution will have
asymptotically. For this we need a notion of what it means for a
distribution to converge.

Definition (Convergence in Distribution)

Let (T(1), T2), T(3), - - - ) be a sequence of random variables with CDFs
(F); F2), F3)»---) and let T be a random variable with CDF Fr. Then T,
converges in distribution to T if for all t € Rat which Ft is continuous

lim F(,,)(t) = FT(t).

n—o0

We write this as

T > T.

@ Intuition: when n is big, the distribution of T(n) is very similar to Ft, the
distribution of T.

@ We will call this the asymptotic distribution or the limit distribution.

@ NB: convergence in probability is a special case of convergence in

distribution with a degenerate distribution.
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Standardizing the Sample Mean

Last prerequisite!
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Standardizing the Sample Mean

Last prerequisite!

Definition (Standardizing a Random Variable)

For i.i.d. random variables X1, Xa, ..., X, with finite E[X] = p and finite
V[X] = 02 > 0, the standardized sample mean is

_ (X=EX]) _ vn(X—p)

o[X] o
(Aronow and Miller Definition 3.2.23)
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Standardizing the Sample Mean

Last prerequisite!

Definition (Standardizing a Random Variable)

For i.i.d. random variables X1, Xa, ..., X, with finite E[X] = p and finite
V[X] = 02 > 0, the standardized sample mean is

_ (X=EX]) _ vn(X—p)

o[X] o
(Aronow and Miller Definition 3.2.23)

e For any X this will have E[Z] =0 and V[Z] = 1.
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Standardizing the Sample Mean

Last prerequisite!

Definition (Standardizing a Random Variable)

For i.i.d. random variables X1, Xa, ..., X, with finite E[X] = p and finite
V[X] = 02 > 0, the standardized sample mean is

_ (X=EX]) _ vn(X—p)

o[X] o
(Aronow and Miller Definition 3.2.23)

e For any X this will have E[Z] =0 and V[Z] = 1.

@ This is often called the Z-score.
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The Puzzle
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The Central Limit Theorem
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The Central Limit Theorem

Definition (Lindeberg-Lévy Central Limit Theorem)

Let Xi, ..., X, be i.i.d. random variables each with (finite) E[X] = 1 and
finite variance o2 > 0. Then, for any population distribution of X,

Vi(Xn— 1) % N(0,0?).
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The Central Limit Theorem

Definition (Lindeberg-Lévy Central Limit Theorem)

Let Xi, ..., X, be i.i.d. random variables each with (finite) E[X] = 1 and
finite variance o2 > 0. Then, for any population distribution of X,

Vi(Xn— 1) % N(0,0?).

@ CLT also implies that the standardized sample mean converges to a
standard normal random variable:

- yn_E[Yn] _ yn_ﬂ

Z, = = 9 N(0,1).
VX oV oy
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The Central Limit Theorem

Definition (Lindeberg-Lévy Central Limit Theorem)

Let Xi, ..., X, be i.i.d. random variables each with (finite) E[X] = 1 and
finite variance o2 > 0. Then, for any population distribution of X,

Vi(Xn— 1) % N(0,0?).

@ CLT also implies that the standardized sample mean converges to a
standard normal random variable:

7 = yn—E[Yn] _ Xn—p
VX a/V/n

9 N(0,1).

@ This is free of distribution assumptions on X!
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The Central Limit Theorem

Definition (Lindeberg-Lévy Central Limit Theorem)

Let Xi, ..., X, be i.i.d. random variables each with (finite) E[X] = 1 and
finite variance o2 > 0. Then, for any population distribution of X,

Vi(Xn— 1) % N(0,0?).

o CLT also implies that the standardized sample mean converges to a
standard normal random variable:

yn_Ern] yn_M d
Z, = - N(0,1).
V [X)] ofvn o0

@ This is free of distribution assumptions on X!
@ This makes it easy to characterize the sampling distribution of the
sample mean for large n.
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The Central Limit Theorem

Definition (Lindeberg-Lévy Central Limit Theorem)

Let Xi, ..., X, be i.i.d. random variables each with (finite) E[X] = 1 and
finite variance o2 > 0. Then, for any population distribution of X,

Vi(Xn— 1) % N(0,0?).

o CLT also implies that the standardized sample mean converges to a
standard normal random variable:
X,—E X, —
z, = 2" f"] = 20T B4 a0, 1).
vV [Xn] a/v/n

@ This is free of distribution assumptions on X!

@ This makes it easy to characterize the sampling distribution of the
sample mean for large n.

@ NB: the equivalence of the two forms is due to Slutsky's Theorem
(see e.g. Aronow and Miller Theorem 3.2.25).
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Question:
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Question:

As the number of observations in a dataset increases, which of the
following is true?
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Question:

As the number of observations in a dataset increases, which of the
following is true?

A) The distribution of X becomes more normally distributed.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 48 /142



Question:

As the number of observations in a dataset increases, which of the
following is true?

A) The distribution of X becomes more normally distributed.

B) The distribution of X becomes more normally distributed.
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Question:

As the number of observations in a dataset increases, which of the
following is true?

A) The distribution of X becomes more normally distributed.
B) The distribution of X becomes more normally distributed.

C) Both statements are true.
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Replanning that Survey
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Replanning that Survey

Recall we wanted to find n such that,
P(|X, — x| > 0.02) < 0.05
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Replanning that Survey

Recall we wanted to find n such that,
P(|X, — x| > 0.02) < 0.05

By the CLT, for large n, then
X, — 71~ N(0,0%/n)
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Replanning that Survey

Recall we wanted to find n such that,

P(|X, — x| > 0.02) < 0.05

By the CLT, for large n, then
X, — 71~ N(0,0%/n)

Plugging in our conservative variance of 0.25 we get

— 1
Xn_ ~ I
T N<0 4n>

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020

49 /142



Replanning that Survey

Recall we wanted to find n such that,

P(|X, — x| > 0.02) < 0.05

By the CLT, for large n, then
X, — 71~ N(0,0%/n)

Plugging in our conservative variance of 0.25 we get

— 1
Xn_ ~ I
T N<0 4n>

n— T

Z= Vi =2y/n(X, — ) ~ N(0,1)

Standardizing, we get

X
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Replanning that Survey

Recall we wanted to find n such that,

P(|X, — m| > 0.02) < 0.05
By the CLT, for large n, then
X, — 71~ N(0,0%/n)

Plugging in our conservative variance of 0.25 we get

1
X, —m~N (0, —
m N<O 4n>

Xp—m "d
=TT =2v/n(X, — ) ~ N(0,1)

It is easier to work with this standardized variable so:

Standardizing, we get

P(1Z| > 0.02(2V/n)) < 0.05
Stewart (Princeton)

Week 3: Learning From Random Samples September 14-18, 2020
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Replanning that Survey
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Replanning that Survey

P(|Z] > 0.04y/n) < 0.05
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Replanning that Survey

P(|Z| > 0.04/n)
P(Z < —0.04\/n) + P(Z > 0.04\/n)

0.05
0.05

VANVAN
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Replanning that Survey

P(|Z| > 0.04/n)
P(Z < —0.04\/n) + P(Z > 0.04\/n)

0.05

<
< 0.05

The standard normal is symmetric around 0, so we can equivalently say,

2P(Z < —0.04y/n) < 0.05
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Replanning that Survey

P(|Z| > 0.04/n)
P(Z < —0.04\/n) + P(Z > 0.04\/n)

0.05

<
< 0.05
The standard normal is symmetric around 0, so we can equivalently say,

2P(Z < —0.04y/n) < 0.05
P(Z < —0.04y/n) < 0.025
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Replanning that Survey

0.05
0.05

P(1Z| > 0.04y/n)

<
P(Z < —0.04y/n) + P(Z > 0.04\/n) <

The standard normal is symmetric around 0, so we can equivalently say,

2P(Z < —0.04y/n) < 0.05
P(Z < —0.04y/n) < 0.025

To solve for n we plug in the quantile P(Z < g) = 0.025 which we can get
from the inverse CDF of the standard Normal.
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Replanning that Survey

P(|1Z| > 0.04y/n)
P(Z < —0.04y/n) + P(Z > 0.04/n)

0.05

<
< 0.05
The standard normal is symmetric around 0, so we can equivalently say,

2P(Z < —0.04y/n) < 0.05
P(Z < —0.04y/n) < 0.025
To solve for n we plug in the quantile P(Z < g) = 0.025 which we can get

from the inverse CDF of the standard Normal.
Typing qnorm(0,025, mean=0, sd=1) in R gets us -1.96.
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Replanning that Survey

P(|1Z| > 0.04y/n)
P(Z < —0.04y/n) + P(Z > 0.04/n)

0.05

<
< 0.05

The standard normal is symmetric around 0, so we can equivalently say,

2P(Z < —0.04y/n) < 0.05
P(Z < —0.04y/n) < 0.025

To solve for n we plug in the quantile P(Z < g) = 0.025 which we can get
from the inverse CDF of the standard Normal.

Typing qnorm(0,025, mean=0, sd=1) in R gets us -1.96.

We need —0.044/n < —1.96 which is n > 2401 respondents.
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Replanning that Survey

P(|1Z| > 0.04y/n)
P(Z < —0.04y/n) + P(Z > 0.04/n)

0.05

<
< 0.05

The standard normal is symmetric around 0, so we can equivalently say,

2P(Z < —0.04y/n) < 0.05
P(Z < —0.04y/n) < 0.025

To solve for n we plug in the quantile P(Z < g) = 0.025 which we can get
from the inverse CDF of the standard Normal.

Typing qnorm(0,025, mean=0, sd=1) in R gets us -1.96.

We need —0.044/n < —1.96 which is n > 2401 respondents.

This is much lower than the 12,500 from Chebyshev, but that makes sense
here because we used more information.
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Planning a Survey

We can use simulation to assess again. Let's simulate a survey with

m = .55 and 2,401 respondents and see how many our outside our
prescribed margin of error?
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Planning a Survey

We can use simulation to assess again. Let's simulate a survey with

m = .55 and 2,401 respondents and see how many our outside our
prescribed margin of error?

nsims <- 10000
holder <- vector(mode="numeric", length=nsims)
for (i in 1:nsims) {
my.sample <- rbinom(n=2401, size=1, prob=.55)
holder[i] <- mean(my.sample)

}
mean(abs(holder - .55) > 0.02)
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Planning a Survey

We can use simulation to assess again. Let's simulate a survey with

m = .55 and 2,401 respondents and see how many our outside our
prescribed margin of error?

nsims <- 10000
holder <- vector(mode="numeric", length=nsims)
for (i in 1:nsims) {
my.sample <- rbinom(n=2401, size=1, prob=.55)
holder[i] <- mean(my.sample)

}
mean(abs(holder - .55) > 0.02)

We get 0.0485!
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Real Talk: this has been a mathy video.
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Real Talk: this has been a mathy video.

What you need to know:
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Real Talk: this has been a mathy video.

What you need to know:
@ two types of stochastic convergence
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Real Talk: this has been a mathy video.

What you need to know:
@ two types of stochastic convergence

» Convergence in probability: values in the sequence eventually take a
constant value
(i.e. the limiting distribution is a point mass)
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Real Talk: this has been a mathy video.

What you need to know:
@ two types of stochastic convergence

» Convergence in probability: values in the sequence eventually take a
constant value
(i.e. the limiting distribution is a point mass)

» Convergence in distribution: values in the sequence continue to vary,
but the variation eventually comes to follow an unchanging distribution
(i.e. the limiting distribution is a well characterized distribution)
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Real Talk: this has been a mathy video.

What you need to know:
@ two types of stochastic convergence

» Convergence in probability: values in the sequence eventually take a
constant value
(i.e. the limiting distribution is a point mass)

» Convergence in distribution: values in the sequence continue to vary,
but the variation eventually comes to follow an unchanging distribution
(i.e. the limiting distribution is a well characterized distribution)

@ intuition for the weak law of large numbers
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Real Talk: this has been a mathy video.

What you need to know:
@ two types of stochastic convergence

» Convergence in probability: values in the sequence eventually take a
constant value
(i.e. the limiting distribution is a point mass)

» Convergence in distribution: values in the sequence continue to vary,
but the variation eventually comes to follow an unchanging distribution
(i.e. the limiting distribution is a well characterized distribution)

@ intuition for the weak law of large numbers

@ means will asymptotically have normal sampling distributions due to
the central limit theorem
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Real Talk: this has been a mathy video.

