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Where We’ve Been and Where We’re Going...

Last Week
I random variables
I joint distributions

This Week
I estimators and sampling distributions
I estimator properties (bias, variance, consistency)
I confidence intervals

Next Week
I hypothesis testing
I what is regression?

Long Run
I probability → inference → regression → causal inference
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1 Estimation
Populations and Samples
Estimators
Analytical

2 Weak Law of Large Numbers and the Central Limit Theorem
Chebychev’s Inequality
Weak Law of Large Numbers
The Central Limit Theorem

3 Properties of Estimators
Four Desirable Properties
Example

4 Interval Estimation
Intervals
Large Sample Intervals for a Mean
Small Sample Intervals for a Mean
Comparing Two Groups
Interval Estimation for a Proportion

5 Plug-In Principle
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Where We’ve Been and Where We’re Going. . .

Data generating
process

Probability

Inference

Observed
data
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Primary Goal for This Week

https://www.jstor.org/stable/2111770
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Primary Goal for This Week

We want to be able to interpret the numbers in this table (and a couple of
numbers that can be derived from these numbers).
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An Overview
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An Overview
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An Overview

Population Distribution 
Y ~ ?(μ, σ2)

Estimand /Parameter
μ, σ2

Sample

(Y1, Y2,…,YN)

Estimator/Statistic

ĝ(Y1, Y2,…,YN)

Estimate
ĝ(Y1 = y1,Y2 = y2 , … , YN = yN)
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Populations

Typically, we want to learn about the distribution of random variables
for a population of interest.

We will sometimes call the population distribution the data
generating process and represent it with a pmf or pdf, fX (x ; θ).

The population can be:
I finite: as in all residents of a country
I or infinite: as in all possible television ads.

With either a finite or infinite population our main goal in inference is
to learn about the population distribution fX via summaries, like E [X ]
or V [X ], which we call a population parameter (or just parameter).

Ideally we assume as little as possible about the form of fX .
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Nomenclature: Estimands, Estimators, and Estimates

The goal of statistical inference is to learn about the unobserved
population distribution, which can be characterized by parameters.

Estimands are the parameters to estimate.
Often written with greek letters (e.g. µ).

Estimators are functions which map our data
to guesses about the estimand. Often denoted
with a “hat” (e.g. µ̂)

Estimates are particular values of estimators
that are realized in a given sample (e.g. 12)
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Independent and Identically Distributed Samples

Statistical inference is learning about features of some population through
a sampling mechanism.

We will base most of our inferential machinery on the idea of random
sampling.

We will leverage the powerful assumption that we are observing
IID—independent and identically distributed—samples of the random
variable of interest.

Plain language:
Data are sampled IID when each observation is drawn from the same
distribution, and the way an observation is drawn does not depend on
the values of any other draw.
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IID Formal Definition

Definition (Independent and Identically Distributed)

Let X = (X1,X2, . . . ,Xn) be random variables with CDFs F1,F2, . . . ,Fn,
respectively. Let FA denote the joint CDF of the random variables with
indices in the set A. Then X = (X1,X2, . . . ,Xn) are independently and
identically distributed if they satisfy the following:

Mutually independent:
∀A ⊆ {1, 2, . . . , n}, ∀(x1, x2, . . . , xn) ∈ Rn,FA ((xi )i∈A) =

∏
i∈A Fi (xi )

Identically distributed: ∀i , j ∈ {1, 2, . . . , n} and ∀x ∈ R,Fi (x) = Fj(x)

(Aronow and Miller Definition 3.1.1)

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 12 / 142



Sample Notation

Under IID, we take a draw from a random variable X and then take
another draw such that the outcome doesn’t depend on the first.

For a collection of samples of size n, we collect each of these units
into a vector X = (X1,X2, . . . ,Xn).

IID tells us that each one is produced under the same random
process. This is how we get leverage to do estimation!

We we will usually use unsubscripted capital letters, X , to refer to
properties that all these draws share.
e.g. E [X ] = E [X1] = E [X2] = · · · = E [Xn]
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Independent and Identically Distributed

IID is an assumption that only approximates the truth.
What happens if it doesn’t hold?

1) Observations may be dependent.
I e.g. students in the same class who share a teacher.
I when dependence is weak in the sense that we are still adding more

information as we add more units then results generally carry through
but likely to understate uncertainty.

2) Observations may not be identically distributed.
I e.g. observations may be changing over time.
I here the consequence is primarily for interpretability, limiting us to a

pseudopopulation which aggregates over distinct distributions.

We want to avoid assumptions where we can to maintain credible
inferences, but this is a relatively mild bedrock assumption.

We will return to these issues more in later videos and in future weeks.
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Sampling from Finite Populations

When we take a sample from a population it can be done with or
without replacement.

If the unit is replaced such that it can be sampled again, each draw is
taken from the same population governed by the fX .

If the unit is not replaced, then each subsequent draw depends on the
units previously sampled.

If the population is very large relative to the sample, this won’t turn
out to matter much (because removing each unit doesn’t change the
overall distribution fX ).

If the population is small relative to the sample size, it will be
necessary to think carefully through the implications (see e.g. the
challenge problem in problem set 3).
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Sampling in R

## draw a sample of size 10 from our population

## drawn without replacement

my_sample <- dplyr::sample_n(my_data, size = 10,

replace = FALSE)

## this is a wrapper around sample.int()

my_sample <- my_data[sample.int(nrow(my_data),

size = 10, replace = FALSE), ]
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What is An Estimator?

An estimator θ̂ for some parameter θ, is a function of the sample
θ̂ = h(Y1, . . . ,Yn).

Because it is a function of the sample, the estimator is a random
variable.

We will study the properties of the estimator towards two goals:
1 Inference: How much uncertainty do we have in this estimate?
2 Evaluate Estimators: How do we choose which estimator to use?

We study estimators by considering their behavior across an infinite
number of hypothetical samples of size n that could be drawn. The
resulting distribution of estimates is the sampling distribution.

In real applications, we cannot draw repeated samples, so we
approximate the sampling distribution.
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The Sampling Distribution of the Sample Mean

Say we have the following population:

pop <- c(4, 2, 3, 6, 9, 2, 3, 6, 8, 5, 2, 9, 6, 3,

4, 7, 6, 1, 2, 6, 9, 3, 1, 1, 1, 5, 7, 9)

We are going to take samples of size 10. How many possible samples are
there?

choose(length(pop), 10)

## [1] 13123110

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 18 / 142



The Sampling Distribution

If we could draw each possible sample, we could calculate the sample
mean in each one. This would form the full sampling distribution. We will
simulate this by drawing 10,000 samples.

sim_res <- replicate(10000, {
mean(pop[sample.int(length(pop), 10)])

}) %>% tibble(sample_mean = .) %>%

rownames_to_column(var = "replicate")

sim_res[1:5, ]

## # A tibble: 5 x 2

## replicate sample_mean

## <chr> <dbl>

## 1 1 5.4

## 2 2 4.9

## 3 3 3.7

## 4 4 3.6

## 5 5 5.3
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The Sampling Distribution

And we can plot this sampling distribution

true_pop_mean = mean(pop)

ggplot(sim_res, aes(x = sample_mean)) +

geom_histogram(fill = blue) +

geom_vline(xintercept = true_pop_mean) +

ggtitle("Sampling Distribution\nof Sample Mean") +

xlab("Sample Mean") + theme_bw()
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An Analytical Approach to the Sampling Distributions

The sampling distribution tells us how the estimator performs over
many hypothetical samples.

Unfortunately in real-world analysis we don’t get to see the whole
distribution, just one draw!

Because the estimator is a random variable (remember it is a function
of the statistic!) we can characterize the sampling distribution using
the same tools from last week.

We will start with a common estimator, the sample mean,
X n = 1

n

∑
i=1 Xi .

Under the identically and independently distributed assumption we
can characterize properties of the distribution like the expectation and
variance.
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Describing the Sampling Distribution for the Sample Mean

We would like a full description of the sampling distribution for the sample
mean estimator, but it will be useful to separate this description into three
parts.

If we assume that X1, . . .Xn ∼i .i .d ?(µ, σ2), then we would like to
identify the following things about X n.

E [X n]

V [X n]

fX n
∼?
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Expectation of X n

Let X1,X2, . . .Xn be identically and independently distributed from a population
distribution with mean (E [Xi ] = µ) and variance (V [Xi ] = σ2).

E [X n] = E [
1

n

n∑
i=1

Xi ]

=
1

n
E [

n∑
i=1

Xi ]

=
1

n

n∑
i=1

E [Xi ]

=
1

n

n∑
i=1

µ

=
1

n
n × µ

= µ
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Variance of X n
Let X1,X2, . . .Xn be identically and independently distributed from a population
distribution with mean (E [Xi ] = µ) and variance (V [Xi ] = σ2).

V [X n] = V [
1

n

n∑
i=1

Xi ]

=
1

n2
V [

n∑
i=1

Xi ]

=
1

n2

n∑
i=1

V [Xi ](because i.i.d)

=
1

n2

n∑
i=1

σ2

=
1

n2
n × σ2

=
σ2

n

Note the n in the denominator: as we have more observations, the variance of the
sampling distribution will shrink.

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 24 / 142



What about the “?”

If X1, . . . ,Xn ∼i .i .d . N(µ, σ2), then

X n ∼ N(µ, σ
2

n )

What if X1, . . . ,Xn are not normally distributed?
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Bernoulli (Coin Flip) Distribution

Population Distribution
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Poisson (Count) Distribution

Population Distribution
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Uniform Distribution

Population Distribution
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Why would this be true?

Images from Hyperbole and a Half by Allie Brosh.
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We Covered. . .

Populations and samples.

Estimators, estimands and estimates.

Sampling distributions.

Next time: the answer to ’why happening?’ and the most important
theorem in statistics.
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Where We’ve Been and Where We’re Going...

Last Week
I random variables
I joint distributions

This Week
I estimators and sampling distributions
I estimator properties (bias, variance, consistency)
I confidence intervals

Next Week
I hypothesis testing
I what is regression?

Long Run
I probability → inference → regression → causal inference
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1 Estimation
Populations and Samples
Estimators
Analytical

2 Weak Law of Large Numbers and the Central Limit Theorem
Chebychev’s Inequality
Weak Law of Large Numbers
The Central Limit Theorem

3 Properties of Estimators
Four Desirable Properties
Example

4 Interval Estimation
Intervals
Large Sample Intervals for a Mean
Small Sample Intervals for a Mean
Comparing Two Groups
Interval Estimation for a Proportion

5 Plug-In Principle

Stewart (Princeton) Week 3: Learning From Random Samples September 14-18, 2020 32 / 142



Cliffhanger

We started last time on a statistical cliffhanger: why did the sampling
distribution of the mean look the same as the number of observations
increased regardless of the population distribution?

The answer has to do with the asymptotic behavior of the
estimator—what happens as the sample size n increases.

In order to characterize this formally though, we are going to have to set
up some more probabilistic infrastructure.

The key thing to remember is that the sample mean is itself a random
variable.

Warning: This video is a little bit mathier. At the end I’ll wrap up with
things you need to know so don’t stress out your first watch through.
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Bounding a Random Variable

Let’s start by seeing how much we can learn about an estimator using only
the things we’ve calculated so far (the expectation and variance).

Theorem (Chebychev’s Inequality)

Let X be a random variable with finite σ[X ] > 0. Then ∀ε > 0,

P
[
|X − E [X ]| ≥ εσ[X ]

]
≤ 1

ε2

(Aronow and Miller Theorem 2.1.18)

This allows us to put an upper bound on the probability that a draw from
the distribution will be more than a given number of standard deviations
from the mean.

This let’s us bound the behavior of a random variable knowing only the
expectation and variance (regardless of distributional shape!).
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Chebychev’s Inequality for the Sample Mean

To apply this to the sample mean, we plug in the expectation and variance
to the Chebychev’s inequality and re-arranging terms, we get the following
handy result.

Theorem (Chebychev’s Inequality for the Sample Mean)

Let X1,X2, . . . ,Xn be i.i.d. random variables with finite variance
V [X ] > 0. Then, ∀ε > 0,

P
[
|X n − E [X ]| ≥ ε

]
≤ V [X ]

ε2n

(Aronow and Miller Theorem 3.2.5)

This allows us to put an upper bound on the probability that the sample
mean for a given sample size and known variance will be some arbitrary
distance from the true mean.
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Planning a Survey

Problem: planning a survey to estimate Biden support in the 2020
election.

I How many people should we survey so that our estimator has no less
than a .95 probability of being within .02 of the true population
proportion?

I i.e. how do we get a margin of ± 2 percentage points?

Notation
I π is proportion of voters expressing support for Biden (the estimand).
I X1,X2, . . .Xn ∼ Bernoulli(π) be the iid random variables for each

respondent.
I π̂ = X n is our sample mean estimator.

What do we know?
I E [X n] = E [X ] and V [X n] = V [X ]

n
I We know Bernoulli has variance of π(1− π) which is maximized at
π = .5.
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Planning a Survey

What does n have to be to maintain P(|X n − E [X ]| ≥ 0.02) ≤ .05?

P
[
|X n − E [X ]| ≥ ε

]
≤ V [X ]

ε2n

P
[
|X n − E [X ]| ≥ 0.02

]
≤ V [X ]

(0.022n

≤ π(1− π)

0.0004n

≤ 0.25

0.0004n

≤ 1

0.0016n

We want to bound the probability by 0.05 which requires 1
0.0016n ≤ 0.05

which means. . . we need n ≥ 12, 500 respondents!
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Planning a Survey
That’s an expensive survey! Do we really need that many people?