What you need to know:
@ two types of stochastic convergence
» Convergence in probability: values in the sequence eventually take a

constant value
(i.e. the limiting distribution is a point mass)

» Convergence in distribution: values in the sequence continue to vary,
but the variation eventually comes to follow an unchanging distribution
(i.e. the limiting distribution is a well characterized distribution)

@ intuition for the weak law of large numbers

@ means will asymptotically have normal sampling distributions due to
the central limit theorem

@ what asymptotic properties are

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 52 /142



Real Talk: this has been a mathy video.

What you need to know:
@ two types of stochastic convergence
» Convergence in probability: values in the sequence eventually take a

constant value
(i.e. the limiting distribution is a point mass)

» Convergence in distribution: values in the sequence continue to vary,
but the variation eventually comes to follow an unchanging distribution
(i.e. the limiting distribution is a well characterized distribution)

@ intuition for the weak law of large numbers

@ means will asymptotically have normal sampling distributions due to
the central limit theorem

@ what asymptotic properties are

It is okay if you didn't follow all the math here. We will keep coming back
to these ideas.
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The Central Limit Theorem is deep and amazing. Want to learn more
about Central Limit Theorem?

Watch this video (Joe Blitzstein):
https://www.youtube.com/watch?v=0prNqnHsVIA&list=
PLLVplP80IVc8EktkrD3(8td0GmId7DjWO&index=31&t=0s

There are many CLT variants that deal with non-iid random variables as
well!

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 53 /142


https://www.youtube.com/watch?v=OprNqnHsVIA&list=PLLVplP8OIVc8EktkrD3Q8td0GmId7DjW0&index=31&t=0s
https://www.youtube.com/watch?v=OprNqnHsVIA&list=PLLVplP8OIVc8EktkrD3Q8td0GmId7DjW0&index=31&t=0s
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We Covered. . .

@ Chebychev's Inequality

Stewart (Princeton) Week 3: Learning From Random Samples



We Covered. . .

@ Chebychev's Inequality

@ Weak Law of Large Numbers
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We Covered. ..

@ Chebychev's Inequality
@ Weak Law of Large Numbers

@ Central Limit Theorem
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We Covered. ..

@ Chebychev's Inequality
@ Weak Law of Large Numbers

@ Central Limit Theorem

Next time: properties of estimators.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 54 /142



Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

o Next Week

> hypothesis testing
» what is regression?

@ Long Run
» probability — inference — regression — causal inference
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0 Estimation
@ Populations and Samples
@ Estimators
@ Analytical

a Weak Law of Large Numbers and the Central Limit Theorem
@ Chebychev's Inequality
@ Weak Law of Large Numbers
@ The Central Limit Theorem

e Properties of Estimators
@ Four Desirable Properties
@ Example

e Interval Estimation
@ Intervals
@ Large Sample Intervals for a Mean
@ Small Sample Intervals for a Mean
@ Comparing Two Groups
@ Interval Estimation for a Proportion

e Plug-In Principle
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© Properties of Estimators
@ Four Desirable Properties
@ Example
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Example: The scariest pieces of mail ever!

American Political Science Review Vol. 102, No.1 February 2008

DOI: 10.1017/S000305540808009X

Social Pressure and Voter Turnout: Evidence from a Large-Scale
Field Experiment

ALAN S. GERBER Yale University
DONALD P. GREEN Yale University
CHRISTOPHER W. LARIMER  University of Northern Iowa

https://doi.org/10.1017/S000305540808009X

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 57 /142


https://doi.org/10.1017/S000305540808009X

Example: The scariest pieces of mail ever!

turnout unless they account for the utility that citizens receive from performing their civic duty.

We distinguish between two aspects of this type of utility, intrinsic satisfaction from behaving
in accordance with a norm and extrinsic incentives to comply, and test the effects of priming intrinsic
motives and applying varying degrees of extrinsic pressure. A large-scale field experiment involving
several hundred thousand registered voters used a series of mailings to gauge these effects. Substantially
higher turnout was observed among those who received mailings promising to publicize their turnout
to their household or their neighbors. These findings demonstrate the profound importance of social
pressure as an inducement to political participation.

‘ Y oter turnout theories based on rational self-interested behavior generally fail to predict significant

https://doi.org/10.1017/3000305540808009X
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Example: The scariest pieces of mail ever!

Dear Registered Voter:
WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for
years, but it only seems to get worse. This year, we're taking a new approach.
We're sending this mailing to you and your neighbors to publicize who does and
does not vote.

The chart shows the names of some of your neighbors, showing which have voted in
the past. After the August 8 election, we intend to mail an updated chart. You
and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY —VOTE!

MAPLE DR Aug04 Nov04 Aug 06
9995 JOSEPH JAMES SMITH Voted Voted
9995 JENNIFER KAY SMITH Voted
9997 RICHARD B JACKSON Voted
9999 KATHY MARIE  JACKSON Voted

https://doi.org/10.1017/5000305540808009X
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Basic Analysis
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https://isps.yale.edu/research/data/d001

Basic Analysis

They make their data available
(https://isps.yale.edu/research/data/d001). We can analyze it.

load("gerber_green_larimer.RData")
## turn turnout variable into a numeric

social$voted <- 1 * (social$voted == "Yes")

neigh.mean <- mean(social$voted[social$treatment == "Neighbors"])
neigh.mean

contr.mean <- mean(social$voted[social$treatment == "Civic Duty"])

contr.mean
neigh.mean - contr.mean
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Basic Analysis

They make their data available
(https://isps.yale.edu/research/data/d001). We can analyze it.

load("gerber_green_larimer.RData")
## turn turnout variable into a numeric

social$voted <- 1 * (social$voted == "Yes")

neigh.mean <- mean(social$voted[social$treatment == "Neighbors"])
neigh.mean

contr.mean <- mean(social$voted[social$treatment == "Civic Duty"])

contr.mean
neigh.mean - contr.mean

.378 — .315 = .063
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Basic Analysis

They make their data available
(https://isps.yale.edu/research/data/d001). We can analyze it.

load("gerber_green_larimer.RData")
## turn turnout variable into a numeric

social$voted <- 1 * (social$voted == "Yes")

neigh.mean <- mean(social$voted[social$treatment == "Neighbors"])
neigh.mean

contr.mean <- mean(social$voted[social$treatment == "Civic Duty"])

contr.mean
neigh.mean - contr.mean

.378 — .315 = .063

Is this a “real” effect? lIs it big?
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Desirable Properties of Estimators
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Desirable Properties of Estimators

Sometimes there are many possible estimators for a given parameter.
Which one should we choose?
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Desirable Properties of Estimators

Sometimes there are many possible estimators for a given parameter.

Which one should we choose?

@ We'd like an estimator that gets the right answer on average.
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Desirable Properties of Estimators

Sometimes there are many possible estimators for a given parameter.
Which one should we choose?

@ We'd like an estimator that gets the right answer on average.

@ We'd like an estimator that doesn't change much from sample to
sample.
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Desirable Properties of Estimators

Sometimes there are many possible estimators for a given parameter.
Which one should we choose?

@ We'd like an estimator that gets the right answer on average.

@ We'd like an estimator that doesn't change much from sample to
sample.

@ We'd like an estimator that gets closer to the right answer
(probabilistically) as the sample size increases.
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Desirable Properties of Estimators

Sometimes there are many possible estimators for a given parameter.
Which one should we choose?

@ We'd like an estimator that gets the right answer on average.

@ We'd like an estimator that doesn't change much from sample to
sample.

@ We'd like an estimator that gets closer to the right answer
(probabilistically) as the sample size increases.

o We'd like an estimator that has a known sampling distribution
(approximately) when the sample size is large.
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Properties of Estimators
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Properties of Estimators

Estimators are random variables, for which randomness comes from repeated
sampling from the population.
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Properties of Estimators

Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.
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Properties of Estimators

Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.
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Properties of Estimators

Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.

Finite-sample Properties (apply for any sample size):
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Properties of Estimators

Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.

Finite-sample Properties (apply for any sample size):

@ Unbiasedness: Is the sampling distribution of our estimator centered at the
true parameter value? E[fi] = pu
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Properties of Estimators
Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.
Finite-sample Properties (apply for any sample size):

@ Unbiasedness: Is the sampling distribution of our estimator centered at the
true parameter value? E[] = p

@ Efficiency: Is the variance of the sampling distribution of our estimator
reasonably small? V[fi1] < V[{i2]
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Properties of Estimators
Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.
Finite-sample Properties (apply for any sample size):

@ Unbiasedness: Is the sampling distribution of our estimator centered at the
true parameter value? E[] = p

@ Efficiency: Is the variance of the sampling distribution of our estimator
reasonably small? V[fi1] < V[{i2]

Asymptotic Properties (kick in when n is large):
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Properties of Estimators
Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.
Finite-sample Properties (apply for any sample size):

@ Unbiasedness: Is the sampling distribution of our estimator centered at the
true parameter value? E[] = p

@ Efficiency: Is the variance of the sampling distribution of our estimator
reasonably small? V[fi1] < V[{i2]

Asymptotic Properties (kick in when n is large):

@ Consistency: As our sample size grows to infinity, does the sampling
distribution of our estimator converge to the true parameter value?
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Properties of Estimators
Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.
Finite-sample Properties (apply for any sample size):

@ Unbiasedness: Is the sampling distribution of our estimator centered at the
true parameter value? E[] = p

@ Efficiency: Is the variance of the sampling distribution of our estimator
reasonably small? V[fi1] < V[{i2]

Asymptotic Properties (kick in when n is large):

@ Consistency: As our sample size grows to infinity, does the sampling
distribution of our estimator converge to the true parameter value?

@ Asymptotic Normality: As our sample size grows large, does the sampling
distribution of our estimator approach a normal distribution?
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1: Bias

(not getting the right answer on average)
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1. Bias

(not getting the right answer on average)

Definition

Bias is the expected difference between the estimator and the parameter.
Over repeated samples, an unbiased estimator is right on average.
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1. Bias
(not getting the right answer on average)

Definition

Bias is the expected difference between the estimator and the parameter.

Over repeated samples, an unbiased estimator is right on average.

Bias(2) = E[i— E[X]]
= E[f]—p
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1. Bias

(not getting the right answer on average)

Definition

Bias is the expected difference between the estimator and the parameter.
Over repeated samples, an unbiased estimator is right on average.

Bias(2) = E[i— E[X]]
= E[f]—p

v

Bias is not the difference between a particular estimate and the parameter.
For example,

Bias(yn) 7é E [Yn - E[X]]
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1. Bias

(not getting the right answer on average)

Definition

Bias is the expected difference between the estimator and the parameter.
Over repeated samples, an unbiased estimator is right on average.

Bias(2) = E[i— E[X]]
= E[f]—p

v

Bias is not the difference between a particular estimate and the parameter.
For example,

Bias(X,) # E[%n— E[X]]

An estimator is unbiased if and only if:
Bias(z) = 0
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Example: Estimators for Population Mean
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Example: Estimators for Population Mean

Candidate estimators:

@ /i1 = Y1 (the first observation)
@ /i> = (Y1 + Y,) (average of the first and last observation)

Q iz =42

Q /is = Y, (the sample average)

How do we choose between these estimators?
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Bias of Example Estimators

Which of these estimators are unbiased?

Q E[Vi—y]=
Q@ E[3(Vi+Ya) — 4] =
Q E[42—pu]=
o E[Vn_,u’]:
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Bias of Example Estimators

Which of these estimators are unbiased?
Q@ E[Yi—pl=p—p=0
Q@ E[3(Vi+Ya) — 4] =
Q E[42—p] =
Q E[Y,—ul=
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Bias of Example Estimators

Which of these estimators are unbiased?
Q@ E[Yi—pl=p—p=0
Q@ E[3(Yi+ Ya) —ul = 3(E[VA] + E[Ya]) — 1
Q E[42—pu] =
Q E[Y,—ul=
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Bias of Example Estimators

Which of these estimators are unbiased?
Q@ E[Yi—pl=p—p=0
Q@ EZ(Yi+VYa) —ul=3(EMi] +E[Ya]) —p=3(n+p) —pn=0
Q E[42—pu] =
Q E[Y,—ul=
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Bias of Example Estimators

Which of these estimators are unbiased?
Q@ E[Yi—pl=p—p=0
@ E[3(Vi+Ya)—pl = 3(EMVA+ ELYal) —p=3(u+ ) —pn=0
Q@ E[42—pul=42—pu
Q E[Y,—ul=
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Bias of Example Estimators

Which of these estimators are unbiased?
Q@ E[Yi—pl=p—p=0
@ E[3(Vi+Ya)—pl = 3(EMVA+ ELYal) —p=3(u+ ) —pn=0
Q@ E[42—pul=42—pu
Q E[Y,—pl=+>TEVi]—n
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Bias of Example Estimators

Which of these estimators are unbiased?