No! Chebyshev provides a bound that is guaranteed to hold (and in the
worst case variance), but actual probabilities are much smaller.

We can use simulation to assess. Let’s simulate a survey with π = .55 and
12,500 respondents and see how many are far away?

nsims <- 10000

holder <- vector(mode="numeric", length=nsims)

for (i in 1:nsims) {

my.sample <- rbinom(n=12500, size=1, prob=.55)

holder[i] <- mean(my.sample)

}

mean(abs(holder - .55) > 0.02)

None were outside the range!
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Taking Stock

We have IID random variables X1, . . . ,Xn with unknown distribution.

Current knowledge about distribution of X n

I Expectation is E [X n] = E [X ]
I Variance is V [X n] = V [X ]

n
I Tail probabilities using the above and Chebyshev

We still want to know more about the distribution of X n.

We can think about behavior of X n as n gets large by thinking of the
estimators with increasing sample sizes as a sequence of random
variables

X 1,X 2, ...,X n = X1,
X1 + X2

2
, ...,

X1 + · · ·Xn

n

What does this sequence converge to?
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What do we mean by ’converge’?

Definition (Convergence in Probability)

Let (T(1),T(2),T(3), . . . ) be a sequence of random variables and let c ∈ R.
Then T(n) converges in probability to c if for all accuracy levels satisfying
ε > 0,

lim
n→∞

P
[
|T(n) − c | ≥ ε

]
= 0

We will write this as

T(n)
p−→ c or plim

n→∞
T(n) = c.

(Aronow and Miller Theorem 3.2.6)

Intuition: the probability that the random variable T(n) lies outside a super
tiny interval around c approaches zero as n approaches infinity.

NB: Any continuous function of the sequence itself convergence to the value of
the function at the probability limit by the Continuous Mapping Theorem
(Aronow and Miller Theorem 3.2.7 )
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(Weak) Law of Large Numbers (WLLN)

Definition (Weak Law of Large Numbers)

Let X1,X2, . . . ,Xn be i.i.d. random variables with finite variance
V [X ] > 0, and let X n = 1

n

∑n
i=1 Xi . Then

X n
p−→ E [X ]

(Aronow and Miller Theorem 3.2.8) Proof is based on Chebychev’s inequality for the mean plus
a result called the Squeeze Theorem for Sequences.

Intuition: The probability of the sample mean being far away from the
expectation of X goes to zero as the sample size gets big.

The distribution of X n collapses on E [X ].

No assumptions necessary about the distribution of X beyond i.i.d.
sampling and a finite variance!
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Weak Law of Large Numbers

This is an incredibly useful result!

As the sample mean gets large it approximates the expectation to any
arbitrary degree of precision.

An implication of the Weak Law of Large Numbers is that the CDF of
X can be estimated to arbitrary precision with random iid samples
from X . We will return to this result in two videos.

Okay that’s pretty cool, but we are almost ready to state the coolest result
in statistics.
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Convergence in Distribution
We want to know what form the sampling distribution will have
asymptotically. For this we need a notion of what it means for a
distribution to converge.

Definition (Convergence in Distribution)

Let (T(1),T(2),T(3), . . . ) be a sequence of random variables with CDFs
(F(1),F(2),F(3), . . . ) and let T be a random variable with CDF FT . Then T(n)

converges in distribution to T if for all t ∈ Rat which FT is continuous

lim
n→∞

F(n)(t) = FT (t).

We write this as
T(n)

d→ T .

Intuition: when n is big, the distribution of T(n) is very similar to FT , the
distribution of T .

We will call this the asymptotic distribution or the limit distribution.

NB: convergence in probability is a special case of convergence in
distribution with a degenerate distribution.
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Standardizing the Sample Mean

Last prerequisite!

Definition (Standardizing a Random Variable)

For i.i.d. random variables X1,X2, . . . ,Xn with finite E [X ] = µ and finite
V [X ] = σ2 > 0, the standardized sample mean is

Z =

(
X − E [X ]

)
σ[X ]

=

√
n
(
X − µ

)
σ

(Aronow and Miller Definition 3.2.23)

For any X this will have E [Z ] = 0 and V [Z ] = 1.

This is often called the Z -score.
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The Puzzle

Population Distribution
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The Central Limit Theorem

Definition (Lindeberg-Lévy Central Limit Theorem)

Let X1, ...,Xn be i.i.d. random variables each with (finite) E [X ] = µ and
finite variance σ2 > 0. Then, for any population distribution of X ,

√
n(X n − µ)

d−→ N (0, σ2).

CLT also implies that the standardized sample mean converges to a
standard normal random variable:

Zn ≡
X n − E

[
X n

]√
V
[
X n

] =
X n − µ
σ/
√
n

d−→ N (0, 1).

This is free of distribution assumptions on X !

This makes it easy to characterize the sampling distribution of the
sample mean for large n.

NB: the equivalence of the two forms is due to Slutsky’s Theorem
(see e.g. Aronow and Miller Theorem 3.2.25).
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Question:

As the number of observations in a dataset increases, which of the
following is true?

A) The distribution of X becomes more normally distributed.

B) The distribution of X becomes more normally distributed.

C) Both statements are true.
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Replanning that Survey
Recall we wanted to find n such that,

P(|X n − π| > 0.02) ≤ 0.05

By the CLT, for large n, then

X n − π ∼ N (0, σ2/n)

Plugging in our conservative variance of 0.25 we get

X n − π ∼ N
(

0,
1

4n

)
Standardizing, we get

Z =
X n − π
1/
√

4n
= 2
√
n(X n − π) ∼ N (0, 1)

It is easier to work with this standardized variable so:

P(|Z | > 0.02(2
√
n)) ≤ 0.05
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Replanning that Survey

P(|Z | > 0.04
√
n) ≤ 0.05

P(Z < −0.04
√
n) + P(Z > 0.04

√
n) ≤ 0.05

The standard normal is symmetric around 0, so we can equivalently say,

2P(Z < −0.04
√
n) ≤ 0.05

P(Z < −0.04
√
n) ≤ 0.025

To solve for n we plug in the quantile P(Z ≤ q) = 0.025 which we can get
from the inverse CDF of the standard Normal.
Typing qnorm(0,025, mean=0, sd=1) in R gets us -1.96.
We need −0.04

√
n ≤ −1.96 which is n > 2401 respondents.

This is much lower than the 12,500 from Chebyshev, but that makes sense
here because we used more information.
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Planning a Survey

We can use simulation to assess again. Let’s simulate a survey with
π = .55 and 2,401 respondents and see how many our outside our
prescribed margin of error?

nsims <- 10000

holder <- vector(mode="numeric", length=nsims)

for (i in 1:nsims) {

my.sample <- rbinom(n=2401, size=1, prob=.55)

holder[i] <- mean(my.sample)

}

mean(abs(holder - .55) > 0.02)

We get 0.0485!
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Real Talk: this has been a mathy video.