Q@ E[Yi—pl=p—p=0

@ E[3(Vi+Ya)—pl = 3(EMVA+ ELYal) —p=3(u+ ) —pn=0
Q@ E[42—pul=42—pu

Q E[Y,—pu] =31 EV]-p=p—p=0
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Bias of Example Estimators

Which of these estimators are unbiased?

Q@ E[Yi—pl=p—p=0

@ E[3(Vi+Ya)—pl = 3(EMVA+ ELYal) —p=3(u+ ) —pn=0
Q@ E[42—pul=42—pu

Q E[Y,—pu] =31 EV]-p=p—p=0

@ Estimators 1,2, and 4 are unbiased because they get the right answer
on average.
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Bias of Example Estimators

Which of these estimators are unbiased?
Q@ E[Yi—pl=p—p=0
Q@ E[3(Yi+ Vo) —pl=3(EM]+E[Ya]) —p=3(u+p) —p=0
Q@ E[42—pul=42—pu
Q E[Y,—pu] =31 EV]-p=p—p=0
@ Estimators 1,2, and 4 are unbiased because they get the right answer

on average.

@ Estimator 3 is biased.
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Age population distribution in blue
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Age population distribution in blue, sampling distributions in red
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Age population distribution in blue, sampling distributions in red

Sampling Distribution for X,

fx)
0.02 0.04

-0.01

80 100

Sampling Distribution for )~(4

f)
0.02 0.04

-0.01

80 100

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 64 /142



2: Efficiency

(doesn’t change much sample to sample)

@ All else equal, we prefer estimators that have a sampling distribution with
smaller variance.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 65 /142



2: Efficiency

(doesn’t change much sample to sample)

@ All else equal, we prefer estimators that have a sampling distribution with
smaller variance.

Definition (Efficiency)

If 91 and 92 are unbiased estimators of 8, then él is more efficient relative to 92 iff

V[h] < V6]

@ Under repeated sampling, estimates based on 0, are likely to be closer to 6
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2: Efficiency

(doesn’t change much sample to sample)

@ All else equal, we prefer estimators that have a sampling distribution with
smaller variance.

Definition (Efficiency)

If 91 and 92 are unbiased estimators of 8, then él is more efficient relative to 92 iff

V[h] < V6]

@ Under repeated sampling, estimates based on 0, are likely to be closer to 6

@ Note that this does not imply that a particular estimate is always close to
the true parameter value
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2: Efficiency

(doesn’t change much sample to sample)

@ All else equal, we prefer estimators that have a sampling distribution with
smaller variance.

Definition (Efficiency)

If él and 92 are unbiased estimators of 8, then él is more efficient relative to 92 iff

V[h] < V6]

@ Under repeated sampling, estimates based on 0, are likely to be closer to 6

@ Note that this does not imply that a particular estimate is always close to
the true parameter value

@ The standard deviation of the sampling distribution of an estimator, 1/ V/[],
is often called the standard error of the estimator
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2: Efficiency

(doesn’t change much sample to sample)

@ All else equal, we prefer estimators that have a sampling distribution with
smaller variance.

Definition (Efficiency)

If 91 and 92 are unbiased estimators of 8, then él is more efficient relative to 92 iff

V[h] < V6]

@ Under repeated sampling, estimates based on 0, are likely to be closer to 6

@ Note that this does not imply that a particular estimate is always close to
the true parameter value

@ The standard deviation of the sampling distribution of an estimator, 1/ V[f],
is often called the standard error of the estimator

Aronow and Miller discuss efficiency in terms of MSE (more on this in a second).
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Variance of Example Estimators

What is the variance of our estimators?
0 V[ni]=
@ V[i(Yi+ V)=
Q@ V[42] =
Q V[Y.]=
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Variance of Example Estimators

What is the variance of our estimators?

Q@ VY] =02

@ V[i(Yi+ V)=
Q V[42] =

Q V[Y,] =
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Variance of Example Estimators

What is the variance of our estimators?

Q@ VY] =02

@ V[3(Yi+ Ya)l=3VIVi+ Y
Q V[42] =

Q V[Y,]=
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Variance of Example Estimators

What is the variance of our estimators?
Q@ VY] =02
@ V[I(Yi+ Yn)]=1V[Yi+ Y] =1(c%+0%) =302
Q V[42] =
0 V[V, =
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Variance of Example Estimators

What is the variance of our estimators?
Q@ VY] =02
@ V[I(Yi+ Yn)]=1V[Yi+ Y] =1(c%+0%) =302
Q@ V[42]=0
0 V[V, =
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Variance of Example Estimators

What is the variance of our estimators?
Q@ VY] =o?
@ V[I(Yi+ Yn)]=1V[Yi+ Y] =1(c%+0%) =302
Q@ V[42]=0
o V[Vn] = 712 2'11 vIvil
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Variance of Example Estimators

What is the variance of our estimators?

Q@ VY] =o?

@ V[I(Yi+ Yn)]=1V[Yi+ Y] =1(c%+0%) =302
0 V[42] =0

Q V[V, =531 V[Yi]=Ltno? =102
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Variance of Example Estimators

What is the variance of our estimators?
Q@ VY] =o?
@ V[I(Yi+ Yn)]=1V[Yi+ Y] =1(c%+0%) =302
Q@ V[42]=0
O V[Yi= 5 X1 VIVl = pno® =1

=
N

Among the unbiased estimators, the sample average has the smallest
variance. This means that Estimator 4 (the sample average) is likely to be
closer to the true value g, than Estimators 1 and 2.
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Age population distribution in blue, sampling distributions in red
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Age population distribution in blue, sampling distributions in red
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Trading Off Bias and Variance

No
bias

Low
bias

High
bias

Low variance High variance

© ©
o

@.
.
.

Salganik (2018), Figure 3.1
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Mean Squared Error

How can we choose between an unbiased estimator and a biased, but lower
variance estimator?
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Mean Squared Error

How can we choose between an unbiased estimator and a biased, but lower
variance estimator?

Definition (Mean Squared Error)

To compare estimators in terms of both efficiency and unbiasedness we can use
the Mean Squared Error (MSE), the expected squared difference between 6 and 6:

MSE(6) = E[(9 — 0)?] = Bias(0) + V(§) = | E[f] - 0]2 + V()
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Mean Squared Error

How can we choose between an unbiased estimator and a biased, but lower
variance estimator?

Definition (Mean Squared Error)

To compare estimators in terms of both efficiency and unbiasedness we can use
the Mean Squared Error (MSE), the expected squared difference between 6 and 6:

MSE(6) = E[(9 — 0)?] = Bias(0) + V(§) = | E[f] - 9]2 + V()

Sometimes (as in Aronow and Miller Deinition 3.2.16) efficiency is defined as
having lower MSE.
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3-4: Asymptotic Evaluations: A Brief Review

(what happens as sample size increases)
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3-4: Asymptotic Evaluations: A Brief Review

(what happens as sample size increases)

@ Unbiasedness and efficiency are finite-sample properties of estimators,
which hold regardless of sample size
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3-4: Asymptotic Evaluations: A Brief Review
(what happens as sample size increases)
@ Unbiasedness and efficiency are finite-sample properties of estimators,
which hold regardless of sample size
o Estimators also have asymptotic properties, i.e., the characteristics of
sampling distributions when sample size becomes infinitely large
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3-4: Asymptotic Evaluations: A Brief Review
(what happens as sample size increases)
@ Unbiasedness and efficiency are finite-sample properties of estimators,
which hold regardless of sample size
o Estimators also have asymptotic properties, i.e., the characteristics of
sampling distributions when sample size becomes infinitely large
@ To define asymptotic properties, consider a sequence of estimators at

increasing sample sizes:
015 027 LS 9!‘!

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 70 /142



3-4: Asymptotic Evaluations: A Brief Review
(what happens as sample size increases)
@ Unbiasedness and efficiency are finite-sample properties of estimators,
which hold regardless of sample size
o Estimators also have asymptotic properties, i.e., the characteristics of
sampling distributions when sample size becomes infinitely large
@ To define asymptotic properties, consider a sequence of estimators at

increasing sample sizes:
01,02, ...,0,

@ For example, the sequence of sample means (X,) is defined as:

. X +X X+ X
X17X27"'7Xn = Xla 1—; 23"'7 1+n )
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3-4: Asymptotic Evaluations: A Brief Review
(what happens as sample size increases)
@ Unbiasedness and efficiency are finite-sample properties of estimators,
which hold regardless of sample size

Estimators also have asymptotic properties, i.e., the characteristics of
sampling distributions when sample size becomes infinitely large

@ To define asymptotic properties, consider a sequence of estimators at
increasing sample sizes:

915927"'7én
o For example, the sequence of sample means (X,) is defined as:
_ o - X1+ X Xi+---X
X17X27"'7Xn = Xla 1t 27"'7 Lt .
2 n
o

Asymptotic properties of an estimator are defined by the behavior of
01, ...0,, when n goes to infinity.
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3: Consistency

(does it get closer to the right answer as sample size increases)

Definition

An estimator 0, is consistent if the sequence 91, o 0, converges in probability to

the true parameter value 6 as sample size n grows to infinity:

9A,, 20 or plim QA,, =

n— o0
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3: Consistency

(does it get closer to the right answer as sample size increases)

Definition

An estimator 0, is consistent if the sequence 91, o 0, converges in probability to

the true parameter value 6 as sample size n grows to infinity:

9A,, 20 or plim QA,, =

n— o0

@ Often seen as a minimal requirement for estimators
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3: Consistency

(does it get closer to the right answer as sample size increases)

Definition

An estimator 0, is consistent if the sequence 91, o 0, converges in probability to

the true parameter value 6 as sample size n grows to infinity:

9A,, 20 or plim 67,,:

n— o0

@ Often seen as a minimal requirement for estimators

@ A consistent estimator may still perform badly in small samples

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 71/142



3: Consistency

(does it get closer to the right answer as sample size increases)
Definition
An estimator 0, is consistent if the sequence 91, o 0, converges in probability to

the true parameter value 6 as sample size n grows to infinity:

9A,,£>9 or pIimé,,:@

n— o0

@ Often seen as a minimal requirement for estimators

@ A consistent estimator may still perform badly in small samples

@ Two ways to verify consistency:

@ Analytic: Often easier to check if E[f,] — 0 and V[d,] — 0
@ Simulation: Increase n and see how the sampling distribution changes
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3: Consistency

(does it get closer to the right answer as sample size increases)
Definition
An estimator 0, is consistent if the sequence 91, e 0, converges in probability to

the true parameter value 6 as sample size n grows to infinity:

9Anﬂ>9 or pliménze

n— o0

@ Often seen as a minimal requirement for estimators

@ A consistent estimator may still perform badly in small samples

@ Two ways to verify consistency:

@ Analytic: Often easier to check if E[f,] — 0 and V[d,] — 0

@ Simulation: Increase n and see how the sampling distribution changes
@ Does unbiasedness imply consistency?
@ Does consistency imply unbiasedness?
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Deriving Consistency of Estimators

Our candidate estimators:

Q1="

Q 2=

o ﬁ3:7n5%(yl+"'+Yn)
o ﬁ4=?n5$(Y1+---+Yn)

Which of these estimators are consistent for u?
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Deriving Consistency of Estimators

Our candidate estimators:

Q1="

Q 2=

o ﬁ3:7n5%(yl+"'+Yn)
o ﬁ4=?n5$(Y1+---+Yn)

Which of these estimators are consistent for u?

@ Effia] = pand V[jig] = o2
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Deriving Consistency of Estimators

Our candidate estimators:

Q1="

Q=4

(5] ;’I3:7 E%(Y1+"‘+Yn)
Qs=Yo=rz(Vi+-+Yn)

Which of these estimators are consistent for u?

@ E[fia] = p and V[iig] = 02
e E[ﬁz] =4 and V[ﬁg] = 0
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Deriving Consistency of Estimators

Our candidate estimators:

Q=W

Q =4

o ﬁsz_ =ivi+-+Vy)
Qs=Yo=rz(Vi+-+Yn)

Which of these estimators are consistent for u?
Q@ Effis] = p and Vljia] = 02
e E[ﬁz] =4 and V[ﬁg] = 0
© Euis] = pand V[iiz] = 1o?
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Deriving Consistency of Estimators

Our candidate estimators:

Q=W

Q =4

o ﬁsz_ =ivi+-+Vy)
Qs=Yo=rz(Vi+-+Yn)

Which of these estimators are consistent for u?
Q@ Effis] = p and Vljia] = 02
e E[ﬁz] =4 and V[ﬁg] = 0
© Euis] = pand V[iiz] = 1o?

O Elfis] = i5p and V[is] = f5p0°
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Consistency

The sample mean is a consistent
estimator for p.

2
— o
Xn "~ approx N (M’ 7)
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Consistency

The sample mean is a consistent
estimator for p.

2
— o
Xn "~ approx N (M, 7)

o2

As n increases, “- approaches 0.

n—=
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Consistency

The sample mean is a consistent
estimator for p.

2
— o
Xn "~ approx N (My 7)

. 2
n increases, - ro .
As creases "n a aches 0
n=1

1)

Sampling Distribution for X;

0.03
I

0.00
I

-0.01
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Consistency

The sample mean is a consistent
estimator for p.

2
— o
Xn "~ approx N (My 7)

a2
n

As n increases, approaches 0.

n=25
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Consistency

The sample mean is a consistent
estimator for p.

2
— o
Xn "~ approx N (My 7)

a2
n

As n increases, approaches 0.

n =100

Stewart (Princeton)
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Inconsistency
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Inconsistency

An estimator can be inconsistent in several ways:
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Inconsistency

An estimator can be inconsistent in several ways:

@ The sampling distribution collapses around the wrong value
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Inconsistency

An estimator can be inconsistent in several ways:
@ The sampling distribution collapses around the wrong value

@ The sampling distribution never collapses around anything
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Inconsistency

Consider the median estimator: X, =
median( Y1, ..., Yn)
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Inconsistency

Sampling Distribution for ;(1

0.05
I

0.04
I

Consider the median estimator: X, =
median( Y3, ..., Y,) Is this estimator
consistent for the expectation?

n—=

1)
002 003
L L
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-0.01
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Inconsistency

Sampling Distribution for >.<1

3
Consider the median estimator: X, = ;
median(Y3, ..., Y;) Is this estimator ~ _ |
consistent for the expectation? T8
n=1 g
57 A
e & e e
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Inconsistency

Sampling Distribution for >.<25

0.05
I

0.04
I

Consider the median estimator: X, =
median( Y3, ..., Y,) Is this estimator
consistent for the expectation?
n=25

10
0.01 0.03
I

0.00
I

-0.01
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Inconsistency

Sampling Distribution for >~<100

0.05
I

0.04
I

Consider the median estimator: X, =
median( Y3, ..., Y,) Is this estimator
consistent for the expectation?

n =100

0.03
I

()

0.01
I

0.00
I

-0.01
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4: Asymptotic Distribution

(known sampling distribution for large sample size)
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4: Asymptotic Distribution

(known sampling distribution for large sample size)

We are also interested in the shape of the sampling distribution of an
estimator as the sample size increases.
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4: Asymptotic Distribution

(known sampling distribution for large sample size)

We are also interested in the shape of the sampling distribution of an
estimator as the sample size increases.

Due to the central limit theorem, the sampling distributions of many
estimators converge towards a normal distribution such that,

0, —0

\/ V16

4 N(0,1)
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4: Asymptotic Distribution

(known sampling distribution for large sample size)

We are also interested in the shape of the sampling distribution of an
estimator as the sample size increases.

Due to the central limit theorem, the sampling distributions of many
estimators converge towards a normal distribution such that,

0, — 0

\/ V16

This will play a crucial role in our ability to form confidence intervals.

4 N(0,1)

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020

76 /142



Summary of Properties

Concept Criteria Intuition
Unbiasedness Elgl=p Right on average
Efficiency Vi) < Vo] Low variance
Consistency fin LN I Converge to estimand as n — oo
. . A approx. o2 . .
Asymptotic Normality | fi, "~ N(u, %) | Approximately normal in large n
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)

@ Find an estimator for the quantity of interest
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)

@ Find an estimator for the quantity of interest

@ Is this estimator consistent?
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)

@ Find an estimator for the quantity of interest
© s this estimator consistent?

© s this estimator unbiased?
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)

@ Find an estimator for the quantity of interest
© s this estimator consistent?

@ s this estimator unbiased?

© What is the variance of the estimator?
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)

@ Find an estimator for the quantity of interest
© s this estimator consistent?

@ s this estimator unbiased?

© What is the variance of the estimator?

@ Can we find an unbiased estimator for the variance (and is it
consistent)?
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)

@ Find an estimator for the quantity of interest
© s this estimator consistent?

@ s this estimator unbiased?

© What is the variance of the estimator?

@ Can we find an unbiased estimator for the variance (and is it
consistent)?

@ What are the finite sample properties of the estimator?
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

@ Define estimand of interest (causal quantity, survey outcome, model
parameter)

@ Find an estimator for the quantity of interest
© s this estimator consistent?

@ s this estimator unbiased?

© What is the variance of the estimator?

@ Can we find an unbiased estimator for the variance (and is it
consistent)?

@ What are the finite sample properties of the estimator?
© What are the asymptotic properties of the estimator?
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Back to the Example

American Political Science Review Vol. 102, No.1 February 2008

DOI: 10.1017/S000305540808009X

Social Pressure and Voter Turnout: Evidence from a Large-Scale
Field Experiment

ALAN S. GERBER vale University
DONALD P. GREEN VYale University
CHRISTOPHER W. LARIMER  University of Northern Iowa
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Population vs. Sampling Distribution
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Population vs. Sampling Distribution
We want to think about the sampling distribution of the estimator.
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Population vs. Sampling Distribution
We want to think about the sampling distribution of the estimator.

o

S _

o

[(e}
>~ g Population
§ S Distribution
e _
T o )
f‘: S Sampling

N [[I |:| Distribution

o -

[ I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0
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Population vs. Sampling Distribution
We want to think about the sampling distribution of the estimator.

o

S _

o

[(e}
>~ g Population
§ S Distribution
g _
T o )
f‘: 8 - Sampling

N [[I |:| Distribution

o -

[ I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0

But remember that we only get to see one draw from the sampling

distribution. Thus ideally we want an estimator with good properties.
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Asymptotic Normality
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. ..

Stewart (Princeton) Week 3: Learning From Random Samples



Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. ..

@ The estimator is difference in means
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. ..

@ The estimator is difference in means
@ The estimate is 0.063
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. ..
@ The estimator is difference in means
@ The estimate is 0.063

@ Suppose we have an estimate of the estimator's standard error
SE(6) = 0.02.
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. ..
@ The estimator is difference in means
@ The estimate is 0.063
° SAupBose we have an estimate of the estimator's standard error
SE(6) = 0.02.
@ What if there was no difference in means in the population
(1y — px = 0)?
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. ..

@ The estimator is difference in means

@ The estimate is 0.063

° SAupBose we have an estimate of the estimator's standard error
SE(6) = 0.02.

@ What if there was no difference in means in the population
(1y — px = 0)? A A

e By asymptotic Normality (¢ — 0)/SE(#) ~ N(0,1)
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. ..

@ The estimator is difference in means

@ The estimate is 0.063

° SAupBose we have an estimate of the estimator’s standard error
SE(6) = 0.02.

@ What if there was no difference in means in the population
(1y — px = 0)? A A

e By asymptotic Normality (¢ — 0)/SE(#) ~ N(0,1)

@ By the properties of Normals, we know that this implies that

0 ~ N(0,SE())
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Asymptotic Normality
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Asymptotic Normality

We can plot this to get a feel for it.
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Asymptotic Normality

We can plot this to get a feel for it.

Observed
Difference
__II II__
I T T T T T 1

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

1500

Frequency

0 500

sampling.dist
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Asymptotic Normality

We can plot this to get a feel for it.

1500

Observed
Difference

Frequency

0 500

[ T T T T T 1
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

sampling.dist

Does the observed difference in means seem plausible if there really were
no difference between the two groups in the population?
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The scariest pieces of mail ever! continued

“ladnpeonsble .. A magical mystary Wt o cantemparay samprigan”
~WASHINGTON POST

THE VICTORY LAB

THE SECRET SCIENCE
OF WINNING CAMPAIGNS

SASHA ISSENBERG

Summarizes the relationships between political science research and
campaigns. Also, attempts to weaponize the results of Gerber et al (2008).

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 83 /142



We Covered. . .
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We Covered. ..

@ Four properties of estimators: bias, efficiency, consistency and
asymptotic normality.
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We Covered. ..

@ Four properties of estimators: bias, efficiency, consistency and
asymptotic normality.

@ A brief example of how we can use asymptotic normality in an
example that will return!
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We Covered. ..

@ Four properties of estimators: bias, efficiency, consistency and
asymptotic normality.

@ A brief example of how we can use asymptotic normality in an
example that will return!

Next Time:
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We Covered. ..

@ Four properties of estimators: bias, efficiency, consistency and
asymptotic normality.

@ A brief example of how we can use asymptotic normality in an
example that will return!

Next Time: interval estimation
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Where We've Been and Where We're Going...

@ Last Week

Stewart (Princeton) Week 3: Learning From Random Samples



Where We've Been and Where We're Going...

@ Last Week

» random variables
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

@ Next Week
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

o Next Week
> hypothesis testing
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week
» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

@ Next Week

> hypothesis testing
» what is regression?
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

@ Next Week

> hypothesis testing
» what is regression?

Long Run
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

@ Next Week

> hypothesis testing
» what is regression?

@ Long Run
» probability — inference — regression — causal inference
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0 Estimation
@ Populations and Samples
@ Estimators
@ Analytical

a Weak Law of Large Numbers and the Central Limit Theorem
@ Chebychev's Inequality
@ Weak Law of Large Numbers
@ The Central Limit Theorem

e Properties of Estimators
@ Four Desirable Properties
@ Example

e Interval Estimation
@ Intervals
@ Large Sample Intervals for a Mean
@ Small Sample Intervals for a Mean
@ Comparing Two Groups
@ Interval Estimation for a Proportion

e Plug-In Principle
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a Interval Estimation

@ Intervals
Large Sample Intervals for a Mean
Small Sample Intervals for a Mean
Comparing Two Groups
Interval Estimation for a Proportion
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What is Interval Estimation?

@ A point estimator 0 estimates a scalar population parameter 6 with a
single number.
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What is Interval Estimation?

@ A point estimator 0 estimates a scalar population parameter 6 with a
single number.

@ However, because we are dealing with a random sample, we might
also want to report uncertainty in our estimate.
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What is Interval Estimation?

@ A point estimator 0 estimates a scalar population parameter 6 with a
single number.

@ However, because we are dealing with a random sample, we might
also want to report uncertainty in our estimate.

@ An interval estimator for 6 takes the following form:

[élowera éupper]

where é,owe, and éuppe, are random quantities that vary from sample
to sample.
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What is Interval Estimation?

@ A point estimator 0 estimates a scalar population parameter 6 with a
single number.

@ However, because we are dealing with a random sample, we might
also want to report uncertainty in our estimate.

@ An interval estimator for 6 takes the following form:

[élower 5 é\upper]

where é,owe, and @uppe, are random quantities that vary from sample
to sample.

@ The interval represents the range of possible values within which we
estimate the true value of 4 to fall.
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What is Interval Estimation?

@ A point estimator 0 estimates a scalar population parameter 6 with a
single number.

@ However, because we are dealing with a random sample, we might
also want to report uncertainty in our estimate.

@ An interval estimator for 6 takes the following form:

[élower 5 é\upper]

where é,owe, and éuppe, are random quantities that vary from sample
to sample.

@ The interval represents the range of possible values within which we
estimate the true value of 4 to fall.