What you need to know:

two types of stochastic convergence
I Convergence in probability: values in the sequence eventually take a

constant value
(i.e. the limiting distribution is a point mass)

I Convergence in distribution: values in the sequence continue to vary,
but the variation eventually comes to follow an unchanging distribution
(i.e. the limiting distribution is a well characterized distribution)

intuition for the weak law of large numbers

means will asymptotically have normal sampling distributions due to
the central limit theorem

what asymptotic properties are

It is okay if you didn’t follow all the math here. We will keep coming back
to these ideas.
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The Central Limit Theorem is deep and amazing. Want to learn more
about Central Limit Theorem?

Watch this video (Joe Blitzstein):
https://www.youtube.com/watch?v=OprNqnHsVIA&list=

PLLVplP8OIVc8EktkrD3Q8td0GmId7DjW0&index=31&t=0s

There are many CLT variants that deal with non-iid random variables as
well!
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We Covered. . .

Chebychev’s Inequality

Weak Law of Large Numbers

Central Limit Theorem

Next time: properties of estimators.
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Where We’ve Been and Where We’re Going...

Last Week
I random variables
I joint distributions

This Week
I estimators and sampling distributions
I estimator properties (bias, variance, consistency)
I confidence intervals

Next Week
I hypothesis testing
I what is regression?

Long Run
I probability → inference → regression → causal inference
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1 Estimation
Populations and Samples
Estimators
Analytical

2 Weak Law of Large Numbers and the Central Limit Theorem
Chebychev’s Inequality
Weak Law of Large Numbers
The Central Limit Theorem

3 Properties of Estimators
Four Desirable Properties
Example

4 Interval Estimation
Intervals
Large Sample Intervals for a Mean
Small Sample Intervals for a Mean
Comparing Two Groups
Interval Estimation for a Proportion

5 Plug-In Principle
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Example: The scariest pieces of mail ever!

https://doi.org/10.1017/S000305540808009X
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Basic Analysis

They make their data available
(https://isps.yale.edu/research/data/d001). We can analyze it.

load("gerber_green_larimer.RData")

## turn turnout variable into a numeric

social$voted <- 1 * (social$voted == "Yes")

neigh.mean <- mean(social$voted[social$treatment == "Neighbors"])

neigh.mean

contr.mean <- mean(social$voted[social$treatment == "Civic Duty"])

contr.mean

neigh.mean - contr.mean

.378− .315 = .063

Is this a “real” effect? Is it big?
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Desirable Properties of Estimators

Sometimes there are many possible estimators for a given parameter.
Which one should we choose?

We’d like an estimator that gets the right answer on average.

We’d like an estimator that doesn’t change much from sample to
sample.

We’d like an estimator that gets closer to the right answer
(probabilistically) as the sample size increases.

We’d like an estimator that has a known sampling distribution
(approximately) when the sample size is large.
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Properties of Estimators
Estimators are random variables, for which randomness comes from repeated
sampling from the population.

The distribution of an estimator due to repeated sampling is called the sampling
distribution.

The properties of an estimator refer to the characteristics of its sampling
distribution.

Finite-sample Properties (apply for any sample size):

Unbiasedness: Is the sampling distribution of our estimator centered at the
true parameter value? E [µ̂] = µ

Efficiency: Is the variance of the sampling distribution of our estimator
reasonably small? V [µ̂1] < V [µ̂2]

Asymptotic Properties (kick in when n is large):

Consistency: As our sample size grows to infinity, does the sampling
distribution of our estimator converge to the true parameter value?

Asymptotic Normality: As our sample size grows large, does the sampling
distribution of our estimator approach a normal distribution?
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1: Bias
(not getting the right answer on average)

Definition

Bias is the expected difference between the estimator and the parameter.
Over repeated samples, an unbiased estimator is right on average.

Bias(µ̂) = E [µ̂− E [X ]]

= E [µ̂]− µ

Bias is not the difference between a particular estimate and the parameter.
For example,

Bias(X n) 6= E [xn − E [X ]]

An estimator is unbiased if and only if:

Bias(µ̂) = 0
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Example: Estimators for Population Mean

Candidate estimators:

1 µ̂1 = Y1 (the first observation)

2 µ̂2 = 1
2(Y1 + Yn) (average of the first and last observation)

3 µ̂3 = 42

4 µ̂4 = Y n (the sample average)

How do we choose between these estimators?
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Bias of Example Estimators

Which of these estimators are unbiased?

1 E [Y1 − µ] = µ− µ = 0

2 E [12(Y1 + Yn)− µ] = 1
2(E [Y1] + E [Yn])− µ = 1

2(µ+ µ)− µ = 0

3 E [42− µ] = 42− µ
4 E [Y n − µ] = 1

n

∑n
1 E [Yi ]− µ = µ− µ = 0

Estimators 1,2, and 4 are unbiased because they get the right answer
on average.

Estimator 3 is biased.
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2: Efficiency
(doesn’t change much sample to sample)

All else equal, we prefer estimators that have a sampling distribution with
smaller variance.

Definition (Efficiency)

If θ̂1 and θ̂2 are unbiased estimators of θ, then θ̂1 is more efficient relative to θ̂2 iff

V [θ̂1] < V [θ̂2]

Under repeated sampling, estimates based on θ̂1 are likely to be closer to θ

Note that this does not imply that a particular estimate is always close to
the true parameter value

The standard deviation of the sampling distribution of an estimator,
√

V [θ̂],

is often called the standard error of the estimator

Aronow and Miller discuss efficiency in terms of MSE (more on this in a second).
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Variance of Example Estimators

What is the variance of our estimators?

1 V [Y1] = σ2

2 V [12(Y1 + Yn)] = 1
4V [Y1 + Yn] = 1

4(σ2 + σ2) = 1
2σ

2

3 V [42] = 0

4 V [Y n] = 1
n2
∑n

1 V [Yi ] = 1
n2
nσ2 = 1

nσ
2

Among the unbiased estimators, the sample average has the smallest
variance. This means that Estimator 4 (the sample average) is likely to be
closer to the true value µ, than Estimators 1 and 2.
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Age population distribution in blue, sampling distributions in red
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Trading Off Bias and Variance
Low variance High variance

No
bias

Low
bias

High
bias

Salganik (2018), Figure 3.1
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Mean Squared Error

How can we choose between an unbiased estimator and a biased, but lower
variance estimator?