@ An interval estimate is a realized value from an interval estimator.
The estimated interval typically forms what we call a confidence
interval, which we will define shortly.
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Population with Known o2
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Population with Known 2

Suppose we have an i.i.d. random sample of size n, Xy, ..., X, from with
EX]=p, VIX]=1
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Population with Known 2

Suppose we have an i.i.d. random sample of size n, Xy, ..., X, from with
EX]=p V[X]=1

From previous lecture, we know that the sampling distribution of the sample
average in large samples is:

Xp ~
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Population with Known 2

Suppose we have an i.i.d. random sample of size n, Xy, ..., X, from with
EX]=p V[X]=1

From previous lecture, we know that the sampling distribution of the sample
average in large samples is:

Xn ~ N(p,0%/n) = N(p,1/n)
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Population with Known 2

Suppose we have an i.i.d. random sample of size n, Xy, ..., X, from with
EX]=p V[X]=1

From previous lecture, we know that the sampling distribution of the sample
average in large samples is:

Xn ~ N(p,0%/n) = N(p,1/n)

Therefore, the standardized sample average is distributed as follows:

X

n— M

1/v/n

~

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 88 /142



Population with Known 2

Suppose we have an i.i.d. random sample of size n, Xy, ..., X, from with
EX]=p V[X]=1

From previous lecture, we know that the sampling distribution of the sample
average in large samples is:

Xn ~ N(p,0%/n) = N(p,1/n)

Therefore, the standardized sample average is distributed as follows:

~ N(0,1)
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Population with Known 2

Suppose we have an i.i.d. random sample of size n, Xy, ..., X, from with
EX]=p V[X]=1

From previous lecture, we know that the sampling distribution of the sample
average in large samples is:

Xn ~ N(p,0%/n) = N(p,1/n)

Therefore, the standardized sample average is distributed as follows:

~ N(0,1)

This implies

p(-1. " Ho106) = .
( 96 < NG < 96) 95
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CDF of the Standard Normal Distribution
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CDF of the Standard Normal Distribution

o
A e e e e e o e e e e e e e e e e e e e e e ]
©
®
©
©

& CDF(1.96) = .975

3 CDF(-1.96) = .025
<
3
N
S
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Constructing a Confidence Interval with Known o2

So we know that:

x|

n— H
1.96) = .95
NG )

P (—1.96 <
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Constructing a Confidence Interval with Known o2

So we know that:

x|

P(—1.96< ”_“<1.96> — 05

1/v/n

Rearranging yields:

P(X,—196/vn < p < X,+1.96//n) = .95
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Constructing a Confidence Interval with Known o2

So we know that:

n— H
1.96) = .95
NG )

x|

P <—1.96 <
Rearranging yields:

P(X,—196/vn < p < X,+1.96//n) = .95

This implies that the following interval estimator

[Xn—1.96/vn, X, +1.96/v/n]

contains the true population mean g with probability 0.95.
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Constructing a Confidence Interval with Known o2

So we know that:

n— H
1.96) = .95
NG )

x|

P <—1.96 <
Rearranging yields:

P(X,—196/vn < p < X,+1.96//n) = .95

This implies that the following interval estimator

[Xn—1.96/vn, X, +1.96/v/n]

contains the true population mean g with probability 0.95.

We call this estimator a 95% confidence interval for p.
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Kuklinski Example

V Napprox?(?a ?)
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Kuklinski Example

Y Napprox?(ﬂa ?)
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Kuklinski Example

V Napprox?(:u‘a 02/n)
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Kuklinski Example

Y ~approx N(1, 02/”)
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Kuklinski Example

Y ~approx N(1, ‘72/”)

Suppose the 1,161 respondents in
the Kuklinski data set were the
population, with

p=42.7 and 02 = 257.9.

Density
015 020 025 030
I I I |

0.10
I

0.05
I

0.00

ﬁ =Yi00
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Kuklinski Example

V "~ approx N(/% Uz/n) fi=Y100

0.30
|

Suppose the 1,161 respondents in
the Kuklinski data set were the
population, with

p=42.7 and 02 = 257.9.

0.20 0.25
I

Density
0.15
I

If we sampled 100 respondents, the
sampling distribution of Y'1qg is:

0

0.05

VIOO ~ approx ?(?7 ?)

0.00
i

0 20 40 60 80 100

Age
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Kuklinski Example

V "~ approx N(/% Uz/n) fi=Y100

0.30
|

Suppose the 1,161 respondents in
the Kuklinski data set were the
population, with

p=42.7 and 02 = 257.9.

0.20 0.25
I

Density
0.15
I

If we sampled 100 respondents, the
sampling distribution of Y'1qg is:

0

0.05

7100 ~ approx ?(42-7a ?)

0.00
i

0 20 40 60 80 100

Age
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Kuklinski Example

V "~ approx N(/% Uz/n) {i=Yio0

0.30
|

Suppose the 1,161 respondents in
the Kuklinski data set were the
population, with

p=42.7 and 02 = 257.9.

0.20 0.25
I

Density
0.15
I

If we sampled 100 respondents, the
sampling distribution of Y'1qg is:

0

0.05

Y100 ~approx 7(42.7,257.9/100)

0.00
i

0 20 40 60 80 100

Age

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 91 /142



Kuklinski Example

V "~ approx N(/% Uz/n) {i=Yio0

0.30
|

Suppose the 1,161 respondents in
the Kuklinski data set were the
population, with

p=42.7 and 02 = 257.9.

0.20 0.25
I

Density
0.15
I

If we sampled 100 respondents, the
sampling distribution of Y'1qg is:

0

0.05

Y 100 ~approx N(42.7,2.579)

0.00
i

0 20 40 60 80 100

Age
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The standard error of Y

The standard error of the sample
mean is the standard deviation of the
sampling distribution for Y:

SE(Y) =
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The standard error of Y

Sampling distribution of Yigo

0.25
|

The standard error of the sample
mean is the standard deviation of the
sampling distribution for Y:

0.20
I

0.15
I

Density

SE(Y) =/ V(Y) = %

0.10
I

0.05
I

0.00
L

35 40 45 50

Age
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The standard error of Y

The standard error of the sample

mean is the standard deviation of the

sampling distribution for Y:
SE(Y)=1/V(Y) =

What is the probability that Y falls
within 1.96 SEs of u?

Stewart (Princeton)

Density
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The standard error of Y

The standard error of the sample

mean is the standard deviation of the

sampling distribution for Y:
SE(Y)=1/V(Y) =

What is the probability that Y falls
within 1.96 SEs of u?
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Normal Population with Unknown o2

In practice, it is rarely the case that we somehow know the true value of
o2 and our previous example relied on that knowledge.
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Normal Population with Unknown o2

In practice, it is rarely the case that we somehow know the true value of
o2 and our previous example relied on that knowledge.

Suppose now that we have an i.i.d. random sample of size n Xy, ..., X,
where o2 is unknown.
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Normal Population with Unknown o2

In practice, it is rarely the case that we somehow know the true value of
o2 and our previous example relied on that knowledge.

Suppose now that we have an i.i.d. random sample of size n Xy, ..., X,
where o2 is unknown. Then, as before,

_ X,
X~ N(p,02/n) and so Zn K N(0,1).

_ ~Y
a/\/n
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Normal Population with Unknown o2

In practice, it is rarely the case that we somehow know the true value of

o2 and our previous example relied on that knowledge.

Suppose now that we have an i.i.d. random sample of size n Xy, ..., X,

2

where o< is unknown. Then, as before,

_ X, —
X~ N(p,02/n) and so U—\/_,;u ~ N(0,1).

Previously, we then constructed the interval:

[Yn - Za/ZO’/\/ﬁv 7n + Za/2g/\/ﬁ]
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Normal Population with Unknown o2

In practice, it is rarely the case that we somehow know the true value of

o2 and our previous example relied on that knowledge.

Suppose now that we have an i.i.d. random sample of size n X1, ..., X,

2

where o< is unknown. Then, as before,

_ Xn—p
X~ N(p, o2 d = T~ N(0,1).
n (Mv a /n) and so o \/ﬁ ( )
Previously, we then constructed the interval:

(X = 2ay20/v/0s X+ 2020/ /7]

But we can not directly use this now because
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Normal Population with Unknown o2

In practice, it is rarely the case that we somehow know the true value of

o2 and our previous example relied on that knowledge.

Suppose now that we have an i.i.d. random sample of size n X1, ..., X,

2

where o< is unknown. Then, as before,

_ Xn—p
X~ N(p, o2 d = T~ N(0,1).
n (Mv a /n) and so o \/ﬁ ( )
Previously, we then constructed the interval:

(X = 2ay20/v/0s X+ 2020/ /7]

But we can not directly use this now because o2 is unknown.
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Normal Population with Unknown o2

In practice, it is rarely the case that we somehow know the true value of

o2 and our previous example relied on that knowledge.

Suppose now that we have an i.i.d. random sample of size n X1, ..., X,

2

where o< is unknown. Then, as before,

— X, —
X~ N(p,02/n) and so 07\/# ~ N(0,1).

Previously, we then constructed the interval:

(X = 2aj20/v/0 X+ 20120/ /7]

But we can not directly use this now because o2 is unknown.
Instead, we need an estimator of o2, 52.
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Estimators for the Population Variance
Two possible estimators of population variance:
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Estimators for the Population Variance
Two possible estimators of population variance:

1< —
Sgn = - Z(Xf - X,)?

i=1

1 < -
St = 1 > (X = Xn)?
i1

Which do we prefer?
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Estimators for the Population Variance
Two possible estimators of population variance:

1< —
Sgn = - Z(Xf - X,)?

i=1

1 < -
St = 1 > (X = Xn)?
i1

Which do we prefer? Let's check properties of these estimators.
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Estimators for the Population Variance
Two possible estimators of population variance:

1< —
Sgn = - Z(Xf - X,)?

i=1

1 < -
2 2
= —>(X— X,
Sln n— 1 I=1( )
Which do we prefer? Let's check properties of these estimators.

© Unbiasedness: We can show (after some algebra) that

n—1

E[Ss] = o? and E[S})]=0?
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Estimators for the Population Variance
Two possible estimators of population variance:

1< —
Sgn = - Z(Xf - X,)?

i=1

1 < -
2 2
= —>(X— X,
Sln n— 1 I=1( )
Which do we prefer? Let's check properties of these estimators.

© Unbiasedness: We can show (after some algebra) that

n—1

E[Ss] = o? and E[S})]=0?

@ Consistency: We can show that

2 2

S22 6% and S22 o
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Estimators for the Population Variance
Two possible estimators of population variance:

1< —
Sgn = - Z(Xf - X,)?
i=1

1 < -
2 2
= —>(X— X,
Sln n— 1 I=1( )
Which do we prefer? Let's check properties of these estimators.

© Unbiasedness: We can show (after some algebra) that

n—1

E[Ss] = o? and E[S})]=0?

@ Consistency: We can show that

2 2

S22 6% and S22 o

S2. (unbiased and consistent) is commonly called the sample variance.
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Estimating ¢ and the SE

Returning to Kulinski et. al. ..

We will use the sample variance:
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Estimating ¢ and the SE

Returning to Kulinski et. al. ..

We will use the sample variance:

1 < -
i=1

and thus the sample standard deviation can be written as

S=+s2
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Estimating ¢ and the SE

Returning to Kulinski et. al. ..

We will use the sample variance:

1 < -
i=1

and thus the sample standard deviation can be written as

S=+s2

We will plug in S for o and our estimated standard error will be

§\[ ] S
E[p] = —
NG
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95% Confidence Intervals

If Xi,...,X, are i.i.d. and n is large,

then Sampling distribution of i

A~ N(u (SE[p))?)

Density

u-2SE(R) W ue2sE()
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95% Confidence Intervals

If Xi,...,X, are i.i.d. and n is large,
then

Sampling distribution of {i—p

N(p, (SE[A])?)
~ N0, (SEL)?)

=)
[
T O
2

Density

—28E(f) 0 +23E(R)
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95% Confidence Intervals

If Xi,...,X, are i.i.d. and n is large,

then Sampling distribution of S‘:E'(E)
A~ N(u (SE[)?)
f—p ~ N (SE[)?)
E_ R NO,1)
SE[f]
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95% Confidence Intervals

If Xi,...,X, are i.i.d. and n is large,
then

A
fi-p

Sampling distribution of — -
SE({)

~  N(u, (SE[a])?

i SE[A))
fi—p ~ N, (SE[a])?)
= p

2
=
—~
o
[y
N—’
Density
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95% Confidence Intervals

We can work backwards from this:

Stewart (Princeton)

Week 3: Learning From Random Samples

= 95%

= 95%

= 95%

September 14-18, 2020

97 /142



95% Confidence Intervals

We can work backwards from this:

P <—1.96 <BF < 1.96) — 95%
SE[A]
P (—1.96575[ﬁ] <i-pu< 1.96575[/3]) = 95%
= 95%
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95% Confidence Intervals

We can work backwards from this:

P <—1.96 <BF < 1.96) — 95%
SE[A]
P (—1.96575[,&] <i-pu< 1.96575[/3]) = 95%
P (ﬁ —1.96SE[A] < u < i+ 1.96§E[ﬂ]) = 95%
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95% Confidence Intervals

We can work backwards from this:

>

p <—1.96 <HH - 1.96) — 05%

SEIA]
P (—1.96575[,&] <i-pu< 1.96575[;3]) = 95%
P (ﬁ —1.96SE[A] < u < i+ 1.96§E[ﬂ]) = 95%

The random quantities in this statement are /1 and §E[,&]
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95% Confidence Intervals

We can work backwards from this:

>

p <—1.96 <HH - 1.96) — 05%

SEIA]
P (—1.96575[,&] <hi-p< 1.96575[;3]) — 95%
P (ﬁ —1.96SE[A] < u < i+ 1.96§E[ﬂ]> = 95%

The random quantities in this statement are /1 and §E[,&]
Once the data are observed, nothing is random!
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

———

0 20 40 60 80 100

2) Calculate /& and §E[ﬁ]:

3) Construct the 95% CI:

35 40
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

———

2) Calculate /& and §E[ﬁ]:

fi=4232 SE[f] = 1.498

3) Construct the 95% CI:

35 40
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

———

2) Calculate /& and §E[ﬁ]:

fi=4232 SE[f] = 1.498

3) Construct the 95% CI:

Age

(39.4,45.3)
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100: f

r T T T 1
0 20 40 60 80 100

2) Calculate /i and §E[ﬁ]: ;

3) Construct the 95% Cl: E———

35 40 45 50

Age
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

r T T T 1
0 20 40 60 80 100

2) Calculate /& and §E[ﬁ]:
fi=41.93 SE[f] = 1.604

3) Construct the 95% CI:
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

0 20 40 60 80 100

2) Calculate /& and §E[ﬁ]:

fi=41.93 SE[f] = 1.604

3) Construct the 95% Cl: ‘ ‘ ‘ :

(38.8,45.1)
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100: f

——

0 20 40 60 80 100

2) Calculate /i and §E[ﬁ]: ;

3) Construct the 95% Cl: —

35 40 45 50

Age
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

——

2) Calculate /& and §E[ﬁ]:
fi = 4353 SE[fi] = 1.555

3) Construct the 95% CI:
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

——

0 20 40 60 80 100

2) Calculate /& and §E[ﬁ]:
fi=4353 SE[fi] = 1.555
3) Construct the 95% CI:

(40.5,46.6)

r T
35 40 45

Age
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What does this mean?