Definition (Mean Squared Error)

To compare estimators in terms of both efficiency and unbiasedness we can use
the Mean Squared Error (MSE), the expected squared difference between θ̂ and θ:

MSE (θ̂) = E [(θ̂ − θ)2] = Bias(θ̂)2 + V (θ̂) =
[
E [θ̂]− θ

]2
+ V (θ̂)

Sometimes (as in Aronow and Miller Deinition 3.2.16) efficiency is defined as
having lower MSE.
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3-4: Asymptotic Evaluations: A Brief Review
(what happens as sample size increases)

Unbiasedness and efficiency are finite-sample properties of estimators,
which hold regardless of sample size

Estimators also have asymptotic properties, i.e., the characteristics of
sampling distributions when sample size becomes infinitely large

To define asymptotic properties, consider a sequence of estimators at
increasing sample sizes:

θ̂1, θ̂2, ..., θ̂n

For example, the sequence of sample means (X̄n) is defined as:

X̄1, X̄2, ..., X̄n = X1,
X1 + X2

2
, ...,

X1 + · · ·Xn

n

Asymptotic properties of an estimator are defined by the behavior of
θ̂1, ...θ̂n when n goes to infinity.
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3: Consistency
(does it get closer to the right answer as sample size increases)

Definition

An estimator θ̂n is consistent if the sequence θ̂1, ..., θ̂n converges in probability to
the true parameter value θ as sample size n grows to infinity:

θ̂n
p−→ θ or plim

n→∞
θ̂n = θ

Often seen as a minimal requirement for estimators

A consistent estimator may still perform badly in small samples

Two ways to verify consistency:

1 Analytic: Often easier to check if E [θ̂n]→ θ and V [θ̂n]→ 0
2 Simulation: Increase n and see how the sampling distribution changes

Does unbiasedness imply consistency?

Does consistency imply unbiasedness?
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Deriving Consistency of Estimators

Our candidate estimators:

1 µ̂1 = Y1

2 µ̂2 = 4

3 µ̂3 = Y n ≡ 1
n (Y1 + · · ·+ Yn)

4 µ̂4 = Ỹn ≡ 1
n+5(Y1 + · · ·+ Yn)

Which of these estimators are consistent for µ?

1 E [µ̂1] = µ and V [µ̂1] = σ2

2 E [µ̂2] = 4 and V [µ̂2] = 0

3 E [µ̂3] = µ and V [µ̂3] = 1
nσ

2

4 E [µ̂4] = n
n+5µ and V [µ̂4] = n

(n+5)2
σ2
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Consistency

The sample mean is a consistent
estimator for µ.

X n ∼approx N

(
µ,
σ2

n

)
As n increases, σ2

n approaches 0.
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Inconsistency

An estimator can be inconsistent in several ways:

The sampling distribution collapses around the wrong value

The sampling distribution never collapses around anything
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Inconsistency

Consider the median estimator: X̃n =
median(Y1, ...,Yn) Is this estimator
consistent for the expectation?
n = 125100
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4: Asymptotic Distribution
(known sampling distribution for large sample size)

We are also interested in the shape of the sampling distribution of an
estimator as the sample size increases.

Due to the central limit theorem, the sampling distributions of many
estimators converge towards a normal distribution such that,

θ̂n − θ√
V [θ̂n]

d→ N (0, 1)

This will play a crucial role in our ability to form confidence intervals.
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Summary of Properties

Concept Criteria Intuition
Unbiasedness E [µ̂] = µ Right on average

Efficiency V [µ̂1] < V [µ̂2] Low variance

Consistency µ̂n
p→ µ Converge to estimand as n→∞

Asymptotic Normality µ̂n
approx.∼ N(µ, σ

2

n ) Approximately normal in large n
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How do we learn about an estimator?

Repeating theme in this class—how to characterize an estimator.

1 Define estimand of interest (causal quantity, survey outcome, model
parameter)

2 Find an estimator for the quantity of interest

3 Is this estimator consistent?

4 Is this estimator unbiased?

5 What is the variance of the estimator?

6 Can we find an unbiased estimator for the variance (and is it
consistent)?

7 What are the finite sample properties of the estimator?

8 What are the asymptotic properties of the estimator?
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Back to the Example
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Population vs. Sampling Distribution
We want to think about the sampling distribution of the estimator.

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40

00
60

00

Population
Distribution

Sampling
Distribution

But remember that we only get to see one draw from the sampling
distribution. Thus ideally we want an estimator with good properties.
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Asymptotic Normality

Going back to the Gerber, Green, and Larimer result. . .

The estimator is difference in means

The estimate is 0.063

Suppose we have an estimate of the estimator’s standard error
ŜE(θ̂) = 0.02.

What if there was no difference in means in the population
(µy − µx = 0)?

By asymptotic Normality (θ̂ − 0)/SE(θ̂) ∼ N(0, 1)

By the properties of Normals, we know that this implies that
θ̂ ∼ N (0, SE(θ̂))
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Asymptotic Normality

We can plot this to get a feel for it.

sampling.dist
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Does the observed difference in means seem plausible if there really were
no difference between the two groups in the population?
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The scariest pieces of mail ever! continued

Summarizes the relationships between political science research and
campaigns. Also, attempts to weaponize the results of Gerber et al (2008).
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We Covered. . .

Four properties of estimators: bias, efficiency, consistency and
asymptotic normality.

A brief example of how we can use asymptotic normality in an
example that will return!

Next Time: interval estimation
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Where We’ve Been and Where We’re Going...

Last Week
I random variables
I joint distributions

This Week
I estimators and sampling distributions
I estimator properties (bias, variance, consistency)
I confidence intervals

Next Week
I hypothesis testing
I what is regression?

Long Run
I probability → inference → regression → causal inference
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1 Estimation
Populations and Samples
Estimators
Analytical

2 Weak Law of Large Numbers and the Central Limit Theorem
Chebychev’s Inequality
Weak Law of Large Numbers
The Central Limit Theorem

3 Properties of Estimators
Four Desirable Properties
Example

4 Interval Estimation
Intervals
Large Sample Intervals for a Mean
Small Sample Intervals for a Mean
Comparing Two Groups
Interval Estimation for a Proportion

5 Plug-In Principle
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What is Interval Estimation?

A point estimator θ̂ estimates a scalar population parameter θ with a
single number.

However, because we are dealing with a random sample, we might
also want to report uncertainty in our estimate.

An interval estimator for θ takes the following form:

[θ̂lower , θ̂upper ]

where θ̂lower and θ̂upper are random quantities that vary from sample
to sample.

The interval represents the range of possible values within which we
estimate the true value of θ to fall.

An interval estimate is a realized value from an interval estimator.
The estimated interval typically forms what we call a confidence
interval, which we will define shortly.
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Population with Known σ2

Suppose we have an i.i.d. random sample of size n, X1, ...,Xn, from with
E [X ] = µ, V [X ] = 1.

From previous lecture, we know that the sampling distribution of the sample
average in large samples is:

X n ∼ N(µ, σ2/n) = N(µ, 1/n)

Therefore, the standardized sample average is distributed as follows:

X n − µ
1/
√
n
∼ N(0, 1)

This implies

P

(
−1.96 <

X n − µ
1/
√
n
< 1.96

)
= .95
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CDF of the Standard Normal Distribution
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CDF(1.96) = .975
CDF(−1.96) = .025
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Constructing a Confidence Interval with Known σ2

So we know that:

P

(
−1.96 <

X n − µ
1/
√
n
< 1.96

)
= .95

Rearranging yields:

P
(
X n − 1.96/

√
n < µ < X n + 1.96/

√
n
)

= .95

This implies that the following interval estimator[
X n − 1.96/

√
n , X n + 1.96/

√
n
]

contains the true population mean µ with probability 0.95.