By repeating this process, we —
generate the sampling distribution of P

the 95% Cls. ————

35 40 45 50

Age
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What does this mean?

By repeating this process, we e

generate the sampling distribution of —
the 95% Cls. ———————

Most of the Cls cover the true p; =

Age
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What does this mean?

By repeating this process, we ——
generate the sampling distribution of —_—
the 95% Cls. ———————

Most of the Cls cover the true p; =

some do not. — —

Age
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What does this mean?

By repeating this process, we ——
generate the sampling distribution of —_—
the 95% Cls. ———————

Most of the Cls cover the true p; =

some do not. — —

In the long run, we expect 95% of .
the Cls generated to contain the true B
value. ‘ ‘ — ‘

Age
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Interpreting a Confidence Interval
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Interpreting a Confidence Interval

This can be tricky, so let's break it down.
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Interpreting a Confidence Interval
This can be tricky, so let's break it down.

@ Imagine we implement the interval estimator X, 4 1.96/+/n for a particular
sample and obtain the estimate of [2.5, 4].
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This can be tricky, so let's break it down.

@ Imagine we implement the interval estimator X, 4 1.96/+/n for a particular
sample and obtain the estimate of [2.5, 4].

@ Does this mean that there is a .95 probability that the true parameter value
w lies between these two particular numbers?
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Interpreting a Confidence Interval

This can be tricky, so let's break it down.

@ Imagine we implement the interval estimator X, &= 1.96/+/n for a particular
sample and obtain the estimate of [2.5, 4].

@ Does this mean that there is a .95 probability that the true parameter value
w lies between these two particular numbers? No!

@ Confidence intervals are easy to construct, but difficult to interpret:

» Each confidence interval estimate from a particular sample either
contains g or not.
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Interpreting a Confidence Interval

This can be tricky, so let's break it down.

@ Imagine we implement the interval estimator X, &= 1.96/+/n for a particular
sample and obtain the estimate of [2.5, 4].

@ Does this mean that there is a .95 probability that the true parameter value
w lies between these two particular numbers? No!

@ Confidence intervals are easy to construct, but difficult to interpret:

» Each confidence interval estimate from a particular sample either
contains g or not.

» The probability statement is a property of the procedure. If we were to
repeatedly calculate the interval estimator over many random samples
from the same population, 95% of the time the constructed confidence
intervals would cover y
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Interpreting a Confidence Interval

This can be tricky, so let's break it down.

@ Imagine we implement the interval estimator X, &= 1.96/+/n for a particular
sample and obtain the estimate of [2.5, 4].

@ Does this mean that there is a .95 probability that the true parameter value
w lies between these two particular numbers? No!

@ Confidence intervals are easy to construct, but difficult to interpret:

» Each confidence interval estimate from a particular sample either
contains g or not.

» The probability statement is a property of the procedure. If we were to
repeatedly calculate the interval estimator over many random samples
from the same population, 95% of the time the constructed confidence
intervals would cover y

» Therefore, we refer to .95 as the coverage probability

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 100/ 142



What makes a good confidence interval?

© The coverage probability: how likely it is that the interval covers the
truth.
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What makes a good confidence interval?

© The coverage probability: how likely it is that the interval covers the
truth.
@ The length of the confidence interval:
> Infinite intervals (—oo, 00) have coverage probability 1

» For a probability, a confidence interval of [0, 1] also have coverage
probability 1
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What makes a good confidence interval?

© The coverage probability: how likely it is that the interval covers the

truth.
@ The length of the confidence interval:
> Infinite intervals (—oo, 00) have coverage probability 1
» For a probability, a confidence interval of [0, 1] also have coverage

probability 1
» Zero-length intervals, like [Y, Y], have coverage probability 0

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 101 /142



What makes a good confidence interval?

© The coverage probability: how likely it is that the interval covers the

truth.
@ The length of the confidence interval:
> Infinite intervals (—oo, 00) have coverage probability 1
» For a probability, a confidence interval of [0, 1] also have coverage
probability 1
» Zero-length intervals, like [Y, Y], have coverage probability 0

@ You want the the shortest confidence interval with the desired
coverage probability.
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Is 95% all there is?
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Is 95% all there is?

Our 95% CI had the following form: fi + 1.96§E[ﬂ]

Remember where 1.96 came from?
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Is 95% all there is?

Our 95% CI had the following form: fi + 1.96§E[ﬂ]

Remember where 1.96 came from?

)

P <—1.96 — 1.96> — 95%
SE[A]

What if we want a different percentage?
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Is 95% all there is?

Our 95% CI had the following form: fi + 1.96§E[ﬂ]

Remember where 1.96 came from?

What if we want a different percentage?

P(—z<ﬁ P < >_(1—a)%
SE[A]

How can we find z?
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Normal PDF

We know that z comes from the
probability in the tails of the
standard normal distribution.
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Normal PDF

We know that z comes from the
probability in the tails of the
standard normal distribution.

When (1 — «) = 0.95, we want to
pick z so that 2.5% of the probability
is in each tail.
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Normal PDF

We know that z comes from the
probability in the tails of the
standard normal distribution.

When (1 — «) = 0.95, we want to
pick z so that 2.5% of the probability
is in each tail.

This gives us a value of 1.96 for z.
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Normal PDF

What if we want a 50% confidence
interval?
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Normal PDF

What if we want a 50% confidence
interval?

When (1 — «) = 0.50, we want to
pick z so that 25% of the probability
is in each tail.
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Normal PDF

What if we want a 50% confidence
interval?

When (1 — «) = 0.50, we want to
pick z so that 25% of the probability
is in each tail.

This gives us a value of 0.67 for z.
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(1 — @)% Confidence Intervals
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(1 — @)% Confidence Intervals

In general, let z, /> be the value associated with (1 — a))% coverage:
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(1 — @)% Confidence Intervals

In general, let z, /> be the value associated with (1 — a))% coverage:

)z(l—a)%

P (71 = 20/2SE[A] < 1 < i+ 24/2SE[A]) = (1 - )%
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(1 — @)% Confidence Intervals

In general, let z, /> be the value associated with (1 — a))% coverage:

)z(l—a)%

P (71 = 20/2SElA) < < i+ 2/2SE[f]) = (1 - )%
We usually construct the (1 — a))% confidence interval with the following

formula. -
= Za/25E[ﬁ]
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Statistical problems emerge from real science

Comparing different methods of growing barley (Full history:
https://www.jstor.org/stable/2245613)

https://en.wikipedia.org/wiki/Guinness#/media/File:Guinness. jpg
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The problem with small samples
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The problem with small samples

Up to this point, we have relied on large sample sizes to construct
confidence intervals.
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Up to this point, we have relied on large sample sizes to construct
confidence intervals.

If the sample is large enough, then the sampling distribution of the sample
mean follows a normal distribution.
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The problem with small samples

Up to this point, we have relied on large sample sizes to construct
confidence intervals.

If the sample is large enough, then the sampling distribution of the sample
mean follows a normal distribution.

If the sample is large enough, then the sample standard deviation (S) is a
good approximation for the population standard deviation (o).
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The problem with small samples

Up to this point, we have relied on large sample sizes to construct
confidence intervals.

If the sample is large enough, then the sampling distribution of the sample
mean follows a normal distribution.

If the sample is large enough, then the sample standard deviation (S) is a
good approximation for the population standard deviation (o).

When the sample size is small, we need to know something about the
distribution in order to construct confidence intervals with the correct
coverage (because we can't appeal to the CLT or assume that S is a good
approximation of o).
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VorLume VI MARCH, 1908 No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

By STUDENT.

https://www. jstor.org/stable/2331554
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Canonical Small Sample Example

What happens if we use the
large-sample formula?
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Canonical Small Sample Example

What happens if we use the
large-sample formula?

The percent alcohol in Guinness beer
is distributed N(4.2,0.09).
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Canonical Small Sample Example

What happens if we use the
large-sample formula?

The percent alcohol in Guinness beer
is distributed N(4.2,0.09).

Take 100 six-packs of Guinness and
construct Cls of the form

fi £ 1.96SE[]
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Canonical Small Sample Example

What happens if we use the
large-sample formula? :

The percent alcohol in Guinness beer
is distributed N(4.2,0.09).

Take 100 six-packs of Guinness and —
construct Cls of the form

fi £ 1.96SE[]

In this sample, only 88 of the 100 Cls T

T T T f T T
cover the true value.

3.9 4.0 4.1 4.2 4.3 4.4

Percent alcohol
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The t distribution
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The t distribution

If X is normally distributed, then X is normally distributed even in small
samples. Assume

X ~ N(u, %)
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The t distribution

If X is normally distributed, then X is normally distributed even in small
samples. Assume

X ~ N(u, %)

If we know o, then

X—p

~ N(0,1)

B
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The t distribution

If X is normally distributed, then X is normally distributed even in small
samples. Assume

X ~ N(p,0?)
If we know o, then
X —
L~ N,
NG

We rarely know ¢ and have to use an estimate instead:

X —
i:“’ ~ th1

Jn
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The t distribution

Since we have to estimate o, the
distribution of X2 is still

v
bell-shaped but is more spread out.
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The t distribution

Since we have to estimate o, the
distribution of X5 is still

Vn
bell-shaped but is more spread out.

As the sample size increases, our
estimates of o improve and extreme

values of X% become less likely.

Vn
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The t distribution

Since we have to estimate o, the
distribution of X5 is still

Vn
bell-shaped but is more spread out.

—
— 15
—_— 2z

0.3
I

As the sample size increases, our
estimates of o improve and extreme

density
0.2
L

values of X% become less likely.

Vn

01
I

Eventually the t distribution
converges to the standard normal. : . ‘ ; :

0.0
I

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 111 /142



The t distribution

Since we have to estimate o, the
distribution of X5 is still

Vn
bell-shaped but is more spread out.

As the sample size increases, our

estimates of o improve and extreme
X—p
_S_

values of become less likely.

Vn

Eventually the t distribution
converges to the standard normal.
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The t distribution

Since we have to estimate o, the
distribution of X5 is still

0.4

v
bell-shaped but is more spread out. 24

As the sample size increases, our
estimates of o improve and extreme

density
02
I

values of X% become less likely.

vn 3

Eventually the t distribution
converges to the standard normal. : ‘ ‘ : :
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(1 — @)% Confidence Intervals

In general, let t,/, be the value associated with (1 — )% coverage:
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(1 — @)% Confidence Intervals

In general, let t,/, be the value associated with (1 — )% coverage:

b= p

P|- <<t =(1-a)%

/2 = = tay2
( SE[A] >

P (i~ ta/aSEIA] < 1 < 7+ taoSE[A)) = (1 - a)%
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(1 — @)% Confidence Intervals

In general, let t,/, be the value associated with (1 — )% coverage:

b= p

P|- <<t =(1-a)%

/2 = = tay2
( SE[A] >

P (i~ ta/aSEIA] < 1 < 7+ taoSE[A)) = (1 - a)%

We usually construct the (1 — «)% confidence interval with the following
formula. .
i+ ta/25E[IL\L]
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Small Sample Example

When we generated 95% Cls with
the large sample formula

fi £ 1.96SE[]

only 88 out of 100 intervals covered
the true value.

4.5
Percent alcohol
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Small Sample Example
When we generated 95% Cls with
the large sample formula

fi £ 1.96SE[]

only 88 out of 100 intervals covered
the true value.

——— i
When we use the correct .
—_—
small-sample formula ———
e ———————a
~ P =TIN _—
1% + ta/QSE[/J,] —_—
e
T T T T T T 1
3.9 4.0 4.1 4.2 4.3 44 45

Percent alcohol
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Small Sample Example
When we generated 95% Cls with
the large sample formula

fi £ 1.96SE[]

only 88 out of 100 intervals covered
the true value.

p—————l
When we use the correct B
—
small-sample formula ———
e
~ ST A _
——_i
T T T T T T 1
3.9 4.0 4.1 4.2 4.3 44 45

Percent alcohol
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Small Sample Example
When we generated 95% Cls with
the large sample formula

fi £ 1.96SE[]

only 88 out of 100 intervals covered
the true value.

When we use the correct —
small-sample formula —————
B
p £ 2.57SE[f] -
——
——
95 of the 100 Cls in this sample e
cover the truth. Percent alconol
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Another Rationale for the t-Distribution

Does X, ~ N(u, S2/n), which would |mpIy 57n ~ N(0,1)?
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Another Rationale for the t-Distribution

Does X, ~ N(u, S2/n), which would |mpIy 5 /\[ ~ N(0,1)?
No, because S, is a random variable instead of a parameter (like o).
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Another Rationale for the t-Distribution
Does X, ~ N(u, S2/n), which would |mpIy 57n ~ N(0,1)?
No, because S, is a random variable instead of a parameter (like o).

Thus, we need to derive the sampling distribution of the new random
variable.
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Another Rationale for the t-Distribution

Does X, ~ N(y1, S2/n), which would imply &2~ ~ N(0,1)?

No, because S, is a random variable instead of a parameter (like o).

Thus, we need to derive the sampling distribution of the new random
variable. It turns out that T, follows Student’s t-distribution with n — 1
degrees of freedom.

Theorem (Distribution of t-Value from a Normal Population)

Suppose we have an i.i.d. random sample of size n from N(ju,0?). Then,
the sample mean X, standardized with the estimated standard error
Sn/+/n satisfies,
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Kuklinski Example Returns
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Kuklinski Example Returns

The Kuklinski et al. (1997) article compares responses to the baseline list
with responses to the treatment list.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 115 /142



Kuklinski Example Returns

The Kuklinski et al. (1997) article compares responses to the baseline list
with responses to the treatment list.

@ How should we estimate the difference between the two groups?
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Kuklinski Example Returns

The Kuklinski et al. (1997) article compares responses to the baseline list
with responses to the treatment list.

@ How should we estimate the difference between the two groups?

@ How should we obtain a confidence interval for our estimate?
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Comparing Two Groups
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Comparing Two Groups

We will often assume the following when comparing two groups,
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Comparing Two Groups

We will often assume the following when comparing two groups,
© Xi1, X12, oy X1my ~iid.?(pi1,0%)
® Xo1, X2, ..., Xon, ~iid.?(1i2,03)
@ The two samples are independent of each other.
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Comparing Two Groups

We will often assume the following when comparing two groups,
® X11, X12, s X1my ~iia.?(p11,07)
© Xo1,X22, ..., Xon, ~ii.d.?(p12,03)

@ The two samples are independent of each other.

We will usually be interested in comparing p1 to uo, although we will
sometimes need to compare o2 to o3 in order to make the first comparison.
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Sampling Distribution for X; — X5

What is the expected value of X; — X5?
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Sampling Distribution for X; — X5

What is the expected value of X; — X5?

E[X1 — X3
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Sampling Distribution for X; — X5

What is the expected value of X; — X5?

E[X1—X3] = E[Xi]— E[Xq]
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Sampling Distribution for X; — X5

What is the expected value of X; — X5?

E[X1—Xa] = E[Xi] - E[X2]
= nllz E[X1] - nlz > ElXy]
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Sampling Distribution for X; — X5

What is the expected value of X; — X5?

E[X1—Xa] = E[Xi] - E[X2]
= nllz E[X1] - nlzz E[Xaj]
= %Zul—n%z;ﬁz
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Sampling Distribution for X; — X5

What is the expected value of X; — X5?

E[X1—Xa] = E[Xi] - E[X2]
= nllz E[X1] - nlzz E[Xaj]
= %Zul—n%z;ﬁz

= M1 — M2
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Sampling Distribution for X; — X5

What is the variance of X; — X»?
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Sampling Distribution for X; — X5

What is the variance of X; — X»?

Var [71 — 72]
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Sampling Distribution for X; — X5

What is the variance of X; — X»?

Var[71 — 72] = Var[71] + Var[72]
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Sampling Distribution for X; — X5

What is the variance of X; — X»?

Var[71 — 72] = Var[71] + Var[72]

1 1
= n_% Z Var[Xij] + n_g Z Var[Xa)]
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Sampling Distribution for X; — X5

What is the variance of X; — X»?

Var[71 — 72] = Var[71] + Var[72]

1 1
= n_% Z Var[Xij] + n_g Z Var[Xa)]

= YRS Y s
1 2

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020

118 /142



Sampling Distribution for X; — X5

What is the variance of X; — X»?

Var[71 — 72] = Var[71] + Var[72]

1 1
= n_% Z Var[Xij] + n_g Z Var[Xa)]

= YRS Y s
1 2

2 2

g ag

1 2

= 142
mo m
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Sampling Distribution for X; — X5

What is the distributional form for X1 — X5?
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Sampling Distribution for X; — X5

What is the distributional form for X1 — X5?
e X is distributed ~ N(py, nl)
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Sampling Distribution for X; — X5

What is the distributional form for X1 — X5?
e X is distributed ~ N(py, n1)

o X, is distributed ~ N(uo, n—;)
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Sampling Distribution for X; — X5

What is the distributional form for X1 — X5?
e X is distributed ~ N(py, Z—f)

o X3 is distributed ~ N(pg, nz)

° 71 — 72 is distributed ~ N(u1 — o, ‘,:_f + ﬁ)

ny
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Cls for py — o

Using the same type of argument that we used for the univariate case, we
write a (1 — a)% Cl as the following:

2 2
— — (o g
X1—X2:|:Za/2 —1—|-—2
n n2
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Interval estimation of the population proportion
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Interval estimation of the population proportion

@ Let's say that we have a sample of iid Bernoulli random variables,
Y1,..., Y, where each takes Y; = 1 with probability 7. Note that this is
also the population proportion of ones. We have shown in previous weeks
that the expectation of one of these variable is just the probability of seeing

al: E[Y]=m.
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Interval estimation of the population proportion

@ Let's say that we have a sample of iid Bernoulli random variables,
Y1,..., Y, where each takes Y; = 1 with probability 7. Note that this is
also the population proportion of ones. We have shown in previous weeks
that the expectation of one of these variable is just the probability of seeing
al: E[Y]=m.

@ The variance of a Bernoulli random variable is a simple function of its mean:
Var(Y;) = n(1 — 7).
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Interval estimation of the population proportion

@ Let's say that we have a sample of iid Bernoulli random variables,
Y1,..., Y, where each takes Y; = 1 with probability 7. Note that this is
also the population proportion of ones. We have shown in previous weeks
that the expectation of one of these variable is just the probability of seeing
al: E[Y]=m.

@ The variance of a Bernoulli random variable is a simple function of its mean:
Var(Y;) = n(1 — 7).

@ Problem Show that the sample proportion, & = %27:1 Y;, of the above iid
Bernoulli sample, is unbiased for the true population proportion, 7, and that

m(l—m)

the sampling variance is equal to —=—"
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Interval estimation of the population proportion

@ Let's say that we have a sample of iid Bernoulli random variables,
Y1,..., Y, where each takes Y; = 1 with probability 7. Note that this is
also the population proportion of ones. We have shown in previous weeks
that the expectation of one of these variable is just the probability of seeing
al: E[Y]=m.

@ The variance of a Bernoulli random variable is a simple function of its mean:
Var(Y;) = n(1 — 7).

@ Problem Show that the sample proportion, & = %27:1 Y;, of the above iid
Bernoulli sample, is unbiased for the true population proportion, 7, and that

the sampling variance is equal to @
@ Note that if we have an estimate of the population proportion, 7, then we
also have an estimate of the sampling variance: @
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Interval estimation of the population proportion

@ Let's say that we have a sample of iid Bernoulli random variables,
Y1,..., Y, where each takes Y; = 1 with probability 7. Note that this is
also the population proportion of ones. We have shown in previous weeks
that the expectation of one of these variable is just the probability of seeing
al: E[Y]=m.

@ The variance of a Bernoulli random variable is a simple function of its mean:
Var(Y;) = n(1 — 7).

@ Problem Show that the sample proportion, & = %27:1 Y;, of the above iid
Bernoulli sample, is unbiased for the true population proportion, 7, and that

m(l—m)

the sampling variance is equal to —=—"

@ Note that if we have an estimate of the population proportion, 7, then we
also have an estimate of the sampling variance: @
@ Given the facts from the previous problem, we just apply the same logic

from the population mean to show the following confidence interval:

~1 A ~(1—#
P(ﬁ—za/zxa/ﬂ(lnw)<7T<7“r+za/2><1/7r(n7r)>—(1—a)
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Gerber, Green, and Larimer experiment

Stewart (Princeton) Week 3: Learning From Random Samples



Gerber, Green, and Larimer experiment

Let's go back to the Gerber, Green, and Larimer experiment from last
class. Here are the results of their experiment:
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Gerber, Green, and Larimer experiment

Let's go back to the Gerber, Green, and Larimer experiment from last
class. Here are the results of their experiment:

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

@ Let’s use what we have learned up until now and the information in
the table to calculate a 95% confidence interval for the difference in
proportions voting between the Neighbors group and the Civic Duty

group.
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Gerber, Green, and Larimer experiment

Let's go back to the Gerber, Green, and Larimer experiment from last
class. Here are the results of their experiment:

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

@ Let’s use what we have learned up until now and the information in
the table to calculate a 95% confidence interval for the difference in
proportions voting between the Neighbors group and the Civic Duty
group.

@ You may assume that the samples with in each group are iid and the
two samples are independent.
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Calculating the Cl for social pressure effect

@ We know distribution of sample proportion turned among Civic Duty
group 7tc ~ N(mc, (mc(1 —mc))/nc)
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Calculating the Cl for social pressure effect

@ We know distribution of sample proportion turned among Civic Duty
group ¢ ~ N(mc, (mc(1 —7c))/nc)
@ Sample proportions are just sample means, so we can do difference in

means:
ay —7c~N (WN—TFCM/SE/%I—FSE%)
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Calculating the Cl for social pressure effect

@ We know distribution of sample proportion turned among Civic Duty
group ¢ ~ N(m¢c,(mc(l —7¢))/nc)
@ Sample proportions are just sample means, so we can do difference in

means:
ay —7c~N (WN—TFCM/SE/%I—FSE%)

@ Replace the variances with our estimates:

2 2
any—Tc~N <7TN—7T(_‘, \/ SEN—I-SEC)
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Calculating the Cl for social pressure effect

@ We know distribution of sample proportion turned among Civic Duty
group ¢ ~ N(mc, (mc(1 —7c))/nc)
@ Sample proportions are just sample means, so we can do difference in

means:
ay —7c~N (WN—TFCM/SE,%I—FSE%)

@ Replace the variances with our estimates:

2 2
any—Tc~N <7TN—7Tc, \/ SEN—I-SEC)

@ Apply usual formula to get 95% confidence interval:

-2 -2
(tn — 7c) £1.96 x \/ SE + SE -
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Calculating the Cl for social pressure effect

@ We know distribution of sample proportion turned among Civic Duty
group ¢ ~ N(mc, (mc(1 —7c))/nc)
@ Sample proportions are just sample means, so we can do difference in

means:
ay —7c~N (WN—TFCM/SE,%I—FSE%)

@ Replace the variances with our estimates:
R R ~2 =2
iy —7c~N|(7my—7c, SEN+5EC
@ Apply usual formula to get 95% confidence interval:

-2 -2
(tn — 7c) £1.96 x \/ SE + SE -

@ Remember that we can calculate the sample variance for a sample
proportion like so: (T¢(1 — 7¢))/nc
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Gerber, Green, and Larimer experiment

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary

Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201
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Gerber, Green, and Larimer experiment

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary

Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201
Now, we calculate the 95% confidence interval:
R R an(l —7n) | fc(l—7c
(7TN—7T(_'):|:1.96>< ( ) ( )
ny nc
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Gerber, Green, and Larimer experiment

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary
Election
Experimental Group
Control Civic Duty Hawthorne Self Neighbors
Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%
N of Individuals 191,243 38,218 38,204 38,218 38,201

Now, we calculate the 95% confidence interval:

an(l —7n) L+ c(l—17c)
ny nc

(ﬁN—ﬁc)i1.96X

n.n <- 38201

samp.var.n <- (0.378 * (1 - 0.378))/n.n
n.c <- 38218

samp.var.c <- (0.315 * (1 - 0.315))/n.c
se.diff <- sqrt(samp.var.n + samp.var.c)
## lower bound

(0.378 - 0.315) - 1.96 * se.diff

## [1] 0.05626701

## upper bound

(0.378 - 0.315) + 1.96 * se.diff

## [1] 0.06973299

Thus, the confidence interval for the effect is [0.056267,0.069733].