We call this estimator a 95% confidence interval for µ.
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Kuklinski Example

Y ∼approx?(?, ?)?(µ, ?)?(µ, σ2/n)N(µ, σ2/n)

Suppose the 1,161 respondents in
the Kuklinski data set were the
population, with
µ = 42.7 and σ2 = 257.9.

If we sampled 100 respondents, the
sampling distribution of Y 100 is:

Y 100 ∼approx N(42.7, 2.579)

µ̂ = Y100
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The standard error of Y

The standard error of the sample
mean is the standard deviation of the
sampling distribution for Y :

SE (Y ) =

√
V (Y ) =

σ√
n

What is the probability that Y falls
within 1.96 SEs of µ?

Sampling distribution of  Y100
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Normal Population with Unknown σ2

In practice, it is rarely the case that we somehow know the true value of
σ2 and our previous example relied on that knowledge.

Suppose now that we have an i.i.d. random sample of size n X1, ...,Xn

where σ2 is unknown. Then, as before,

X n ∼ N(µ, σ2/n) and so
X n − µ
σ/
√
n
∼ N(0, 1).

Previously, we then constructed the interval:

[
X n − zα/2σ/

√
n, X n + zα/2σ/

√
n
]

But we can not directly use this now because σ2 is unknown.

Instead, we need an estimator of σ2, σ̂2.
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Estimators for the Population Variance
Two possible estimators of population variance:

S2
0n =

1

n

n∑
i=1

(Xi − X n)2

S2
1n =

1

n − 1

n∑
i=1

(Xi − X n)2

Which do we prefer? Let’s check properties of these estimators.

1 Unbiasedness: We can show (after some algebra) that

E [S2
0n] =

n − 1

n
σ2 and E [S2

1n] = σ2

2 Consistency: We can show that

S2
0n

p→ σ2 and S2
1n

p→ σ2

S2
1n (unbiased and consistent) is commonly called the sample variance.
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Estimating σ and the SE

Returning to Kulinski et. al. . .

We will use the sample variance:

S2 =
1

n − 1

n∑
i=1

(Xi − X n)2

and thus the sample standard deviation can be written as

S =
√
S2

We will plug in S for σ and our estimated standard error will be

ŜE [µ̂] =
S√
n
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95% Confidence Intervals

If X1, ...,Xn are i.i.d. and n is large,
then

µ̂ ∼ N(µ, (ŜE [µ̂])2)

µ̂− µ ∼ N(0, (ŜE [µ̂])2)

µ̂− µ
ŜE [µ̂]

∼ N(0, 1)

We know that

P

(
−1.96 ≤ µ̂− µ

ŜE [µ̂]
≤ 1.96

)
= 95%

Sampling distribution of    
µµ̂ −− µµ

SÊ((µµ̂))
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95% Confidence Intervals

We can work backwards from this:

P

(
−1.96 ≤ µ̂− µ

ŜE [µ̂]
≤ 1.96

)
= 95%

P
(
−1.96ŜE [µ̂] ≤ µ̂− µ ≤ 1.96ŜE [µ̂]

)
= 95%

P
(
µ̂− 1.96ŜE [µ̂] ≤ µ ≤ µ̂+ 1.96ŜE [µ̂]

)
= 95%

The random quantities in this statement are µ̂ and ŜE [µ̂].
Once the data are observed, nothing is random!
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What does this mean?

We can simulate this process using
the Kuklinski data:

1) Draw a sample of size 100:

0 20 40 60 80 100

2) Calculate µ̂ and ŜE [µ̂]:

µ̂ = 43.53 ŜE [µ̂] = 1.555

3) Construct the 95% CI:

(40.5, 46.6)
Age

35 40 45 50
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What does this mean?

By repeating this process, we
generate the sampling distribution of
the 95% CIs.

Most of the CIs cover the true µ;
some do not.

In the long run, we expect 95% of
the CIs generated to contain the true
value.

Age

35 40 45 50
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Interpreting a Confidence Interval

This can be tricky, so let’s break it down.

Imagine we implement the interval estimator X n ± 1.96/
√
n for a particular

sample and obtain the estimate of [2.5, 4].

Does this mean that there is a .95 probability that the true parameter value
µ lies between these two particular numbers? No!

Confidence intervals are easy to construct, but difficult to interpret:

I Each confidence interval estimate from a particular sample either
contains µ or not.

I The probability statement is a property of the procedure. If we were to
repeatedly calculate the interval estimator over many random samples
from the same population, 95% of the time the constructed confidence
intervals would cover µ

I Therefore, we refer to .95 as the coverage probability
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What makes a good confidence interval?

1 The coverage probability: how likely it is that the interval covers the
truth.

2 The length of the confidence interval:
I Infinite intervals (−∞,∞) have coverage probability 1
I For a probability, a confidence interval of [0, 1] also have coverage

probability 1
I Zero-length intervals, like [Ȳ , Ȳ ], have coverage probability 0

You want the the shortest confidence interval with the desired
coverage probability.
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Is 95% all there is?

Our 95% CI had the following form: µ̂± 1.96ŜE [µ̂]

Remember where 1.96 came from?

P

(
−1.96 ≤ µ̂− µ

ŜE [µ̂]
≤ 1.96

)
= 95%

What if we want a different percentage?

P

(
−z ≤ µ̂− µ

ŜE [µ̂]
≤ z

)
= (1− α)%

How can we find z?
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Normal PDF

We know that z comes from the
probability in the tails of the
standard normal distribution.

When (1− α) = 0.95, we want to
pick z so that 2.5% of the probability
is in each tail.

This gives us a value of 1.96 for z .

−4 −2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4

z

F
(z

)
−1.96 1.96
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Normal PDF

What if we want a 50% confidence
interval?

When (1− α) = 0.50, we want to
pick z so that 25% of the probability
is in each tail.

This gives us a value of 0.67 for z .

−4 −2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4

z

F
(z

)
−0.67 0.67
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(1− α)% Confidence Intervals

In general, let zα/2 be the value associated with (1− α)% coverage:

P

(
−zα/2 ≤

µ̂− µ
ŜE [µ̂]

≤ zα/2

)
= (1− α)%

P
(
µ̂− zα/2ŜE [µ̂] ≤ µ ≤ µ̂+ zα/2ŜE [µ̂]

)
= (1− α)%

We usually construct the (1− α)% confidence interval with the following
formula.

µ̂± zα/2ŜE [µ̂]
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Statistical problems emerge from real science

Comparing different methods of growing barley (Full history:
https://www.jstor.org/stable/2245613)
https://en.wikipedia.org/wiki/Guinness#/media/File:Guinness.jpg
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The problem with small samples

Up to this point, we have relied on large sample sizes to construct
confidence intervals.