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 124 /142



Review

We can use our analytic samples
to find a confidence interval

4_‘ ' .‘
/Our estimat€ »° .
Cl(a) [”'ﬁ*"f‘%—mm *.
Mok Standard Critical
pre error of our valve
estimale -
0850
D(/Z bC,CaU_ge ’\ ..’?‘."-,«:.‘.! :
were oo king for R S""‘. 8 %His
a two-sded intevval o5 ?{:

earning From Random Samples



Review

To use the confidence interval formula,
we need to find:

1. The distribution

2. Confidence level

° Alpha ##Calculating our critical value
cv <- gnorm(.975)
3. Sidedness v

## [1] 1.959964

4. Critical value(s)

5. Standard error of our estimate

##Finding the standard error of our estimate
) se <- sqrt(red.sample*(1-red.sample)/n.samp)

G oo ?”Vaﬂ'\s " . = se
Qﬂvww\m ﬁ) i jfu/z:)’
SE( B n ## [1] 0.01966499
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Review

Calculating the confidence interval

Cl(a) = [r — zay2 *.,r+za/2 *.

##Finding and printing the confidence interval
c(red.sample - cv*Se,
red.sample + cvxse)

## [1] 0.2234573 0.3005427
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Review

Our results

26.2% red with a 95 percent
confidence interval of [22.3, 30.1]

l—.\."g.o
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We Covered. . .
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We Covered. ..

@ Interval estimates provide a means of assessing uncertainty.
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We Covered. ..

@ Interval estimates provide a means of assessing uncertainty.

@ Interval estimators have sampling distributions.
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We Covered. ..

@ Interval estimates provide a means of assessing uncertainty.

@ Interval estimators have sampling distributions.

@ Interval estimates should be interpreted in terms of repeated sampling.
Next Time:
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We Covered. ..

@ Interval estimates provide a means of assessing uncertainty.
@ Interval estimators have sampling distributions.
@ Interval estimates should be interpreted in terms of repeated sampling.

Next Time: The plug-in principle!
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Where We've Been and Where We're Going...

@ Last Week

» random variables
» joint distributions

@ This Week

» estimators and sampling distributions
» estimator properties (bias, variance, consistency)
» confidence intervals

o Next Week

> hypothesis testing
» what is regression?

@ Long Run
» probability — inference — regression — causal inference
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0 Estimation
@ Populations and Samples
@ Estimators
@ Analytical

a Weak Law of Large Numbers and the Central Limit Theorem
@ Chebychev's Inequality
@ Weak Law of Large Numbers
@ The Central Limit Theorem

e Properties of Estimators
@ Four Desirable Properties
@ Example

e Interval Estimation
@ Intervals
@ Large Sample Intervals for a Mean
@ Small Sample Intervals for a Mean
@ Comparing Two Groups
@ Interval Estimation for a Proportion

e Plug-In Principle
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e Plug-In Principle
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Coming up with Estimators
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Coming up with Estimators

We now know how to study some properties of estimators, but how do we
come up with candidate estimators?
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Coming up with Estimators

We now know how to study some properties of estimators, but how do we
come up with candidate estimators?

@ The simplest way is to use the sample analog.
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Coming up with Estimators

We now know how to study some properties of estimators, but how do we
come up with candidate estimators?

@ The simplest way is to use the sample analog.

@ Ex: If we're interested in the population mean, we use the sample
mean
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Coming up with Estimators

We now know how to study some properties of estimators, but how do we
come up with candidate estimators?

@ The simplest way is to use the sample analog.

@ Ex: If we're interested in the population mean, we use the sample
mean

o This is justified because of the plug-in principle.
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Coming up with Estimators

We now know how to study some properties of estimators, but how do we
come up with candidate estimators?

@ The simplest way is to use the sample analog.

@ Ex: If we're interested in the population mean, we use the sample

mean
@ This is justified because of the plug-in principle.
@ The Weak Law of Large Numbers tells us that the empirical CDF is a

good sample analog of the true CDF (which fully describes a
distribution).
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The Plug-in Principle in Action
Say we have a N(5,4) distribution

Emprical CDF

1.00 f—

0.754
G
O 0.50
(]

0.254

0.00

(I) 1I0
X

n — 10 — 100 — 1000 — 10000 — truth
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The Plug-in Principle
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The Plug-in Principle
Note that the CDF is:

F(x) = P(X < x) = E[I(X < x)]
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The Plug-in Principle
Note that the CDF is:

F(x) = P(X < x) = E[I(X < x)]

we define the empirical CDF (eCDF) as:

A N

F(x) =I(X <x),Vx e R
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The Plug-in Principle
Note that the CDF is:

F(x) = P(X < x) = E[I(X < x)]
we define the empirical CDF (eCDF) as:
F(x)=I(X < x),¥x € R

@ WLLN tells us that the eCDF will be unbiased and consistently
estimated. Any given sample will, on average, look representative of
the true distribution.
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The Plug-in Principle
Note that the CDF is:

F(x) = P(X < x) = E[I(X < x)]
we define the empirical CDF (eCDF) as:

F(x)=I(X < x),¥x e R

@ WLLN tells us that the eCDF will be unbiased and consistently
estimated. Any given sample will, on average, look representative of
the true distribution.

For iid random variables Xi, X5, ..., X, with common CDF F, the plug-in
estimator of § = T(F) is:

0 =T(F)
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The Plug-in Principle
Note that the CDF is:

F(x) = P(X < x) = E[I(X < x)]
we define the empirical CDF (eCDF) as:

F(x)=I(X < x),¥x e R

@ WLLN tells us that the eCDF will be unbiased and consistently
estimated. Any given sample will, on average, look representative of
the true distribution.

For iid random variables Xi, X5, ..., X, with common CDF F, the plug-in
estimator of § = T(F) is:

0 =T(F)

if T is well-behaved, then @ is also asymptotically normal.
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Bootstrapped Sampling Distributions

What if there was a way to replace thinking with computers?
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Bootstrapped Sampling Distributions

What if there was a way to replace thinking with computers?

What if there was a way to replacing analytical derivations, which can be
hard, with computer simulations which are easy?
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Bootstrapped Sampling Distributions

What if there was a way to replace thinking with computers?

What if there was a way to replacing analytical derivations, which can be
hard, with computer simulations which are easy?

The plug-in principle gives us a way forward.
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Step 2:
Estimation

Replicate
sample 1

Replicate
sample 2

Original
sample

Replicate
sample R

Source: Salganik (2006)
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This works for almost™ any estimator

*basically it works when plug-in estimation works
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Statistical Science
1986, Vol. 1, No. 1, 54-77

Bootstrap Methods for Standard Errors,
Confidence Intervals, and Other Measures of
Statistical Accuracy

B. Efron and R. Tibshirani

Efron and Tibshirani (1986), http://www. jstor.org/stable/2245500
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The Bootstrap
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The Bootstrap

Bootstrap: Use the eCDF as a plug-in for the CDF, and resample from
that. l.e. we are pretending our sample eCDF looks sufficiently close to our
true CDF, and so we're sampling from the eCDF as an approximation to
repeated sampling from the true CDF. This is called a resampling method.
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The Bootstrap

Bootstrap: Use the eCDF as a plug-in for the CDF, and resample from
that. l.e. we are pretending our sample eCDF looks sufficiently close to our
true CDF, and so we're sampling from the eCDF as an approximation to
repeated sampling from the true CDF. This is called a resampling method.

© Take a with replacement sample of size n from our sample.
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The Bootstrap

Bootstrap: Use the eCDF as a plug-in for the CDF, and resample from

that. l.e. we are pretending our sample eCDF looks sufficiently close to our

true CDF, and so we're sampling from the eCDF as an approximation to

repeated sampling from the true CDF. This is called a resampling method.
© Take a with replacement sample of size n from our sample.

@ Calculate our would-be estimate using this bootstrap sample.
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The Bootstrap

Bootstrap: Use the eCDF as a plug-in for the CDF, and resample from

that. l.e. we are pretending our sample eCDF looks sufficiently close to our

true CDF, and so we're sampling from the eCDF as an approximation to

repeated sampling from the true CDF. This is called a resampling method.
© Take a with replacement sample of size n from our sample.

@ Calculate our would-be estimate using this bootstrap sample.

© Repeat steps 1 and 2 many (B) times.
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The Bootstrap

Bootstrap: Use the eCDF as a plug-in for the CDF, and resample from
that. l.e. we are pretending our sample eCDF looks sufficiently close to our
true CDF, and so we're sampling from the eCDF as an approximation to
repeated sampling from the true CDF. This is called a resampling method.

© Take a with replacement sample of size n from our sample.

@ Calculate our would-be estimate using this bootstrap sample.
© Repeat steps 1 and 2 many (B) times.

@ Using the resulting collection of bootstrap estimates, calculate the
standard deviation of the bootstrap distribution of our estimator.
This serves our estimate of the standard deviation of the sampling
distribution
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Example of a Bootstrap

samp <- c(9.7, 4.99, 5.9, 3.58, 8.15, 5.54, 4.77, 5.01, 4.89

3.42, 8.63, 7.17, 8.93, 7.5, 4.93, 8.6, 6.26, 7.31
8.96, 3.95)

obs_mean = mean(samp)

obs_mean

## [1] 6.4095
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Example of a Bootstrap

boot_samp_dist <- replicate(2000, {
mean (samp [sample.int (length(samp), replace = TRUE)])

19

ggplot (tibble(boot_samp_dist = boot_samp_dist),
aes(x = boot_samp_dist)) +
geom_density() +
geom_vline(xintercept = obs_mean) +
theme_bw() + ggtitle(

xlab(
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Example of a Bootstrap

Bootstrap Sampling Distribution
For the Sample Mean

1.00

0.751

0.50 1

density

0.251

0.00

mean
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Two ways to calculate bootstrap intervals
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Two ways to calculate bootstrap intervals

1) Using normal approximation intervals, use the estimates from step 4.

(X = &7 11 — /2) * Gooor, X + P11 — /2) * Fpoot]
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Two ways to calculate bootstrap intervals

1) Using normal approximation intervals, use the estimates from step 4.

[X = &7 (1 = @/2) * Gboot, X + (1 = @/2) % Gboot]

> Note here that the standard error is just the standard deviation of the
boostrap replicates. There is no square root of n. Why?
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Two ways to calculate bootstrap intervals

1) Using normal approximation intervals, use the estimates from step 4.

[X — 711 — a/2) * Gboot, X + O 1L — @/2) * Gpoot]

» Note here that the standard error is just the standard deviation of the
boostrap replicates. There is no square root of n. Why?

2) Percentile method for the Cl: Sort B bootstrap estimates from
smallest to largest. « interval is constructed as

Clh—o = [o/2 % B sample, (1 — o/2) * B sample]

> Percentile method does not rely on normal approximation, and behaves
better with small n.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 140 /142



We covered
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We covered

@ The plug-in principle.
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We covered

@ The plug-in principle.
@ The bootstrap.
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We covered

@ The plug-in principle.
@ The bootstrap.
@ We will return to both in future weeks.
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This Week in Review

@ Estimation!

Central Limit Theorem!
Properties of Estimators!
Intervals!

Plug-In Principle!
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This Week in Review

Estimation!
Central Limit Theorem!
Properties of Estimators!

Intervals!

Plug-In Principle!

Going Deeper:

Aronow and Miller (2019) Foundations of Agnostic Statistics.
Cambridge University Press. Chapter 3.
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This Week in Review

Estimation!
Central Limit Theorem!
Properties of Estimators!

Intervals!

Plug-In Principle!

Going Deeper:

Aronow and Miller (2019) Foundations of Agnostic Statistics.
Cambridge University Press. Chapter 3.

Next week: hypothesis testing and regression!
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