If the sample is large enough, then the sampling distribution of the sample
mean follows a normal distribution.

If the sample is large enough, then the sample standard deviation (S) is a
good approximation for the population standard deviation (σ).

When the sample size is small, we need to know something about the
distribution in order to construct confidence intervals with the correct
coverage (because we can’t appeal to the CLT or assume that S is a good
approximation of σ).
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https://www.jstor.org/stable/2331554
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Canonical Small Sample Example

What happens if we use the
large-sample formula?

The percent alcohol in Guinness beer
is distributed N(4.2, 0.09).

Take 100 six-packs of Guinness and
construct CIs of the form

µ̂± 1.96ŜE [µ̂]

In this sample, only 88 of the 100 CIs
cover the true value.

Percent alcohol

3.9 4.0 4.1 4.2 4.3 4.4 4.5
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The t distribution

If X is normally distributed, then X is normally distributed even in small
samples. Assume

X ∼ N(µ, σ2)

If we know σ, then

X − µ
σ√
n

∼ N(0, 1)

We rarely know σ and have to use an estimate instead:

X − µ
s√
n

∼??tn−1
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The t distribution

Since we have to estimate σ, the

distribution of X−µ
s√
n

is still

bell-shaped but is more spread out.

As the sample size increases, our
estimates of σ improve and extreme

values of X−µ
s√
n

become less likely.

Eventually the t distribution
converges to the standard normal.
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(1− α)% Confidence Intervals

In general, let tα/2 be the value associated with (1− α)% coverage:

P

(
−tα/2 ≤

µ̂− µ
ŜE [µ̂]

≤ tα/2

)
= (1− α)%

P
(
µ̂− tα/2ŜE [µ̂] ≤ µ ≤ µ̂+ tα/2ŜE [µ̂]

)
= (1− α)%

We usually construct the (1− α)% confidence interval with the following
formula.

µ̂± tα/2ŜE [µ̂]
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Small Sample Example

When we generated 95% CIs with
the large sample formula

µ̂± 1.96ŜE [µ̂]

only 88 out of 100 intervals covered
the true value.

When we use the correct
small-sample formula

µ̂± tα/2ŜE [µ̂]2.57ŜE [µ̂]

95 of the 100 CIs in this sample
cover the truth.

Percent alcohol

3.9 4.0 4.1 4.2 4.3 4.4 4.5

Percent alcohol

3.9 4.0 4.1 4.2 4.3 4.4 4.5
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Another Rationale for the t-Distribution

Does X n ∼ N(µ, S2
n/n), which would imply X n−µ

Sn/
√
n
∼ N(0, 1)?

No, because Sn is a random variable instead of a parameter (like σ).

Thus, we need to derive the sampling distribution of the new random
variable. It turns out that Tn follows Student’s t-distribution with n − 1
degrees of freedom.

Theorem (Distribution of t-Value from a Normal Population)

Suppose we have an i.i.d. random sample of size n from N(µ, σ2). Then,
the sample mean X n standardized with the estimated standard error
Sn/
√
n satisfies,

Tn ≡
X n − µ
Sn/
√
n
∼ τn−1
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Kuklinski Example Returns

The Kuklinski et al. (1997) article compares responses to the baseline list
with responses to the treatment list.

How should we estimate the difference between the two groups?

How should we obtain a confidence interval for our estimate?
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Comparing Two Groups

We will often assume the following when comparing two groups,

X11,X12, ...,X1n1 ∼i .i .d .?(µ1, σ
2
1)

X21,X22, ...,X2n2 ∼i .i .d .?(µ2, σ
2
2)

The two samples are independent of each other.

We will usually be interested in comparing µ1 to µ2, although we will
sometimes need to compare σ21 to σ22 in order to make the first comparison.
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Sampling Distribution for X 1 − X 2

What is the expected value of X 1 − X 2?

E [X 1 − X 2] = E [X 1]− E [X 2]

=
1

n1

∑
E [X1i ]−

1

n2

∑
E [X2j ]

=
1

n1

∑
µ1 −

1

n2

∑
µ2

= µ1 − µ2
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Sampling Distribution for X 1 − X 2

What is the variance of X 1 − X 2?

Var [X 1 − X 2] = Var [X 1] + Var [X 2]

=
1

n21

∑
Var [X1i ] +

1

n22

∑
Var [X2j ]

=
1

n21

∑
σ21 +

1

n22

∑
σ22

=
σ21
n1

+
σ22
n2
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Sampling Distribution for X 1 − X 2

What is the distributional form for X 1 − X 2?

X 1 is distributed ∼ N(µ1,
σ2
1

n1
).

X 2 is distributed ∼ N(µ2,
σ2
2

n2
).

X 1 − X 2 is distributed ∼ N(µ1 − µ2,
σ2
1

n1
+

σ2
2

n2
).
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CIs for µ1 − µ2

Using the same type of argument that we used for the univariate case, we
write a (1− α)% CI as the following:

X 1 − X 2 ± zα/2

√
σ21
n1

+
σ22
n2
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Interval estimation of the population proportion
Let’s say that we have a sample of iid Bernoulli random variables,
Y1, . . . ,Yn, where each takes Yi = 1 with probability π. Note that this is
also the population proportion of ones. We have shown in previous weeks
that the expectation of one of these variable is just the probability of seeing
a 1: E [Yi ] = π.

The variance of a Bernoulli random variable is a simple function of its mean:
Var(Yi ) = π(1− π).

Problem Show that the sample proportion, π̂ = 1
n

∑n
i=1 Yi , of the above iid

Bernoulli sample, is unbiased for the true population proportion, π, and that

the sampling variance is equal to π(1−π)
n .

Note that if we have an estimate of the population proportion, π̂, then we

also have an estimate of the sampling variance: π̂(1−π̂)
n .

Given the facts from the previous problem, we just apply the same logic
from the population mean to show the following confidence interval:

P

(
π̂ − zα/2 ×

√
π̂(1− π̂)

n
≤ π ≤ π̂ + zα/2 ×

√
π̂(1− π̂)

n

)
= (1− α)
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Gerber, Green, and Larimer experiment

Let’s go back to the Gerber, Green, and Larimer experiment from last
class. Here are the results of their experiment:

Let’s use what we have learned up until now and the information in
the table to calculate a 95% confidence interval for the difference in
proportions voting between the Neighbors group and the Civic Duty
group.

You may assume that the samples with in each group are iid and the
two samples are independent.
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Calculating the CI for social pressure effect

We know distribution of sample proportion turned among Civic Duty
group π̂C ∼ N(πC , (πC (1− πC ))/nC )

Sample proportions are just sample means, so we can do difference in
means:

π̂N − π̂C ∼ N

(
πN − πC ,

√
SE 2

N + SE 2
C

)
Replace the variances with our estimates:

π̂N − π̂C ∼ N

(
πN − πC ,

√
ŜE

2

N + ŜE
2

C

)
Apply usual formula to get 95% confidence interval:

(π̂N − π̂C )± 1.96×
√

ŜE
2

N + ŜE
2

C

Remember that we can calculate the sample variance for a sample
proportion like so: (π̂C (1− π̂C ))/nC
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Gerber, Green, and Larimer experiment

Now, we calculate the 95% confidence interval:

(π̂N − π̂C )± 1.96×

√
π̂N(1− π̂N)

nN
+
π̂C (1− π̂C )

nC

n.n <- 38201

samp.var.n <- (0.378 * (1 - 0.378))/n.n

n.c <- 38218

samp.var.c <- (0.315 * (1 - 0.315))/n.c

se.diff <- sqrt(samp.var.n + samp.var.c)

## lower bound

(0.378 - 0.315) - 1.96 * se.diff

## [1] 0.05626701

## upper bound

(0.378 - 0.315) + 1.96 * se.diff

## [1] 0.06973299

Thus, the confidence interval for the effect is [0.056267, 0.069733].
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Review

We can use our analytic samples 
to find a confidence interval

your
estimate t.gg/h.i.

np¥¥¥gfamoag
;

triticale

,
42 because

'

\
. : "
tiff

:: .we're looking for

a two - sided interval
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Review

1. The distribution 
2. Confidence level 

• Alpha 
3. Sidedness 
4. Critical value(s) 
5. Standard error of our estimate 

To use the confidence interval formula, 
we need to find: 

.

for a proportion , the
\

tnmnagecisg
.

. FEB -

n
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Review

Calculating the confidence interval
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Review

Our results
26.2% red with a 95 percent  

confidence interval of [22.3, 30.1]
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Review

We hope our 
sample is in 

the 95%
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We Covered. . .

Interval estimates provide a means of assessing uncertainty.

Interval estimators have sampling distributions.

Interval estimates should be interpreted in terms of repeated sampling.

Next Time: The plug-in principle!
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Where We’ve Been and Where We’re Going...

Last Week
I random variables
I joint distributions

This Week
I estimators and sampling distributions
I estimator properties (bias, variance, consistency)
I confidence intervals

Next Week
I hypothesis testing
I what is regression?

Long Run
I probability → inference → regression → causal inference
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1 Estimation
Populations and Samples
Estimators
Analytical

2 Weak Law of Large Numbers and the Central Limit Theorem
Chebychev’s Inequality
Weak Law of Large Numbers
The Central Limit Theorem

3 Properties of Estimators
Four Desirable Properties
Example

4 Interval Estimation
Intervals
Large Sample Intervals for a Mean
Small Sample Intervals for a Mean
Comparing Two Groups
Interval Estimation for a Proportion

5 Plug-In Principle
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Coming up with Estimators

We now know how to study some properties of estimators, but how do we
come up with candidate estimators?

The simplest way is to use the sample analog.

Ex: If we’re interested in the population mean, we use the sample
mean

This is justified because of the plug-in principle.

The Weak Law of Large Numbers tells us that the empirical CDF is a
good sample analog of the true CDF (which fully describes a
distribution).
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The Plug-in Principle in Action
Say we have a N (5, 4) distribution

0.00
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0.50
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1.00

0 10

x
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n 10 100 1000 10000 truth

Emprical CDF
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The Plug-in Principle
Note that the CDF is:

F (x) = P(X ≤ x) = E [I(X ≤ x)]

we define the empirical CDF (eCDF) as:

F̂ (x) = I(X ≤ x),∀x ∈ R

WLLN tells us that the eCDF will be unbiased and consistently
estimated. Any given sample will, on average, look representative of
the true distribution.

For iid random variables X1,X2, . . . ,Xn with common CDF F , the plug-in
estimator of θ = T (F ) is:

θ̂ = T (F̂ )

if T is well-behaved, then θ̂ is also asymptotically normal.
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Bootstrapped Sampling Distributions

What if there was a way to replace thinking with computers?

What if there was a way to replacing analytical derivations, which can be
hard, with computer simulations which are easy?

The plug-in principle gives us a way forward.
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Source: Salganik (2006)
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This works for almost∗ any estimator

*basically it works when plug-in estimation works
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Efron and Tibshirani (1986), http://www.jstor.org/stable/2245500
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The Bootstrap

Bootstrap: Use the eCDF as a plug-in for the CDF, and resample from
that. I.e. we are pretending our sample eCDF looks sufficiently close to our
true CDF, and so we’re sampling from the eCDF as an approximation to
repeated sampling from the true CDF. This is called a resampling method.

1 Take a with replacement sample of size n from our sample.

2 Calculate our would-be estimate using this bootstrap sample.

3 Repeat steps 1 and 2 many (B) times.

4 Using the resulting collection of bootstrap estimates, calculate the
standard deviation of the bootstrap distribution of our estimator.
This serves our estimate of the standard deviation of the sampling
distribution
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Example of a Bootstrap

samp <- c(9.7, 4.99, 5.9, 3.58, 8.15, 5.54, 4.77, 5.01, 4.89,

3.42, 8.63, 7.17, 8.93, 7.5, 4.93, 8.6, 6.26, 7.31,

8.96, 3.95)

obs_mean = mean(samp)

obs_mean

## [1] 6.4095
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Example of a Bootstrap

# resample WITH REPLACEMENT reps times

# recalculate the mean within each bootstrap replicate

boot_samp_dist <- replicate(2000, {
mean(samp[sample.int(length(samp), replace = TRUE)])

})

ggplot(tibble(boot_samp_dist = boot_samp_dist),

aes(x = boot_samp_dist)) +

geom_density() +

geom_vline(xintercept = obs_mean) +

theme_bw() + ggtitle("Bootstrap Sampling Distribution

For the Sample Mean") +

xlab("mean")
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Example of a Bootstrap

0.00

0.25

0.50

0.75

1.00

5 6 7

mean

de
ns

ity

Bootstrap Sampling Distribution
For the Sample Mean
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Two ways to calculate bootstrap intervals

1) Using normal approximation intervals, use the estimates from step 4.[
X − Φ−1(1− α/2) ∗ σ̂boot,X + Φ−1(1− α/2) ∗ σ̂boot

]
I Note here that the standard error is just the standard deviation of the

boostrap replicates. There is no square root of n. Why?

2) Percentile method for the CI: Sort B bootstrap estimates from
smallest to largest. α interval is constructed as

CI1−α =
[
α/2 ∗ B sample, (1− α/2) ∗ B sample

]
I Percentile method does not rely on normal approximation, and behaves

better with small n.
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We covered

The plug-in principle.

The bootstrap.

We will return to both in future weeks.
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This Week in Review

Estimation!

Central Limit Theorem!

Properties of Estimators!

Intervals!

Plug-In Principle!

Going Deeper:

Aronow and Miller (2019) Foundations of Agnostic Statistics.
Cambridge University Press. Chapter 3.

Next week: hypothesis testing and regression!
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